1
|
Zhong Q, Wu W, Xie J, Wang JL, Xu K, Ren Y, Chen J, Xie P. Limosilactobacillus-related 3-OMDP as a potential therapeutic target for depression. Ann Med 2024; 56:2417179. [PMID: 39421970 PMCID: PMC11492388 DOI: 10.1080/07853890.2024.2417179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/02/2024] [Accepted: 05/21/2024] [Indexed: 10/19/2024] Open
Abstract
OBJECTIVE Gut microbiota was closely involved in the pathogenesis of depression, but the underlying molecular mechanisms in depression remained unclear. This study was conducted to investigate the relationship between neurotransmitters/inflammatory factors and gut microbiota in depressed mice. MATERIALS AND METHODS A chronic social defeat stress (CSDS) depression model was established. Gut microbial composition was detected in faeces, neurotransmitters were detected in faeces, colon, blood and hippocampus, and inflammatory factors were detected in hippocampus. After a key neurotransmitter was identified, intervention experiment was conducted to explore whether it could improve depressive-like behaviours. RESULTS Six differential genera in faeces, 14 differential neurotransmitters in gut-brain axis, and two differential inflammatory factors (interleukin-1 beta (IL-1β) and interleukin-6 (IL-6)) in hippocampus were identified in depressed mice. There were significant correlations among differential genera, differential neurotransmitters and IL-1β/IL-6. Among these differential neurotransmitters, 3-O-Methyldopa (3-OMDP) was found to be consistently decreased in faeces, colon, blood and hippocampus, and 3-OMDP was significantly correlated to Limosilactobacillus and IL-1β. After receiving 3-OMDP, the depressive-like behaviours in depressed mice were improved and the increased IL-1β/IL-6 levels were reversed. CONCLUSIONS These results indicated that gut microbiota might affect host's inflammation levels in brain through regulating neurotransmitters, eventually leading to the onset of depression. 'Limosilactobacillus-3-OMDP-IL-1β/IL-6' might be a potential pathway in the crosstalk of gut and brain, and 3-OMDP held the promise as a therapeutic target for depression.
Collapse
Affiliation(s)
- Qi Zhong
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Wentao Wu
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Jing Xie
- Chongqing Emergency Medical Center, Central Hospital of Chongqing University, Chongqing, China
| | - Jiao-lin Wang
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Ke Xu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Ren
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianjun Chen
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Mendez-Victoriano G, Zhu Y, Middleton F, Massa PT, Ajulu K, Webster MJ, Weickert CS. Increased Parenchymal Macrophages are associated with decreased Tyrosine Hydroxylase mRNA levels in the Substantia Nigra of people with Schizophrenia and Bipolar Disorder. Psychiatry Res 2024; 340:116141. [PMID: 39153291 DOI: 10.1016/j.psychres.2024.116141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 07/09/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024]
Abstract
Increased activation of inflammatory macrophages and altered expression of dopamine markers are found in the midbrains of people with schizophrenia (SZ). The relationship of midbrain macrophages to dopamine neurons has not been explored, nor is it known if changes in midbrain macrophages are also present in bipolar disorder (BD) or major depressive disorder (MDD). Herein, we determined whether there were differences in CD163+ cell density in the Substantia Nigra (SN), and cerebral peduncles (CP) of SZ, BD, and MDD compared to controls (CTRL). We also analyzed whether CD163 protein and dopamine-synthesizing enzyme tyrosine hydroxylase (TH) mRNA levels differed among diagnostic groups and if they correlated with the density of macrophages. Overall, perivascular CD163+ cell density was higher in the gray matter (SN) than in the white matter (CP). Compared to CTRL, we found increased density of parenchymal CD163+ cells in the SN of the three psychiatric groups and increased CD163 protein levels in SZ. CD163 protein was positively correlated with density of perivascular CD163+ cells. TH mRNA was reduced in SZ and BD and negatively correlated with parenchymal CD163+ cell density. We provide the first quantitative and molecular evidence of an increase in the density of parenchymal macrophages in the midbrain of major mental illnesses and show that the presence of these macrophages may negatively impact dopaminergic neurons.
Collapse
Affiliation(s)
- Gerardo Mendez-Victoriano
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA; Neuroscience Research Australia, Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yunting Zhu
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - Frank Middleton
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - Paul T Massa
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - Kachikwulu Ajulu
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - Maree J Webster
- Laboratory of Brain Research, Stanley Medical Research Institute, 9800 Medical Center Drive, Rockville, MD, USA
| | - Cynthia S Weickert
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA; Neuroscience Research Australia, Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
3
|
Bellia F, Piccinini A, Annunzi E, Cannito L, Lionetti F, Dell’Osso B, Adriani W, Dainese E, Di Domenico A, Pucci M, Palumbo R, D’Addario C. Dopamine and Serotonin Transporter Genes Regulation in Highly Sensitive Individuals during Stressful Conditions: A Focus on Genetics and Epigenetics. Biomedicines 2024; 12:2149. [PMID: 39335662 PMCID: PMC11429336 DOI: 10.3390/biomedicines12092149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Coping with stress is essential for mental well-being and can be critical for highly sensitive individuals, characterized by a deeper perception and processing of stimuli. So far, the molecular bases characterizing high-sensitivity traits have not been completely investigated and gene × environment interactions might play a key role in making some people more susceptible than others. Methods: In this study, 104 young adult university students, subjects that might face overwhelming experiences more than others, were evaluated for the genetics and epigenetics of dopamine (DAT1) and serotonin (SERT) transporter genes, in addition to the expression of miR-132, miR-491, miR-16, and miR-135. Results: We found an increase in DNA methylation at one specific CpG site at DAT1 5'UTR in highly sensitive students reporting high levels of perceived stress when compared to those less sensitive and/or less stressed. Moreover, considering DAT1 VNTR at 3'UTR, we observed that this effect was even more pronounced in university students having the 9/9 genotype when compared to those with the 9/10 genotype. These data are corroborated by the higher levels of miR-491, targeting DAT1, in highly sensitive subjects with high levels of perceived stress. SERT gene DNA methylation at one specific CpG site was reported to instead be higher in subjects reporting lower perceived stress when compared to more stressed subjects. Consistently, miR-135 expression, regulating SERT, was lower in subjects with higher perceived stress. Conclusions: We here suggest that the correlation of DAT1 and SERT genetic and epigenetic data with the analysis of stress and sensitivity might be useful to suggest possible biomarkers to monitor mental health wellness in vulnerable subjects.
Collapse
Affiliation(s)
- Fabio Bellia
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (F.B.); (A.P.); (E.A.); (E.D.); (M.P.)
- Department of Innovative Technologies in Medicine and Dentistry, University “G. D’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. D’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy;
| | - Alessandro Piccinini
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (F.B.); (A.P.); (E.A.); (E.D.); (M.P.)
| | - Eugenia Annunzi
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (F.B.); (A.P.); (E.A.); (E.D.); (M.P.)
| | - Loreta Cannito
- Center for Advanced Studies and Technology (CAST), University “G. D’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy;
- Department of Social Sciences, University of Foggia, 71122 Foggia, Italy
| | - Francesca Lionetti
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Bernardo Dell’Osso
- Department of Biomedical and Clinical Sciences “Luigi Sacco”, University of Milan, 20019 Milan, Italy;
- “Aldo Ravelli” Center for Nanotechnology and Neurostimulation, University of Milan, 20122 Milan, Italy
| | - Walter Adriani
- Center for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy;
| | - Enrico Dainese
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (F.B.); (A.P.); (E.A.); (E.D.); (M.P.)
| | - Alberto Di Domenico
- Department of Psychological, Health and Territorial Sciences, University “G. D’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy;
| | - Mariangela Pucci
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (F.B.); (A.P.); (E.A.); (E.D.); (M.P.)
| | - Riccardo Palumbo
- Department of Neuroscience, Imaging and Clinical Sciences, University “G.D’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy;
| | - Claudio D’Addario
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (F.B.); (A.P.); (E.A.); (E.D.); (M.P.)
- Department of Clinical Neuroscience, Karolinska Institute, 10316 Stockholm, Sweden
| |
Collapse
|
4
|
Kobayashi R, Iwata-Endo K, Fujishiro H. Clinical presentations and diagnostic application of proposed biomarkers in psychiatric-onset prodromal dementia with Lewy bodies. Psychogeriatrics 2024; 24:1004-1022. [PMID: 38837629 DOI: 10.1111/psyg.13147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024]
Abstract
Research criteria for the diagnosis of prodromal dementia with Lewy bodies (DLB) include three clinical subtypes: mild cognitive impairment with Lewy bodies (MCI-LB), delirium-onset prodromal DLB, and psychiatric-onset prodromal DLB. Late-onset psychiatric manifestations are at a higher risk of developing dementia, but its relation to prodromal DLB remains unclear. In addition to the risk of severe antipsychotic hypersensitivity reactions, accurate discrimination from non-DLB cases is important due to the potential differences in management and prognosis. This article aims to review a rapidly evolving psychiatric topic and outline clinical pictures of psychiatric-onset prodromal DLB, including the proposed biomarker findings of MCI-LB: polysomnography-confirmed rapid eye movement sleep behaviour disorder, cardiac [123I]metaiodobenzylguanidine scintigraphy, and striatal dopamine transporter imaging. We first reviewed clinical pictures of patients with autopsy-confirmed DLB. Regarding clinical reports, we focused on the patients who predominantly presented with psychiatric manifestations and subsequently developed DLB. Thereafter, we reviewed clinical studies regarding the diagnostic applications of the proposed biomarkers to patients with late-onset psychiatric disorders. Clinical presentations were mainly late-onset depression and psychosis; however, other clinical manifestations were also reported. Psychotropic medications before a DLB diagnosis may cause extrapyramidal signs, and potentially influences the proposed biomarker findings. These risks complicate clinical manifestation interpretation during the management of psychiatric symptoms. Longitudinal follow-up studies with standardised evaluations until conversion to DLB are needed to investigate the temporal trajectories of core features and proposed biomarker findings. In patients with late-onset psychiatric disorders, identification of patients with psychiatric-onset prodromal DLB provides the opportunity to better understanding the distinct prognostic subgroup that is at great risk of incident dementia. Advances in the establishment of direct biomarkers for the detection of pathological α-synuclein may encourage reorganising the phenotypic variability of prodromal DLB.
Collapse
Affiliation(s)
- Ryota Kobayashi
- Department of Psychiatry, Yamagata University School of Medicine, Yamagata, Japan
| | - Kuniyuki Iwata-Endo
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshige Fujishiro
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
5
|
Mazuryk J, Klepacka K, Kutner W, Sharma PS. Glyphosate: Impact on the microbiota-gut-brain axis and the immune-nervous system, and clinical cases of multiorgan toxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115965. [PMID: 38244513 DOI: 10.1016/j.ecoenv.2024.115965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/25/2023] [Accepted: 01/06/2024] [Indexed: 01/22/2024]
Abstract
Glyphosate (GLP) and GLP-based herbicides (GBHs), such as polyethoxylated tallow amine-based GLP surfactants (GLP-SH), developed in the late 70', have become the most popular and controversial agrochemicals ever produced. Nowadays, GBHs have reached 350 million hectares of crops in over 140 countries, with an annual turnover of 5 billion and 11 billion USD in the U.S.A. and worldwide, respectively. Because of the highly efficient inhibitory activity of GLP targeted to the 5-enolpyruvylshikimate-3-phosphate synthase pathway, present in plants and several bacterial strains, the GLP-resistant crop-based genetic agricultural revolution has decreased famine and improved the costs and quality of living in developing countries. However, this progress has come at the cost of the 50-year GBH overuse, leading to environmental pollution, animal intoxication, bacterial resistance, and sustained occupational exposure of the herbicide farm and companies' workers. According to preclinical and clinical studies covered in the present review, poisoning with GLP, GLP-SH, and GBHs devastatingly affects gut microbiota and the microbiota-gut-brain (MGB) axis, leading to dysbiosis and gastrointestinal (GI) ailments, as well as immunosuppression and inappropriate immunostimulation, cholinergic neurotransmission dysregulation, neuroendocrinal system disarray, and neurodevelopmental and neurobehavioral alterations. Herein, we mainly focus on the contribution of gut microbiota (GM) to neurological impairments, e.g., stroke and neurodegenerative and neuropsychiatric disorders. The current review provides a comprehensive introduction to GLP's microbiological and neurochemical activities, including deviation of the intestinal Firmicutes-to-Bacteroidetes ratio, acetylcholinesterase inhibition, excitotoxicity, and mind-altering processes. Besides, it summarizes and critically discusses recent preclinical studies and clinical case reports concerning the harmful impacts of GBHs on the GI tract, MGB axis, and nervous system. Finally, an insightful comparison of toxic effects caused by GLP, GBH-SH, and GBHs is presented. To this end, we propose a first-to-date survey of clinical case reports on intoxications with these herbicides.
Collapse
Affiliation(s)
- Jarosław Mazuryk
- Department of Electrode Processes, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland; Bio & Soft Matter, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1 Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium.
| | - Katarzyna Klepacka
- Functional Polymers Research Team, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland; ENSEMBLE(3) sp. z o. o., 01-919 Warsaw, Poland
| | - Włodzimierz Kutner
- Department of Electrode Processes, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland; Faculty of Mathematics and Natural Sciences. School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland
| | - Piyush Sindhu Sharma
- Functional Polymers Research Team, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| |
Collapse
|
6
|
Mizuno Y, Ashok AH, Bhat BB, Jauhar S, Howes OD. Dopamine in major depressive disorder: A systematic review and meta-analysis of in vivo imaging studies. J Psychopharmacol 2023; 37:1058-1069. [PMID: 37811803 PMCID: PMC10647912 DOI: 10.1177/02698811231200881] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
BACKGROUND Major depressive disorder (MDD) is a leading cause of global disability. Several lines of evidence implicate the dopamine system in its pathophysiology. However, the magnitude and consistency of the findings are unknown. We address this by systematically reviewing in vivo imaging evidence for dopamine measures in MDD and meta-analysing these where there are sufficient studies. METHODS Studies investigating the dopaminergic system using positron emission tomography or single photon emission computed tomography in MDD and a control group were included. Demographic, clinical and imaging measures were extracted from each study, and meta-analyses and sensitivity analyses were conducted. RESULTS We identified 43 studies including 662 patients and 801 controls. Meta-analysis of 38 studies showed no difference in mean or mean variability of striatal D2/3 receptor availability (g = 0.06, p = 0.620), or combined dopamine synthesis and release capacity (g = 0.19, p = 0.309). Dopamine transporter (DAT) availability was lower in the MDD group in studies using DAT selective tracers (g = -0.56, p = 0.006), but not when tracers with an affinity for serotonin transporters were included (g = -0.21, p = 0.420). Subgroup analysis showed greater dopamine release (g = 0.49, p = 0.030), but no difference in dopamine synthesis capacity (g = -0.21, p = 0.434) in the MDD group. Striatal D1 receptor availability was lower in patients with MDD in two studies. CONCLUSIONS The meta-analysis indicates striatal DAT availability is lower, but D2/3 receptor availability is not altered in people with MDD compared to healthy controls. There may be greater dopamine release and lower striatal D1 receptors in MDD, although further studies are warranted. We discuss factors associated with these findings, discrepancies with preclinical literature and implications for future research.
Collapse
Affiliation(s)
- Yuya Mizuno
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Abhishekh Hulegar Ashok
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Imperial College London, London, UK
- Department of Radiology, University of Cambridge, Cambridge, UK
- Department of Radiology, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - Sameer Jauhar
- South London and Maudsley NHS Foundation Trust, London, UK
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Imperial College London, London, UK
- Psychiatric Imaging Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
7
|
Riby LM, Fenwick SK, Kardzhieva D, Allan B, McGann D. Unlocking the Beat: Dopamine and Eye Blink Response to Classical Music. NEUROSCI 2023; 4:152-163. [PMID: 39483319 PMCID: PMC11523725 DOI: 10.3390/neurosci4020014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/31/2023] [Accepted: 06/14/2023] [Indexed: 11/03/2024] Open
Abstract
The present study examined music-induced dopamine release, as measured by a proxy measure of spontaneous eye blinks. Specifically, we explored the effects of uplifting and sombre tones in different sections of Vivaldi's Four Seasons to investigate the affective content of musical pieces within one composition. Seventeen participants listened to four concertos (Major modes: "Spring" and "Autumn", Minor modes: "Summer" and "Winter") and a silence condition while completing a three-stimulus odd-ball attention task. Electrooculograms were recorded from electrodes placed above and under the left eye. Self-reported arousal and music preference measures were also gathered during the testing session. In addition, the P3a Event-Related Potential (ERP) component was analysed as another potential index of dopamine function. Results revealed significant differences in the blink rates during music listening and silence, with the largest effect observed for the sad, melancholic "Winter" concerto. However, no significant correlation was found between blink rate and music preference or arousal. Furthermore, no reliable association was found between blink rate and the P3a ERP component, suggesting that these measures tap into different aspects of dopamine function. These findings contribute to understanding the link between dopamine and blink rate, particularly in response to classical music. Crucially, the study's discovery that the "Winter" concerto, with its sorrowful tone, significantly increased the blink rate highlights the significance of sad music and perhaps the programmatic qualities of this concerto to induce a strong emotional response.
Collapse
Affiliation(s)
- Leigh M. Riby
- Department of Psychology, Northumbria University, Newcastle NE1 8ST, UK
| | | | | | | | | |
Collapse
|
8
|
Yang KC, Chou YH. Molecular imaging findings for treatment resistant depression. PROGRESS IN BRAIN RESEARCH 2023; 278:79-116. [PMID: 37414495 DOI: 10.1016/bs.pbr.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Approximately 40% of patients with major depressive disorder (MDD) had limited response to conventional antidepressant treatments, resulting in treatment-resistant depression (TRD), a debilitating subtype that yielded a significant disease burden worldwide. Molecular imaging techniques, such as positron emission tomography (PET) and single photon emission tomography (SPECT), can measure targeted macromolecules or biological processes in vivo. These imaging tools provide a unique possibility to explore the pathophysiology and treatment mechanisms underlying TRD. This work reviewed and summarized prior PET and SPECT studies to examine the neurobiology and treatment-induced changes of TRD. A total of 51 articles were included with supplementary information from studies for MDD and healthy controls (HC). We found that there were altered regional blood flow or metabolic activity in several brain regions, such as the anterior cingulate cortex, prefrontal cortex, insula, hippocampus, amygdala, parahippocampus, and striatum. These regions have been suggested to engage in the pathophysiology or treatment resistance of depression. There was also limited data to demonstrate the changes in the markers of serotonin, dopamine, amyloid, and microglia over some regions in TRD. Moreover, several observed abnormal imaging indices were linked to treatment outcomes, supporting their specificity and clinical relevance. To address the limitations of the included studies, we proposed that future studies needed longitudinal designs, multimodal approaches, and radioligands targeting specific neural substrates for TRD to evaluate their baseline and treatment-related alterations in TRD. Adequate data sharing and reproducible data analysis can facilitate advances in this field.
Collapse
Affiliation(s)
- Kai-Chun Yang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Yuan-Hwa Chou
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Center for Quality Management, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
9
|
Understanding ayahuasca effects in major depressive disorder treatment through in vitro metabolomics and bioinformatics. Anal Bioanal Chem 2023:10.1007/s00216-023-04556-3. [PMID: 36717401 DOI: 10.1007/s00216-023-04556-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/27/2022] [Accepted: 01/19/2023] [Indexed: 02/01/2023]
Abstract
Emerging insights from metabolomic-based studies of major depression disorder (MDD) are mainly related to biochemical processes such as energy or oxidative stress, in addition to neurotransmission linked to specific metabolite intermediates. Hub metabolites represent nodes in the biochemical network playing a critical role in integrating the information flow in cells between metabolism and signaling pathways. Limited technical-scientific studies have been conducted to understand the effects of ayahuasca (Aya) administration in the metabolism considering MDD molecular context. Therefore, this work aims to investigate an in vitro primary astrocyte model by untargeted metabolomics of two cellular subfractions: secretome and intracellular content after pre-defined Aya treatments, based on DMT concentration. Mass spectrometry (MS)-based metabolomics data revealed significant hub metabolites, which were used to predict biochemical pathway alterations. Branched-chain amino acid (BCAA) metabolism, and vitamin B6 and B3 metabolism were associated to Aya treatment, as "housekeeping" pathways. Dopamine synthesis was overrepresented in the network results when considering the lowest tested DMT concentration (1 µmol L-1). Building reaction networks containing significant and differential metabolites, such as nicotinamide, L-DOPA, and L-leucine, is a useful approach to guide on dose decision and pathway selection in further analytical and molecular studies.
Collapse
|
10
|
Hung CI, Wu CT, Chao YP. Differences in gray matter volumes of subcortical nuclei between major depressive disorder with and without persistent depressive disorder. J Affect Disord 2023; 321:161-166. [PMID: 36272460 DOI: 10.1016/j.jad.2022.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 10/01/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE This study aimed to compare the differences in gray matter volumes (GMVs) of subcortical nuclei between major depressive disorder (MDD) patients with and without persistent depressive disorder (PDD) at long-term follow-up. METHODS 114 and 94 subjects with MDD, including 48 and 41 with comorbid PDD, were enrolled to undergo high-resolution T1-weighted imaging at first (FIP) and second (three years later, SIP) investigation points, respectively. FreeSurfer was used to extract the GMVs of seven subcortical nuclei, and Generalized Estimating Equation models were employed to estimate the differences in GMVs of subcortical nuclei between the two subgroups. RESULTS The PDD subgroup had a significantly greater depressive severity and a higher percentage of patients undergoing pharmacotherapy at the FIP as compared with the non-PDD subgroup. These differences became insignificant at the SIP. The PDD subgroup had a significantly (p < 0.003) smaller GMV in the right putamen at the SIP and in the right nucleus accumbens (NAc) at the FIP and SIP as compared with the non-PDD subgroup. After controlling for clinical variables, PDD was independently associated with smaller GMVs in the right putamen and NAc. LIMITATIONS Imaging was not performed at baseline and pharmacotherapy was not controlled at the FIP and SIP. CONCLUSIONS MDD with PDD was associated with smaller GMVs in the right putamen and NAc as compared with MDD without PDD. Whether the two regions are biomarkers related to a poor prognosis and the chronicity of depression requires further study.
Collapse
Affiliation(s)
- Ching-I Hung
- Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chen-Te Wu
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yi-Ping Chao
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan; Department of Computer Science and Information Engineering, Chang Gung University, Taoyuan, Taiwan; Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| |
Collapse
|
11
|
Zhao Y, Wu X, Tang M, Shi L, Gong S, Mei X, Zhao Z, He J, Huang L, Cui W. Late-life depression: Epidemiology, phenotype, pathogenesis and treatment before and during the COVID-19 pandemic. Front Psychiatry 2023; 14:1017203. [PMID: 37091719 PMCID: PMC10119596 DOI: 10.3389/fpsyt.2023.1017203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 03/15/2023] [Indexed: 04/25/2023] Open
Abstract
Late-life depression (LLD) is one of the most common mental disorders among the older adults. Population aging, social stress, and the COVID-19 pandemic have significantly affected the emotional health of older adults, resulting in a worldwide prevalence of LLD. The clinical phenotypes between LLD and adult depression differ in terms of symptoms, comorbid physical diseases, and coexisting cognitive impairments. Many pathological factors such as the imbalance of neurotransmitters, a decrease in neurotrophic factors, an increase in β-amyloid production, dysregulation of the hypothalamic-pituitary-adrenal axis, and changes in the gut microbiota, are allegedly associated with the onset of LLD. However, the exact pathogenic mechanism underlying LLD remains unclear. Traditional selective serotonin reuptake inhibitor therapy results in poor responsiveness and side effects during LLD treatment. Neuromodulation therapies and complementary and integrative therapies have been proven safe and effective for the treatment of LLD. Importantly, during the COVID-19 pandemic, modern digital health intervention technologies, including socially assistive robots and app-based interventions, have proven to be advantageous in providing personal services to patients with LLD.
Collapse
Affiliation(s)
- Yuanzhi Zhao
- Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Xiangping Wu
- Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Min Tang
- Department of Neurology, Ningbo Rehabilitation Hospital, Ningbo, Zhejiang, China
| | - Lingli Shi
- Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Shuang Gong
- Department of Neurology, Ningbo Rehabilitation Hospital, Ningbo, Zhejiang, China
| | - Xi Mei
- Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Zheng Zhao
- Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Jiayue He
- Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Ling Huang
- Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Wei Cui
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, Translational Medicine Center of Pain, Emotion and Cognition, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
- *Correspondence: Wei Cui,
| |
Collapse
|
12
|
Sekiguchi H, Pavey G, Dean B. Altered levels of dopamine transporter in the frontal pole and the striatum in mood disorders: A postmortem study. J Affect Disord 2023; 320:313-318. [PMID: 36162690 DOI: 10.1016/j.jad.2022.09.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 09/02/2022] [Accepted: 09/20/2022] [Indexed: 02/02/2023]
Abstract
Dopamine dysregulation is known to play a major role in the pathophysiology of major depressive disorders (MDD) and bipolar disorders (BD). The dopamine transporter (DAT) plays a critical role in regulating dopamine concentration at the synaptic cleft and therefore could have an important role in the molecular pathology of MDD and BD. To test this hypothesis, we measured levels of [3H]mazindol binding to DAT in Brodmann's area (BA) 10, BA 17 as well as in the dorsal and ventral striatum from 15 controls, 15 patients with MDD and 15 patients with BD, obtained postmortem, using in situ radioligand binding with autoradiography. Compared to controls, levels of [3H]mazindol binding to DAT was significantly higher in BA10 from patients with MDD but not BD. There was no significant difference in [3H]mazindol binding to DAT in BA 17 or the dorsal and ventral striatum from patients with MDD or BD. In addition, levels of [3H]mazindol binding show no correlation with donor age, postmortem interval, tissue pH, sex or duration of illness. In conclusion, our data suggest that changes in levels of DAT may be selectively affecting dopamine homeostasis in BA 10 in patients with MDD.
Collapse
Affiliation(s)
- Hirotaka Sekiguchi
- Okehazama Hospital Fujita Mental Care Centre, Japan; Department of Psychiatry, Nagoya University Graduate School of Medicine, Japan; The Florey Institute of Neuroscience and Mental Health, Australia.
| | - Geoff Pavey
- The Florey Institute of Neuroscience and Mental Health, Australia
| | - Brian Dean
- The Florey Institute of Neuroscience and Mental Health, Australia; The Centre for Mental Health, the Faculty of Health, Arts and Design, Swinburne University, Australia
| |
Collapse
|
13
|
Dopamine dysfunction in depression: application of texture analysis to dopamine transporter single-photon emission computed tomography imaging. Transl Psychiatry 2022; 12:309. [PMID: 35922402 PMCID: PMC9349249 DOI: 10.1038/s41398-022-02080-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/21/2022] Open
Abstract
Dopamine dysfunction has been associated with depression. However, results of recent neuroimaging studies on dopamine transporter (DAT), which reflect the function of the dopaminergic system, are inconclusive. The aim of this study was to apply texture analysis, a novel method to extract information about the textural properties of images (e.g., coarseness), to single-photon emission computed tomography (SPECT) imaging in depression. We performed SPECT using 123I-ioflupane to measure DAT binding in 150 patients with major depressive disorder (N = 112) and bipolar disorder (N = 38). The texture features of DAT binding in subregions of the striatum were calculated. We evaluated the relationship between the texture feature values (coarseness, contrast, and busyness) and severity of depression, and then examined the effects of medication and diagnosis on such relationship. Furthermore, using the data from 40 healthy subjects, we examined the effects of age and sex on the texture feature values. The degree of busyness of the limbic region in the left striatum linked to the severity of depression (p = 0.0025). The post-hoc analysis revealed that this texture feature value was significantly higher in both the severe and non-severe depression groups than in the remission group (p = 0.001 and p = 0.028, respectively). This finding remained consistent after considering the effect of medication. The effects of age and sex in healthy individuals were not evident in this texture feature value. Our findings imply that the application of texture analysis to DAT-SPECT may provide a state-marker of depression.
Collapse
|
14
|
Future Prospects of Positron Emission Tomography–Magnetic Resonance Imaging Hybrid Systems and Applications in Psychiatric Disorders. Pharmaceuticals (Basel) 2022; 15:ph15050583. [PMID: 35631409 PMCID: PMC9147426 DOI: 10.3390/ph15050583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/15/2022] Open
Abstract
A positron emission tomography (PET)–magnetic resonance imaging (MRI) hybrid system has been developed to improve the accuracy of molecular imaging with structural imaging. However, the mismatch in spatial resolution between the two systems hinders the use of the hybrid system. As the magnetic field of the MRI increased up to 7.0 tesla in the commercial system, the performance of the MRI system largely improved. Several technical attempts in terms of the detector and the software used with the PET were made to improve the performance. As a result, the high resolution of the PET–MRI fusion system enables quantitation of metabolism and molecular information in the small substructures of the brainstem, hippocampus, and thalamus. Many studies on psychiatric disorders, which are difficult to diagnose with medical imaging, have been accomplished using various radioligands, but only a few studies have been conducted using the PET–MRI fusion system. To increase the clinical usefulness of medical imaging in psychiatric disorders, a high-resolution PET–MRI fusion system can play a key role by providing important information on both molecular and structural aspects in the fine structures of the brain. The development of high-resolution PET–MR systems and their potential roles in clinical studies of psychiatric disorders were reviewed as prospective views in future diagnostics.
Collapse
|
15
|
Influences of dopaminergic system dysfunction on late-life depression. Mol Psychiatry 2022; 27:180-191. [PMID: 34404915 PMCID: PMC8850529 DOI: 10.1038/s41380-021-01265-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022]
Abstract
Deficits in cognition, reward processing, and motor function are clinical features relevant to both aging and depression. Individuals with late-life depression often show impairment across these domains, all of which are moderated by the functioning of dopaminergic circuits. As dopaminergic function declines with normal aging and increased inflammatory burden, the role of dopamine may be particularly salient for late-life depression. We review the literature examining the role of dopamine in the pathogenesis of depression, as well as how dopamine function changes with aging and is influenced by inflammation. Applying a Research Domain Criteria (RDoC) Initiative perspective, we then review work examining how dopaminergic signaling affects these domains, specifically focusing on Cognitive, Positive Valence, and Sensorimotor Systems. We propose a unified model incorporating the effects of aging and low-grade inflammation on dopaminergic functioning, with a resulting negative effect on cognition, reward processing, and motor function. Interplay between these systems may influence development of a depressive phenotype, with an initial deficit in one domain reinforcing decline in others. This model extends RDoC concepts into late-life depression while also providing opportunities for novel and personalized interventions.
Collapse
|
16
|
Li Y, Yang X, Chen S, Wu L, Zhou J, Jia K, Ju W. Integrated Network Pharmacology and GC-MS-Based Metabolomics to Investigate the Effect of Xiang-Su Volatile Oil Against Menopausal Depression. Front Pharmacol 2021; 12:765638. [PMID: 34925022 PMCID: PMC8675254 DOI: 10.3389/fphar.2021.765638] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/08/2021] [Indexed: 01/15/2023] Open
Abstract
Menopausal depression perplexes a great number of women in later life. Xiangfu-Zisu (Xiang-Su), a traditional Chinese herbal pair composed of rhizomes of Cyperus rotundus L. (Xiangfu) and leaves of Perilla frutescens (L.) Britt. (Zisu), is frequently reported with antidepressant-like effects. The volatile oil from Xiangfu and Zisu has shown good antidepressant action, but its mechanism is still unclear. This study aimed to investigate the pharmacological mechanism of Xiang-Su (XS) volatile oil against menopausal depression through gas chromatography–mass spectrometry (GC-MS)-based network pharmacology and metabolomics. First, ADME screening was performed on actual detected components of XS volatile oil to obtain active constituents, and then duplicates of active constituent–related targets and menopausal depression–related targets were collected. These duplicates were considered as targets for XS volatile oil against menopausal depression, followed by GO and KEGG enrichment analyses. It showed that a total of 64 compounds were identified in XS volatile oil, and 38 active compounds were screened out. 42 overlapping genes between 144 compound-related genes and 780 menopausal depression–related genes were obtained. Results showed that targets of SLC6A4 and SLC6A3, regulation of serotonergic and dopaminergic synapses, were involved in the antidepressant mechanism of XS volatile oil. Next, antidepressant-like effect of XS volatile oil was validated in menopausal rats by ovariectomy (OVX) combined with chronic unpredictable mild stress (CUMS). Behavioral tests, biochemical analysis, and GC-MS–based non-targeted plasma metabolomics were employed to validate the antidepressant effect of XS volatile oil. Experimental evidence demonstrated that XS volatile oil reversed behavioral parameters in the sucrose preference test (SPT), open-field test (OFT), forced swim test (FST), and serum estradiol levels in OVX rats. Furthermore, results of metabolomics indicated that XS volatile oil mainly acts on regulating metabolic pathways of phenylalanine, tyrosine and tryptophan biosynthesis, tyrosine metabolism, and tryptophan metabolism, which were corresponding with the above-predicted results. These data suggest that network pharmacology combined with metabolomics provides deep insight into the antidepressant effect of XS volatile oil, which includes regulating key targets like SLC6A4 and SLC6A3, and pathways of serotonergic and dopaminergic synapses.
Collapse
Affiliation(s)
- Yao Li
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinyi Yang
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Shanshan Chen
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lei Wu
- Department of Pharmacy, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinyong Zhou
- Central Laboratory, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Keke Jia
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenzheng Ju
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
17
|
Bratteby K, Denholt CL, Lehel S, Petersen IN, Madsen J, Erlandsson M, Ohlsson T, Herth MM, Gillings N. Fully Automated GMP-Compliant Synthesis of [ 18F]FE-PE2I. Pharmaceuticals (Basel) 2021; 14:601. [PMID: 34206688 PMCID: PMC8308591 DOI: 10.3390/ph14070601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/13/2021] [Accepted: 06/18/2021] [Indexed: 11/30/2022] Open
Abstract
In the struggle to understand and accurately diagnose Parkinson's disease, radiopharmaceuticals and medical imaging techniques have played a major role. By being able to image and quantify the dopamine transporter density, noninvasive diagnostic imaging has become the gold standard. In the shift from the first generation of SPECT tracers, the fluorine-18-labeled tracer [18F]FE-PE2I has emerged as the agent of choice for many physicians. However, implementing suitable synthesis for the production of [18F]FE-PE2I has proved more challenging than expected. Through a thorough analysis of the relevant factors affecting the final radiochemical yield, we were able to implement high-yielding fully automated GMP-compliant synthesis of [18F]FE-PE2I on a Synthera®+ platform. By reaching RCYs up to 62%, it allowed us to isolate 25 GBq of the formulated product, and an optimized formulation resulted in the shelf life of 6 h, satisfying the increased demand for this radiopharmaceutical.
Collapse
Affiliation(s)
- Klas Bratteby
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark; (K.B.); (M.M.H.)
- Department of Clinical Physiology Nuclear Medicine PET, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark; (C.L.D.); (S.L.); (I.N.P.); (J.M.)
- Department of Radiation Physics, Skåne University Hospital, Barngatan 3, 22242 Lund, Sweden; (M.E.); (T.O.)
| | - Charlotte Lund Denholt
- Department of Clinical Physiology Nuclear Medicine PET, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark; (C.L.D.); (S.L.); (I.N.P.); (J.M.)
| | - Szabolcs Lehel
- Department of Clinical Physiology Nuclear Medicine PET, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark; (C.L.D.); (S.L.); (I.N.P.); (J.M.)
| | - Ida Nymann Petersen
- Department of Clinical Physiology Nuclear Medicine PET, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark; (C.L.D.); (S.L.); (I.N.P.); (J.M.)
| | - Jacob Madsen
- Department of Clinical Physiology Nuclear Medicine PET, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark; (C.L.D.); (S.L.); (I.N.P.); (J.M.)
| | - Maria Erlandsson
- Department of Radiation Physics, Skåne University Hospital, Barngatan 3, 22242 Lund, Sweden; (M.E.); (T.O.)
| | - Tomas Ohlsson
- Department of Radiation Physics, Skåne University Hospital, Barngatan 3, 22242 Lund, Sweden; (M.E.); (T.O.)
| | - Matthias Manfred Herth
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark; (K.B.); (M.M.H.)
- Department of Clinical Physiology Nuclear Medicine PET, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark; (C.L.D.); (S.L.); (I.N.P.); (J.M.)
| | - Nic Gillings
- Department of Clinical Physiology Nuclear Medicine PET, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark; (C.L.D.); (S.L.); (I.N.P.); (J.M.)
| |
Collapse
|
18
|
Sekiguchi H, Fujishiro H, Torii Y, Iritani S, Ozaki N. Can we identify prodromal dementia with Lewy bodies in late-life depression? Psychiatry Clin Neurosci 2021; 75:113-114. [PMID: 33314428 DOI: 10.1111/pcn.13187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/13/2020] [Accepted: 12/06/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Hirotaka Sekiguchi
- Department of Psychiatry, Okehazama Hospital Fujita Mental Care Center, Toyoake, Japan.,Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshige Fujishiro
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Psychiatry, Kawasaki Memorial Hospital, Kawasaki, Japan
| | - Youta Torii
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shuji Iritani
- Department of Psychiatry, Okehazama Hospital Fujita Mental Care Center, Toyoake, Japan.,Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
19
|
Fujishiro H, Torii Y, Iritani S, Ozaki N. Dopaminergic circuitry in late-life depression and Lewy body disease. Psychiatry Clin Neurosci 2021; 75:69-70. [PMID: 33247877 DOI: 10.1111/pcn.13181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/19/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Hiroshige Fujishiro
- Department of Psychiatry, Kawasaki Memorial Hospital, Kawasaki, Japan.,Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Youta Torii
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shuji Iritani
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|