1
|
Lind A, Freyhult E, de Jesus Cortez F, Ramelius A, Bennet R, Robinson PV, Seftel D, Gebhart D, Tandel D, Maziarz M, Larsson HE, Lundgren M, Carlsson A, Nilsson AL, Fex M, Törn C, Agardh D, Tsai CT, Lernmark Å. Childhood screening for type 1 diabetes comparing automated multiplex Antibody Detection by Agglutination-PCR (ADAP) with single plex islet autoantibody radiobinding assays. EBioMedicine 2024; 104:105144. [PMID: 38723553 PMCID: PMC11090024 DOI: 10.1016/j.ebiom.2024.105144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Two or more autoantibodies against either insulin (IAA), glutamic acid decarboxylase (GADA), islet antigen-2 (IA-2A) or zinc transporter 8 (ZnT8A) denote stage 1 (normoglycemia) or stage 2 (dysglycemia) type 1 diabetes prior to stage 3 type 1 diabetes. Automated multiplex Antibody Detection by Agglutination-PCR (ADAP) assays in two laboratories were compared to single plex radiobinding assays (RBA) to define threshold levels for diagnostic specificity and sensitivity. METHODS IAA, GADA, IA-2A and ZnT8A were analysed in 1504 (54% females) population based controls (PBC), 456 (55% females) doctor's office controls (DOC) and 535 (41% females) blood donor controls (BDC) as well as in 2300 (48% females) patients newly diagnosed (1-10 years of age) with stage 3 type 1 diabetes. The thresholds for autoantibody positivity were computed in 100 10-fold cross-validations to separate patients from controls either by maximizing the χ2-statistics (chisq) or using the 98th percentile of specificity (Spec98). Mean and 95% CI for threshold, sensitivity and specificity are presented. FINDINGS The ADAP ROC curves of the four autoantibodies showed comparable AUC in the two ADAP laboratories and were higher than RBA. Detection of two or more autoantibodies using chisq showed 0.97 (0.95, 0.99) sensitivity and 0.94 (0.91, 0.97) specificity in ADAP compared to 0.90 (0.88, 0.95) sensitivity and 0.97 (0.94, 0.98) specificity in RBA. Using Spec98, ADAP showed 0.92 (0.89, 0.95) sensitivity and 0.99 (0.98, 1.00) specificity compared to 0.89 (0.77, 0.86) sensitivity and 1.00 (0.99, 1.00) specificity in the RBA. The diagnostic sensitivity and specificity were higher in PBC compared to DOC and BDC. INTERPRETATION ADAP was comparable in two laboratories, both comparable to or better than RBA, to define threshold levels for two or more autoantibodies to stage type 1 diabetes. FUNDING Supported by The Leona M. and Harry B. Helmsley Charitable Trust (grant number 2009-04078), the Swedish Foundation for Strategic Research (Dnr IRC15-0067) and the Swedish Research Council, Strategic Research Area (Dnr 2009-1039). AL was supported by the DiaUnion collaborative study, co-financed by EU Interreg ÖKS, Capital Region of Denmark, Region Skåne and the Novo Nordisk Foundation.
Collapse
Affiliation(s)
- Alexander Lind
- Department of Clinical Sciences, Lund University CRC, Malmö, Sweden
| | - Eva Freyhult
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Anita Ramelius
- Department of Clinical Sciences, Lund University CRC, Malmö, Sweden
| | - Rasmus Bennet
- Department of Clinical Sciences, Lund University CRC, Malmö, Sweden
| | | | - David Seftel
- Enable Biosciences Inc., South San Francisco, CA, USA
| | - David Gebhart
- Enable Biosciences Inc., South San Francisco, CA, USA
| | | | - Marlena Maziarz
- Department of Clinical Sciences, Lund University CRC, Malmö, Sweden
| | | | - Markus Lundgren
- Department of Clinical Sciences, Lund University CRC, Malmö, Sweden
| | | | | | - Malin Fex
- Department of Clinical Sciences, Lund University CRC, Malmö, Sweden
| | - Carina Törn
- Department of Clinical Sciences, Lund University CRC, Malmö, Sweden
| | - Daniel Agardh
- Department of Clinical Sciences, Lund University CRC, Malmö, Sweden
| | | | - Åke Lernmark
- Department of Clinical Sciences, Lund University CRC, Malmö, Sweden.
| |
Collapse
|
2
|
Fuentes-Cantero S, González-Rodríguez C, Rodríguez-Chacón C, Galvan-Toribio R, Hermosín-Escudero J, Pérez-Pérez A, León-Justel A. Study of the diagnostic efficiency of anti-ZnT8 autoantibodies for type 1 diabetes in pediatric patients. Lab Med 2024; 55:299-303. [PMID: 37658812 DOI: 10.1093/labmed/lmad079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023] Open
Abstract
OBJECTIVE Zinc transporter 8 autoantibodies (ZNt8A) are 1 of the 4 main autoantibodies used for the diagnosis of type 1 diabetes (T1D), with glutamic acid decarboxylase autoantibodies (GADA), islet antigen-2 autoantibodies (IA-2A), and insulin autoantibodies (IAA). The objective of this study is to evaluate the diagnostic efficiency of these autoantibodies for the diagnosis of T1D in pediatric patients. METHODS A retrospective analysis of patients under 16 years of age with suspected T1D was made between June 2020 and January 2021. A total of 80 patients were included in the study, with 1 sample per patient. Subjects were classified according to diagnosis. RESULTS Of the subjects included in the study, 50 developed T1D. The diagnostic efficacy was IA-2A (cutoff ≥ 28 U/L) sensitivity 0.26 (95% CI: 0.14-0.38) and specificity 0.97 (95% CI: 0.79-1.0); GADA (cutoff ≥ 17 U/mL) sensitivity 0.40 (95% CI: 0.26-0.54) and specificity 0.87 (95% CI: 0.75-0.99); ZnT8A (cut off ≥ 15 U/L) sensitivity 0.62 (95% CI: 0.49-0.75) and specificity 0.97 (95% CI: 0.90-1.0). ZnT8A obtained the most significantly global diagnostic accuracy (0.75), and GADA with ZnT8A showed the highest correlation. CONCLUSION The results obtained indicate a higher efficiency of anti-ZnT8 autoantibodies for the diagnosis of T1D in pediatric patients. Clinical efficiency of diabetic autoantibodies is method and assay dependent and influences combined diagnostic strategies.
Collapse
Affiliation(s)
| | | | | | | | | | - Antonio Pérez-Pérez
- Unit of Clinical Biochemistry, University Hospital Virgen Macarena, Seville, Spain
| | - Antonio León-Justel
- Unit of Clinical Biochemistry, University Hospital Virgen Macarena, Seville, Spain
| |
Collapse
|
3
|
Tojjar J, Cervin M, Hedlund E, Brahimi Q, Forsander G, Elding Larsson H, Ludvigsson J, Samuelsson U, Marcus C, Persson M, Carlsson A. Sex Differences in Age of Diagnosis, HLA Genotype, and Autoantibody Profile in Children With Type 1 Diabetes. Diabetes Care 2023; 46:1993-1996. [PMID: 37699205 DOI: 10.2337/dc23-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 08/11/2023] [Indexed: 09/14/2023]
Abstract
OBJECTIVE To examine sex differences in children with newly diagnosed type 1 diabetes (T1D) with respect to age at diagnosis, presence of autoantibodies (GAD antibody [GADA], insulinoma-associated protein 2 [IA-2A], insulin autoantibody [IAA], and zinc transporter 8 autoantibody), and HLA risk. RESEARCH DESIGN AND METHODS A population-based nationwide sample of 3,645 Swedish children at T1D diagnosis was used. RESULTS Girls were younger at T1D diagnosis (9.53 vs. 10.23 years; P < 0.001), more likely to be autoantibody-positive (94.7% vs. 92.0%; P = 0.002), more often positive for multiple autoantibodies (P < 0.001), more likely to be positive for GADA (64.9% vs. 49.0%; P < 0.001), and less likely to be positive for IAA (32.3% vs. 33.8%; P = 0.016). Small sex differences in HLA risk were found in children <9 years of age. CONCLUSIONS The disease mechanisms leading to T1D may influence the immune system differently in girls and boys.
Collapse
Affiliation(s)
- Jasaman Tojjar
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Matti Cervin
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Emma Hedlund
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Department of Paediatrics, Kristianstad Central Hospital, Kristianstad, Sweden
| | - Qefsere Brahimi
- Department of Clinical Sciences, Malmö, Clinical Research Center, Lund University, Malmö, Sweden
| | - Gun Forsander
- The Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
- Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Helena Elding Larsson
- Department of Clinical Sciences, Malmö, Clinical Research Center, Lund University, Malmö, Sweden
- Skåne University Hospital, Malmö, Sweden
| | - Johnny Ludvigsson
- Crown Princess Victoria Childreńs Hospital, Linköping University Hospital, Linköping, Sweden
- Division of Pediatrics, Department of Biomedical and Clinical Sciences (BKV), Medical Faculty, Linköping University, Linköping, Sweden
| | - Ulf Samuelsson
- Crown Princess Victoria Childreńs Hospital, Linköping University Hospital, Linköping, Sweden
- Division of Pediatrics, Department of Biomedical and Clinical Sciences (BKV), Medical Faculty, Linköping University, Linköping, Sweden
| | - Claude Marcus
- Division of Pediatrics, Department of Clinical Science Intervention and Technology, Karolinska Institute, Stockholm, Sweden
| | - Martina Persson
- Department of Medicine, Clinical Epidemiology, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Science and Education, Karolinska Institute, Södersjukhuset, Stockholm, Sweden
| | | |
Collapse
|
4
|
Sacks DB, Arnold M, Bakris GL, Bruns DE, Horvath AR, Lernmark Å, Metzger BE, Nathan DM, Kirkman MS. Guidelines and Recommendations for Laboratory Analysis in the Diagnosis and Management of Diabetes Mellitus. Diabetes Care 2023; 46:e151-e199. [PMID: 37471273 PMCID: PMC10516260 DOI: 10.2337/dci23-0036] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/11/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Numerous laboratory tests are used in the diagnosis and management of diabetes mellitus. The quality of the scientific evidence supporting the use of these assays varies substantially. APPROACH An expert committee compiled evidence-based recommendations for laboratory analysis in screening, diagnosis, or monitoring of diabetes. The overall quality of the evidence and the strength of the recommendations were evaluated. The draft consensus recommendations were evaluated by invited reviewers and presented for public comment. Suggestions were incorporated as deemed appropriate by the authors (see Acknowledgments). The guidelines were reviewed by the Evidence Based Laboratory Medicine Committee and the Board of Directors of the American Association for Clinical Chemistry and by the Professional Practice Committee of the American Diabetes Association. CONTENT Diabetes can be diagnosed by demonstrating increased concentrations of glucose in venous plasma or increased hemoglobin A1c (HbA1c) in the blood. Glycemic control is monitored by the people with diabetes measuring their own blood glucose with meters and/or with continuous interstitial glucose monitoring (CGM) devices and also by laboratory analysis of HbA1c. The potential roles of noninvasive glucose monitoring, genetic testing, and measurement of ketones, autoantibodies, urine albumin, insulin, proinsulin, and C-peptide are addressed. SUMMARY The guidelines provide specific recommendations based on published data or derived from expert consensus. Several analytes are found to have minimal clinical value at the present time, and measurement of them is not recommended.
Collapse
Affiliation(s)
- David B. Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD
| | - Mark Arnold
- Department of Chemistry, University of Iowa, Iowa City, IA
| | - George L. Bakris
- Department of Medicine, American Heart Association Comprehensive Hypertension Center, Section of Endocrinology, Diabetes and Metabolism, University of Chicago Medicine, Chicago, IL
| | - David E. Bruns
- Department of Pathology, University of Virginia Medical School, Charlottesville, VA
| | - Andrea R. Horvath
- New South Wales Health Pathology Department of Chemical Pathology, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University/CRC, Skane University Hospital Malmö, Malmö, Sweden
| | - Boyd E. Metzger
- Division of Endocrinology, Northwestern University, The Feinberg School of Medicine, Chicago, IL
| | - David M. Nathan
- Massachusetts General Hospital Diabetes Center and Harvard Medical School, Boston, MA
| | - M. Sue Kirkman
- Department of Medicine, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
5
|
Sacks DB, Arnold M, Bakris GL, Bruns DE, Horvath AR, Lernmark Å, Metzger BE, Nathan DM, Kirkman MS. Guidelines and Recommendations for Laboratory Analysis in the Diagnosis and Management of Diabetes Mellitus. Clin Chem 2023:hvad080. [PMID: 37473453 DOI: 10.1093/clinchem/hvad080] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/12/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Numerous laboratory tests are used in the diagnosis and management of diabetes mellitus. The quality of the scientific evidence supporting the use of these assays varies substantially. APPROACH An expert committee compiled evidence-based recommendations for laboratory analysis in screening, diagnosis, or monitoring of diabetes. The overall quality of the evidence and the strength of the recommendations were evaluated. The draft consensus recommendations were evaluated by invited reviewers and presented for public comment. Suggestions were incorporated as deemed appropriate by the authors (see Acknowledgments). The guidelines were reviewed by the Evidence Based Laboratory Medicine Committee and the Board of Directors of the American Association of Clinical Chemistry and by the Professional Practice Committee of the American Diabetes Association. CONTENT Diabetes can be diagnosed by demonstrating increased concentrations of glucose in venous plasma or increased hemoglobin A1c (Hb A1c) in the blood. Glycemic control is monitored by the people with diabetes measuring their own blood glucose with meters and/or with continuous interstitial glucose monitoring (CGM) devices and also by laboratory analysis of Hb A1c. The potential roles of noninvasive glucose monitoring, genetic testing, and measurement of ketones, autoantibodies, urine albumin, insulin, proinsulin, and C-peptide are addressed. SUMMARY The guidelines provide specific recommendations based on published data or derived from expert consensus. Several analytes are found to have minimal clinical value at the present time, and measurement of them is not recommended.
Collapse
Affiliation(s)
- David B Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD, United States
| | - Mark Arnold
- Department of Chemistry, University of Iowa, Iowa City, IA, United States
| | - George L Bakris
- Department of Medicine, American Heart Association Comprehensive Hypertension Center, Section of Endocrinology, Diabetes and Metabolism, University of Chicago Medicine, Chicago, ILUnited States
| | - David E Bruns
- Department of Pathology, University of Virginia Medical School, Charlottesville, VA, United States
| | - Andrea R Horvath
- New South Wales Health Pathology Department of Chemical Pathology, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University/CRC, Skane University Hospital Malmö, Malmö, Sweden
| | - Boyd E Metzger
- Division of Endocrinology, Northwestern University, The Feinberg School of Medicine, Chicago, IL, United States
| | - David M Nathan
- Massachusetts General Hospital Diabetes Center and Harvard Medical School, Boston, MA, United States
| | - M Sue Kirkman
- Department of Medicine, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
6
|
Hedlund E, Ludvigsson J, Elding Larsson H, Forsander G, Ivarsson S, Marcus C, Samuelsson U, Persson M, Carlsson A. Month of birth and the risk of developing type 1 diabetes among children in the Swedish national Better Diabetes Diagnosis Study. Acta Paediatr 2022; 111:2378-2383. [PMID: 35615774 PMCID: PMC9795915 DOI: 10.1111/apa.16426] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 12/30/2022]
Abstract
AIM Previous studies have reported an association between month of birth and incidence of type 1 diabetes. Using population-based data, including almost all newly diagnosed children with type 1 diabetes in Sweden, we tested whether month of birth influences the risk of type 1 diabetes. METHODS For 8761 children diagnosed with type 1 diabetes between May 2005 and December 2016 in the Better Diabetes Diagnosis study, month of birth, sex and age were compared. Human leucocyte antigen (HLA) genotype and autoantibodies at diagnosis were analysed for a subset of the cohort (n = 3647). Comparisons with the general population used data from Statistics Sweden. RESULTS We found no association between month of birth or season and the incidence of type 1 diabetes in the cohort as a whole. However, boys diagnosed before 5 years were more often born in May (p = 0.004). We found no correlation between month of birth and HLA or antibodies. CONCLUSION In this large nationwide study, the impact of month of birth on type 1 diabetes diagnosis was weak, except for boys diagnosed before 5 years of age, who were more likely born in May. This may suggest different triggers for different subgroups of patients with type 1 diabetes.
Collapse
Affiliation(s)
- Emma Hedlund
- Department of Clinical Sciences LundLund UniversityLundSweden,Department of PaediatricsKristianstad Central HospitalKristianstadSweden
| | - Johnny Ludvigsson
- Crown Princess Victoria Children's HospitalLinköping University HospitalLinköpingSweden,Division of Pediatrics, Department of Biomedical and Clinical Sciences (BKV), Medical FacultyLinköping UniversityLinköpingSweden
| | - Helena Elding Larsson
- Department of Clinical Sciences, MalmöLund University, CRCMalmöSweden,Skåne University HospitalMalmöSweden
| | - Gun Forsander
- The Queen Silvia Children's HospitalSahlgrenska University HospitalGothenburgSweden,Institute of Clinical SciencesUniversity of GothenburgGothenburgSweden
| | - Sten Ivarsson
- Department of Clinical Sciences, MalmöLund University, CRCMalmöSweden
| | - Claude Marcus
- Division of Pediatrics, Department of Clinical Science Intervention and TechnologyKarolinska InstituteStockholmSweden
| | - Ulf Samuelsson
- Crown Princess Victoria Children's HospitalLinköping University HospitalLinköpingSweden,Division of Pediatrics, Department of Biomedical and Clinical Sciences (BKV), Medical FacultyLinköping UniversityLinköpingSweden
| | - Martina Persson
- Department of Medicine, Clinical EpidemiologyKarolinska InstituteStockholmSweden,Department of Clinical Science and EducationKarolinska Institute, SödersjukhusetStockholmSweden
| | - Annelie Carlsson
- Department of Clinical Sciences LundLund UniversityLundSweden,Skåne University HospitalMalmöSweden
| |
Collapse
|
7
|
de Jesus Cortez F, Lind A, Ramelius A, Bennet R, Robinson PV, Seftel D, Gebhart D, Tandel D, Maziarz M, Agardh D, Larsson HE, Lundgren M, Lernmark Å, Tsai CT. Multiplex agglutination-PCR (ADAP) autoantibody assays compared to radiobinding autoantibodies in type 1 diabetes and celiac disease. J Immunol Methods 2022; 506:113265. [DOI: 10.1016/j.jim.2022.113265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 10/18/2022]
|
8
|
Pöllänen PM, Härkönen T, Ilonen J, Toppari J, Veijola R, Siljander H, Knip M. Autoantibodies to N-terminally Truncated GAD65(96-585): HLA Associations and Predictive Value for Type 1 Diabetes. J Clin Endocrinol Metab 2022; 107:e935-e946. [PMID: 34747488 PMCID: PMC8851925 DOI: 10.1210/clinem/dgab816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To evaluate the role of autoantibodies to N-terminally truncated glutamic acid decarboxylase GAD65(96-585) (t-GADA) as a marker for type 1 diabetes (T1D) and to assess the potential human leukocyte antigen (HLA) associations with such autoantibodies. DESIGN In this cross-sectional study combining data from the Finnish Pediatric Diabetes Register, the Type 1 Diabetes Prediction and Prevention study, the DIABIMMUNE study, and the Early Dietary Intervention and Later Signs of Beta-Cell Autoimmunity study, venous blood samples from 760 individuals (53.7% males) were analyzed for t-GADA, autoantibodies to full-length GAD65 (f-GADA), and islet cell antibodies. Epitope-specific GAD autoantibodies were analyzed from 189 study participants. RESULTS T1D had been diagnosed in 174 (23%) participants. Altogether 631 (83%) individuals tested positive for f-GADA and 451 (59%) for t-GADA at a median age of 9.0 (range 0.2-61.5) years. t-GADA demonstrated higher specificity (46%) and positive predictive value (30%) for T1D than positivity for f-GADA alone (15% and 21%, respectively). Among participants positive for f-GADA, those who tested positive for t-GADA carried more frequently HLA genotypes conferring increased risk for T1D than those who tested negative for t-GADA (77% vs 53%; P < 0.001). CONCLUSIONS Autoantibodies to N-terminally truncated GAD improve the screening for T1D compared to f-GADA and may facilitate the selection of participants for clinical trials. HLA class II-mediated antigen presentation of GAD(96-585)-derived or structurally similar peptides might comprise an important pathomechanism in T1D.
Collapse
Affiliation(s)
- Petra M Pöllänen
- Pediatric Research Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Taina Härkönen
- Pediatric Research Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jorma Ilonen
- Immunogenetic Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jorma Toppari
- Department of Pediatrics, Turku University Hospital, and Institute of Biomedicine and Centre for Population Health Research, University of Turku, Turku, Finland
| | - Riitta Veijola
- Department of Pediatrics, PEDEGO Research Group, Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Heli Siljander
- Pediatric Research Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mikael Knip
- Pediatric Research Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland
- Correspondence: Mikael Knip; MD, PhD, Children’s Hospital, University of Helsinki, PO Box 22 (Stenbäckinkatu 11), FI-00014 Helsinki, Finland. E-mail:
| |
Collapse
|
9
|
Exploration of autoantibody responses in canine diabetes using protein arrays. Sci Rep 2022; 12:2490. [PMID: 35169238 PMCID: PMC8847587 DOI: 10.1038/s41598-022-06599-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/02/2022] [Indexed: 11/08/2022] Open
Abstract
Canine diabetes has been considered a potential model of human type 1 diabetes (T1D), however the detection of autoantibodies common in humans with T1D in affected dogs is inconsistent. The aim of this study was to compare autoantibody responses in diabetic and healthy control dogs using a novel nucleic acid programmable protein array (NAPPA) platform. We performed a cross-sectional study of autoantibody profiles of 30 diabetic and 30 healthy control dogs of various breeds. Seventeen hundred human proteins related to the pancreas or diabetes were displayed on NAPPA arrays and interrogated with canine sera. The median normalized intensity (MNI) for each protein was calculated, and results were compared between groups to identify candidate autoantibodies. At a specificity of 90%, six autoantibodies had sensitivity greater than 10% (range 13-20%) for distinguishing diabetic and control groups. A combination of three antibodies (anti-KANK2, anti-GLI1, anti-SUMO2) resulted in a sensitivity of 37% (95% confidence interval (CI) 0.17-0.67%) at 90% specificity and an area under the receiver operating characteristics curve of 0.66 (95% CI 0.52-0.80). While this study does not provide conclusive support for autoimmunity as an underlying cause of diabetes in dogs, future studies should consider the use of canine specific proteins in larger numbers of dogs of breeds at high risk for diabetes.
Collapse
|
10
|
Chylińska-Frątczak A, Pietrzak I, Michalak A, Wyka K, Szadkowska A. Autoimmune reaction against pancreatic beta cells in children and adolescents with simple obesity. Front Endocrinol (Lausanne) 2022; 13:1061671. [PMID: 36589801 PMCID: PMC9794760 DOI: 10.3389/fendo.2022.1061671] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION One of the most important complications of obesity is insulin resistance, which leads to carbohydrate metabolism disorders such as type 2 diabetes. However, obesity is also associated with development of an autoimmune response against various organs, including pancreatic beta cells. The prevalence of such autoimmune processes in children and their possible contribution to the increased incidence of type 1 diabetes is currently unclear. Therefore, the present study assessed the prevalence of autoantibodies against pancreatic islet beta cell's antigens in children and adolescents with simple obesity. MATERIAL AND METHODS This prospective observational study included pediatric patients (up to 18 years of age) with simple obesity hospitalized between 2011 and 2016 at the Department of Pediatrics, Diabetology, Endocrinology and Nephrology of the Medical University of Lodz. Children with acute or chronic conditions that might additionally affect insulin resistance or glucose metabolism were excluded. Collected clinical data included sex, age, sexual maturity ratings (Tanner`s scale), body height and weight, waist and hip circumference, amount of body fat and lean body mass. Each participant underwent a 2-hour oral glucose tolerance test with simultaneous measurements of glycaemia and insulinemia at 0`, 60` and 120`. In addition, glycated hemoglobin HbA1c, fasting and stimulated c-peptide, total cholesterol, as well as high- and low-density cholesterol and triglycerides were measured. Insulin resistance was assessed by calculating HOMA-IR index. The following autoantibodies against pancreatic islet beta cells were determined in each child: ICA - antibodies against cytoplasmic antigens of pancreatic islets, GAD - antibodies against glutamic acid decarboxylase, ZnT8 - antibodies against zinc transporter, IA2 - antibodies against tyrosine phosphatase, IAA - antibodies against insulin. RESULTS The study group included 161 children (57.4% boys, mean age 13.1 ± 2.9 years) with simple obesity (mean BMI z-score +2.2 ± 1.6). Among them, 28 (17.4%) were diagnosed with impaired glucose metabolism during OGTT [23 (82.2%) - isolated impaired glucose tolerance (IGT), 3 (10.7%) - isolated impaired fasting glucose (IFG), 2 (7.1%) - IFG and IGT]. Of the children tested, 28 (17.4%) were tested positive for at least one islet-specific autoantibody [with similar percentages in boys (15, 17.4%) and girls (13, 17.3%), p=0.9855], with ICA being the most common (positive in 18, 11.2%), followed by IAA (7, 4.3%), ZnT8 (5, 3.1%), GADA (3, 1.9%) and IA2 (1, 0.6%). There was no association between the presence of the tested antibodies and age, sex, stage of puberty, parameters assessing the degree of obesity, HbA1c, lipid levels and basal metabolic rate. However, autoantibody-positive subjects were more likely to present IFG or IGT in OGTT compared to those who tested completely negative (9, 32.1% vs 19, 14.3%, p=0.0280). Their HOMA-IR was also significantly higher (HOMA-IR: 4.3 ± 1.9 vs 3.4 ± 1.9, p=0.0203) and this difference remained statistically significant after adjusting for sex and age (p=0.0340). CONCLUSIONS Children and adolescents with simple obesity presented a higher prevalence of markers of autoimmune response against pancreatic beta cells than the general population. Most often, they had only one type of antibody - ICA. The presence of autoimmune response indicators against pancreatic islet antigens is more common in obese patients with impaired carbohydrate metabolism and is associated with lower insulin sensitivity.
Collapse
Affiliation(s)
- Aneta Chylińska-Frątczak
- Department of Pediatrics, Endocrinology, Diabetology and Nephrology, Maria Konopnicka University Pediatrics Center, Lodz, Poland
| | - Iwona Pietrzak
- Department of Pediatrics, Diabetology, Endocrinology and Nephrology, Medical University of Lodz, Lodz, Poland
- *Correspondence: Iwona Pietrzak,
| | - Arkadiusz Michalak
- Department of Pediatrics, Diabetology, Endocrinology and Nephrology, Medical University of Lodz, Lodz, Poland
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Krystyna Wyka
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Agnieszka Szadkowska
- Department of Pediatrics, Diabetology, Endocrinology and Nephrology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
11
|
Martinez MM, Salami F, Larsson HE, Toppari J, Lernmark Å, Kero J, Veijola R, Koskenniemi JJ, Tossavainen P, Lundgren M, Borg H, Katsarou A, Maziarz M, Törn C. Beta cell function in participants with single or multiple islet autoantibodies at baseline in the TEDDY Family Prevention Study: TEFA. Endocrinol Diabetes Metab 2021; 4:e00198. [PMID: 33855205 PMCID: PMC8029501 DOI: 10.1002/edm2.198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/14/2020] [Accepted: 10/12/2020] [Indexed: 01/16/2023] Open
Abstract
Aim The aim of the present study was to assess beta cell function based on an oral glucose tolerance test (OGTT) in participants with single islet autoantibody or an intravenous glucose tolerance test (IvGTT) in participants with multiple islet autoantibodies. Materials and methods Healthy participants in Sweden and Finland, between 2 and 49.99 years of age previously identified as positive for a single (n = 30) autoantibody to either insulin, glutamic acid decarboxylase, islet antigen-2, zinc transporter 8 or islet cell antibodies or multiple autoantibodies (n = 46), were included. Participants positive for a single autoantibody underwent a 6-point OGTT while participants positive for multiple autoantibodies underwent an IvGTT. Glucose, insulin and C-peptide were measured from OGTT and IvGTT samples. Results All participants positive for a single autoantibody had a normal glucose tolerance test with 120 minutes glucose below 7.70 mmol/L and HbA1c values within the normal range (<42 mmol/mol). Insulin responses to the glucose challenge on OGTT ranged between 13.0 and 143 mIU/L after 120 minutes with C-peptide values between 0.74 and 4.60 nmol/L. In Swedish participants, the first-phase insulin response (FPIR) on IvGTT was lower in those positive for three or more autoantibodies (n = 13; median 83.0 mIU/L; range 20.0-343) compared to those with two autoantibodies (n = 15; median 146 mIU/L; range 19.0-545; P = .0330). Conclusion Participants positive for a single autoantibody appeared to have a normal beta cell function. Participants positive for three or more autoantibodies had a lower FPIR as compared to participants with two autoantibodies, supporting the view that their beta cell function had deteriorated.
Collapse
Affiliation(s)
| | - Falastin Salami
- Department of Clinical SciencesLund University/CRCSkåne University HospitalMalmöSweden
| | - Helena Elding Larsson
- Department of Clinical SciencesLund University/CRCSkåne University HospitalMalmöSweden
| | - Jorma Toppari
- Department of PediatricsTurku University HospitalTurkuFinland
- Institute of BiomedicineResearch Centre for Integrative Physiology and Pharmacologyand Research Centre for Population HealthUniversity of TurkuTurkuFinland
| | - Åke Lernmark
- Department of Clinical SciencesLund University/CRCSkåne University HospitalMalmöSweden
| | - Jukka Kero
- Department of PediatricsTurku University HospitalTurkuFinland
- Institute of BiomedicineResearch Centre for Integrative Physiology and Pharmacologyand Research Centre for Population HealthUniversity of TurkuTurkuFinland
| | - Riitta Veijola
- Department of PediatricsPEDEGO Research UnitMRC OuluUniversity of Oulu and Oulu University HospitalOuluFinland
| | - Jaakko J Koskenniemi
- Department of PediatricsTurku University HospitalTurkuFinland
- Institute of BiomedicineResearch Centre for Integrative Physiology and Pharmacologyand Research Centre for Population HealthUniversity of TurkuTurkuFinland
| | - Päivi Tossavainen
- Department of PediatricsPEDEGO Research UnitMRC OuluUniversity of Oulu and Oulu University HospitalOuluFinland
| | - Markus Lundgren
- Department of Clinical SciencesLund University/CRCSkåne University HospitalMalmöSweden
| | - Henrik Borg
- Department of Clinical SciencesLund University/CRCSkåne University HospitalMalmöSweden
| | - Anastasia Katsarou
- Department of Clinical SciencesLund University/CRCSkåne University HospitalMalmöSweden
| | - Marlena Maziarz
- Department of Clinical SciencesLund University/CRCSkåne University HospitalMalmöSweden
| | - Carina Törn
- Department of Clinical SciencesLund University/CRCSkåne University HospitalMalmöSweden
| | | |
Collapse
|
12
|
Pöllänen PM, Ryhänen SJ, Toppari J, Ilonen J, Vähäsalo P, Veijola R, Siljander H, Knip M. Dynamics of Islet Autoantibodies During Prospective Follow-Up From Birth to Age 15 Years. J Clin Endocrinol Metab 2020; 105:5901133. [PMID: 32882033 PMCID: PMC7686032 DOI: 10.1210/clinem/dgaa624] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/31/2020] [Indexed: 01/23/2023]
Abstract
CONTEXT We set out to characterize the dynamics of islet autoantibodies over the first 15 years of life in children carrying genetic susceptibility to type 1 diabetes (T1D). We also assessed systematically the role of zinc transporter 8 autoantibodies (ZnT8A) in this context. DESIGN HLA-predisposed children (N = 1006, 53.0% boys) recruited from the general population during 1994 to 1997 were observed from birth over a median time of 14.9 years (range, 1.9-15.5 years) for ZnT8A, islet cell (ICA), insulin (IAA), glutamate decarboxylase (GADA), and islet antigen-2 (IA-2A) antibodies, and for T1D. RESULTS By age 15.5 years, 35 (3.5%) children had progressed to T1D. Islet autoimmunity developed in 275 (27.3%) children at a median age of 7.4 years (range, 0.3-15.1 years). The ICA seroconversion rate increased toward puberty, but the biochemically defined autoantibodies peaked at a young age. Before age 2 years, ZnT8A and IAA appeared commonly as the first autoantibody, but in the preschool years IA-2A- and especially GADA-initiated autoimmunity increased. Thereafter, GADA-positive seroconversions continued to appear steadily until ages 10 to 15 years. Inverse IAA seroconversions occurred frequently (49.3% turned negative) and marked a prolonged delay from seroconversion to diagnosis compared to persistent IAA (8.2 vs 3.4 years; P = .01). CONCLUSIONS In HLA-predisposed children, the primary autoantibody is characteristic of age and might reflect the events driving the disease process toward clinical T1D. Autoantibody persistence affects the risk of T1D. These findings provide a framework for identifying disease subpopulations and for personalizing the efforts to predict and prevent T1D.
Collapse
Affiliation(s)
- Petra M Pöllänen
- Pediatric Research Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Samppa J Ryhänen
- Pediatric Research Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jorma Toppari
- Department of Pediatrics, Turku University Hospital, and Institute of Biomedicine and Centre for Population Health Research, University of Turku, Turku, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku and Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Paula Vähäsalo
- Department of Pediatrics, PEDEGO Research Group, Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Riitta Veijola
- Department of Pediatrics, PEDEGO Research Group, Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Heli Siljander
- Pediatric Research Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mikael Knip
- Pediatric Research Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Correspondence and Reprint Requests: Mikael Knip, MD, PhD, Children’s Hospital, University of Helsinki, P.O. Box 22 (Stenbäckinkatu 11), FI-00014 Helsinki, Finland. E-mail:
| |
Collapse
|
13
|
Urrutia I, Martínez R, Rica I, Martínez de LaPiscina I, García-Castaño A, Aguayo A, Calvo B, Castaño L. Negative autoimmunity in a Spanish pediatric cohort suspected of type 1 diabetes, could it be monogenic diabetes? PLoS One 2019; 14:e0220634. [PMID: 31365591 PMCID: PMC6668821 DOI: 10.1371/journal.pone.0220634] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/19/2019] [Indexed: 12/19/2022] Open
Abstract
Objective Monogenic diabetes can be misdiagnosed as type 1 or type 2 diabetes in children. The right diagnosis is crucial for both therapeutic choice and prognosis and influences genetic counseling. The main objective of this study was to search for monogenic diabetes in Spanish pediatric patients suspected of type 1 diabetes with lack of autoimmunity at the onset of the disease. We also evaluated the extra value of ZnT8A in addition to the classical IAA, GADA and IA2A autoantibodies to improve the accuracy of type 1 diabetes diagnosis. Methods Four hundred Spanish pediatric patients with recent-onset diabetes (mean age 8.9 ± 3.9 years) were analyzed for IAA, GADA, IA2A and ZnT8A pancreatic-autoantibodies and HLA-DRB1 alleles. Patients without autoimmunity and those with only ZnT8A positive were screened for 12 monogenic diabetes genes by next generation sequencing. Results ZnT8A testing increased the number of autoantibody-positive patients from 373 (93.3%) to 377 (94.3%). An isolated positivity for ZnT8A allowed diagnosing autoimmune diabetes in 14.8% (4/27) of pediatric patients negative for the rest of the antibodies tested. At least 2 of the 23 patients with no detectable autoimmunity (8%) carried heterozygous pathogenic variants: one previously reported missense variant in the INS gene (p.Gly32Ser) and one novel frameshift variant (p.Val264fs) in the HNF1A gene. One variant of uncertain significance was also found. Carriers of pathogenic variants had HLA-DRB1 risk alleles for autoimmune diabetes and clinical characteristics compatible with type 1 diabetes except for the absence of autoimmunity. Conclusion ZnT8A determination improves the diagnosis of autoimmune diabetes in pediatrics. At least 8% of pediatric patients suspected of type 1 diabetes and with undetectable autoimmunity have monogenic diabetes and can benefit from the correct diagnosis of the disease by genetic study.
Collapse
Affiliation(s)
- Inés Urrutia
- Biocruces Bizkaia Health Research Institute, Cruces University Hospital, UPV-EHU, Bizkaia, Spain
- CIBERDEM, CIBERER, Instituto de Salud Carlos III, Madrid, Spain
| | - Rosa Martínez
- Biocruces Bizkaia Health Research Institute, Cruces University Hospital, UPV-EHU, Bizkaia, Spain
- CIBERDEM, CIBERER, Instituto de Salud Carlos III, Madrid, Spain
| | - Itxaso Rica
- Biocruces Bizkaia Health Research Institute, Cruces University Hospital, UPV-EHU, Bizkaia, Spain
- CIBERDEM, CIBERER, Instituto de Salud Carlos III, Madrid, Spain
- Pediatric Endocrinology Service, Cruces University Hospital, Osakidetza, Bizkaia, Spain
| | - Idoia Martínez de LaPiscina
- Biocruces Bizkaia Health Research Institute, Cruces University Hospital, UPV-EHU, Bizkaia, Spain
- CIBERDEM, CIBERER, Instituto de Salud Carlos III, Madrid, Spain
| | - Alejandro García-Castaño
- Biocruces Bizkaia Health Research Institute, Cruces University Hospital, UPV-EHU, Bizkaia, Spain
- CIBERDEM, CIBERER, Instituto de Salud Carlos III, Madrid, Spain
| | - Anibal Aguayo
- Biocruces Bizkaia Health Research Institute, Cruces University Hospital, UPV-EHU, Bizkaia, Spain
- CIBERDEM, CIBERER, Instituto de Salud Carlos III, Madrid, Spain
| | - Begoña Calvo
- Biocruces Bizkaia Health Research Institute, Cruces University Hospital, UPV-EHU, Bizkaia, Spain
| | - Luis Castaño
- Biocruces Bizkaia Health Research Institute, Cruces University Hospital, UPV-EHU, Bizkaia, Spain
- CIBERDEM, CIBERER, Instituto de Salud Carlos III, Madrid, Spain
- * E-mail:
| | | |
Collapse
|
14
|
Wang X, Zheng P, Huang G, Yang L, Zhou Z. Dipeptidyl peptidase-4(DPP-4) inhibitors: promising new agents for autoimmune diabetes. Clin Exp Med 2018; 18:473-480. [PMID: 30022375 DOI: 10.1007/s10238-018-0519-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/08/2018] [Indexed: 12/16/2022]
Abstract
Dipeptidyl peptidase-4 (DPP-4) inhibitors constitute a novel class of anti-diabetic agents confirmed to improve glycemic control and preserve β-cell function in type 2 diabetes. Three major large-scale studies, EXAMINE, SAVOR-TIMI 53, and TECOS, have confirmed the cardiovascular safety profile of DPP-4 inhibitors. Based on these results, DPP-4 inhibitors have gained widespread use in type 2 diabetes treatment. It is currently unknown, however, whether DPP-4 inhibitors have similar therapeutic efficacy against autoimmune diabetes. Several in vitro and in vivo studies have addressed this issue, but the results remain controversial. In this review, we summarize experimental findings and preliminary clinical trial results, and identify potentially effective immune modulation targets of DPP-4 inhibitors for autoimmune diabetes.
Collapse
Affiliation(s)
- Xia Wang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China.,Department of Metabolism and Endocrinology, Hunan Provincial People's Hospital, Changsha, Hunan, China
| | - Peilin Zheng
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| | - Gan Huang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| | - Lin Yang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| | - Zhiguang Zhou
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China.
| |
Collapse
|
15
|
Affiliation(s)
| | | | - Olle Kämpe
- Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
16
|
Persson M, Becker C, Elding Larsson H, Lernmark Å, Forsander G, Ivarsson SA, Ludvigsson J, Samuelsson U, Marcus C, Carlsson A. The Better Diabetes Diagnosis (BDD) study - A review of a nationwide prospective cohort study in Sweden. Diabetes Res Clin Pract 2018; 140:236-244. [PMID: 29626585 DOI: 10.1016/j.diabres.2018.03.057] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 12/08/2017] [Accepted: 03/29/2018] [Indexed: 12/26/2022]
Abstract
The incidence of type 1 diabetes (T1D) in Sweden is one of the highest in the world. However, the possibility of other types of diabetes must also be considered. In addition, individuals with T1D constitute a heterogeneous group. A precise classification of diabetes is a prerequisite for optimal outcome. For precise classification, knowledge on the distribution of genetic factors, biochemical markers and clinical features in individuals with new onset of diabetes is needed. The Better Diabetes Diagnosis (BDD), is a nationwide study in Sweden with the primary aim to facilitate a more precise classification and diagnosis of diabetes in order to enable the most adequate treatment for each patient. Secondary aims include identification of risk factors for diabetes-related co-morbidities. Since 2005, data on almost all children and adolescents with newly diagnosed diabetes in Sweden are prospectively collected and including heredity of diabetes, clinical symptoms, levels of C peptide, genetic analyses and detection of autoantibodies. Since 2011, analyses of HLA profile, autoantibodies and C peptide levels are part of clinical routine in Sweden for all pediatric patients with suspected diagnosis of diabetes. In this review, we present the methods and main results of the BDD study so far and discuss future aspects.
Collapse
Affiliation(s)
- M Persson
- Department of Medicine, Clinical Epidemiology, Karolinska University Hospital, Stockholm, Sweden.
| | - C Becker
- Department of Clinical Chemistry, Skåne University Hospital, Malmö, Sweden
| | - H Elding Larsson
- Department of Clinical Sciences, Lund University/Clinical Research Centre, Skåne University Hospital, Malmö, Sweden
| | - Å Lernmark
- Department of Clinical Sciences, Lund University/Clinical Research Centre, Skåne University Hospital, Malmö, Sweden
| | - G Forsander
- Department of Pediatrics, Institute for Clinical Sciences, Sahlgrenska Academy, University of Gothenburg and the Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - S A Ivarsson
- Department of Clinical Sciences, Lund University/Clinical Research Centre, Skåne University Hospital, Malmö, Sweden
| | - J Ludvigsson
- Division of Pediatrics, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - U Samuelsson
- Division of Pediatrics, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - C Marcus
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Division of Pediatrics, Stockholm, Sweden
| | - A Carlsson
- Lund University, Skane University Hospital, Department of Clinical Sciences Lund, Pediatrics, Lund, Sweden
| |
Collapse
|
17
|
Duan K, Ghosh G, Lo JF. Optimizing Multiplexed Detections of Diabetes Antibodies via Quantitative Microfluidic Droplet Array. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:10.1002/smll.201702323. [PMID: 28990274 PMCID: PMC5755373 DOI: 10.1002/smll.201702323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 08/11/2017] [Indexed: 05/02/2023]
Abstract
Sensitive, single volume detections of multiple diabetes antibodies can provide immunoprofiling and early screening of at-risk patients. To advance the state-of-the-art suspension assays for diabetes antibodies, porous hydrogel droplets are leveraged in microfluidic serpentine arrays to enhance reagent transport. This spatially multiplexed assay is applied to the detection of antibodies against insulin, glutamic acid decarboxylase, and insulinoma-associated protein 2. Optimization of assay protocol results in a shortened assay time of 2 h, with better than 20 pg mL Supporting Information detection limits across all three antibodies. Specificity and cross-reactivity tests show negligible background, nonspecific antibody-antigen, and nonspecific antibody-antibody bindings. Multiplexed detections are able to measure within 15% of target concentrations from low to high ranges. The technique enables quantifications of as little as 8000 molecules in each 500 µm droplet in a single volume, multiplexed assay format, a breakthrough necessary for the adoption of diabetes panels for clinical screening and monitoring in the future.
Collapse
Affiliation(s)
- Kai Duan
- Bioengineering Program, Department of Mechanical Engineering, University of Michigan at Dearborn, Dearborn, MI, 48128, USA
| | - Gargi Ghosh
- Bioengineering Program, Department of Mechanical Engineering, University of Michigan at Dearborn, Dearborn, MI, 48128, USA
| | - Joe Fujiou Lo
- Bioengineering Program, Department of Mechanical Engineering, University of Michigan at Dearborn, Dearborn, MI, 48128, USA
| |
Collapse
|
18
|
Abstract
Underlying type 1 diabetes is a genetic aetiology dominated by the influence of specific HLA haplotypes involving primarily the class II DR-DQ region. In genetically predisposed children with the DR4-DQ8 haplotype, exogenous factors, yet to be identified, are thought to trigger an autoimmune reaction against insulin, signalled by insulin autoantibodies as the first autoantibody to appear. In children with the DR3-DQ2 haplotype, the triggering reaction is primarily against GAD signalled by GAD autoantibodies (GADA) as the first-appearing autoantibody. The incidence rate of insulin autoantibodies as the first-appearing autoantibody peaks during the first years of life and declines thereafter. The incidence rate of GADA as the first-appearing autoantibody peaks later but does not decline. The first autoantibody may variably be followed, in an apparently non-HLA-associated pathogenesis, by a second, third or fourth autoantibody. Although not all persons with a single type of autoantibody progress to diabetes, the presence of multiple autoantibodies seems invariably to be followed by loss of functional beta cell mass and eventually by dysglycaemia and symptoms. Infiltration of mononuclear cells in and around the islets appears to be a late phenomenon appearing in the multiple-autoantibody-positive with dysglycaemia. As our understanding of the aetiology and pathogenesis of type 1 diabetes advances, the improved capability for early prediction should guide new strategies for the prevention of type 1 diabetes.
Collapse
Affiliation(s)
- Simon E Regnell
- Department of Clinical Sciences, Lund University/CRC, Skåne University Hospital, Jan Waldenströms gata 35, SE-20502, Malmö, Sweden
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University/CRC, Skåne University Hospital, Jan Waldenströms gata 35, SE-20502, Malmö, Sweden.
| |
Collapse
|
19
|
O'Kell AL, Wasserfall C, Catchpole B, Davison LJ, Hess RS, Kushner JA, Atkinson MA. Comparative Pathogenesis of Autoimmune Diabetes in Humans, NOD Mice, and Canines: Has a Valuable Animal Model of Type 1 Diabetes Been Overlooked? Diabetes 2017; 66:1443-1452. [PMID: 28533295 PMCID: PMC5440022 DOI: 10.2337/db16-1551] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/15/2017] [Indexed: 12/13/2022]
Abstract
Despite decades of research in humans and mouse models of disease, substantial gaps remain in our understanding of pathogenic mechanisms underlying the development of type 1 diabetes. Furthermore, translation of therapies from preclinical efforts capable of delaying or halting β-cell destruction has been limited. Hence, a pressing need exists to identify alternative animal models that reflect human disease. Canine insulin deficiency diabetes is, in some cases, considered to follow autoimmune pathogenesis, similar to NOD mice and humans, characterized by hyperglycemia requiring lifelong exogenous insulin therapy. Also similar to human type 1 diabetes, the canonical canine disorder appears to be increasing in prevalence. Whereas islet architecture in rodents is distinctly different from humans, canine pancreatic endocrine cell distribution is more similar. Differences in breed susceptibility alongside associations with MHC and other canine immune response genes parallel that of different ethnic groups within the human population, a potential benefit over NOD mice. The impact of environment on disease development also favors canine over rodent models. Herein, we consider the potential for canine diabetes to provide valuable insights for human type 1 diabetes in terms of pancreatic histopathology, impairment of β-cell function and mass, islet inflammation (i.e., insulitis), and autoantibodies specific for β-cell antigens.
Collapse
Affiliation(s)
- Allison L O'Kell
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL
| | - Clive Wasserfall
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Brian Catchpole
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hatfield, U.K
| | - Lucy J Davison
- Department of Veterinary Medicine, University of Cambridge, Cambridge, U.K., and Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K
| | - Rebecka S Hess
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jake A Kushner
- McNair Medical Institute and Department of Pediatric Diabetes and Endocrinology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX
| | - Mark A Atkinson
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL
| |
Collapse
|
20
|
Wester A, Skärstrand H, Lind A, Ramelius A, Carlsson A, Cedervall E, Jönsson B, Ivarsson SA, Elding Larsson H, Larsson K, Lindberg B, Neiderud J, Fex M, Törn C, Lernmark Å. An Increased Diagnostic Sensitivity of Truncated GAD65 Autoantibodies in Type 1 Diabetes May Be Related to HLA-DQ8. Diabetes 2017; 66:735-740. [PMID: 28028075 DOI: 10.2337/db16-0891] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 12/20/2016] [Indexed: 11/13/2022]
Abstract
N-terminally truncated (96-585) GAD65 (tGAD65) autoantibodies may better delineate type 1 diabetes than full-length GAD65 (fGAD65) autoantibodies. We aimed to compare the diagnostic sensitivity and specificity between fGAD65 and tGAD65 autoantibodies for type 1 diabetes in relation to HLA-DQ. Sera from children and adolescents with newly diagnosed type 1 diabetes (n = 654) and healthy control subjects (n = 605) were analyzed in radiobinding assays for fGAD65 (fGADA), tGAD65 (tGADA), and commercial 125I-GAD65 (RSRGADA) autoantibodies. The diagnostic sensitivity and specificity in the receiver operating characteristic curve did not differ between fGADA and tGADA. At the optimal cutoff, the diagnostic sensitivity for fGADA was lower than tGADA at similar diagnostic specificities. In 619 patients, 64% were positive for RSRGADA compared with 68% for fGADA and 74% for tGADA. Using non-DQ2/non-DQ8 patients as reference, the risk of being diagnosed with fGADA and tGADA was increased in patients with DQ2/2 and DQ2/8. Notably, logistic regression analysis suggested that DQ8/8 patients had an increased risk to be diagnosed with tGADA (P = 0.003) compared with fGADA (P = 0.09). tGADA had a higher diagnostic sensitivity for type 1 diabetes than both fGADA and RSRGADA. As DQ8/8 patients represent 10-11% of patients with newly diagnosed type 1 diabetes <18 years of age, tGADA analysis should prove useful for disease classification.
Collapse
Affiliation(s)
- Axel Wester
- Department of Clinical Sciences, Lund University Clinical Research Centre, Skåne University Hospital, Malmö, Sweden
| | - Hanna Skärstrand
- Department of Clinical Sciences, Lund University Clinical Research Centre, Skåne University Hospital, Malmö, Sweden
| | - Alexander Lind
- Department of Clinical Sciences, Lund University Clinical Research Centre, Skåne University Hospital, Malmö, Sweden
| | - Anita Ramelius
- Department of Clinical Sciences, Lund University Clinical Research Centre, Skåne University Hospital, Malmö, Sweden
| | - Annelie Carlsson
- Department of Clinical Sciences, Lund University Clinical Research Centre, Skåne University Hospital, Malmö, Sweden
| | | | - Björn Jönsson
- Department of Pediatrics, Ystad Hospital, Ystad, Sweden
| | - Sten A Ivarsson
- Department of Clinical Sciences, Lund University Clinical Research Centre, Skåne University Hospital, Malmö, Sweden
| | - Helena Elding Larsson
- Department of Clinical Sciences, Lund University Clinical Research Centre, Skåne University Hospital, Malmö, Sweden
| | - Karin Larsson
- Department of Pediatrics, Kristianstad Hospital, Kristianstad, Sweden
| | - Bengt Lindberg
- Department of Clinical Sciences, Lund University Clinical Research Centre, Skåne University Hospital, Malmö, Sweden
| | - Jan Neiderud
- Department of Pediatrics, Helsingborg Hospital, Helsingborg, Sweden
| | - Malin Fex
- Department of Clinical Sciences, Lund University Clinical Research Centre, Skåne University Hospital, Malmö, Sweden
| | - Carina Törn
- Department of Clinical Sciences, Lund University Clinical Research Centre, Skåne University Hospital, Malmö, Sweden
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University Clinical Research Centre, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
21
|
Larsson HE. A Swedish approach to the prevention of type 1 diabetes. Pediatr Diabetes 2016; 17 Suppl 22:73-7. [PMID: 27411440 PMCID: PMC5556697 DOI: 10.1111/pedi.12325] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 09/17/2015] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The autoimmune destruction of beta cells, resulting in clinical type 1 diabetes, may start early in life and last for several months or years. During this period of time, we have an opportunity to try to prevent or delay further beta-cell destruction and clinical onset of type 1 diabetes. OBJECTIVES Ongoing prediction and prevention studies in Skåne, Sweden are described. METHODS During September 2000 to August 2004, 35 000 children were screened at birth for genetic type 1 diabetes risk in the Diabetes Prediction in Skåne Study (DiPiS). In August 2004, the screening continued within the Enviromnental Determinants of Diabetes in the Young study (TEDDY). In the clinical trial Diabetes Prevention - Immune Tolerance (DiAPREV-IT), children with multiple islet autoimmunity have been included to investigate if immune tolerance with Alum-formulated GAD65 may prevent further beta-cell loss. RESULTS In DiPiS and TEDDY, a large number of children are followed in order to find the factors that trigger the autoimmune process leading to type 1 diabetes. Children followed in the studies develop diabetes at an early stage of disease, with few symptoms and a low frequency of diabetes ketoacidosis. DiAPREV-IT is still blinded and results will be available in December 2016. CONCLUSION Large prospective studies will be needed to understand the complex process leading to type 1 diabetes. Secondary prevention may be possible in children with islet autoimmunity, but the studies are complicated by the variability of glucose metabolism and beta-cell loss.
Collapse
|
22
|
Zhao LP, Alshiekh S, Zhao M, Carlsson A, Larsson HE, Forsander G, Ivarsson SA, Ludvigsson J, Kockum I, Marcus C, Persson M, Samuelsson U, Örtqvist E, Pyo CW, Nelson WC, Geraghty DE, Lernmark Å. Next-Generation Sequencing Reveals That HLA-DRB3, -DRB4, and -DRB5 May Be Associated With Islet Autoantibodies and Risk for Childhood Type 1 Diabetes. Diabetes 2016; 65:710-8. [PMID: 26740600 PMCID: PMC4764147 DOI: 10.2337/db15-1115] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 12/08/2015] [Indexed: 11/13/2022]
Abstract
The possible contribution of HLA-DRB3, -DRB4, and -DRB5 alleles to type 1 diabetes risk and to insulin autoantibody (IAA), GAD65 (GAD autoantibody [GADA]), IA-2 antigen (IA-2A), or ZnT8 against either of the three amino acid variants R, W, or Q at position 325 (ZnT8RA, ZnT8WA, and ZnT8QA, respectively) at clinical diagnosis is unclear. Next-generation sequencing (NGS) was used to determine all DRB alleles in consecutively diagnosed patients ages 1-18 years with islet autoantibody-positive type 1 diabetes (n = 970) and control subjects (n = 448). DRB3, DRB4, or DRB5 alleles were tested for an association with the risk of DRB1 for autoantibodies, type 1 diabetes, or both. The association between type 1 diabetes and DRB1*03:01:01 was affected by DRB3*01:01:02 and DRB3*02:02:01. These DRB3 alleles were associated positively with GADA but negatively with ZnT8WA, IA-2A, and IAA. The negative association between type 1 diabetes and DRB1*13:01:01 was affected by DRB3*01:01:02 to increase the risk and by DRB3*02:02:01 to maintain a negative association. DRB4*01:03:01 was strongly associated with type 1 diabetes (P = 10(-36)), yet its association was extensively affected by DRB1 alleles from protective (DRB1*04:03:01) to high (DRB1*04:01:01) risk, but its association with DRB1*04:05:01 decreased the risk. HLA-DRB3, -DRB4, and -DRB5 affect type 1 diabetes risk and islet autoantibodies. HLA typing with NGS should prove useful to select participants for prevention or intervention trials.
Collapse
Affiliation(s)
- Lue Ping Zhao
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Shehab Alshiekh
- Department of Clinical Sciences, Lund University/Clinical Research Centre, Skåne University Hospital, Malmö, Sweden
| | - Michael Zhao
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | | | - Helena Elding Larsson
- Department of Clinical Sciences, Lund University/Clinical Research Centre, Skåne University Hospital, Malmö, Sweden
| | - Gun Forsander
- Department of Pediatrics, The Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sten A Ivarsson
- Department of Clinical Sciences, Lund University/Clinical Research Centre, Skåne University Hospital, Malmö, Sweden
| | - Johnny Ludvigsson
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Ingrid Kockum
- Department of Clinical Neurosciences, Karolinska Institutet, Solna, Sweden
| | - Claude Marcus
- Department of Clinical Science, Karolinska Institutet, Huddinge, Sweden
| | - Martina Persson
- Department of Clinical Science, Karolinska Institutet, Huddinge, Sweden
| | - Ulf Samuelsson
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Eva Örtqvist
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Chul-Woo Pyo
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Wyatt C Nelson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Daniel E Geraghty
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University/Clinical Research Centre, Skåne University Hospital, Malmö, Sweden
| | | |
Collapse
|
23
|
Kapellen TM, Heidtmann B, Lilienthal E, Rami-Merhar B, Engler-Schmidt C, Holl RW. Continuous Subcutaneous Insulin Infusion in Neonates and Infants Below 1 Year: Analysis of Initial Bolus and Basal Rate Based on the Experiences from the German Working Group for Pediatric Pump Treatment. Diabetes Technol Ther 2015; 17:872-9. [PMID: 26509360 DOI: 10.1089/dia.2015.0030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND Diabetes mellitus is rare in young infants and neonates. Continuous subcutaneous insulin infusion (CSII) is used most frequently for insulin treatment in this age group. However, the individual doctor's experience is scarce because of the low prevalence of diabetes in this age. For this study patients treated with CSII with an age below 1 year were selected from the German/Austrian DPV (Diabetes-Patienten-Verlaufsdokumentation) database, and basal rate and bolus calculation were described. MATERIALS AND METHODS For all patients less than 1 year of age, basal rate and mealtime boluses were compared among infants with type 1 diabetes mellitus (T1DM), infants with neonatal diabetes mellitus (NDM), and infants with antibody status unknown diabetes mellitus (AUDM). RESULTS Fifty-eight patients with T1DM, 67 neonates with NDM, and 43 infants with early diabetes development after 6 months and negative β-cell antibodies (AUDM) could be analyzed. T1DM patients at onset required a median total insulin amount of 0.83 IU/kg of body weight, whereas NDM patients required 0.74 IU/kg of body weight (P = 0.63). Basal insulin requirement however, was different between the two groups (0.56 IU/kg of body weight in NDM vs. 0.43 IU/kg in T1DM) (P = 0.036). The percentage basal profile of NDM and T1DM patients was quite similar to children at the age of 1-5 years. The proportion of prandial insulin at onset was significantly different (32% in NDM vs. 53% in T1DM) (P < 0.00001). AUDM patients showed almost similar data to T1DM patients. The pattern of mealtime bolus insulin was not different among the groups. CONCLUSIONS The presented data can be used as an initial guide value to start CSII treatment in neonates and infants. To be on the safe side we recommend the lower quartile for the dosage as the starting value in nonketotic patients.
Collapse
Affiliation(s)
- Thomas M Kapellen
- 1 Hospital for Children and Adolescents, University of Leipzig , Leipzig, Germany
| | | | - Eggert Lilienthal
- 3 Hospital for Children and Adolescents, University of Bochum , Bochum, Germany
| | - Birgit Rami-Merhar
- 4 Department of Pediatrics, Medical University of Vienna , Vienna, Austria
| | | | - Reinhard W Holl
- 6 Institute of Epidemiology and Medical Biometry, ZIBMT, University of Ulm , Ulm, Germany
| |
Collapse
|
24
|
Skärstrand H, Vaziri-Sani F, Delli AJ, Törn C, Elding Larsson H, Ivarsson S, Agardh D, Lernmark Å. Neuropeptide Y is a minor autoantigen in newly diagnosed type 1 diabetes patients. Pediatr Diabetes 2015; 16:621-8. [PMID: 25258030 DOI: 10.1111/pedi.12222] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Autoantibodies (A) against Neuropeptide Y (NPY), was reported in 9% newly diagnosed type 1 diabetes (T1D) patients. A single nucleotide polymorphism (SNP) at rs16139 (T1128C) within the NPY-gene identified an amino acid substitution from leucine (L) to proline (P) (L7P) associated with both glucose tolerance and type 2 diabetes. We aimed to determine: (i) the influence of autoantibodies to leucine neuropeptide Y (NPY-LA) and autoantibodies to proline neuropeptide Y (NPY-PA) on the diagnostic sensitivity of type 1 diabetes (T1D), (ii) the association of NPYA with major islet autoantibodies, and (iii) the association of NPYA with HLA-DQ genotypes in newly diagnosed T1D patients. METHODS Serum from the HLA-DQ typed T1D patients (n = 673; median age 10 yr) from Skåne, Sweden, were analyzed for autoantibodies against NPY-L and NPY-P in a radioligand binding assay, and against glutamic acid decarboxylase 65 (GAD65), insulin, insulinoma associated protein-2 (IA-2), and zinc transporter 8 (ZnT8) in addition to islet cell antibodies (ICA). A total of 1006 subjects (median age 9 yr) were used as controls. RESULTS A total of 9.2% (n = 62) of the T1D patients were positive for NPY-LA (p < 0.001) and 7.6% (n = 51) for NPY-PA (p < 0.001) compared to 1.1% (n = 11) in controls. The NPY-LA and NPY-PA appeared together (κ = 0.63; p < 0.001) and the median levels correlated (R² = 0.603; p < 0.001). T1D patients diagnosed after 10 yr of age were at an increased risk for NPYA at diagnosis [odds ratio (OR = 2.46; 95% CI 1.46-4.16; p = 0.001)] adjusted for age at diagnosis, gender, autoantibody positivity, and HLA. CONCLUSIONS NPY is a minor autoantigen in children with newly diagnosed T1D. Therefore, NPY autoantibodies may be investigated in T1D autoimmunity.
Collapse
Affiliation(s)
- Hanna Skärstrand
- Department of Clinical Sciences, Malmö, Lund University, Skåne University Hospital, SE-20502, Malmö, Sweden
| | - Fariba Vaziri-Sani
- Department of Clinical Sciences, Malmö, Lund University, Skåne University Hospital, SE-20502, Malmö, Sweden
| | - Ahmed J Delli
- Department of Clinical Sciences, Malmö, Lund University, Skåne University Hospital, SE-20502, Malmö, Sweden
| | - Carina Törn
- Department of Clinical Sciences, Malmö, Lund University, Skåne University Hospital, SE-20502, Malmö, Sweden
| | - Helena Elding Larsson
- Department of Clinical Sciences, Malmö, Lund University, Skåne University Hospital, SE-20502, Malmö, Sweden
| | - Sten Ivarsson
- Department of Clinical Sciences, Malmö, Lund University, Skåne University Hospital, SE-20502, Malmö, Sweden
| | - Daniel Agardh
- Department of Clinical Sciences, Malmö, Lund University, Skåne University Hospital, SE-20502, Malmö, Sweden
| | - Åke Lernmark
- Department of Clinical Sciences, Malmö, Lund University, Skåne University Hospital, SE-20502, Malmö, Sweden
| | | |
Collapse
|
25
|
Michels A, Zhang L, Khadra A, Kushner JA, Redondo MJ, Pietropaolo M. Prediction and prevention of type 1 diabetes: update on success of prediction and struggles at prevention. Pediatr Diabetes 2015; 16. [PMID: 26202050 PMCID: PMC4592445 DOI: 10.1111/pedi.12299] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is the archetypal example of a T cell-mediated autoimmune disease characterized by selective destruction of pancreatic β cells. The pathogenic equation for T1DM presents a complex interrelation of genetic and environmental factors, most of which have yet to be identified. On the basis of observed familial aggregation of T1DM, it is certain that there is a decided heritable genetic susceptibility for developing T1DM. The well-known association of T1DM with certain human histocompatibility leukocyte antigen (HLA) alleles of the major histocompatibility complex (MHC) was a major step toward understanding the role of inheritance in T1DM. Type 1 diabetes is a polygenic disease with a small number of genes having large effects (e.g., HLA) and a large number of genes having small effects. Risk of T1DM progression is conferred by specific HLA DR/DQ alleles [e.g., DRB1*03-DQB1*0201 (DR3/DQ2) or DRB1*04-DQB1*0302 (DR4/DQ8)]. In addition, the HLA allele DQB1*0602 is associated with dominant protection from T1DM in multiple populations. A concordance rate lower than 100% between monozygotic twins indicates a potential involvement of environmental factors on disease development. The detection of at least two islet autoantibodies in the blood is virtually pre-diagnostic for T1DM. The majority of children who carry these biomarkers, regardless of whether they have an a priori family history of the disease, will develop insulin-requiring diabetes. Facilitating pre-diagnosis is the timing of seroconversion which is most pronounced in the first 2 yr of life. Unfortunately the significant progress in improving prediction of T1DM has not yet been paralleled by safe and efficacious intervention strategies aimed at preventing the disease. Herein we summarize the chequered history of prediction and prevention of T1DM, describing successes and failures alike, and thereafter examine future trends in the exciting, partially explored field of T1DM prevention.
Collapse
Affiliation(s)
- Aaron Michels
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado
| | - Li Zhang
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado
| | - Anmar Khadra
- Department of Physiology, McGill University, Montreal, QC Canada
| | - Jake A. Kushner
- Division of Diabetes Pediatric Endocrinology, Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas
| | - Maria J. Redondo
- Division of Diabetes Pediatric Endocrinology, Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas
| | - Massimo Pietropaolo
- Division of Diabetes, Endocrinology and Metabolism, McNair Medical Institute, Baylor College of Medicine, Houston, Texas,To Whom Correspondence May be Addressed: Massimo Pietropaolo, M.D., Division of Diabetes, Endocrinology and Metabolism, Alkek Building for Biomedical Research, R 609, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030
| |
Collapse
|
26
|
Haller-Kikkatalo K, Pruul K, Kisand K, Nemvalts V, Reimand K, Uibo R. GADA and anti-ZnT8 complicate the outcome of phenotypic type 2 diabetes of adults. Eur J Clin Invest 2015; 45:255-62. [PMID: 25611374 DOI: 10.1111/eci.12404] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 01/17/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND A proportion of phenotypic type 2 diabetes (T2D) patients produce pancreatic autoantibodies and a majority of T2D patients develop serious life-disabling complications over time despite the implementation of adequate clinical interventions. This study determined whether the presence of pancreatic autoantibodies (GADA, IA-2A, anti-ZnT8, or ICA) was associated with serious complications or concomitant diseases of adult patients diagnosed with T2D (N = 305). MAIN RESULTS In the study population, 22.3% (N = 68) of subjects were positive for at least 1 of the 4 of the markers associated with autoimmune diabetes (presence of pancreatic autoantibody - pAb), followed by GADA (14.1%, N = 43), ICA (8.9%, N = 27), anti-ZnT8 (5.6%, N = 17) and IA-2A (2.0%, N = 6). Logistic regression analysis adjusted for patient's age, gender and duration of T2D revealed that (i) pAb was associated with higher prevalence of adiposity (odds ratio of adjusted regression model (adOR) 2.51, P = 0.032); (ii) pAb, GADA and anti-ZnT8 were associated with autoimmune thyroid disease (adORs 3.07, P = 0.012; 6.29, P < 0.001 and 3.52, P = 0.052, respectively); (iii) pAb and GADA, in particular, were risk factors for neurological complications (adORs 2.10, P = 0.036; 2.76, P = 0.009, respectively) and polyneuropathy in particular (adORs 2.60, P = 0.012; 3.10, P = 0.007, respectively); and (iv) anti-ZnT8 was a risk factor for developing nephropathy (adOR 4.61, P = 0.022). In addition, adiposity was associated with 5.3-year earlier onset of disease (adjusted linear regression model, P = 0.006). CONCLUSIONS These results suggest that GADA and anti-ZnT8 are associated with progression of serious T2D complications, including polyneuropathy and nephropathy. In addition, adiposity represents a significant risk for autoimmunity development in T2D patients.
Collapse
Affiliation(s)
- Kadri Haller-Kikkatalo
- Department of Immunology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia; Competence Centre on Health Technologies, Tartu, Estonia; Department of Obstetrics and Gynecology, University of Tartu, Tartu, Estonia
| | | | | | | | | | | |
Collapse
|
27
|
Ilonen J, Knip M, Vaarala O. Heterogeneity in diabetes-associated autoantibodies and susceptibility to Type 1 diabetes: lessons for disease prevention. Expert Rev Endocrinol Metab 2015; 10:25-34. [PMID: 30289041 DOI: 10.1586/17446651.2015.955474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Autoantibodies against pancreatic islets are strong predictors of Type 1 diabetes. When persistent β-cell autoantibodies against at least two autoantigens are detected, the probability of diabetes is extremely high, although the time period before disease development can vary from days up to more than 20 years. Insulin autoantibodies or antibodies specific to glutamate decarboxylase 65 enzyme are in most cases, the first autoantibodies to appear. Insulin autoantibodies typically emerge very early with a peak at the age of 1.5 years, whereas the onset of glutamic acid decarboxylase 65 antibody positivity has a more even distribution, peaking later in childhood. These differences in the timing of appearance suggest that different environmental factors might be involved in the initiation of β-cell autoimmunity beginning either already in infancy or later on. This should be taken into account in studies aimed at identifying environmental factors triggering islet cell-specific autoimmunity and also in the design of prevention trials.
Collapse
Affiliation(s)
- Jorma Ilonen
- a 1 Immunogenetics Laboratory, University of Turku, Turku, Finland
- b 2 Department of Clinical Microbiology, University of Eastern Finland, Kuopio, Finland
| | - Mikael Knip
- c 3 Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- d 4 Diabetes and Obesity Research Program, University of Helsinki, Helsinki, Finland
- e 5 Folkhälsan Research Center, Helsinki, Finland
- f 6 Department of Pediatrics, Tampere University Hospital, Tampere, Finland
| | - Outi Vaarala
- g 7 Department of Vaccination and Immune Protection, National Institute for Health and Welfare, Helsinki, Finland
| |
Collapse
|