1
|
Kamikubo Y, Nagaya S, Inoue R, Yamaguchi K, Morimoto-Kamata R, Inoue K, Morishita E, Samad F, Ohkura N. Tissue Factor Pathway-Driven Initial Thrombin Generation is Associated with Hypercoagulability in Obesity. Thromb Haemost 2025. [PMID: 40049601 DOI: 10.1055/a-2552-2050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Initial thrombin (FIIa) generated via the tissue factor (TF) pathway plays a crucial role in amplifying coagulation. There is growing evidence that the TF pathway might contribute to hypercoagulation in obesity. However, it is unclear if the initial generation of FIIa (TG) is associated with hypercoagulation in obesity due to the lack of appropriate assays. This study aims to evaluate association between TF pathway-driven initial TG and hypercoagulability in obesity.We measured the initial TG levels in plasma from male Tsumura Suzuki obese diabetes (TSOD) mice and overweight subjects using the highly sensitive TG assay. To induce initial TG, TF was added to the plasma and incubated at 37°C for up to 3 minutes. After quenching the TG, we quantified the generated FIIa by kinetically monitoring its amidolytic activity with a fluorogenic substrate.We observed that initial TG levels were significantly higher in TSOD mice (n = 31) compared with non-obese mice (n = 32). Even in the absence of exogenous TF, initial TG levels in obese mice and overweight individuals were elevated when procoagulant phospholipids were added alone. Moreover, the increased initial TG that the inhibitory anti-TF antibody abolished was detectable in reconstituted plasma including pellets prepared by high-speed centrifugation of plasma from obese mice, not in plasma supernatant. We attributed the promotion of the initial TG to the increase in procoagulant TF-bearing microvesicles in circulation. Based on the findings, measuring TF pathway-driven initial TG could be a valuable method for assessing hypercoagulability in obesity.
Collapse
Affiliation(s)
- Yuichi Kamikubo
- Thrombo Translational Research Lab Inc., Chuo-ku, Kumamoto, Japan
| | - Satomi Nagaya
- Department of Clinical Laboratory Sciences, Kanazawa University of Graduate School of Health Science, Kanazawa, Ishikawa, Japan
| | - Rina Inoue
- Thrombo Translational Research Lab Inc., Chuo-ku, Kumamoto, Japan
| | - Koichi Yamaguchi
- Department of Clinical Laboratory Sciences, Kanazawa University of Graduate School of Health Science, Kanazawa, Ishikawa, Japan
- Department of Medical Technology and Sciences, International University of Health and Welfare, Narita, Chiba, Japan
- Department of Medical Technology, Faculty of Health Science, Tsukuba International University, Tsuchiura, Ibaraki, Japan
| | - Riyo Morimoto-Kamata
- Laboratory of Host Defense, School of Pharma-Sciences, Teikyo University, Tokyo, Japan
| | - Kenichi Inoue
- Japan Bio Science Laboratory Co., Fukushima-ku, Osaka, Japan
| | - Eriko Morishita
- Department of Clinical Laboratory Sciences, Kanazawa University of Graduate School of Health Science, Kanazawa, Ishikawa, Japan
| | - Fahumiya Samad
- San Diego Biomedical Research Institute, San Diego, California, United States
| | - Naoki Ohkura
- Laboratory of Host Defense, School of Pharma-Sciences, Teikyo University, Tokyo, Japan
| |
Collapse
|
2
|
Yagihashi S. Contribution of animal models to diabetes research: Its history, significance, and translation to humans. J Diabetes Investig 2023; 14:1015-1037. [PMID: 37401013 PMCID: PMC10445217 DOI: 10.1111/jdi.14034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 07/05/2023] Open
Abstract
Diabetes mellitus is still expanding globally and is epidemic in developing countries. The combat of this plague has caused enormous economic and social burdens related to a lowered quality of life in people with diabetes. Despite recent significant improvements of life expectancy in patients with diabetes, there is still a need for efforts to elucidate the complexities and mechanisms of the disease processes to overcome this difficult disorder. To this end, the use of appropriate animal models in diabetes studies is invaluable for translation to humans and for the development of effective treatment. In this review, a variety of animal models of diabetes with spontaneous onset in particular will be introduced and discussed for their implication in diabetes research.
Collapse
Affiliation(s)
- Soroku Yagihashi
- Department of Exploratory Medicine for Nature, Life and HumansToho University School of MedicineChibaJapan
- Department of PathologyHirosaki University Graduate School of MedicineHirosakiJapan
| |
Collapse
|
3
|
Shao W, Ichimura-Shimizu M, Ogawa H, Jin S, Sutoh M, Nakamura S, Onodera M, Tawara H, Toyohara S, Hokao R, Kudo Y, Oya T, Tsuneyama K. Establishment of repeated liver biopsy technique in experimental mice. Heliyon 2023; 9:e16978. [PMID: 37484353 PMCID: PMC10361027 DOI: 10.1016/j.heliyon.2023.e16978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 05/10/2023] [Accepted: 06/02/2023] [Indexed: 07/25/2023] Open
Abstract
Biopsy is a commonly used method for determining pathological diagnoses by directly using human tissues and cells. Biopsies are widely used to determine disease progression and treatment efficacy. Although organs and tissues are usually obtained by sacrifice during animal experiments, it is theoretically possible to use the same biopsy techniques in humans. In the present study, we examined the feasibility of performing four repeated liver biopsies in a spontaneous metabolic syndrome mouse model. Even though a small number of mice died accidently, most mice were able to undergo four liver biopsies without significant adverse events. We also performed three liver biopsies in mouse liver tumor carcinogen models at 4, 8, and 12 weeks of age. In addition to the sample collected at 16 weeks of age during sacrifice, we successfully collected four liver samples from the same mice at different stages of disease progression. The application of this liver biopsy technique might make it possible for direct evaluation of pathological conditions in the same individual over time, thereby reducing the number of experimental animals.
Collapse
Affiliation(s)
- Wenhua Shao
- Department of Molecular Pathology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
- Department of Oral Bioscience, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Mayuko Ichimura-Shimizu
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hirohisa Ogawa
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Shengjian Jin
- Department of Oral Bioscience, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Mitsuko Sutoh
- Institute for Animal Reproduction, Kasumigaura, Ibaraki, Japan
| | - Satoko Nakamura
- Institute for Animal Reproduction, Kasumigaura, Ibaraki, Japan
| | - Miki Onodera
- Institute for Animal Reproduction, Kasumigaura, Ibaraki, Japan
| | - Hirosuke Tawara
- Institute for Animal Reproduction, Kasumigaura, Ibaraki, Japan
| | - Shunji Toyohara
- Institute for Animal Reproduction, Kasumigaura, Ibaraki, Japan
| | - Ryoji Hokao
- Institute for Animal Reproduction, Kasumigaura, Ibaraki, Japan
| | - Yasusei Kudo
- Department of Oral Bioscience, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Takeshi Oya
- Department of Molecular Pathology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
4
|
Tada Y, Kasai K, Makiuchi N, Igarashi N, Kani K, Takano S, Honda H, Yanagibashi T, Watanabe Y, Usui-Kawanishi F, Furusawa Y, Ichimura-Shimizu M, Tabuchi Y, Takatsu K, Tsuneyama K, Nagai Y. Roles of Macrophages in Advanced Liver Fibrosis, Identified Using a Newly Established Mouse Model of Diet-Induced Non-Alcoholic Steatohepatitis. Int J Mol Sci 2022; 23:13251. [PMID: 36362037 PMCID: PMC9654696 DOI: 10.3390/ijms232113251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 10/29/2023] Open
Abstract
Macrophages play critical roles in the pathogenesis of non-alcoholic steatohepatitis (NASH). However, it is unclear which macrophage subsets are critically involved in the development of inflammation and fibrosis in NASH. In TSNO mice fed a high-fat/cholesterol/cholate-based diet, which exhibit advanced liver fibrosis that mimics human NASH, we found that Kupffer cells (KCs) were less abundant and recruited macrophages were more abundant, forming hepatic crown-like structures (hCLS) in the liver. The recruited macrophages comprised two subsets: CD11c+/Ly6C- and CD11c-/Ly6C+ cells. CD11c+ cells were present in a mesh-like pattern around the lipid droplets, constituting the hCLS. In addition, CD11c+ cells colocalized with collagen fibers, suggesting that this subset of recruited macrophages might promote advanced liver fibrosis. In contrast, Ly6C+ cells were present in doughnut-like inflammatory lesions, with a lipid droplet in the center. Finally, RNA sequence analysis indicates that CD11c+/Ly6C- cells promote liver fibrosis and hepatic stellate cell (HSC) activation, whereas CD11c-/Ly6C+ cells are a macrophage subset that play an anti-inflammatory role and promote tissue repair in NASH. Taken together, our data revealed changes in liver macrophage subsets during the development of NASH and shed light on the roles of the recruited macrophages in the pathogenesis of advanced fibrosis in NASH.
Collapse
Affiliation(s)
- Yuki Tada
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Toyama 939-0398, Japan
| | - Kaichi Kasai
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Toyama 939-0398, Japan
| | - Nana Makiuchi
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Toyama 939-0398, Japan
| | - Naoya Igarashi
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Toyama 939-0398, Japan
| | - Koudai Kani
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Toyama 939-0398, Japan
| | - Shun Takano
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Toyama 939-0398, Japan
| | - Hiroe Honda
- Toyama Prefectural Institute for Pharmaceutical Research, 17-1 Nakataikouyama, Toyama 939-0363, Japan
| | - Tsutomu Yanagibashi
- Toyama Prefectural Institute for Pharmaceutical Research, 17-1 Nakataikouyama, Toyama 939-0363, Japan
| | - Yasuharu Watanabe
- Toyama Prefectural Institute for Pharmaceutical Research, 17-1 Nakataikouyama, Toyama 939-0363, Japan
| | - Fumitake Usui-Kawanishi
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Toyama 939-0398, Japan
| | - Yukihiro Furusawa
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Toyama 939-0398, Japan
| | - Mayuko Ichimura-Shimizu
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-8-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Kiyoshi Takatsu
- Toyama Prefectural Institute for Pharmaceutical Research, 17-1 Nakataikouyama, Toyama 939-0363, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-8-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Yoshinori Nagai
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Toyama 939-0398, Japan
| |
Collapse
|
5
|
Spontaneous Occurrence of Various Types of Hepatocellular Adenoma in the Livers of Metabolic Syndrome-Associated Steatohepatitis Model TSOD Mice. Int J Mol Sci 2022; 23:ijms231911923. [PMID: 36233225 PMCID: PMC9570293 DOI: 10.3390/ijms231911923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/30/2022] Open
Abstract
Male Tsumura-Suzuki Obese Diabetes (TSOD) mice, a spontaneous metabolic syndrome model, develop non-alcoholic steatohepatitis and liver tumors by feeding on a standard mouse diet. Nearly 70% of liver tumors express glutamine synthetase (GS), a marker of hepatocellular carcinoma. In contrast, approximately 30% are GS-negative without prominent nuclear or structural atypia. In this study, we examined the characteristics of the GS-negative tumors of TSOD mice. Twenty male TSOD mice were sacrificed at 40 weeks and a total of 21 tumors were analyzed by HE staining and immunostaining of GS, liver fatty acid-binding protein (L-FABP), serum amyloid A (SAA), and beta-catenin. With immunostaining for GS, six (29%) tumors were negative. Based on the histological and immunohistological characteristics, six GS-negative tumors were classified into several subtypes of human hepatocellular adenoma (HCA). One large tumor showed generally similar findings to inflammatory HCA, but contained small atypical foci with GS staining and partial nuclear beta-catenin expression suggesting malignant transformation. GS-negative tumors of TSOD mice contained features similar to various subtypes of HCA. Different HCA subtypes occurring in the same liver have been reported in humans; however, the diversity of patient backgrounds limits the ability to conduct a detailed, multifaceted analysis. TSOD mice may share similar mechanisms of HCA development as in humans. It is timely to review the pathogenesis of HCA from both genetic and environmental perspectives, and it is expected that TSOD mice will make further contributions in this regard.
Collapse
|
6
|
Genetically modified mice for research on human diseases: A triumph for Biotechnology or a work in progress? THE EUROBIOTECH JOURNAL 2022. [DOI: 10.2478/ebtj-2022-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
Abstract
Abstract
Genetically modified mice are engineered as models for human diseases. These mouse models include inbred strains, mutants, gene knockouts, gene knockins, and ‘humanized’ mice. Each mouse model is engineered to mimic a specific disease based on a theory of the genetic basis of that disease. For example, to test the amyloid theory of Alzheimer’s disease, mice with amyloid precursor protein genes are engineered, and to test the tau theory, mice with tau genes are engineered. This paper discusses the importance of mouse models in basic research, drug discovery, and translational research, and examines the question of how to define the “best” mouse model of a disease. The critiques of animal models and the caveats in translating the results from animal models to the treatment of human disease are discussed. Since many diseases are heritable, multigenic, age-related and experience-dependent, resulting from multiple gene-gene and gene-environment interactions, it will be essential to develop mouse models that reflect these genetic, epigenetic and environmental factors from a developmental perspective. Such models would provide further insight into disease emergence, progression and the ability to model two-hit and multi-hit theories of disease. The summary examines the biotechnology for creating genetically modified mice which reflect these factors and how they might be used to discover new treatments for complex human diseases such as cancers, neurodevelopmental and neurodegenerative diseases.
Collapse
|
7
|
Abstract
This paper reviews theory of DNB (Dynamical Network Biomarkers) and its applications including both modern medicine and traditional medicine. We show that omics data such as gene/protein expression profiles can be effectively used to detect pre-disease states before critical transitions from healthy states to disease states by using the DNB theory. The DNB theory with big biological data is expected to lead to ultra-early precision and preventive medicine.
Collapse
|
8
|
Ichimura-Shimizu M, Tsuchiyama Y, Morimoto Y, Matsumoto M, Kobayashi T, Sumida S, Kakimoto T, Oya T, Ogawa H, Yamashita M, Matsuda S, Omagari K, Taira S, Tsuneyama K. A Novel Mouse Model of Nonalcoholic Steatohepatitis Suggests that Liver Fibrosis Initiates around Lipid-Laden Macrophages. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:31-42. [PMID: 34710382 DOI: 10.1016/j.ajpath.2021.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/29/2021] [Accepted: 10/07/2021] [Indexed: 01/01/2023]
Abstract
While the interaction of cells such as macrophages and hepatic stellate cells is known to be involved in the generation of fibrosis in nonalcoholic steatohepatitis (NASH), the mechanism remains unclear. This study employed a high-fat/cholesterol/cholate (HFCC) diet to generate a model of NASH-related fibrosis to investigate the pathogenesis of fibrosis. Two mouse strains: C57BL/6J, the one susceptible to obesity, and A/J, the one relatively resistant to obesity, developed hepatic histologic features of NASH, including fat deposition, intralobular inflammation, hepatocyte ballooning, and fibrosis, after 9 weeks of HFCC diet. The severity of hepatic inflammation and fibrosis was greater in A/J mice than in the C57BL/6J mice. A/J mice fed HFCC diet exhibited characteristic CD204-positive lipid-laden macrophage aggregation in hepatic parenchyma. Polarized light was used to visualize the Maltese cross, cholesterol crystals within the aggregated macrophages. Fibrosis developed in a ring shape from the periphery of the aggregated macrophages such that the starting point of fibrosis could be visualized histologically. Matrix-assisted laser desorption/ionization mass spectrometry imaging analysis detected a molecule at m/z 772.462, which corresponds to the protonated ion of phosphatidylcholine [P-18:1 (11Z)/18:0] and phosphatidylethanolamine [18:0/20:2 (11Z, 14Z)], in aggregated macrophages adjacent to the fibrotic lesions. In conclusion, the HFCC diet-fed A/J model provides an ideal tool to study fibrogenesis and enables novel insights into the pathophysiology of NASH-related fibrosis.
Collapse
Affiliation(s)
- Mayuko Ichimura-Shimizu
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan; Department of Food Science and Nutrition, Nara Women's University, Nara, Japan
| | - Yosuke Tsuchiyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yuki Morimoto
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Minoru Matsumoto
- Department of Molecular Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Tomoko Kobayashi
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Satoshi Sumida
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Takumi Kakimoto
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Takeshi Oya
- Department of Molecular Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hirohisa Ogawa
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Michiko Yamashita
- Morphological Laboratory Science, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University, Nara, Japan
| | - Katsuhisa Omagari
- Division of Nutritional Science, Graduate School of Human Health Science, University of Nagasaki, Nagasaki, Japan
| | - Shu Taira
- Faculty of Food and Agricultural Sciences, Fukushima University, Fukushima, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan; Department of Molecular Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
| |
Collapse
|
9
|
Ichimura-Shimizu M, Kageyama T, Oya T, Ogawa H, Matsumoto M, Sumida S, Kakimoto T, Miyakami Y, Nagatomo R, Inoue K, Cheng C, Tsuneyama K. Verification of the Impact of Blood Glucose Level on Liver Carcinogenesis and the Efficacy of a Dietary Intervention in a Spontaneous Metabolic Syndrome Model. Int J Mol Sci 2021; 22:ijms222312844. [PMID: 34884650 PMCID: PMC8657638 DOI: 10.3390/ijms222312844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
Metabolic syndrome (MS) is a risk factor for type 2 diabetes mellitus, vascular inflammation, atherosclerosis, and renal, liver, and heart diseases. Non-alcoholic steatohepatitis (NASH) is a progressive representative liver disease and may lead to the irreversible calamities of cirrhosis and hepatocellular carcinoma. Metabolic disorders such as hyperglycemia have been broadly reported to be related to hepatocarcinogenesis in NASH; however, direct evidence of a link between hyperglycemia and carcinogenesis is still lacking. Tsumura Suzuki Obese Diabetic (TSOD) mice spontaneously develop metabolic syndrome, including obesity, insulin resistance, and NASH-like liver phenotype, and eventually develop hepatocellular carcinomas. TSOD mice provide a spontaneous human MS-like model, even with significant individual variations. In this study, we monitored mice in terms of their changes in blood glucose levels, body weights, and pancreatic and liver lesions over time. As a result, liver carcinogenesis was delayed in non-hyperglycemic TSOD mice compared to hyperglycemic mice. Moreover, at the termination point of 40 weeks, liver tumors appeared in 18 of 24 (75%) hyperglycemic TSOD mice; in contrast, they only appeared in 5 of 24 (20.8%) non-hyperglycemic mice. Next, we investigated three kinds of oligosaccharide that could lower blood glucose levels in hyperglycemic TSOD mice. We monitored the levels of blood and urinary glucose and assessed pancreatic lesions among the experimental groups. As expected, significantly lower levels of blood and urinary glucose and smaller deletions of Langerhans cells were found in TSOD mice fed with milk-derived oligosaccharides (galactooligosaccharides and lactosucrose). At the age of 24 weeks, mild steatohepatitis was found in the liver but there was no evidence of liver carcinogenesis. Steatosis in the liver was alleviated in the milk-derived oligosaccharide-administered group. Taken together, suppressing the increase in blood glucose level from a young age prevented susceptible individuals from diabetes and the onset of NAFLD/NASH, as well as carcinogenesis. Milk-derived oligosaccharides showed a lowering effect on blood glucose levels, which may be expected to prevent liver carcinogenesis.
Collapse
Affiliation(s)
- Mayuko Ichimura-Shimizu
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan; (M.I.-S.); (T.K.); (H.O.); (S.S.); (T.K.); (Y.M.)
| | - Takeshi Kageyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan; (M.I.-S.); (T.K.); (H.O.); (S.S.); (T.K.); (Y.M.)
| | - Takeshi Oya
- Department of Molecular Pathology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan; (T.O.); (M.M.)
| | - Hirohisa Ogawa
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan; (M.I.-S.); (T.K.); (H.O.); (S.S.); (T.K.); (Y.M.)
| | - Minoru Matsumoto
- Department of Molecular Pathology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan; (T.O.); (M.M.)
| | - Satoshi Sumida
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan; (M.I.-S.); (T.K.); (H.O.); (S.S.); (T.K.); (Y.M.)
| | - Takumi Kakimoto
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan; (M.I.-S.); (T.K.); (H.O.); (S.S.); (T.K.); (Y.M.)
| | - Yuko Miyakami
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan; (M.I.-S.); (T.K.); (H.O.); (S.S.); (T.K.); (Y.M.)
| | - Ryosuke Nagatomo
- Laboratory of Clinical and Analytical Chemistry, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan; (R.N.); (K.I.)
| | - Koichi Inoue
- Laboratory of Clinical and Analytical Chemistry, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan; (R.N.); (K.I.)
| | - Chunmei Cheng
- Pharmacology and Histopathology, Novo Nordisk Research Centre China, Beijing 102206, China;
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan; (M.I.-S.); (T.K.); (H.O.); (S.S.); (T.K.); (Y.M.)
- Department of Molecular Pathology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan; (T.O.); (M.M.)
- Correspondence: ; Tel.: +81-88-633-7065; Fax: +81-88-633-7067
| |
Collapse
|
10
|
da Costa Rodrigues K, Bortolatto CF, de Oliveira RL, Paltian JJ, Larroza A, Soares MP, Alves D, Wilhelm EA, Luchese C. 4-Phenylselanyl-7-chloroquinoline attenuates hepatic injury triggered by neonatal exposure to monosodium glutamate in rats. Life Sci 2021; 280:119751. [PMID: 34174321 DOI: 10.1016/j.lfs.2021.119751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 11/25/2022]
Abstract
AIMS Obesity is associated with a spectrum of hepatic abnormalities that can be experimentally induced by injections of monosodium glutamate (MSG) in neonatal rodents. We investigated the protective actions of the repeated therapy with 4-phenylselenyl-7-chloroquinoline (4-PSQ), a quinoline derivative containing selenium, on damage to the liver triggered by early postnatal administration of MSG in male Wistar rats. MAIN METHODS Neonatal rats received MSG (4 g/kg, subcutaneous route) or saline (1 ml/kg) from 5 to 14 postnatal day (PND) to induce obesity with consequent damages in the liver. 4-PSQ treatment (5 mg/kg) or canola oil (1 ml/kg) was administered from 60 to 76 PND by the intragastric route. On 76 PND, animals were anesthetized for blood and liver collection. Plasma markers of hepatic function, hepatic lipoperoxidation levels and histology analysis of liver tissue were assessed. KEY FINDINGS Our data revealed that treatment with 4-PSQ reverted the increase in plasma transaminases activities observed in MSG rats. Treatment with 4-PSQ reduced plasma lactate levels in obese rats. In the liver, MSG elevated the content of lipoperoxidation which was reverted by 4-PSQ administrations. Lastly, 4-PSQ therapy attenuated the histological alterations induced by MSG. SIGNIFICANCE Together, the results indicate a hepatoprotective action of repeated treatment with 4-PSQ in obese rats.
Collapse
Affiliation(s)
- Karline da Costa Rodrigues
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), CEP 96010-900 Pelotas, RS, Brazil
| | - Cristiani Folharini Bortolatto
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), CEP 96010-900 Pelotas, RS, Brazil
| | - Renata Leivas de Oliveira
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), CEP 96010-900 Pelotas, RS, Brazil
| | - Jaini Janke Paltian
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), CEP 96010-900 Pelotas, RS, Brazil
| | - Allya Larroza
- Programa de Pós-graduação em Química, Laboratório de Síntese Orgânica Limpa - LASOL, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), P.O. Box 354, 96010-900 Pelotas, RS, Brazil
| | - Mauro Pereira Soares
- Laboratório Regional de Diagnóstico Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas CEP 96010-900, RS, Brazil
| | - Diego Alves
- Programa de Pós-graduação em Química, Laboratório de Síntese Orgânica Limpa - LASOL, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), P.O. Box 354, 96010-900 Pelotas, RS, Brazil
| | - Ethel Antunes Wilhelm
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), CEP 96010-900 Pelotas, RS, Brazil.
| | - Cristiane Luchese
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), CEP 96010-900 Pelotas, RS, Brazil.
| |
Collapse
|
11
|
Ichimura-Shimizu M, Omagari K, Yamashita M, Tsuneyama K. Development of a novel mouse model of diet-induced nonalcoholic steatohepatitis-related progressive bridging fibrosis. Biosci Biotechnol Biochem 2021; 85:941-947. [PMID: 33620426 DOI: 10.1093/bbb/zbaa107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/04/2020] [Indexed: 12/17/2022]
Abstract
Nonalcoholic steatohepatitis (NASH) progresses to liver fibrosis and cirrhosis. Existing mouse models of NASH rarely develop diet-induced severe fibrosis. We aimed to establish a dietary model of NASH with rapid progression to fibrosis. Six-week-old male Tsumura-Suzuki obese diabetes (TSOD) mice (a model of spontaneous metabolic syndrome) and corresponding control Tsumura-Suzuki nonobese (TSNO) mice were fed a novel diet high in fat, cholesterol, and cholate (iHFC). Histologic steatohepatitis, including steatosis, inflammation, and fibrosis, were observed in both TSNO and TSOD iHFC diet-fed mice at 20 weeks of age. As compared with TSOD mice, TSNO mice developed much more severe fibrosis and reached stage 3 of bridging fibrosis within 14 weeks under the iHFC diet feeding. Perivenular/perisinusoidal pattern of fibrosis in TSNO mice resembled human NASH. Our model of NASH with advanced fibrosis by simple diet offers many advantages useful in studying the mechanism of liver fibrosis and preclinical drug testing.
Collapse
Affiliation(s)
- Mayuko Ichimura-Shimizu
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School, Tokushima, Japan
| | - Katsuhisa Omagari
- Division of Nutritional Science, Graduate School of Human Health Science, University of Nagasaki, Nagasaki, Japan
| | - Michiko Yamashita
- Department of Analytical Pathology, Tokushima University Graduate School, Tokushima, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
12
|
Kobayashi T, Ichimura-Shimizu M, Oya T, Ogawa H, Matsumoto M, Morimoto Y, Sumida S, Kakimoto T, Yamashita M, Sutoh M, Toyohara S, Hokao R, Cheng C, Tsuneyama K. Neonatal streptozotocin treatment rapidly causes different subtype of hepatocellular carcinoma without persistent hyperglycemia in 4CS mice fed on a normal diet. Pathol Res Pract 2021; 225:153559. [PMID: 34325313 DOI: 10.1016/j.prp.2021.153559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/13/2021] [Accepted: 07/17/2021] [Indexed: 10/20/2022]
Abstract
Although diabetes mellitus (DM) is a well-known risk factor for hepatocellular carcinoma (HCC), the underlying mechanisms have not yet to be defined. We previously reported that DIAR mice fed with standard murine diet developed type 1 diabetes and HCC at age of 16 weeks old with a neonatal streptozotocin treatment (n-STZ). Because DIAR mice did not manifest obesity nor develop steatohepatitis, hyperglycemia with streptozotocin trigger or streptozotocin alone might turn on the hepato-carcinogenesis. An insulin-recruitment to DIAR-nSTZ mice showed an increased frequency of HCC during the first 12 weeks of age, although the diabetic indications notably improved. To elucidate the role of hyperglycemia in hepato-carcinogenesis, we performed a head-to-head comparative study by using 4CS mice and DIAR mice with n-STZ treatment. Newborn 4CS mice and DIAR mice were divided into STZ treated group and control group. The blood glucose levels of DIAR-nSTZ mice increased at age of eight weeks, while that of 4CS-nSTZ mice were maintained in the normal range. At eight weeks old, three out of five DIAR-nSTZ mice (60%) and one out of ten 4CS-nSTZ mice (10%) developed multiple liver tumors. At age of 12 weeks old, all eight of DIAR-nSTZ mice (100%) and two of 10 4CS-nSTZ mice (20%) developed multiple liver tumors. At 16 weeks old, all animals of DIAR-nSTZ and 4CS-nSTZ mice occurred liver tumors. DIAR-nSTZ showed hyperglycemia and HCC, and 4CS-nSTZ developed HCC without hyperglycemia. These results were interpreted that the onset of HCC maybe not related to the presence or absence of hyperglycemia but nSTZ treatment. On the other hand, since the carcinogenesis of 4CS-nSTZ is delayed compared to DIAR-nSTZ, hyperglycemia may play a role in the progression of carcinogenesis. Histologically, the liver tumor appeared irregularly trabecular arrangements of hepatocytes with various degrees of nuclear atypia. By immunohistochemical analyses, all liver tumors showed positive staining of glutamine synthetase (GS), an established human HCC marker. The expression pattern of GS was divided into a strong diffuse pattern and weak patchy pattern, respectively. The liver tumor showing the weak GS-patchy pattern expressed biliary/stem markers, EpCAM, and SALL4, partially. Because 4CS-nSTZ mice did not show any metabolic complications such as gaining body weight or high blood glucose level, it is a unique animal model with a simple condition to investigate hepatic carcinogenesis by excluding other factors.
Collapse
Affiliation(s)
- Tomoko Kobayashi
- Department of Pathology and Laboratory Medicine and Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima 770-8503, Japan; Tokushima University Hospital, Division of Pathology, 2-50-1, Kuramoto-Cho, Tokushima 770-8503, Japan.
| | - Mayuko Ichimura-Shimizu
- Department of Pathology and Laboratory Medicine and Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima 770-8503, Japan.
| | - Takeshi Oya
- Molecular Pathology and Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima 770-8503, Japan.
| | - Hirohisa Ogawa
- Department of Pathology and Laboratory Medicine and Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima 770-8503, Japan.
| | - Minoru Matsumoto
- Molecular Pathology and Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima 770-8503, Japan.
| | - Yuki Morimoto
- Department of Pathology and Laboratory Medicine and Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima 770-8503, Japan.
| | - Satoshi Sumida
- Department of Pathology and Laboratory Medicine and Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima 770-8503, Japan.
| | - Takumi Kakimoto
- Department of Pathology and Laboratory Medicine and Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima 770-8503, Japan.
| | - Michiko Yamashita
- Pathological Science and Technology and Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima 770-8503, Japan.
| | - Mitsuko Sutoh
- Institute for Animal Reproduction, 1103 Fukaya, Kasumigaura, Ibaraki 300-0134, Japan.
| | - Shunji Toyohara
- Institute for Animal Reproduction, 1103 Fukaya, Kasumigaura, Ibaraki 300-0134, Japan.
| | - Ryoji Hokao
- Institute for Animal Reproduction, 1103 Fukaya, Kasumigaura, Ibaraki 300-0134, Japan.
| | - Chunmei Cheng
- Pharmacology and Histopathology, Novo Nordisk Research Centre, China.
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine and Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima 770-8503, Japan; Molecular Pathology and Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima 770-8503, Japan.
| |
Collapse
|
13
|
Huang XT, Yang JX, Wang Z, Zhang CY, Luo ZQ, Liu W, Tang SY. Activation of N-methyl-D-aspartate receptor regulates insulin sensitivity and lipid metabolism. Theranostics 2021; 11:2247-2262. [PMID: 33500723 PMCID: PMC7797674 DOI: 10.7150/thno.51666] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/19/2020] [Indexed: 12/13/2022] Open
Abstract
RATIONALE Although significant progress has been made in understanding the mechanisms of steatosis and insulin resistance, the physiological functions of regulators in these processes remain largely elusive. Evidence has suggested that the glutamate/N-methyl-D-aspartic acid receptor (NMDAR) axis contributes to acute lung injury, pulmonary arterial hypertension, and diabetes, but the specific metabolic contribution of the glutamate/NMDAR axis is not clear. Here we provide data at the animal, cellular, and molecular levels to support the role of the glutamate/NMDAR axis as a therapeutic target for metabolic syndrome in obesity. Methods: We examined the glutamate level in the obese mouse induced by a high-fat diet (HFD) for 12 weeks. To assess the role of NMDAR in insulin sensitivity and lipid metabolism, we tested the effects of Memantine (an NMDAR antagonist) and NMDA (an NMDAR agonist) on mice fed with HFD or standard chow diet. The in vitros NMDAR roles were analyzed in hepatocytes and potential mechanisms involved in regulating lipid metabolism were investigated. Results: Glutamate was increased in the serum of HFD-treated mice. The NMDAR blockade by Memantine decreased the susceptibility to insulin resistance and hepatic steatosis in obese mice. NMDA treatment for 6 months induced obesity in mice, characterized by hyperglycemia, hyperlipidemia, insulin resistance, and pathological changes in the liver. We provided in vitro evidence demonstrating that NMDAR activation facilitated metabolic syndrome in obesity through promoting lipid accumulation. NMDAR inhibition attenuated lipid accumulation induced by palmitic acid. Mechanistically, NMDAR activation impaired fatty acid oxidation by reducing PPARα phosphorylation and activity. The PPARα activity reduction induced by NMDAR activation was reversibly mediated by ERK1/2 signaling. Conclusion: These findings revealed that targeting NMDAR might be a promising therapeutic strategy for metabolic syndrome in obesity.
Collapse
Affiliation(s)
- Xiao-Ting Huang
- Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Jun-Xiao Yang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zun Wang
- Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Chen-Yu Zhang
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Zi-Qiang Luo
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Wei Liu
- Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Si-Yuan Tang
- Xiangya Nursing School, Central South University, Changsha, Hunan, China
| |
Collapse
|
14
|
Koizumi K, Oku M, Hayashi S, Inujima A, Shibahara N, Chen L, Igarashi Y, Tobe K, Saito S, Kadowaki M, Aihara K. Suppression of Dynamical Network Biomarker Signals at the Predisease State ( Mibyou) before Metabolic Syndrome in Mice by a Traditional Japanese Medicine (Kampo Formula) Bofutsushosan. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:9129134. [PMID: 32831883 PMCID: PMC7424500 DOI: 10.1155/2020/9129134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 12/11/2022]
Abstract
Due to the increasing incidence of metabolic syndrome, the development of new therapeutic strategies is urgently required. One promising approach is to focus on the predisease state (so-called Mibyou in traditional Japanese medicine) before metabolic syndrome as a preemptive medical target. We recently succeeded in detecting a predisease state before metabolic syndrome using a mathematical theory called the dynamical network biomarker (DNB) theory. The detected predisease state was characterized by 147 DNB genes among a total of 24,217 genes in TSOD (Tsumura-Suzuki Obese Diabetes) mice, a well-accepted model of metabolic syndrome, at 5 weeks of age. The timing of the predisease state was much earlier than the onset of metabolic syndrome in TSOD mice reported to be at approximately 8-12 weeks of age. In the present study, we investigated whether the predisease state in TSOD mice can be inhibited by the oral administration of a Kampo formula, bofutsushosan (BTS), which is usually used to treat obese patients with metabolic syndrome in Japan, from 3 to 7 weeks of age. We found the comprehensive suppression of the early warning signals of the DNB genes by BTS at 5 weeks of age and later. Specifically, the standard deviations of 134 genes among the 147 DNB genes decreased at 5 weeks of age as compared to the nontreatment control group, and 80 of them showed more than 50% reduction. In addition, at 7 weeks of age, the body weight and blood glucose level were significantly lower in the BTS-treated group than in the nontreatment control group. The results of our study suggest a novel mechanism of BTS; it suppressed fluctuations of the DNB genes at the predisease state before metabolic syndrome and thus prevented the subsequent transition to metabolic syndrome. In conclusion, this study demonstrated the preventive and preemptive effects of a Kampo formula on Mibyou before metabolic syndrome for the first time based on scientific evaluation.
Collapse
Affiliation(s)
- Keiichi Koizumi
- Division of Kampo Diagnostics, Institute of Natural Medicine, University of Toyama, Toyama, Japan
- Laboratory of Drug Discovery and Development for Pre-disease, Section of Host Defences, Division of Bioscience, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Makito Oku
- Division of Chemo-Bioinformatics, Institute of Natural Medicine, University of Toyama, Toyama, Japan
- Laboratory of Chemo-Bioinformatics, Section of Host Defences, Division of Bioscience, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Shusaku Hayashi
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, Toyama, Japan
- Laboratory of Gastrointestinal Disorder, Section of Host Defences, Division of Bioscience, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Akiko Inujima
- Division of Kampo Diagnostics, Institute of Natural Medicine, University of Toyama, Toyama, Japan
- Laboratory of Drug Discovery and Development for Pre-disease, Section of Host Defences, Division of Bioscience, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Naotoshi Shibahara
- Division of Kampo Diagnostics, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Luonan Chen
- CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Yoshiko Igarashi
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Kazuyuki Tobe
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan
| | | | - Makoto Kadowaki
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Kazuyuki Aihara
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Preemptive Study, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
15
|
Takai A, Kikuchi K, Ichimura M, Tsuneyama K, Moritoki Y, Matsumoto K, Tsunashima H, Onda T, Kuniyoshi N, Nariyama T, Ohyatsu S, Kubota J, Nagumo K, Sato S, Hara M, Miyakawa H. Fructo-oligosaccharides ameliorate steatohepatitis, visceral adiposity, and associated chronic inflammation via increased production of short-chain fatty acids in a mouse model of non-alcoholic steatohepatitis. BMC Gastroenterol 2020; 20:46. [PMID: 32103741 PMCID: PMC7045471 DOI: 10.1186/s12876-020-01194-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 02/17/2020] [Indexed: 02/08/2023] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is a hepatic manifestation of metabolic syndrome. Within the spectrum of NAFLD, non-alcoholic steatohepatitis (NASH) in combination with hepatic inflammation and fibrosis can lead to liver cirrhosis and hepatocellular carcinoma. Dysbiosis was reported to contribute to NASH pathogenesis. This study aimed to determine the effects of fructo-oligosaccharides (FOS) on steatohepatitis and visceral adiposity in an obese mouse model of NASH. Methods Twelve newborn C57BL/6 J male mice were subcutaneously injected with monosodium glutamate (MSG) to induce obesity on a conventional diet. Six mice were also administered 5% FOS via drinking water from 10 weeks of age. At 18 weeks, histological characteristics of the liver and epididymal fat were compared between the groups. Hepatic mRNA expression of lipid metabolism enzymes and SCFA in feces and sera were measured. Results Hepatic steatosis, inflammatory cell infiltration, and hepatocyte ballooning in the liver and increased hepatic mRNA expression of fatty acid synthase and glycerol-3-phosphate acyltransferase were observed in the MSG-treated mice. FOS treatment improved the liver pathology and blunted the increases in the mRNA expression levels of lipid metabolism enzymes. In addition, FOS inhibited adipocyte enlargement and formation of crown-like structures and reduced the M1 macrophage frequency in the epididymal fat of the MSG mice (39.4% ± 3.0% vs. 22.8% ± 0.7%; P = 0.001). FOS increased not only the fecal concentrations of n-butyric acid (0.04 ± 0.01 vs. 0.38 ± 0.14 mg/g, P = 0.02), propionic acid (0.09 ± 0.03 vs. 0.42 ± 0.16 mg/g, P = 0.02), and acetic acid (0.65 ± 0.16 vs. 1.48 ± 0.29 mg/g, P = 0.03) but also the serum concentration of propionic acid (3.9 ± 0.5 vs. 8.2 ± 0.5 μmol/L, P = 0.001). Conclusions FOS ameliorates steatohepatitis, visceral adiposity, and chronic inflammation by increasing SCFA production.
Collapse
Affiliation(s)
- Atsuko Takai
- Fourth Department of Internal Medicine, Teikyo University Mizonokuchi Hospital, 5-1-1 Futako, Takatsu-ku, Kawasaki-shi, Kanagawa, 213-8507, Japan
| | - Kentaro Kikuchi
- Fourth Department of Internal Medicine, Teikyo University Mizonokuchi Hospital, 5-1-1 Futako, Takatsu-ku, Kawasaki-shi, Kanagawa, 213-8507, Japan.
| | - Mayuko Ichimura
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima-shi, Tokushima, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima-shi, Tokushima, Japan
| | - Yuki Moritoki
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita-shi, Akita, Japan
| | - Kotaro Matsumoto
- Department of Gastroenterology, Teikyo University Mizonokuchi Hospital, Kawasaki-shi, Kanagawa, Japan
| | - Hiromichi Tsunashima
- Department of Gastroenterology, Teikyo University Mizonokuchi Hospital, Kawasaki-shi, Kanagawa, Japan
| | - Takeshi Onda
- Department of Gastroenterology, Teikyo University Mizonokuchi Hospital, Kawasaki-shi, Kanagawa, Japan.,Department of Gastroenterology, Nippon Medical School Chiba Hokusoh Hospital, Inzai-shi, Chiba, Japan
| | - Noriyuki Kuniyoshi
- Department of Gastroenterology, Teikyo University Mizonokuchi Hospital, Kawasaki-shi, Kanagawa, Japan.,Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Tomoyuki Nariyama
- Fourth Department of Internal Medicine, Teikyo University Mizonokuchi Hospital, 5-1-1 Futako, Takatsu-ku, Kawasaki-shi, Kanagawa, 213-8507, Japan
| | - Sho Ohyatsu
- Fourth Department of Internal Medicine, Teikyo University Mizonokuchi Hospital, 5-1-1 Futako, Takatsu-ku, Kawasaki-shi, Kanagawa, 213-8507, Japan
| | - Juri Kubota
- Fourth Department of Internal Medicine, Teikyo University Mizonokuchi Hospital, 5-1-1 Futako, Takatsu-ku, Kawasaki-shi, Kanagawa, 213-8507, Japan
| | - Kozue Nagumo
- Fourth Department of Internal Medicine, Teikyo University Mizonokuchi Hospital, 5-1-1 Futako, Takatsu-ku, Kawasaki-shi, Kanagawa, 213-8507, Japan
| | - Shinpei Sato
- Fourth Department of Internal Medicine, Teikyo University Mizonokuchi Hospital, 5-1-1 Futako, Takatsu-ku, Kawasaki-shi, Kanagawa, 213-8507, Japan
| | - Masumi Hara
- Fourth Department of Internal Medicine, Teikyo University Mizonokuchi Hospital, 5-1-1 Futako, Takatsu-ku, Kawasaki-shi, Kanagawa, 213-8507, Japan
| | - Hiroshi Miyakawa
- Fourth Department of Internal Medicine, Teikyo University Mizonokuchi Hospital, 5-1-1 Futako, Takatsu-ku, Kawasaki-shi, Kanagawa, 213-8507, Japan
| |
Collapse
|
16
|
David-Silva A, Esteves JV, Morais MRPT, Freitas HS, Zorn TM, Correa-Giannella ML, Machado UF. Dual SGLT1/SGLT2 Inhibitor Phlorizin Ameliorates Non-Alcoholic Fatty Liver Disease and Hepatic Glucose Production in Type 2 Diabetic Mice. Diabetes Metab Syndr Obes 2020; 13:739-751. [PMID: 32231437 PMCID: PMC7085338 DOI: 10.2147/dmso.s242282] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/29/2020] [Indexed: 12/11/2022] Open
Abstract
PURPOSE NAFLD is a hepatic component of type 2 diabetes mellitus (T2D), in which impaired hepatic glucose production plays an important role. Inhibitors of sodium glucose transporter 2 (SGLT2) reduce glycemia and exert beneficial effects on diabetic complications. Recently, dual SGLT1/2 inhibition has been proposed to be more effective in reducing glycemia. We hypothesized that improving hepatic glucose metabolism induced by SGLT1/2 inhibition could be accompanied by beneficial effects on NAFLD progression. METHODS Glycemic homeostasis, hepatic glucose production and NAFLD features were investigated in obese T2D mice, treated with SGLT1/2 inhibitor phlorizin for 1 week. RESULTS T2D increased glycemia; insulinemia; hepatic expression of phosphoenolpyruvate carboxykinase (PEPCK), glucose-6-phosphatase (G6Pase) and glucose transporter 2 (Slc2a2 gene); hepatocyte nuclear factors 1A/4A/3B-binding activity in Slc2a2; endogenous glucose production; liver weight, plasma transaminase concentration as well as hepatic inflammation markers, and induced histological signals of non-alcoholic steatohepatitis (NASH, according to NASH-CRN Pathology Committee System). Phlorizin treatment restored all these parameters (mean NASH score reduced from 5.25 to 2.75 P<0.001); however, plasma transaminase concentration was partially reverted and some hepatic inflammation markers remained unaltered. CONCLUSION NAFLD accompanies altered hepatic glucose metabolism in T2D mice and that greatly ameliorated through short-term treatment with the dual SGLT1/2 inhibitor. This suggests that altered hepatic glucose metabolism participates in T2D-related NAFLD and highlights the pharmacological inhibition of SGLTs as a useful approach not only for controlling glycemia but also for mitigating development and/or progression of NAFLD.
Collapse
Affiliation(s)
- Aline David-Silva
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - João Victor Esteves
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mychel Raony P T Morais
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Helayne Soares Freitas
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Telma Maria Zorn
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria Lucia Correa-Giannella
- Laboratório de Carboidratos e Radioimunoensaio, LIM-18, Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Ubiratan Fabres Machado
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Correspondence: Ubiratan Fabres Machado Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1524, São Paulo, SP05508-900, BrazilTel +55 11 30917494 Email
| |
Collapse
|
17
|
Lucchetti BFC, Boaretto N, Lopes FNC, Malvezi AD, Lovo-Martins MI, Tatakihara VLH, Fattori V, Pereira RS, Verri WA, de Almeida Araujo EJ, Pinge-Filho P, Martins-Pinge MC. Metabolic syndrome agravates cardiovascular, oxidative and inflammatory dysfunction during the acute phase of Trypanosoma cruzi infection in mice. Sci Rep 2019; 9:18885. [PMID: 31827186 PMCID: PMC6906468 DOI: 10.1038/s41598-019-55363-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 11/26/2019] [Indexed: 12/20/2022] Open
Abstract
We evaluated the influence of metabolic syndrome (MS) on acute Trypanosoma cruzi infection. Obese Swiss mice, 70 days of age, were subjected to intraperitoneal infection with 5 × 102 trypomastigotes of the Y strain. Cardiovascular, oxidative, inflammatory, and metabolic parameters were evaluated in infected and non-infected mice. We observed higher parasitaemia in the infected obese group (IOG) than in the infected control group (ICG) 13 and 15 days post-infection. All IOG animals died by 19 days post-infection (dpi), whereas 87.5% of the ICG survived to 30 days. Increased plasma nitrite levels in adipose tissue and the aorta were observed in the IOG. Higher INF-γ and MCP-1 concentrations and lower IL-10 concentrations were observed in the IOG compared to those in the ICG. Decreased insulin sensitivity was observed in obese animals, which was accentuated after infection. Higher parasitic loads were found in adipose and hepatic tissue, and increases in oxidative stress in cardiac, hepatic, and adipose tissues were characteristics of the IOG group. Thus, MS exacerbates experimental Chagas disease, resulting in greater damage and decreased survival in infected animals, and might be a warning sign that MS can influence other pathologies.
Collapse
Affiliation(s)
- Bruno Fernando Cruz Lucchetti
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
- Department of Physiotherapy, University Center of Araguaia Valley, Barra do Garças, MT, Brazil
| | - Natalia Boaretto
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Fernanda Novi Cortegoso Lopes
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Aparecida Donizette Malvezi
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Maria Isabel Lovo-Martins
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Vera Lúcia Hideko Tatakihara
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Victor Fattori
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Rito Santo Pereira
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Waldiceu Aparecido Verri
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | | | - Phileno Pinge-Filho
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Marli Cardoso Martins-Pinge
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil.
| |
Collapse
|
18
|
Doulberis M, Papaefthymiou A, Polyzos SA, Katsinelos P, Grigoriadis N, Srivastava DS, Kountouras J. Rodent models of obesity. MINERVA ENDOCRINOL 2019; 45:243-263. [PMID: 31738033 DOI: 10.23736/s0391-1977.19.03058-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Obese or overweight people exceed one-third of the global population and obesity along with diabetes mellitus consist basic components of metabolic syndrome, both of which are known cardio-cerebrovascular risk factors with detrimental consequences. These data signify the pandemic character of obesity and the necessity for effective treatments. Substantial advances have been accomplished in preclinical research of obesity by using animal models, which mimic the human disease. In particular, rodent models have been widely used for many decades with success for the elucidation of the pathophysiology of obesity, since they share physiological and genetic components with humans and appear advantageous in their husbandry. The most representative rodents include the laboratory mouse and rat. Within this review, we attempted to consolidate the most widely used mice and rat models of obesity and highlight their strengths as well as weaknesses in a critical way. Our aim was to bridge the gap between laboratory facilities and patient's bed and help the researcher find the appropriate animal model for his/her obesity research. This tactful selection of the appropriate model of obesity may offer more translational derived results. In this regard, we included, the main diet induced models, the chemical/mechanical ones, as well as a selection of monogenic or polygenic models.
Collapse
Affiliation(s)
- Michael Doulberis
- Department of Gastroenterology and Hepatology, University of Zurich, Zurich, Switzerland - .,Department of Internal Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece -
| | | | | | - Panagiotis Katsinelos
- Department of Internal Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- First Department of Pharmacology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - David S Srivastava
- Second Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Jannis Kountouras
- Department of Internal Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
19
|
Vallianou N, Stratigou T, Christodoulatos GS, Dalamaga M. Understanding the Role of the Gut Microbiome and Microbial Metabolites in Obesity and Obesity-Associated Metabolic Disorders: Current Evidence and Perspectives. Curr Obes Rep 2019; 8:317-332. [PMID: 31175629 DOI: 10.1007/s13679-019-00352-2] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE In this review, we summarize current evidence on the gut microbiome and microbial metabolites in relation to obesity and obesity-associated metabolic disorders. Special emphasis is given on mechanisms interconnecting gut microbiome and microbial metabolites with metabolic disorders as well as on potential preventive and therapeutic perspectives with a "bench to bedside" approach. RECENT FINDINGS Recent data have highlighted the role of gut dysbiosis in the etiology and pathogenesis of metabolic disorders, including obesity, metabolic syndrome, type 2 diabetes mellitus, and non-alcoholic fatty liver disease. Overall, most studies have demonstrated a reduction in gut microbiome diversity and richness in obese subjects, but there is still much debate on the exact microbial signature of a healthy or an obese gut microbiome. Despite the controversial role of an altered gut microbiome as a cause or consequence of obesity in human studies, numerous animal studies and certain human studies suggest beneficial metabolic effects of certain microbial intestinal metabolites, such as butyrate, that could be used in the prevention and treatment of obesity and its comorbidities. More randomized controlled trials and larger prospective studies including well-defined cohorts as well as a multi-omics approach are warranted to better identify the associations between the gut microbiome, microbial metabolites, and obesity and its metabolic complications.
Collapse
Affiliation(s)
- Natalia Vallianou
- Department of Endocrinology, Evangelismos General Hospital of Athens, 45-47 Ypsilantou street, 10676, Athens, Greece
| | - Theodora Stratigou
- Department of Endocrinology, Evangelismos General Hospital of Athens, 45-47 Ypsilantou street, 10676, Athens, Greece
| | - Gerasimos Socrates Christodoulatos
- Laboratory of Microbiology, KAT Hospital, 2 Nikis, Kifisia, 14561, Athens, Greece
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Mikras Asias #27, 75 Mikras Asias, Goudi, 11527, Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Mikras Asias #27, 75 Mikras Asias, Goudi, 11527, Athens, Greece.
| |
Collapse
|
20
|
Koizumi K, Oku M, Hayashi S, Inujima A, Shibahara N, Chen L, Igarashi Y, Tobe K, Saito S, Kadowaki M, Aihara K. Identifying pre-disease signals before metabolic syndrome in mice by dynamical network biomarkers. Sci Rep 2019; 9:8767. [PMID: 31235708 PMCID: PMC6591167 DOI: 10.1038/s41598-019-45119-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 05/31/2019] [Indexed: 02/07/2023] Open
Abstract
The establishment of new therapeutic strategies for metabolic syndrome is urgently needed because metabolic syndrome, which is characterized by several disorders, such as hypertension, increases the risk of lifestyle-related diseases. One approach is to focus on the pre-disease state, a state with high susceptibility before the disease onset, which is considered as the best period for preventive treatment. In order to detect the pre-disease state, we recently proposed mathematical theory called the dynamical network biomarker (DNB) theory based on the critical transition paradigm. Here, we investigated time-course gene expression profiles of a mouse model of metabolic syndrome using 64 whole-genome microarrays based on the DNB theory, and showed the detection of a pre-disease state before metabolic syndrome defined by characteristic behavior of 147 DNB genes. The results of our study demonstrating the existence of a notable pre-disease state before metabolic syndrome may help to design novel and effective therapeutic strategies for preventing metabolic syndrome, enabling just-in-time preemptive interventions.
Collapse
Affiliation(s)
- Keiichi Koizumi
- Division of Kampo Diagnostics, Institute of Natural Medicine, University of Toyama, Toyama, 930-0194, Japan.
| | - Makito Oku
- Division of Chemo-Bioinformatics, Institute of Natural Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Shusaku Hayashi
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Akiko Inujima
- Division of Kampo Diagnostics, Institute of Natural Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Naotoshi Shibahara
- Division of Kampo Diagnostics, Institute of Natural Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Luonan Chen
- CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
- Institute of Industrial Science, The University of Tokyo, Tokyo, 153-8505, Japan
| | - Yoshiko Igarashi
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Kazuyuki Tobe
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Shigeru Saito
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Makoto Kadowaki
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Kazuyuki Aihara
- Institute of Industrial Science, The University of Tokyo, Tokyo, 153-8505, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo, 113-0033, Japan
| |
Collapse
|
21
|
Xu YXZ, Mishra S. Obesity-Linked Cancers: Current Knowledge, Challenges and Limitations in Mechanistic Studies and Rodent Models. Cancers (Basel) 2018; 10:E523. [PMID: 30567335 PMCID: PMC6316427 DOI: 10.3390/cancers10120523] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/09/2018] [Accepted: 12/15/2018] [Indexed: 02/07/2023] Open
Abstract
The worldwide prevalence of obesity has doubled during the last 50 years, and according to the World Obesity Federation, one third of the people on Earth will be obese by the year 2025. Obesity is described as a chronic, relapsing and multifactorial disease that causes metabolic, biomechanical, and psychosocial health consequences. Growing evidence suggests that obesity is a risk factor for multiple cancer types and rivals smoking as the leading preventable cause for cancer incidence and mortality. The epidemic of obesity will likely generate a new wave of obesity-related cancers with high aggressiveness and shortened latency. Observational studies have shown that from cancer risk to disease prognosis, an individual with obesity is consistently ranked worse compared to their lean counterpart. Mechanistic studies identified similar sets of abnormalities under obesity that may lead to cancer development, including ectopic fat storage, altered adipokine profiles, hormone fluctuations and meta-inflammation, but could not explain how these common mechanisms produce over 13 different cancer types. A major hurdle in the mechanistic underpinning of obesity-related cancer is the lack of suitable pre-clinical models that spontaneously develop obesity-linked cancers like humans. Current approaches and animal models fall short when discerning the confounders that often coexist in obesity. In this mini-review, we will briefly survey advances in the different obesity-linked cancers and discuss the challenges and limitations in the rodent models employed to study their relationship. We will also provide our perspectives on the future of obesity-linked cancer research.
Collapse
Affiliation(s)
- Yang Xin Zi Xu
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| | - Suresh Mishra
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
- Department of Internal Medicine, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| |
Collapse
|
22
|
Komatsu G, Nonomura T, Sasaki M, Ishida Y, Arai S, Miyazaki T. AIM-deficient mouse fed a high-trans fat, high-cholesterol diet: a new animal model for nonalcoholic fatty liver disease. Exp Anim 2018; 68:147-158. [PMID: 30487357 PMCID: PMC6511520 DOI: 10.1538/expanim.18-0108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Owing to changes in lifestyle, nonalcoholic fatty liver disease (NAFLD) is becoming a
common form of chronic liver injury. NAFLD comprises a wide variety of disease stages,
from simple steatosis to nonalcoholic steatohepatitis, which is a risk factor for the
development of hepatocellular carcinoma (HCC). Because animal models for NAFLD are needed
to investigate the precise pathogenesis, we aimed to establish a new mouse model employing
mice deficient for apoptosis inhibitor of macrophage (AIM−/−),
which exhibit accelerated lipid storage in the liver and high susceptibility to developing
HCC in response to a high-fat diet (HFD). AIM−/− mice were fed
the D09100301 diet, which contains 40 kcal% fat (trans fat 30 kcal%), high cholesterol
(2%), and 40 kcal% carbohydrates (20 kcal% fructose), and then features of obesity and
NAFLD including steatosis, inflammation, fibrosis, and HCC development were analyzed.
Although a comparable grade of liver steatosis was promoted in
AIM−/− mice by the D09100301 diet and the standard HFD (60
kcal% largely lard fat), significantly less lipid storage in visceral fat was observed
when the mice were fed the D09100301 diet. Accelerated liver inflammation was promoted by
the D09100301 diet compared with the HFD, but interestingly, HCC development was decreased
in mice fed the D09100301 diet. Our findings suggest that
AIM−/− mice fed the D09100301 diet exhibited a phenotype
that resembled nonobese NAFLD patients and thus could be an appropriate tool to study the
pathophysiology by which obesity increases the risk of HCC.
Collapse
Affiliation(s)
- Ginga Komatsu
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toru Nonomura
- Research Division Pharmacology Group, New Drug Research Center Inc., 452-1 Toiso, Eniwa-shi, Hokkaido 061-1405, Japan
| | - Mai Sasaki
- Research Division Pathology Group, New Drug Research Center Inc., 452-1 Toiso, Eniwa-shi, Hokkaido 061-1405, Japan
| | - Yuki Ishida
- Research Division Pharmacology Group, New Drug Research Center Inc., 452-1 Toiso, Eniwa-shi, Hokkaido 061-1405, Japan
| | - Satoko Arai
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toru Miyazaki
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Max Planck-The University of Tokyo Center for Integrative Inflammology, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
23
|
Effect of coffee or coffee components on gut microbiome and short-chain fatty acids in a mouse model of metabolic syndrome. Sci Rep 2018; 8:16173. [PMID: 30385796 PMCID: PMC6212590 DOI: 10.1038/s41598-018-34571-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 10/08/2018] [Indexed: 02/07/2023] Open
Abstract
We previously showed that male Tsumura Suzuki obese diabetes (TSOD) mice, a spontaneous mouse model of metabolic syndrome, manifested gut dysbiosis and subsequent disruption of the type and quantity of plasma short-chain fatty acids (SCFAs), and daily coffee intake prevented nonalcoholic steatohepatitis in this mouse model. Here, we present a preliminary study on whether coffee and its major components, caffeine and chlorogenic acid, would affect the gut dysbiosis and the disrupted plasma SCFA profile of TSOD mice, which could lead to improvement in the liver pathology of these mice. Three mice per group were used. Daily intake of coffee or its components for 16 wk prevented liver lobular inflammation without improving obesity in TSOD mice. Coffee and its components did not repair the altered levels of Gram-positive and Gram-negative bacteria and an increased abundance of Firmicutes in TSOD mice but rather caused additional changes in bacteria in six genera. However, caffeine and chlorogenic acid partially improved the disrupted plasma SCFA profile in TSOD mice, although coffee had no effects. Whether these alterations in the gut microbiome and the plasma SCFA profile might affect the liver pathology of TSOD mice may deserve further investigation.
Collapse
|
24
|
Early onset and progression of non-alcoholic fatty liver disease in young monosodium l-glutamate-induced obese mice. J Dev Orig Health Dis 2018; 10:188-195. [PMID: 29855396 DOI: 10.1017/s2040174418000284] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Monosodium l-glutamate (MSG)-induced obesity is a useful model for non-alcoholic fatty liver disease (NAFLD) studies. However, there is limited data on its initiation and progression. Thus, this study aimed to characterize the onset of metabolic and histopathological features of NAFLD and its progression to non-alcoholic steatohepatitis (NASH) in this model. To perform this study, Swiss mice pups were neonatally injected with MSG (4 g/kg/day, s.c.) or equiosmolar saline and followed up to 60, 120 or 180 days old. At each age, blood, liver, as well as periepididymal and retroperitoneal fat pads were collected for morphometric, biochemical and histological analyses, the later according to NAFLD activity score. MSG mice presented hypertriglyceridemia and central obesity at all ages, but peripheral insulin-resistance was verified only in 120- and 180-day-old mice. Hepatic total fat and triglycerides content were higher in MSG mice at all ages. Accordingly, histopathological analysis showed that 60-day-old MSG mice had microvesicular steatosis with occasional ballooning, which evolved into NASH from 120 days old. Retroperitoneal fat accumulation was the only variable to independently correlate with NAFLD activity total score upon multivariate analysis (R 2=71.45%). There were no differences in IL-6 and TNF-α serum levels among groups. Overall, this study shows that NAFLD is a precocious outcome in MSG-obese mice, whereas the period comprised between 60 and 120 days old seems to be a crucial metabolic window for comprehending pathophysiological events involved in NAFLD-to-NASH progression in this model.
Collapse
|
25
|
Animal models of NAFLD from the pathologist's point of view. Biochim Biophys Acta Mol Basis Dis 2018; 1865:929-942. [PMID: 29746920 DOI: 10.1016/j.bbadis.2018.04.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/25/2018] [Accepted: 04/30/2018] [Indexed: 01/18/2023]
Abstract
Fatty liver disease is a multifactorial world-wide health problem resulting from a complex interplay between liver, adipose tissue and intestine and initiated by alcohol abuse, overeating, various types of intoxication, adverse drug reactions and genetic or acquired metabolic defects. Depending on etiology fatty liver disease is commonly categorized as alcoholic or non-alcoholic. Both types may progress from simple steatosis to the necro-inflammatory lesion of alcoholic (ASH) and non-alcoholic steatohepatitis (NASH), respectively, and finally to cirrhosis and hepatocellular carcinoma. Animal models are helpful to clarify aspects of pathogenesis and progression. Generally, they are classified as nutritional (dietary), toxin-induced and genetic, respectively, or represent a combination of these factors. Numerous reviews are dealing with NASH animal models designed to imitate as closely as possible the metabolic situation associated with human disease. This review focuses on currently used mouse models of NASH with particular emphasis on liver morphology. Despite metabolic similarities most models (except those with chemically or genetically induced porphyria or keratin 18-deficiency) fail to develop the morphologic key features of NASH, namely hepatocyte ballooning and formation of histologically and immunohistochemically well-defined Mallory-Denk-Bodies (MDBs). Although MDBs are not universally detectable in ballooned hepatocytes in NASH their experimental reproduction and analysis may, however, significantly contribute to our understanding of important pathogenic aspects of NASH despite the obvious differences in etiology.
Collapse
|
26
|
Ohta M, Fujinami A, Oishi K, Kobayashi N, Ohnishi K, Ohkura N. Ashitaba (Angelica Keiskei) Exudate Prevents Increases in Plasminogen Activator Inhibitor-1 Induced by Obesity in Tsumura Suzuki Obese Diabetic Mice. J Diet Suppl 2018; 16:331-344. [PMID: 29708806 DOI: 10.1080/19390211.2018.1458366] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Angelica keiskei koidzumi (ashitaba) is consumed as a traditional folk medicine and health food in Japan. Ashitaba extract contains abundant flavonoids containing chalcones. Plasminogen activator inhibitor-1 (PAI-1) is the primary physiological inhibitor of tissue plasminogen activator. Excessive amounts of PAI-1 in plasma disrupt the fibrinolytic balance and promote a prothrombotic state with which thrombosis and cardiovascular diseases are associated. In the present study, we investigated the effects of ashitaba yellow exudate (AE) on enhanced PAI-1 levels in Tsumura Suzuki obese diabetic (TSOD) mice. AE significantly decreased food efficiency and plasma PAI-1 in TSOD mice but did not affect lean control Tsumura Suzuki nonobese (TSNO) mice. AE also decreased some parameters in the plasma, such as glucose, insulin, tumor necrosis factor alpha (TNF-α) and gains in body weight, subcutaneous, mesenteric fat weight in TSOD mice but had little effect on these parameters in TSNO mice. Levels of adipose PAI-1 were significantly higher in TSOD than in TSNO mice. Major sources of plasma PAI-1 are thought to be adipose tissue and liver. AE significantly suppressed PAI-1 protein levels in the livers of both TSOD and TSNO mice. These results suggest that AE decreased plasma PAI-1 levels by suppressing both the adipose tissue retention of PAI-1 protein and liver PAI-1 production in TSOD mice. Supplementing the diet with AE might help to prevent thrombotic diseases or alleviate the risk of thrombotic diseases as well as to suppress metabolic state in obese individuals.
Collapse
Affiliation(s)
- Mitsuhiro Ohta
- a Department of Medical Biochemistry , Kobe Pharmaceutical University , Kobe , Japan.,b Research Institute for Production Development , Kyoto , Japan
| | - Aya Fujinami
- a Department of Medical Biochemistry , Kobe Pharmaceutical University , Kobe , Japan
| | - Katsutaka Oishi
- c Biological Clock Research Group , Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba, Ibaraki , Japan
| | - Norihiro Kobayashi
- d Department of Bioanalytical Chemistry , Kobe Pharmaceutical University , Kobe , Japan
| | | | - Naoki Ohkura
- f Molecular Physiology and Pathology , School of Pharma-Sciences, Teikyo University , Itabashi, Tokyo , Japan
| |
Collapse
|
27
|
Tsumura-Suzuki obese diabetic mice-derived hepatic tumors closely resemble human hepatocellular carcinomas in metabolism-related genes expression and bile acid accumulation. Hepatol Int 2018; 12:254-261. [PMID: 29651702 DOI: 10.1007/s12072-018-9860-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/22/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND AIMS Tsumura-Suzuki obese diabetic (TSOD) is a good model of metabolic syndrome showing typical lesions found in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis, and develops spontaneous hepatic tumors with a high frequency. Majority of the developing tumors overexpress glutamine synthetase (GS), which is used as a marker of hepatocellular carcinoma (HCC). The aim of this study is to assess the status of expression of metabolism-related genes and the level of bile acids in the TSOD mice-derived tumors and to determine the association with metabolic dysregulation between human HCC and TSOD mice-derived tumors. METHODS GS-positive hepatic tumors or adjacent normal tissues from 71-week-old male TSOD mice were subjected to immunohistochemical staining, quantitative RT-PCR (qRT-PCR), quantitation of cholic acid and taurocholic acid. RESULTS We found that downregulation of the rate-limiting enzyme for betaine synthesis (BADH), at both mRNA and protein levels in GS-positive TSOD mice-derived tumors. Furthermore, the bile acid receptor FXR and the bile acid excretion pump BSEP (Abcb11) were found to be downregulated, whereas BAAT and Akr1c14, involved in primary bile acid synthesis and bile acid conjugation, were found to be upregulated at mRNA level in GS-positive TSOD mice-derived tumors. BAAT and Akr1c14 were also overexpressed at protein levels. Total cholic acid was found to be increased in GS-positive TSOD mice-derived tumors. CONCLUSION Our results strongly support the significance of TSOD mice as a model of spontaneously developing HCC.
Collapse
|