1
|
Häder DP, Hemmersbach R. Euglena, a Gravitactic Flagellate of Multiple Usages. Life (Basel) 2022; 12:1522. [PMID: 36294957 PMCID: PMC9605500 DOI: 10.3390/life12101522] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022] Open
Abstract
Human exploration of space and other celestial bodies bears a multitude of challenges. The Earth-bound supply of material and food is restricted, and in situ resource utilisation (ISRU) is a prerequisite. Excellent candidates for delivering several services are unicellular algae, such as the space-approved flagellate Euglena gracilis. This review summarizes the main characteristics of this unicellular organism. Euglena has been exposed on various platforms that alter the impact of gravity to analyse its corresponding gravity-dependent physiological and molecular genetic responses. The sensory transduction chain of gravitaxis in E. gracilis has been identified. The molecular gravi-(mechano-)receptors are mechanosensory calcium channels (TRP channels). The inward gated calcium binds specifically to one of several calmodulins (CaM.2), which, in turn, activates an adenylyl cyclase. This enzyme uses ATP to produce cAMP, which induces protein kinase A, followed by the phosphorylation of a motor protein in the flagellum, initiating a course correction, and, finally, resulting in gravitaxis. During long space missions, a considerable amount of food, oxygen, and water has to be carried, and the exhaled carbon dioxide has to be removed. In this context, E. gracilis is an excellent candidate for biological life support systems, since it produces oxygen by photosynthesis, takes up carbon dioxide, and is even edible. Various species and mutants of Euglena are utilized as a producer of commercial food items, as well as a source of medicines, as it produces a number of vitamins, contains numerous trace elements, and synthesizes dietary proteins, lipids, and the reserve molecule paramylon. Euglena has anti-inflammatory, -oxidant, and -obesity properties.
Collapse
Affiliation(s)
- Donat-P. Häder
- Department of Botany, Emeritus from Friedrich-Alexander University, 91096 Erlangen, Germany
| | - Ruth Hemmersbach
- German Aerospace Center, Institute of Aerospace Medicine, Gravitational Biology, Linder Hoehe, 51147 Cologne, Germany
| |
Collapse
|
2
|
de Mello Gallep C, Robert D. Are cyclic plant and animal behaviours driven by gravimetric mechanical forces? JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1093-1103. [PMID: 34727177 PMCID: PMC8866634 DOI: 10.1093/jxb/erab462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/20/2021] [Indexed: 05/13/2023]
Abstract
The celestial mechanics of the Sun, Moon, and Earth dominate the variations in gravitational force that all matter, live or inert, experiences on Earth. Expressed as gravimetric tides, these variations are pervasive and have forever been part of the physical ecology with which organisms evolved. Here, we first offer a brief review of previously proposed explanations that gravimetric tides constitute a tangible and potent force shaping the rhythmic activities of organisms. Through meta-analysis, we then interrogate data from three study cases and show the close association between the omnipresent gravimetric tides and cyclic activity. As exemplified by free-running cyclic locomotor activity in isopods, reproductive effort in coral, and modulation of growth in seedlings, biological rhythms coincide with temporal patterns of the local gravimetric tide. These data reveal that, in the presumed absence of rhythmic cues such as light and temperature, local gravimetric tide is sufficient to entrain cyclic behaviour. The present evidence thus questions the phenomenological significance of so-called free-run experiments.
Collapse
Affiliation(s)
| | - Daniel Robert
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
3
|
Fahrion J, Mastroleo F, Dussap CG, Leys N. Use of Photobioreactors in Regenerative Life Support Systems for Human Space Exploration. Front Microbiol 2021; 12:699525. [PMID: 34276632 PMCID: PMC8281973 DOI: 10.3389/fmicb.2021.699525] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
There are still many challenges to overcome for human space exploration beyond low Earth orbit (LEO) (e.g., to the Moon) and for long-term missions (e.g., to Mars). One of the biggest problems is the reliable air, water and food supply for the crew. Bioregenerative life support systems (BLSS) aim to overcome these challenges using bioreactors for waste treatment, air and water revitalization as well as food production. In this review we focus on the microbial photosynthetic bioprocess and photobioreactors in space, which allow removal of toxic carbon dioxide (CO2) and production of oxygen (O2) and edible biomass. This paper gives an overview of the conducted space experiments in LEO with photobioreactors and the precursor work (on ground and in space) for BLSS projects over the last 30 years. We discuss the different hardware approaches as well as the organisms tested for these bioreactors. Even though a lot of experiments showed successful biological air revitalization on ground, the transfer to the space environment is far from trivial. For example, gas-liquid transfer phenomena are different under microgravity conditions which inevitably can affect the cultivation process and the oxygen production. In this review, we also highlight the missing expertise in this research field to pave the way for future space photobioreactor development and we point to future experiments needed to master the challenge of a fully functional BLSS.
Collapse
Affiliation(s)
- Jana Fahrion
- Interdisciplinary Biosciences Group, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Felice Mastroleo
- Interdisciplinary Biosciences Group, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Claude-Gilles Dussap
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Natalie Leys
- Interdisciplinary Biosciences Group, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| |
Collapse
|
4
|
Agrobacterium tumefaciens-Mediated Nuclear Transformation of a Biotechnologically Important Microalga- Euglena gracilis. Int J Mol Sci 2021; 22:ijms22126299. [PMID: 34208268 PMCID: PMC8230907 DOI: 10.3390/ijms22126299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/30/2022] Open
Abstract
Euglena gracilis (E. gracilis) is an attractive organism due to its evolutionary history and substantial potential to produce biochemicals of commercial importance. This study describes the establishment of an optimized protocol for the genetic transformation of E. gracilis mediated by Agrobacterium (A. tumefaciens). E. gracilis was found to be highly sensitive to hygromycin and zeocin, thus offering a set of resistance marker genes for the selection of transformants. A. tumefaciens-mediated transformation (ATMT) yielded hygromycin-resistant cells. However, hygromycin-resistant cells hosting the gus gene (encoding β-glucuronidase (GUS)) were found to be GUS-negative, indicating that the gus gene had explicitly been silenced. To circumvent transgene silencing, GUS was expressed from the nuclear genome as transcriptional fusions with the hygromycin resistance gene (hptII) (encoding hygromycin phosphotransferase II) with the foot and mouth disease virus (FMDV)-derived 2A self-cleaving sequence placed between the coding sequences. ATMT of Euglena with the hptII-2A–gus gene yielded hygromycin-resistant, GUS-positive cells. The transformation was verified by PCR amplification of the T-DNA region genes, determination of GUS activity, and indirect immunofluorescence assays. Cocultivation factors optimization revealed that a higher number of transformants was obtained when A. tumefaciens LBA4404 (A600 = 1.0) and E. gracilis (A750 = 2.0) cultures were cocultured for 48 h at 19 °C in an organic medium (pH 6.5) containing 50 µM acetosyringone. Transformation efficiency of 8.26 ± 4.9% was achieved under the optimized cocultivation parameters. The molecular toolkits and method presented here can be used to bioengineer E. gracilis for producing high-value products and fundamental studies.
Collapse
|
5
|
Exploration of space to achieve scientific breakthroughs. Biotechnol Adv 2020; 43:107572. [PMID: 32540473 DOI: 10.1016/j.biotechadv.2020.107572] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/05/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022]
Abstract
Living organisms adapt to changing environments using their amazing flexibility to remodel themselves by a process called evolution. Environmental stress causes selective pressure and is associated with genetic and phenotypic shifts for better modifications, maintenance, and functioning of organismal systems. The natural evolution process can be used in complement to rational strain engineering for the development of desired traits or phenotypes as well as for the production of novel biomaterials through the imposition of one or more selective pressures. Space provides a unique environment of stressors (e.g., weightlessness and high radiation) that organisms have never experienced on Earth. Cells in the outer space reorganize and develop or activate a range of molecular responses that lead to changes in cellular properties. Exposure of cells to the outer space will lead to the development of novel variants more efficiently than on Earth. For instance, natural crop varieties can be generated with higher nutrition value, yield, and improved features, such as resistance against high and low temperatures, salt stress, and microbial and pest attacks. The review summarizes the literature on the parameters of outer space that affect the growth and behavior of cells and organisms as well as complex colloidal systems. We illustrate an understanding of gravity-related basic biological mechanisms and enlighten the possibility to explore the outer space environment for application-oriented aspects. This will stimulate biological research in the pursuit of innovative approaches for the future of agriculture and health on Earth.
Collapse
|
6
|
Häder D. On the Way to Mars-Flagellated Algae in Bioregenerative Life Support Systems Under Microgravity Conditions. FRONTIERS IN PLANT SCIENCE 2020; 10:1621. [PMID: 31969888 PMCID: PMC6960400 DOI: 10.3389/fpls.2019.01621] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
For long-term manned interplanetary missions it is not feasible to carry the necessary oxygen, food, and water to sustain the astronauts. In addition, the CO2 exhaled by the astronauts has to be removed from the cabin air. One alternative is to utilize photosynthetic organisms to uptake the CO2 and produce oxygen. In addition to higher plants, algae are perfect candidates for this purpose. They also serve to absorb wastes and clean the water. Cyanobacteria can be utilized as food supplement. Early ground-based systems include micro-ecological life support system alternative, closed equilibrated biological aquatic system, and the Biomass Production Chamber. The AQUARACK used the unicellular flagellate Euglena which produced the oxygen for fish in a connected compartment. A number of bioregenerative systems (AQUACELLS, OMEGAHAB) have been built for experiments on satellites. A later experiment was based on a 60-ml closed aquatic ecosystem launched on the Shenzhou 8 spacecraft containing several algae and a small snail living in adjacent chambers. Recently the Eu : CROPIS mission has been launched in a small satellite within a Deutschen Zentrum für Luft- und Raumfahrt (DLR) program. In addition to tomato plants, Euglena is included as oxygen producer. One new approach is to recycle urine on a bacterial filter to produce nitrogen fertilizer to grow vegetables.
Collapse
Affiliation(s)
- Donat‑P. Häder
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
7
|
Krüger J, Richter P, Stoltze J, Strauch SM, Krüger M, Daiker V, Prasad B, Sonnewald S, Reid S, Lebert M. Changes of Gene Expression in Euglena gracilis Obtained During the 29 th DLR Parabolic Flight Campaign. Sci Rep 2019; 9:14260. [PMID: 31582787 PMCID: PMC6776534 DOI: 10.1038/s41598-019-50611-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 09/02/2019] [Indexed: 01/14/2023] Open
Abstract
Parabolic flight maneuvers of Novespace's Airbus A310 ZERO-G produce subsequent phases of hypergravity (about 20 s), microgravity (about 22 s) and another 20 s hypergravity on experiments located in the experiment area of the aircraft. The 29th DLR parabolic flight campaign consisted of four consecutive flight days with thirty-one parabolas each day. Euglena gracilis cells were fixed with TRIzol during different acceleration conditions at the first and the last parabola of each flight. Samples were collected and analyzed with microarrays for one-color gene expression analysis. The data indicate significant changes in gene expression in E. gracilis within short time. Hierarchical clustering shows that changes induced by the different accelerations yield reproducible effects at independent flight days. Transcription differed between the first and last parabolas indicating adaptation effects in the course of the flight. Different gene groups were found to be affected in different phases of the parabolic flight, among others, genes involved in signal transduction, calcium signaling, transport mechanisms, metabolic pathways, and stress-response as well as membrane and cytoskeletal proteins. In addition, transcripts of other areas, e.g., DNA and protein modification, were altered. The study contributes to the understanding of short-term effects of microgravity and different accelerations on cells at a molecular level.
Collapse
Affiliation(s)
- Julia Krüger
- Cell Biology Division: Gravitational Biology Group, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstraße 5, 91058, Erlangen, Germany
| | - Peter Richter
- Cell Biology Division: Gravitational Biology Group, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstraße 5, 91058, Erlangen, Germany
| | - Julia Stoltze
- Cell Biology Division: Gravitational Biology Group, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstraße 5, 91058, Erlangen, Germany
| | - Sebastian M Strauch
- Cell Biology Division: Gravitational Biology Group, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstraße 5, 91058, Erlangen, Germany
- Postgraduate Program in Health and Environment, University of Joinville Region, Rua Paulo Malschitzki, 10 - Zona Industrial Norte, Joinville, SC, CEP 89219-710, Brazil
| | - Marcus Krüger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Viktor Daiker
- Cell Biology Division: Gravitational Biology Group, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstraße 5, 91058, Erlangen, Germany
| | - Binod Prasad
- Cell Biology Division: Gravitational Biology Group, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstraße 5, 91058, Erlangen, Germany
| | - Sophia Sonnewald
- Biochemistry Division, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstraße 5, 91058, Erlangen, Germany
| | - Stephen Reid
- Biochemistry Division, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstraße 5, 91058, Erlangen, Germany
| | - Michael Lebert
- Cell Biology Division: Gravitational Biology Group, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstraße 5, 91058, Erlangen, Germany.
| |
Collapse
|
8
|
Jeon MS, Oh JJ, Kim JY, Han SI, Sim SJ, Choi YE. Enhancement of growth and paramylon production of Euglena gracilis by co-cultivation with Pseudoalteromonas sp. MEBiC 03485. BIORESOURCE TECHNOLOGY 2019; 288:121513. [PMID: 31146078 DOI: 10.1016/j.biortech.2019.121513] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 05/20/2023]
Abstract
This study investigated the putative effects of co-cultivation of Euglena gracilis with Pseudoalteromonas sp. MEBiC 03485 on the growth of E. gracilis and its paramylon production. The strain MEBiC 03485 had beneficial effects on the growth and paramylon contents of E. gracilis. To determine the optimal conditions for co-cultivation, the effects of algal to bacterial inoculum ratios and E. gracilis growth stages were examined. Under optimal conditions, the biomass productivity and paramylon production were increased by more than 23% and 34%, respectively. These effects were attributed to the extracellular polymeric substances (EPS) from the strain MEBiC 03485. GC-MS and HPAEC were carried out to analyze the composition of EPS. It was found that the EPS consisted of rhamnose, galactose, glucose, and mannose. These results suggest a novel approach for potentially enhancing the growth of E. gracilis as well as its paramylon production, via co-culturing with the symbiotic strain MEBiC 03485.
Collapse
Affiliation(s)
- Min Seo Jeon
- Division of Environmental Science & Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jeong-Joo Oh
- Division of Environmental Science & Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jee Young Kim
- Division of Environmental Science & Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Sang-Il Han
- Division of Environmental Science & Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Yoon-E Choi
- Division of Environmental Science & Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
9
|
Strauch SM, Grimm D, Corydon TJ, Krüger M, Bauer J, Lebert M, Wise P, Infanger M, Richter P. Current knowledge about the impact of microgravity on the proteome. Expert Rev Proteomics 2018; 16:5-16. [PMID: 30451542 DOI: 10.1080/14789450.2019.1550362] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Introduction: Microgravity (µg) is an extreme stressor for plants, animals, and humans and influences biological systems. Humans in space experience various health problems during and after a long-term stay in orbit. Various studies have demonstrated structural alterations and molecular biological changes within the cellular milieu of plants, bacteria, microorganisms, animals, and cells. These data were obtained by proteomics investigations applied in gravitational biology to elucidate changes in the proteome occurring when cells or organisms were exposed to real µg (r-µg) and simulated µg (s-µg). Areas covered: In this review, we summarize the current knowledge about the impact of µg on the proteome in plants, animals, and human cells. The literature suggests that µg impacts the proteome and thus various biological processes such as angiogenesis, apoptosis, cell adhesion, cytoskeleton, extracellular matrix proteins, migration, proliferation, stress response, and signal transduction. The changes in cellular function depend on the respective cell type. Expert commentary: This data is important for the topics of gravitational biology, tissue engineering, cancer research, and translational regenerative medicine. Moreover, it may provide new ideas for countermeasures to protect the health of future space travelers.
Collapse
Affiliation(s)
- Sebastian M Strauch
- a Department of Biology, Cell Biology , Friedrich-Alexander-University Erlangen-Nuremberg , Erlangen , Germany
| | - Daniela Grimm
- b Department of Biomedicine , Aarhus University , Aarhus C , Denmark.,c Clinic and Policlinic for Plastic, Aesthetic and Hand Surgery , Otto-von-Guericke-University , Magdeburg , Germany.,d Gravitational Biology and Translational Regenerative Medicine, Faculty of Medicine and Mechanical Engineering , Otto-von-Guericke-University Magdeburg , Magdeburg , Germany
| | - Thomas J Corydon
- b Department of Biomedicine , Aarhus University , Aarhus C , Denmark.,e Department of Ophthalmology , Aarhus University Hospital , Aarhus C , Denmark
| | - Marcus Krüger
- c Clinic and Policlinic for Plastic, Aesthetic and Hand Surgery , Otto-von-Guericke-University , Magdeburg , Germany
| | - Johann Bauer
- f Max-Planck-Institute of Biochemistry, Information Retrieval Services , Martinsried , Germany
| | - Michael Lebert
- a Department of Biology, Cell Biology , Friedrich-Alexander-University Erlangen-Nuremberg , Erlangen , Germany
| | - Petra Wise
- g Charles R. Drew University of Medicine and Science, AXIS Center , Los Angeles , CA , USA
| | - Manfred Infanger
- c Clinic and Policlinic for Plastic, Aesthetic and Hand Surgery , Otto-von-Guericke-University , Magdeburg , Germany
| | - Peter Richter
- a Department of Biology, Cell Biology , Friedrich-Alexander-University Erlangen-Nuremberg , Erlangen , Germany
| |
Collapse
|
10
|
Nasir A, Le Bail A, Daiker V, Klima J, Richter P, Lebert M. Identification of a flagellar protein implicated in the gravitaxis in the flagellate Euglena gracilis. Sci Rep 2018; 8:7605. [PMID: 29765103 PMCID: PMC5954063 DOI: 10.1038/s41598-018-26046-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/01/2018] [Indexed: 01/01/2023] Open
Abstract
Flagellated cells are of great evolutionary importance across animal and plant species. Unlike higher plants, flagellated cells are involved in reproduction of macro-algae as well as in early diverging land plants. Euglena gracilis is an emerging flagellated model organism. The current study reports that a specific calmodulin (CaM2) involved in gravitaxis of E. gracilis interacts with an evolutionary conserved flagellar protein, EgPCDUF4201. The subsequent molecular analysis showed clearly that EgPCDUF4201 is also involved in gravitaxis. We performed subcellular localization of CaM2 using immunoblotting and indirect immunofluorescence. By employing yeast two-hybrid screen, EgPCDUF4201 was identified as an interaction partner of CaM2. The C-terminus of EgPCDUF4201 is responsible for the interaction with CaM2. Silencing of N- and C-terminus of EgPCDUF4201 using RNAi resulted in an impaired gravitaxis. Moreover, indirect immunofluorescence assay showed that EgPCDUF4201 is a flagella associated protein. The current study specifically addressed some important questions regarding the signal transduction chain of gravitaxis in E. gracilis. Besides the fact that it improved the current understanding of gravity sensing mechanisms in E. gracilis, it also gave rise to several interesting research questions regarding the function of the domain of unknown function 4201 in flagellated cells.
Collapse
Affiliation(s)
- Adeel Nasir
- Cell biology department, Friedrich Alexander University, Erlangen, Germany
| | - Aude Le Bail
- Cell biology department, Friedrich Alexander University, Erlangen, Germany.
| | - Viktor Daiker
- Cell biology department, Friedrich Alexander University, Erlangen, Germany
| | - Janine Klima
- Biochemistry department, Friedrich Alexander University, Erlangen, Germany
| | - Peter Richter
- Cell biology department, Friedrich Alexander University, Erlangen, Germany
| | - Michael Lebert
- Cell biology department, Friedrich Alexander University, Erlangen, Germany
| |
Collapse
|
11
|
Parra M, Jung J, Boone TD, Tran L, Blaber EA, Brown M, Chin M, Chinn T, Cohen J, Doebler R, Hoang D, Hyde E, Lera M, Luzod LT, Mallinson M, Marcu O, Mohamedaly Y, Ricco AJ, Rubins K, Sgarlato GD, Talavera RO, Tong P, Uribe E, Williams J, Wu D, Yousuf R, Richey CS, Schonfeld J, Almeida EAC. Microgravity validation of a novel system for RNA isolation and multiplex quantitative real time PCR analysis of gene expression on the International Space Station. PLoS One 2017; 12:e0183480. [PMID: 28877184 PMCID: PMC5587110 DOI: 10.1371/journal.pone.0183480] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 08/04/2017] [Indexed: 11/29/2022] Open
Abstract
The International Space Station (ISS) National Laboratory is dedicated to studying the effects of space on life and physical systems, and to developing new science and technologies for space exploration. A key aspect of achieving these goals is to operate the ISS National Lab more like an Earth-based laboratory, conducting complex end-to-end experimentation, not limited to simple microgravity exposure. Towards that end NASA developed a novel suite of molecular biology laboratory tools, reagents, and methods, named WetLab-2, uniquely designed to operate in microgravity, and to process biological samples for real-time gene expression analysis on-orbit. This includes a novel fluidic RNA Sample Preparation Module and fluid transfer devices, all-in-one lyophilized PCR assays, centrifuge, and a real-time PCR thermal cycler. Here we describe the results from the WetLab-2 validation experiments conducted in microgravity during ISS increment 47/SPX-8. Specifically, quantitative PCR was performed on a concentration series of DNA calibration standards, and Reverse Transcriptase-quantitative PCR was conducted on RNA extracted and purified on-orbit from frozen Escherichia coli and mouse liver tissue. Cycle threshold (Ct) values and PCR efficiencies obtained on-orbit from DNA standards were similar to Earth (1 g) controls. Also, on-orbit multiplex analysis of gene expression from bacterial cells and mammalian tissue RNA samples was successfully conducted in about 3 h, with data transmitted within 2 h of experiment completion. Thermal cycling in microgravity resulted in the trapping of gas bubbles inside septa cap assay tubes, causing small but measurable increases in Ct curve noise and variability. Bubble formation was successfully suppressed in a rapid follow-up on-orbit experiment using standard caps to pressurize PCR tubes and reduce gas release during heating cycles. The WetLab-2 facility now provides a novel operational on-orbit research capability for molecular biology and demonstrates the feasibility of more complex wet bench experiments in the ISS National Lab environment.
Collapse
Affiliation(s)
- Macarena Parra
- Space Biosciences Research Branch, NASA Ames Research Center, Moffett Field, California, United States of America
| | - Jimmy Jung
- Engineering Systems Division, NASA Ames Research Center, Moffett Field, California, United States of America
- KBRWyle, Mountain View, California, United States of America
| | - Travis D. Boone
- Office of the Director, NASA Ames Research Center, Moffett Field, California, United States of America
- Millenium Engineering & Integration Co, Mountain View, California, United States of America
| | - Luan Tran
- Space Biosciences Research Branch, NASA Ames Research Center, Moffett Field, California, United States of America
- KBRWyle, Mountain View, California, United States of America
| | - Elizabeth A. Blaber
- Space Biosciences Research Branch, NASA Ames Research Center, Moffett Field, California, United States of America
- Universities Space Research Association, Mountain View, California, United States of America
| | - Mark Brown
- Applications Development, Claremont Biosolutions, Upland, California, United States of America
| | - Matthew Chin
- Engineering Systems Division, NASA Ames Research Center, Moffett Field, California, United States of America
- Millenium Engineering & Integration Co, Mountain View, California, United States of America
| | - Tori Chinn
- Engineering Systems Division, NASA Ames Research Center, Moffett Field, California, United States of America
- Millenium Engineering & Integration Co, Mountain View, California, United States of America
| | - Jacob Cohen
- Office of the Director, NASA Ames Research Center, Moffett Field, California, United States of America
| | - Robert Doebler
- Applications Development, Claremont Biosolutions, Upland, California, United States of America
| | - Dzung Hoang
- Engineering Systems Division, NASA Ames Research Center, Moffett Field, California, United States of America
- Millenium Engineering & Integration Co, Mountain View, California, United States of America
| | - Elizabeth Hyde
- Engineering Systems Division, NASA Ames Research Center, Moffett Field, California, United States of America
- Millenium Engineering & Integration Co, Mountain View, California, United States of America
| | - Matthew Lera
- KBRWyle, Mountain View, California, United States of America
- Flight Systems Implementation Branch, NASA Ames Research Center, Moffett Field, California, United States of America
| | - Louie T. Luzod
- Engineering Systems Division, NASA Ames Research Center, Moffett Field, California, United States of America
| | - Mark Mallinson
- Engineering Systems Division, NASA Ames Research Center, Moffett Field, California, United States of America
| | - Oana Marcu
- Space Biosciences Research Branch, NASA Ames Research Center, Moffett Field, California, United States of America
- KBRWyle, Mountain View, California, United States of America
| | - Youssef Mohamedaly
- Engineering Systems Division, NASA Ames Research Center, Moffett Field, California, United States of America
- Millenium Engineering & Integration Co, Mountain View, California, United States of America
| | - Antonio J. Ricco
- Mission Design Division, NASA Ames Research Center, Moffett Field, California, United States of America
- Stanford University, Palo Alto, California, United States of America
| | - Kathleen Rubins
- NASA Astronaut Corps, NASA Johnson Space Center, Houston, Texas, United States of America
| | - Gregory D. Sgarlato
- Engineering Systems Division, NASA Ames Research Center, Moffett Field, California, United States of America
- KBRWyle, Mountain View, California, United States of America
| | - Rafael O. Talavera
- Engineering Systems Division, NASA Ames Research Center, Moffett Field, California, United States of America
- Millenium Engineering & Integration Co, Mountain View, California, United States of America
| | - Peter Tong
- Engineering Systems Division, NASA Ames Research Center, Moffett Field, California, United States of America
- Millenium Engineering & Integration Co, Mountain View, California, United States of America
| | - Eddie Uribe
- Universities Space Research Association, Mountain View, California, United States of America
| | - Jeffrey Williams
- NASA Astronaut Corps, NASA Johnson Space Center, Houston, Texas, United States of America
| | - Diana Wu
- KBRWyle, Mountain View, California, United States of America
- Mission Design Division, NASA Ames Research Center, Moffett Field, California, United States of America
| | - Rukhsana Yousuf
- Space Biosciences Research Branch, NASA Ames Research Center, Moffett Field, California, United States of America
- KBRWyle, Mountain View, California, United States of America
| | - Charles S. Richey
- Universities Space Research Association, Mountain View, California, United States of America
| | - Julie Schonfeld
- Engineering Systems Division, NASA Ames Research Center, Moffett Field, California, United States of America
| | - Eduardo A. C. Almeida
- Space Biosciences Research Branch, NASA Ames Research Center, Moffett Field, California, United States of America
- * E-mail:
| |
Collapse
|
12
|
Becker I, Strauch SM, Hauslage J, Lebert M. Long term stability of Oligo (dT) 25 magnetic beads for the expression analysis of Euglena gracilis for long term space projects. LIFE SCIENCES IN SPACE RESEARCH 2017; 13:12-18. [PMID: 28554505 DOI: 10.1016/j.lssr.2017.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/18/2017] [Indexed: 06/07/2023]
Abstract
The unicellular freshwater flagellate Euglena gracilis has a highly developed sensory system. The cells use different stimuli such as light and gravity to orient themselves in the surrounding medium to find areas for optimal growth. Due to the ability to produce oxygen and consume carbon dioxide, Euglena is a suitable candidate for life support systems. Participation in a long-term space experiment would allow for the analysis of changes and adaptations to the new environment, and this could bring new insights into the mechanism of perception of gravity and the associated signal transduction chain. For a molecular analysis of transcription patterns, an automated system is necessary, capable of performing all steps from taking a sample, processing it and generating data. One of the developmental steps is to find long-term stable reagents and materials and test them for stability at higher-than-recommended temperature conditions during extended storage time. We investigated the usability of magnetic beads in an Euglena specific lysis buffer after addition of the RNA stabilizer Dithiothreitol over 360 days and the lysis buffer with the stabilizer alone over 455 days at the expected storage temperature of 19 °C. We can claim that the stability is not impaired at all after an incubation period of over one year. This might be an interesting result for researchers who have to work under non-standard lab conditions, as in biological or medicinal fieldwork.
Collapse
Affiliation(s)
- Ina Becker
- Department of Cell Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Staudtstrasse 5, Erlangen 91058, Germany.
| | - Sebastian M Strauch
- Department of Cell Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Staudtstrasse 5, Erlangen 91058, Germany.
| | - Jens Hauslage
- German Aerospace Centre (DLR), Institute of Aerospace Medicine, Linder Höhe, Cologne 51147, Germany.
| | - Michael Lebert
- Department of Cell Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Staudtstrasse 5, Erlangen 91058, Germany.
| |
Collapse
|
13
|
Häder DP, Hemmersbach R. Gravitaxis in Euglena. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 979:237-266. [DOI: 10.1007/978-3-319-54910-1_12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
14
|
Alterations of the cytoskeleton in human cells in space proved by life-cell imaging. Sci Rep 2016; 6:20043. [PMID: 26818711 PMCID: PMC4730242 DOI: 10.1038/srep20043] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 12/23/2015] [Indexed: 12/16/2022] Open
Abstract
Microgravity induces changes in the cytoskeleton. This might have an impact on cells and organs of humans in space. Unfortunately, studies of cytoskeletal changes in microgravity reported so far are obligatorily based on the analysis of fixed cells exposed to microgravity during a parabolic flight campaign (PFC). This study focuses on the development of a compact fluorescence microscope (FLUMIAS) for fast live-cell imaging under real microgravity. It demonstrates the application of the instrument for on-board analysis of cytoskeletal changes in FTC-133 cancer cells expressing the Lifeact-GFP marker protein for the visualization of F-actin during the 24th DLR PFC and TEXUS 52 rocket mission. Although vibration is an inevitable part of parabolic flight maneuvers, we successfully for the first time report life-cell cytoskeleton imaging during microgravity, and gene expression analysis after the 31st parabola showing a clear up-regulation of cytoskeletal genes. Notably, during the rocket flight the FLUMIAS microscope reveals significant alterations of the cytoskeleton related to microgravity. Our findings clearly demonstrate the applicability of the FLUMIAS microscope for life-cell imaging during microgravity, rendering it an important technological advance in live-cell imaging when dissecting protein localization.
Collapse
|
15
|
Effects of simulated microgravity and spaceflight on morphological differentiation and secondary metabolism of Streptomyces coelicolor A3(2). Appl Microbiol Biotechnol 2015; 99:4409-22. [DOI: 10.1007/s00253-015-6386-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/31/2014] [Accepted: 01/05/2015] [Indexed: 02/07/2023]
|
16
|
A whole-genome microarray study of Arabidopsis thaliana semisolid callus cultures exposed to microgravity and nonmicrogravity related spaceflight conditions for 5 days on board of Shenzhou 8. BIOMED RESEARCH INTERNATIONAL 2015; 2015:547495. [PMID: 25654111 PMCID: PMC4309294 DOI: 10.1155/2015/547495] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 08/26/2014] [Accepted: 09/09/2014] [Indexed: 11/17/2022]
Abstract
The Simbox mission was the first joint space project between Germany and China in November 2011. Eleven-day-old Arabidopsis thaliana wild type semisolid callus cultures were integrated into fully automated plant cultivation containers and exposed to spaceflight conditions within the Simbox hardware on board of the spacecraft Shenzhou 8. The related ground experiment was conducted under similar conditions. The use of an in-flight centrifuge provided a 1 g gravitational field in space. The cells were metabolically quenched after 5 days via RNAlater injection. The impact on the Arabidopsis transcriptome was investigated by means of whole-genome gene expression analysis. The results show a major impact of nonmicrogravity related spaceflight conditions. Genes that were significantly altered in transcript abundance are mainly involved in protein phosphorylation and MAPK cascade-related signaling processes, as well as in the cellular defense and stress responses. In contrast to short-term effects of microgravity (seconds, minutes), this mission identified only minor changes after 5 days of microgravity. These concerned genes coding for proteins involved in the plastid-associated translation machinery, mitochondrial electron transport, and energy production.
Collapse
|
17
|
Ferl RJ, Koh J, Denison F, Paul AL. Spaceflight induces specific alterations in the proteomes of Arabidopsis. ASTROBIOLOGY 2015; 15:32-56. [PMID: 25517942 PMCID: PMC4290804 DOI: 10.1089/ast.2014.1210] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Life in spaceflight demonstrates remarkable acclimation processes within the specialized habitats of vehicles subjected to the myriad of unique environmental issues associated with orbital trajectories. To examine the response processes that occur in plants in space, leaves and roots from Arabidopsis (Arabidopsis thaliana) seedlings from three GFP reporter lines that were grown from seed for 12 days on the International Space Station and preserved on orbit in RNAlater were returned to Earth and analyzed by using iTRAQ broad-scale proteomics procedures. Using stringent criteria, we identified over 1500 proteins, which included 1167 leaf proteins and 1150 root proteins we were able to accurately quantify. Quantification revealed 256 leaf proteins and 358 root proteins that showed statistically significant differential abundance in the spaceflight samples compared to ground controls, with few proteins differentially regulated in common between leaves and roots. This indicates that there are measurable proteomics responses to spaceflight and that the responses are organ-specific. These proteomics data were compared with transcriptome data from similar spaceflight samples, showing that there is a positive but limited relationship between transcriptome and proteome regulation of the overall spaceflight responses of plants. These results are discussed in terms of emergence understanding of plant responses to spaceflight particularly with regard to cell wall remodeling, as well as in the context of deriving multiple omics data sets from a single on-orbit preservation and operations approach.
Collapse
Affiliation(s)
- Robert J. Ferl
- Department of Horticultural Sciences, Program in Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida
- Interdisciplinary Center for Biotechnology, University of Florida, Gainesville, Florida
| | - Jin Koh
- Interdisciplinary Center for Biotechnology, University of Florida, Gainesville, Florida
| | - Fiona Denison
- Department of Horticultural Sciences, Program in Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida
| | - Anna-Lisa Paul
- Department of Horticultural Sciences, Program in Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida
| |
Collapse
|
18
|
Richter PR, Liu Y, An Y, Li X, Nasir A, Strauch SM, Becker I, Krüger J, Schuster M, Ntefidou M, Daiker V, Haag FWM, Aiach A, Lebert M. Amino acids as possible alternative nitrogen source for growth of Euglena gracilis Z in life support systems. LIFE SCIENCES IN SPACE RESEARCH 2015; 4:1-5. [PMID: 26177616 DOI: 10.1016/j.lssr.2014.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 11/12/2014] [Accepted: 11/23/2014] [Indexed: 06/04/2023]
Abstract
In recent times Euglena gracilis Z was employed as primary producer in closed environmental life-support system (CELSS), e.g. in space research. The photosynthetic unicellular flagellate is not capable of utilizing nitrate, nitrite, and urea as nitrogen source. Therefore, ammonium is supplied as an N-source in the lab (provided as diammonium-dihydrogenphosphate, (NH4)2HPO4) to E. gracilis cultures. While nitrate exerts low toxicity to organisms, ammonium is harmful for many aquatic organisms especially, at high pH-values, which causes the ionic NH4+ (low toxicity) to be partially transformed into the highly toxic ammonia, NH3. In earlier reports, Euglena gracilis was described to grow with various amino acids as sole N-source. Our aim was to investigate alternatives for (NH4)2HPO4 as N-source with lower toxicity for organisms co-cultivated with Euglena in a CELSS. The growth kinetics of Euglena gracilis cultures was determined in the presence of different amino acids (glycine, glutamine, glutamic acid, leucine, and threonine). In addition, uptake of those amino acids by the cells was measured. Cell growth in the presence of glycine and glutamine was quite comparable to the growth in (NH4)2HPO4 containing cultures while a delay in growth was observed in the presence of leucine and threonine. Unlike, aforementioned amino acids glutamate consumption was very poor. Cell density and glutamate concentration were almost unaltered throughout the experiment and the culture reached the stationary phase within 8 days. The data are compared with earlier studies in which utilization of amino acids in Euglena gracilis was investigated. All tested amino acids (glutamate with limitations) were found to have the potential of being an alternative N-source for Euglena gracilis. Hence, these amino acids can be used as a non-toxic surrogate for (NH4)2HPO4.
Collapse
Affiliation(s)
- P R Richter
- Department of Biology, Department of Cell Biology, Friedrich-Alexander-University, Erlangen-Nuremberg, Germany.
| | - Y Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, China.
| | - Y An
- Institute of Hydrobiology, Chinese Academy of Sciences, China.
| | - X Li
- Institute of Hydrobiology, Chinese Academy of Sciences, China.
| | - A Nasir
- Department of Biology, Department of Cell Biology, Friedrich-Alexander-University, Erlangen-Nuremberg, Germany.
| | - S M Strauch
- Department of Biology, Department of Cell Biology, Friedrich-Alexander-University, Erlangen-Nuremberg, Germany.
| | - I Becker
- Department of Biology, Department of Cell Biology, Friedrich-Alexander-University, Erlangen-Nuremberg, Germany.
| | - J Krüger
- Department of Biology, Department of Cell Biology, Friedrich-Alexander-University, Erlangen-Nuremberg, Germany.
| | - M Schuster
- Department of Biology, Department of Cell Biology, Friedrich-Alexander-University, Erlangen-Nuremberg, Germany.
| | - M Ntefidou
- Department of Biology, Department of Cell Biology, Friedrich-Alexander-University, Erlangen-Nuremberg, Germany.
| | - V Daiker
- Department of Biology, Department of Cell Biology, Friedrich-Alexander-University, Erlangen-Nuremberg, Germany.
| | - F W M Haag
- Department of Biology, Department of Cell Biology, Friedrich-Alexander-University, Erlangen-Nuremberg, Germany.
| | - A Aiach
- Private Universities Al-Andalus, Al-Kadmous, Tartous, Syria.
| | - M Lebert
- Department of Biology, Department of Cell Biology, Friedrich-Alexander-University, Erlangen-Nuremberg, Germany.
| |
Collapse
|
19
|
Richter PR, Strauch SM, Ntefidou M, Schuster M, Daiker V, Nasir A, Haag FWM, Lebert M. Influence of different light-dark cycles on motility and photosynthesis of Euglena gracilis in closed bioreactors. ASTROBIOLOGY 2014; 14:848-858. [PMID: 25279932 PMCID: PMC4201281 DOI: 10.1089/ast.2014.1176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 09/03/2014] [Indexed: 06/03/2023]
Abstract
Abstract The unicellular photosynthetic freshwater flagellate Euglena gracilis is a promising candidate as an oxygen producer in biological life-support systems. In this study, the capacity of Euglena gracilis to cope with different light regimes was determined. Cultures of Euglena gracilis in closed bioreactors were exposed to different dark-light cycles (40 W/m(2) light intensity on the surface of the 20 L reactor; cool white fluorescent lamps in combination with a 100 W filament bulb): 1 h-1 h, 2 h-2 h, 4 h-4 h, 6 h-6 h, and 8 h-16 h, respectively. Motility and oxygen development in the reactors were measured constantly. It was found that, during exposure to light-dark cycles of 1 h-1 h, 2 h-2 h, 4 h-4 h, and 6 h-6 h, precision of gravitaxis as well as the number of motile cells increased during the dark phase, while velocity increased in the light phase. Oxygen concentration did not yet reach a plateau phase. During dark-light cycles of 8 h-16 h, fast changes of movement behavior in the cells were detected. The cells showed an initial decrease of graviorientation after onset of light and an increase after the start of the dark period. In the course of the light phase, graviorientation increased, while motility and velocity decreased after some hours of illumination. In all light profiles, Euglena gracilis was able to produce sufficient oxygen in the light phase to maintain the oxygen concentration above zero in the subsequent dark phase.
Collapse
Affiliation(s)
- Peter R Richter
- Cell Biology Division, Gravitational Biology, Friedrich-Alexander-University Erlangen-Nuremberg , Erlangen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Grimm D, Pietsch J, Wehland M, Richter P, Strauch SM, Lebert M, Magnusson NE, Wise P, Bauer J. The impact of microgravity-based proteomics research. Expert Rev Proteomics 2014; 11:465-76. [DOI: 10.1586/14789450.2014.926221] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Daniela Grimm
- Institute of Biomedicine, Pharmacology, Aarhus University, 8000 Aarhus C, Denmark
| | - Jessica Pietsch
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Markus Wehland
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Peter Richter
- Department of Biology, Cell Biology, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Sebastian M Strauch
- Department of Biology, Cell Biology, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Michael Lebert
- Department of Biology, Cell Biology, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Nils Erik Magnusson
- Medical Research Laboratories, Department of Clinical Medicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | - Petra Wise
- Hematology/Oncology, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA 90027, USA
| | - Johann Bauer
- Max-Planck Institute for Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
21
|
Ruyters G, Braun M. Plant biology in space: recent accomplishments and recommendations for future research. PLANT BIOLOGY (STUTTGART, GERMANY) 2014; 16 Suppl 1:4-11. [PMID: 24373009 DOI: 10.1111/plb.12127] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 10/02/2013] [Indexed: 05/14/2023]
Abstract
Gravity has shaped the evolution of life since its origin. However, experiments in the absence of this overriding force, necessary to precisely analyse its role, e.g. for growth, development, and orientation of plants and single cells, only became possible with the advent of spaceflight. Consequently, this research has been supported especially by space agencies around the world for decades, mainly for two reasons: first, to enable fundamental research on gravity perception and transduction during growth and development of plants; and second, to successfully grow plants under microgravity conditions with the goal of establishing a bioregenerative life support system providing oxygen and food for astronauts in long-term exploratory missions. For the second time, the International Space Life Sciences Working Group (ISLSWG), comprised of space agencies with substantial life sciences programmes in the world, organised a workshop on plant biology research in space. The present contribution summarises the outcome of this workshop. In the first part, an analysis is undertaken, if and how the recommendations of the first workshop held in Bad Honnef, Germany, in 1996 have been implemented. A chapter summarising major scientific breakthroughs obtained in the last 15 years from plant research in space concludes this first part. In the second part, recommendations for future research in plant biology in space are put together that have been elaborated in the various discussion sessions during the workshop, as well as provided in written statements from the session chairs. The present paper clearly shows that plant biology in space has contributed significantly to progress in plant gravity perception, transduction and responses - processes also relevant for general plant biology, including agricultural aspects. In addition, the interplay between light and gravity effects has increasingly received attention. It also became evident that plants will play a major role as components of bioregenerative life support and energy systems that are necessary to complement physico-chemical systems in upcoming long-term exploratory missions. In order to achieve major progress in the future, however, standardised experimental conditions and more advanced analytical tools, such as state-of-the-art onboard analysis, are required.
Collapse
Affiliation(s)
- G Ruyters
- German Space Administration (DLR), Bonn, Germany
| | | |
Collapse
|
22
|
Ruyters G, Spiero F, Legué V, Palme K. Plant biology in space. PLANT BIOLOGY (STUTTGART, GERMANY) 2014; 16 Suppl 1:1-3. [PMID: 24373008 DOI: 10.1111/plb.12129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Affiliation(s)
- G Ruyters
- Life Sciences Program, DLR (German Space Administration), Bonn, Germany.
| | | | | | | |
Collapse
|