1
|
Adamek K, Jones AMP, Torkamaneh D. Somatic Mutation Accumulations in Micropropagated Cannabis Are Proportional to the Number of Subcultures. PLANTS (BASEL, SWITZERLAND) 2024; 13:1910. [PMID: 39065436 PMCID: PMC11279941 DOI: 10.3390/plants13141910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
Advancements in micropropagation techniques have made it easier to produce large numbers of cannabis clones, but these methods may also introduce genetic instability over successive generations. This instability often manifests as somaclonal variation, characterized by the progressive accumulation of genetic mutations or epigenetic alterations with each subculture. In this study, we examined how mutations accumulate in cannabis clones subjected to 6-11 subcultures. Using genotyping-by-sequencing, we identified 9405 polymorphic variants across 70 clones. The analysis revealed a correlation between the number of subcultures and the frequency of these mutations, revealing that genetic changes accumulate over successive subcultures despite clones sharing the same chronological age. Furthermore, we evaluated the functional impacts of accumulated mutations, with particular attention to implications on gene function and overall plant health. While rare, 14 high-impact variants were identified in genes that are important for plant development. Notably, six variants were also found in genes related to cannabinoid and terpene synthesis pathways, potentially affecting the plant's biochemical composition. These findings highlight the need for genetic assessments in micropropagation protocols, impacting plant breeding and conservation. Understanding genetic variations in clonally propagated plants optimizes practices for stability. Crucial for cannabis and horticultural plants, it emphasizes techniques to prevent genetic decay and ensure viability.
Collapse
Affiliation(s)
- Kristian Adamek
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (K.A.); (A.M.P.J.)
| | | | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Québec, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada
- Centre de Recherche et d’Innovation sur les Végétaux (CRIV), Université Laval, Québec, QC G1V 0A6, Canada
- Institute Intelligence and Data (IID), Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
2
|
Nagel M, Pence V, Ballesteros D, Lambardi M, Popova E, Panis B. Plant Cryopreservation: Principles, Applications, and Challenges of Banking Plant Diversity at Ultralow Temperatures. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:797-824. [PMID: 38211950 DOI: 10.1146/annurev-arplant-070623-103551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Progressive loss of plant diversity requires the protection of wild and agri-/horticultural species. For species whose seeds are extremely short-lived, or rarely or never produce seeds, or whose genetic makeup must be preserved, cryopreservation offers the only possibility for long-term conservation. At temperatures below freezing, most vegetative plant tissues suffer severe damage from ice crystal formation and require protection. In this review, we describe how increasing the concentration of cellular solutes by air drying or adding cryoprotectants, together with rapid cooling, results in a vitrified, highly viscous state in which cells can remain viable and be stored. On this basis, a range of dormant bud-freezing, slow-cooling, and (droplet-)vitrification protocols have been developed, but few are used to cryobank important agricultural/horticultural/timber and threatened species. To improve cryopreservation efficiency, the effects of cryoprotectants and molecular processes need to be understood and the costs for cryobanking reduced. However, overall, the long-term costs of cryopreservation are low, while the benefits are huge.
Collapse
Affiliation(s)
- Manuela Nagel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Seeland, Germany;
| | - Valerie Pence
- Lindner Center for Conservation and Research of Endangered Wildlife (CREW), Cincinnati Zoo & Botanical Garden, Cincinnati, Ohio, USA
| | - Daniel Ballesteros
- Department of Botany and Geology, Universitat de València, Burjassot, Spain
- Royal Botanic Gardens, Kew, Wakehurst Place, West Sussex, United Kingdom
| | - Maurizio Lambardi
- Institute of BioEconomy (IBE), National Research Council (CNR), Florence, Italy
| | - Elena Popova
- Department of Cell Biology and Biotechnology, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Bart Panis
- The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), KU Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Zemanová V, Lhotská M, Novák M, Hnilička F, Popov M, Pavlíková D. Multicontamination Toxicity Evaluation in the Model Plant Lactuca sativa L. PLANTS (BASEL, SWITZERLAND) 2024; 13:1356. [PMID: 38794427 PMCID: PMC11125215 DOI: 10.3390/plants13101356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024]
Abstract
Many contaminated soils contain several toxic elements (TEs) in elevated contents, and plant-TE interactions can differ from single TE contamination. Therefore, this study investigated the impact of combined contamination (As, Cd, Pb, Zn) on the physiological and metabolic processes of lettuce. After 45 days of exposure, TE excess in soil resulted in the inhibition of root and leaf biomass by 40 and 48%, respectively. Oxidative stress by TE accumulation was indicated by markers-malondialdehyde and 5-methylcytosine-and visible symptoms of toxicity (leaf chlorosis, root browning) and morpho-anatomical changes, which were related to the change in water regime (water potential decrease). An analysis of free amino acids (AAs) indicated that TEs disturbed N and C metabolism, especially in leaves, increasing the total content of free AAs and their families. Stress-induced senescence by TEs suggested changes in gas exchange parameters (increase in transpiration rate, stomatal conductance, and intercellular CO2 concentration), photosynthetic pigments (decrease in chlorophylls and carotenoids), a decrease in water use efficiency, and the maximum quantum yield of photosystem II. These results confirmed that the toxicity of combined contamination significantly affected the processes of lettuce by damaging the antioxidant system and expressing higher leaf sensitivity to TE multicontamination.
Collapse
Affiliation(s)
- Veronika Zemanová
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Marie Lhotská
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Milan Novák
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - František Hnilička
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Marek Popov
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Daniela Pavlíková
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| |
Collapse
|
4
|
Titova MV, Lunkova MK, Tyurina TM, Prudnikova ON, Popova EV, Klychnikov OI, Metalnikov PS, Ikhalaynen YA, Vasileva EN, Rodin IA, Nosov AM. Suspension cell cultures of Panax vietnamensis as a biotechnological source of ginsenosides: growth, cytology, and ginsenoside profile assessment. FRONTIERS IN PLANT SCIENCE 2024; 15:1349494. [PMID: 38469323 PMCID: PMC10926444 DOI: 10.3389/fpls.2024.1349494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/25/2024] [Indexed: 03/13/2024]
Abstract
Introduction Panax vietnamensis is a valuable medicinal plant and a source of a broad spectrum of biologically active ginsenosides of different structural groups. Overexploitation and low adaptability to planation cultivation have made this species vulnerable to human pressure and prompted the development of cell cultivation in vitro as a sustainable alternative to harvesting wild plants for their bioactive components. Despite high interest in biotechnological production, little is known about the main factors affecting cell growth and ginsenoside biosynthesis of this species under in vitro conditions. In this study, the potential of cell cultures of P. vietnamensis as a biotechnological source of ginsenosides was was assessed. Methods Six suspension cell lines that were developed from different sections of a single rhizome through a multi-step culture optimization process and maintained for over 3 years on media with different mineral salt base and varying contents of auxins and cytokinins. These cell lines were evaluated for productivity parameters and cytological characteristics. Ginsenoside profiles were assessed using a combination of the reversed-phase ultra-high-performance liquid chromatography-Orbitrap-tandem mass spectrometry (UHPLC-Orbitrap-MS/MS) and ultra-performance liquid chromatography-time of flight-mass spectrometry (UPLC-TOF-MS). Results All lines demonstrated good growth with a specific growth rate of 0.1-0.2 day-1, economic coefficient of 0.31-0.70, productivity on dry weight (DW) of 0.30-0.83 gDW (L·day)-1, and maximum biomass accumulation varying from 10 to 22 gDW L-1. Ginsenosides of the protopanaxadiol (Rb1, Rb2/Rb3, malonyl-Rb1, and malonyl-Rb2/Rb3), oleanolic acid (R0 and chikusetsusaponin IV), and ocotillol (vinaginsenoside R1) groups and their isomers were identified in cell biomass extracts. Chikusetsusaponin IV was identified in P. vietnamensis cell culture for the first time. Discussion These results suggest that suspension cell cultures of Vietnamese ginseng have a high potential for the biotechnological production of biomass containing ginsenosides, particularly of the oleanolic acid and ocotillol groups.
Collapse
Affiliation(s)
- Maria V. Titova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Maria K. Lunkova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana M. Tyurina
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Olga N. Prudnikova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Elena V. Popova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Oleg I. Klychnikov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
- Department of Biochemistry, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Pavel S. Metalnikov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Yuri A. Ikhalaynen
- Department of Analytical Chemistry, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Elizaveta N. Vasileva
- Department of Analytical Chemistry, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Igor A. Rodin
- Department of Analytical Chemistry, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Alexander M. Nosov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
- Department of Plant Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
5
|
Venios X, Gkizi D, Nisiotou A, Korkas E, Tjamos SE, Zamioudis C, Banilas G. Emerging Roles of Epigenetics in Grapevine and Winegrowing. PLANTS (BASEL, SWITZERLAND) 2024; 13:515. [PMID: 38498480 PMCID: PMC10893341 DOI: 10.3390/plants13040515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 03/20/2024]
Abstract
Epigenetics refers to dynamic chemical modifications to the genome that can perpetuate gene activity without changes in the DNA sequence. Epigenetic mechanisms play important roles in growth and development. They may also drive plant adaptation to adverse environmental conditions by buffering environmental variation. Grapevine is an important perennial fruit crop cultivated worldwide, but mostly in temperate zones with hot and dry summers. The decrease in rainfall and the rise in temperature due to climate change, along with the expansion of pests and diseases, constitute serious threats to the sustainability of winegrowing. Ongoing research shows that epigenetic modifications are key regulators of important grapevine developmental processes, including berry growth and ripening. Variations in epigenetic modifications driven by genotype-environment interplay may also lead to novel phenotypes in response to environmental cues, a phenomenon called phenotypic plasticity. Here, we summarize the recent advances in the emerging field of grapevine epigenetics. We primarily highlight the impact of epigenetics to grapevine stress responses and acquisition of stress tolerance. We further discuss how epigenetics may affect winegrowing and also shape the quality of wine.
Collapse
Affiliation(s)
- Xenophon Venios
- Department of Wine, Vine and Beverage Sciences, University of West Attica, Ag. Spyridonos 28, 12243 Athens, Greece; (X.V.); (D.G.); (E.K.)
| | - Danai Gkizi
- Department of Wine, Vine and Beverage Sciences, University of West Attica, Ag. Spyridonos 28, 12243 Athens, Greece; (X.V.); (D.G.); (E.K.)
| | - Aspasia Nisiotou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization “Demeter”, Sofokli Venizelou 1, 14123 Lykovryssi, Greece;
| | - Elias Korkas
- Department of Wine, Vine and Beverage Sciences, University of West Attica, Ag. Spyridonos 28, 12243 Athens, Greece; (X.V.); (D.G.); (E.K.)
| | - Sotirios E. Tjamos
- Laboratory of Plant Pathology, Agricultural University of Athens, 75 Iera Odos Str., 11855 Athens, Greece;
| | - Christos Zamioudis
- Department of Agricultural Development, Democritus University of Thrace, Pantazidou 193, 68200 Orestiada, Greece;
| | - Georgios Banilas
- Department of Wine, Vine and Beverage Sciences, University of West Attica, Ag. Spyridonos 28, 12243 Athens, Greece; (X.V.); (D.G.); (E.K.)
| |
Collapse
|
6
|
Liu J, Ke M, Sun Y, Niu S, Zhang W, Li Y. Epigenetic regulation and epigenetic memory resetting during plant rejuvenation. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:733-745. [PMID: 37930766 DOI: 10.1093/jxb/erad435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
Reversal of plant developmental status from the mature to the juvenile phase, thus leading to the restoration of the developmental potential, is referred to as plant rejuvenation. It involves multilayer regulation, including resetting gene expression patterns, chromatin remodeling, and histone modifications, eventually resulting in the restoration of juvenile characteristics. Although plants can be successfully rejuvenated using some forestry practices to restore juvenile morphology, physiology, and reproductive capabilities, studies on the epigenetic mechanisms underlying this process are in the nascent stage. This review provides an overview of the plant rejuvenation process and discusses the key epigenetic mechanisms involved in DNA methylation, histone modification, and chromatin remodeling in the process of rejuvenation, as well as the roles of small RNAs in this process. Additionally, we present new inquiries regarding the epigenetic regulation of plant rejuvenation, aiming to advance our understanding of rejuvenation in sexually and asexually propagated plants. Overall, we highlight the importance of epigenetic mechanisms in the regulation of plant rejuvenation, providing valuable insights into the complexity of this process.
Collapse
Affiliation(s)
- Jie Liu
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
| | - Meng Ke
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
| | - Yuhan Sun
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
| | - Shihui Niu
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
| | - Wenli Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Yun Li
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
| |
Collapse
|
7
|
D'Amico-Willman KM, Niederhuth CE, Sovic MG, Anderson ES, Gradziel TM, Fresnedo-Ramírez J. Hypermethylation and small RNA expression are associated with increased age in almond (Prunus dulcis [Mill.] D.A. Webb) accessions. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111918. [PMID: 37956826 DOI: 10.1016/j.plantsci.2023.111918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/20/2023] [Accepted: 11/04/2023] [Indexed: 11/15/2023]
Abstract
The focus of this study is to profile changes in DNA methylation and small RNA expression occurring with increased age in almond breeding germplasm to identify possible biomarkers of age that can be used to assess the potential of individuals to develop aging-related disorders. To profile DNA methylation in almond germplasm, 70 methylomes were generated from almond individuals representing three age cohorts (11, 7, and 2 years old) using an enzymatic methyl-seq approach followed by analysis to call differentially methylated regions (DMRs) within these cohorts. Small RNA (sRNA) expression was profiled in three breeding selections, each from two age cohorts (1 and 6 years old), using sRNA-Seq followed by differential expression analysis. Weighted chromosome-level methylation analysis reveals hypermethylation in 11-year-old almond breeding selections when compared to 2-year-old selections in the CG and CHH contexts. Seventeen consensus DMRs were identified in all age contrasts. sRNA expression differed significantly between the two age cohorts tested, with significantly decreased expression in sRNAs in the 6-year-old selections compared to the 1-year-old. Almond shows a pattern of hypermethylation and decreased sRNA expression with increased age. Identified DMRs and differentially expressed sRNAs could function as putative biomarkers of age following validation in additional age groups.
Collapse
Affiliation(s)
| | - Chad E Niederhuth
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Michael G Sovic
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Elizabeth S Anderson
- Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA
| | - Thomas M Gradziel
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Jonathan Fresnedo-Ramírez
- Translational Plant Sciences, The Ohio State University, Columbus, OH 43210, USA; Center for Applied Plant Sciences, The Ohio State University, Columbus, OH 43210, USA; Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA.
| |
Collapse
|
8
|
Yu H, Ma L, Zhao Y, Naren G, Wu H, Sun Y, Wu L, Zhang L. Characterization of nuclear DNA diversity in an individual Leymus chinensis. FRONTIERS IN PLANT SCIENCE 2023; 14:1157145. [PMID: 37346123 PMCID: PMC10280068 DOI: 10.3389/fpls.2023.1157145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/13/2023] [Indexed: 06/23/2023]
Abstract
Intraorganismal genetic heterogeneity (IGH) exists when an individual organism harbors more than one genotype among its cells. In general, intercellular DNA diversity occurs at a very low frequency and cannot be directly detected by DNA sequencing from bulk tissue. In this study, based on Sanger and high-throughput sequencing, different species, different organs, different DNA segments and a single cell were employed to characterize nucleotide mutations in Leymus chinensis. The results demonstrated that 1) the nuclear DNA showed excessive genetic heterogeneity among cells of an individual leaf or seed but the chloroplast genes remained consistent; 2) a high density of SNPs was found in the variants of the unique DNA sequence, and the similar SNP profile shared between the leaf and seed suggested that nucleotide mutation followed a certain rule and was not random; and 3) the mutation rate decreased from the genomic DNA sequence to the corresponding protein sequence. Our results suggested that Leymus chinensis seemed to consist of a collection of cells with different genetic backgrounds.
Collapse
|
9
|
Xie J, Ma Y, Li X, Wu J, Martin F, Zhang D. Multifeature analysis of age-related microbiome structures reveals defense mechanisms of Populus tomentosa trees. THE NEW PHYTOLOGIST 2023; 238:1636-1650. [PMID: 36856329 DOI: 10.1111/nph.18847] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Root microbiota composition shifts during the development of most annual plants. Although some perennial plants can live for centuries, the host-microbiome partnerships and interaction mechanisms underlying their longevity remain unclear. To address this gap, we investigated age-related changes in the root metabolites, transcriptomes, and microbiome compositions of 1- to 35-yr-old Populus tomentosa trees. Ten co-response clusters were obtained according to their accumulation patterns, and members of each cluster displayed a uniform and clear pattern of abundance. Multi-omics network analysis demonstrated that the increased abundance of Actinobacteria with tree age was strongly associated with the flavonoid biosynthesis. Using genetic approaches, we demonstrate that the flavonoid biosynthesis regulator gene Transparent Testa 8 is associated with the recruitment of flavonoid-associated Actinobacteria. Further inoculation experiments of Actinobacteria isolates indicated that their colonization could significantly improve the host's phenotype. Site-directed mutagenesis revealed that the hyBl gene cluster, involved in biosynthesis of an aminocyclitol hygromycin B analog in Streptomyces isolate bj1, is associated with disease suppression. We hypothesize that interactions between perennial plants and soil microorganisms lead to gradual enrichment of a subset of microorganisms that may harbor a wealth of currently unknown functional traits.
Collapse
Affiliation(s)
- Jianbo Xie
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Yuchao Ma
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Xian Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Jiadong Wu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Francis Martin
- INRA-Université de Lorraine, INRAe, UMR 1136, Interactions Arbres/Microorganismes, INRAe-Grand Est-Nancy, 54280, Champenoux, France
| | - Deqiang Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| |
Collapse
|
10
|
Li J, Han F, Yuan T, Li W, Li Y, Wu HX, Wei H, Niu S. The methylation landscape of giga-genome and the epigenetic timer of age in Chinese pine. Nat Commun 2023; 14:1947. [PMID: 37029142 PMCID: PMC10082083 DOI: 10.1038/s41467-023-37684-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 03/27/2023] [Indexed: 04/09/2023] Open
Abstract
Epigenetics has been revealed to play a crucial role in the long-term memory in plants. However, little is known about whether the epigenetic modifications occur with age progressively in conifers. Here, we present the single-base resolution DNA methylation landscapes of the 25-gigabase Chinese pine (Pinus tabuliformis) genome at different ages. The result shows that DNA methylation is closely coupled with the regulation of gene transcription. The age-dependent methylation profile with a linearly increasing trend is the most significant pattern of DMRs between ages. Two segments at the five-prime end of the first ultra-long intron in DAL1, a conservative age biomarker in conifers, shows a gradual decline of CHG methylation as the age increased, which is highly correlated with its expression profile. Similar high correlation is also observed in nine other age marker genes. Our results suggest that DNA methylation serves as an important epigenetic signature of developmental age in conifers.
Collapse
Affiliation(s)
- Jiang Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, PR China
| | - Fangxu Han
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, PR China
| | - Tongqi Yuan
- College of Material Science and Technology, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Wei Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, PR China
| | - Yue Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, PR China
| | - Harry X Wu
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Linnaeus väg 6, SE-901 83, Umeå, Sweden
- CSIRO National Research Collection Australia, Black Mountain Laboratory, Canberra, ACT, 2601, Australia
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931, USA
| | - Shihui Niu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, PR China.
| |
Collapse
|
11
|
Ban S, Jung JH. Somatic Mutations in Fruit Trees: Causes, Detection Methods, and Molecular Mechanisms. PLANTS (BASEL, SWITZERLAND) 2023; 12:1316. [PMID: 36987007 PMCID: PMC10056856 DOI: 10.3390/plants12061316] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/11/2023] [Accepted: 03/12/2023] [Indexed: 06/19/2023]
Abstract
Somatic mutations are genetic changes that occur in non-reproductive cells. In fruit trees, such as apple, grape, orange, and peach, somatic mutations are typically observed as "bud sports" that remain stable during vegetative propagation. Bud sports exhibit various horticulturally important traits that differ from those of their parent plants. Somatic mutations are caused by internal factors, such as DNA replication error, DNA repair error, transposable elements, and deletion, and external factors, such as strong ultraviolet radiation, high temperature, and water availability. There are several methods for detecting somatic mutations, including cytogenetic analysis, and molecular techniques, such as PCR-based methods, DNA sequencing, and epigenomic profiling. Each method has its advantages and limitations, and the choice of method depends on the research question and the available resources. The purpose of this review is to provide a comprehensive understanding of the factors that cause somatic mutations, techniques used to identify them, and underlying molecular mechanisms. Furthermore, we present several case studies that demonstrate how somatic mutation research can be leveraged to discover novel genetic variations. Overall, considering the diverse academic and practical value of somatic mutations in fruit crops, especially those that require lengthy breeding efforts, related research is expected to become more active.
Collapse
|
12
|
Gardner ST, Bertucci EM, Sutton R, Horcher A, Aubrey D, Parrott BB. Development of DNA methylation-based epigenetic age predictors in loblolly pine (Pinus taeda). Mol Ecol Resour 2023; 23:131-144. [PMID: 35957540 PMCID: PMC10087248 DOI: 10.1111/1755-0998.13698] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/27/2022]
Abstract
Biological ageing is connected to life history variation across ecological scales and informs a basic understanding of age-related declines in organismal function. Altered DNA methylation dynamics are a conserved aspect of biological ageing and have recently been modelled to predict chronological age among vertebrate species. In addition to their utility in estimating individual age, differences between chronological and predicted ages arise due to acceleration or deceleration of epigenetic ageing, and these discrepancies are linked to disease risk and multiple life history traits. Although evidence suggests that patterns of DNA methylation can describe ageing in plants, predictions with epigenetic clocks have yet to be performed. Here, we resolve the DNA methylome across CpG, CHG, and CHH-methylation contexts in the loblolly pine tree (Pinus taeda) and construct epigenetic clocks capable of predicting ages in this species within 6% of its maximum lifespan. Although patterns of CHH-methylation showed little association with age, both CpG and CHG-methylation contexts were strongly associated with ageing, largely becoming hypomethylated with age. Among age-associated loci were those in close proximity to malate dehydrogenase, NADH dehydrogenase, and 18S and 26S ribosomal RNA genes. This study reports one of the first epigenetic clocks in plants and demonstrates the universality of age-associated DNA methylation dynamics which can inform conservation and management practices, as well as our ecological and evolutionary understanding of biological ageing in plants.
Collapse
Affiliation(s)
- Steven T. Gardner
- Savannah River Ecology LaboratoryUniversity of GeorgiaAikenSouth CarolinaUSA
| | - Emily M. Bertucci
- Savannah River Ecology LaboratoryUniversity of GeorgiaAikenSouth CarolinaUSA
- Odum School of EcologyUniversity of GeorgiaAthensGeorgiaUSA
| | - Randall Sutton
- US Forest Service Savannah RiverNew EllentonSouth CarolinaUSA
| | - Andy Horcher
- US Forest Service Savannah RiverNew EllentonSouth CarolinaUSA
| | - Doug Aubrey
- Savannah River Ecology LaboratoryUniversity of GeorgiaAikenSouth CarolinaUSA
- Warnell School of ForestryUniversity of GeorgiaAthensGeorgiaUSA
| | - Benjamin B. Parrott
- Savannah River Ecology LaboratoryUniversity of GeorgiaAikenSouth CarolinaUSA
- Odum School of EcologyUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
13
|
Balimponya EG, Dwiyanti MS, Ito T, Sakaguchi S, Yamamori K, Kanaoka Y, Koide Y, Nagayoshi Y, Kishima Y. Seed management using NGS technology to rapidly eliminate a deleterious allele from rice breeder seeds. BREEDING SCIENCE 2022; 72:362-371. [PMID: 36776441 PMCID: PMC9895803 DOI: 10.1270/jsbbs.22058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/26/2022] [Indexed: 06/18/2023]
Abstract
Spontaneous mutations are stochastic phenomena that occur in every population. However, deleterious mutated allele present in seeds distributed to farmers must be detected and removed. Here, we eliminated undesirable mutations from the parent population in one generation through a strategy based on next-generation sequencing (NGS). This study dealt with a spontaneous albino mutant in the 'Hinohikari' rice variety grown at the Miyazaki Comprehensive Agricultural Experiment Station, Japan. The incidence of albinism in the population was 1.36%. NGS analysis revealed the genomic basis for differences between green and albino phenotypes. Every albino plant had a C insertion in the Snow-White Leaf1 (SWL1) gene on chromosome 4 causing a frameshift mutation. Selfing plants heterozygous for the mutant allele, swl1-R332P, resulted in a 3:1 green/albino ratio, confirming that a single recessive gene controls albinism. Ultrastructural leaf features in the swl1-R332P mutants displayed deformed chlorophyll-associated organelles in albino plants that were similar to those of previously described swl1 mutants. Detection of the causative gene and its confirmation using heterozygous progenies were completed within a year. The NGS technique outlined here facilitates rapid identification of spontaneous mutations that can occur in breeder seeds.
Collapse
Affiliation(s)
- Elias G. Balimponya
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060‑8589, Japan
| | - Maria S. Dwiyanti
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060‑8589, Japan
| | - Toshiaki Ito
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060‑8589, Japan
| | - Shuntaro Sakaguchi
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060‑8589, Japan
| | - Koichi Yamamori
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060‑8589, Japan
| | - Yoshitaka Kanaoka
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060‑8589, Japan
| | - Yohei Koide
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060‑8589, Japan
| | - Yoshifumi Nagayoshi
- Miyazaki Comprehensive Agricultural Experiment Station, Miyazaki 880-0212, Japan
| | - Yuji Kishima
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060‑8589, Japan
| |
Collapse
|
14
|
Zheng Z, Hu H, Lei W, Zhang J, Zhu M, Li Y, Zhang X, Ma J, Wan D, Ma T, Ren G, Ru D. Somatic mutations during rapid clonal domestication of Populus alba var. pyramidalis. Evol Appl 2022; 15:1875-1887. [PMID: 36426122 PMCID: PMC9679227 DOI: 10.1111/eva.13486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 12/01/2022] Open
Abstract
For many clonally propagated species, the accumulation of somatic mutations is the principal driver of declines in yield and quality. However, somatic mutations may also promote genetic diversification. Thus, elucidating somatic mutation rates and patterns is important to understand the genetic basis undergirding the emergence of commercially valuable traits and developmental processes. In this study, we studied the effect of short-time clonal domestication of Populus alba var. pyramidalis, a species that has been propagated by cutting for the last 67 years. We found that: (1) the somatic mutation rate for P. alba var. pyramidalis is 9.24 × 10-9, which is higher than rates observed in related species; (2) there were more mutations near heterozygous regions, and a larger proportion of CpG and CHG sites were associated with somatic mutations, which may be related to the blocking of DNA repair by methylation; and (3) deleterious mutations were not shared by multiple individuals, and all occurred in heterozygous states, demonstrating the strong selective pressures that act against deleterious mutations. Taken together, the results of our study provide a global view of somatic mutation that will aid efforts to understand the genetic basis of commercially valuable traits and to improve clonally breeding species.
Collapse
Affiliation(s)
- Zeyu Zheng
- State Key Laboratory of Grassland Agro‐Ecosystems, College of EcologyLanzhou UniversityLanzhouChina
| | - Hongyin Hu
- State Key Laboratory of Grassland Agro‐Ecosystems, College of EcologyLanzhou UniversityLanzhouChina
| | - Weixiao Lei
- State Key Laboratory of Grassland Agro‐Ecosystems, College of EcologyLanzhou UniversityLanzhouChina
| | - Jin Zhang
- State Key Laboratory of Grassland Agro‐Ecosystems, College of EcologyLanzhou UniversityLanzhouChina
| | - Mingjia Zhu
- State Key Laboratory of Grassland Agro‐Ecosystems, College of EcologyLanzhou UniversityLanzhouChina
| | - Ying Li
- State Key Laboratory of Grassland Agro‐Ecosystems, College of EcologyLanzhou UniversityLanzhouChina
| | - Xu Zhang
- State Key Laboratory of Grassland Agro‐Ecosystems, College of EcologyLanzhou UniversityLanzhouChina
| | - Jianchao Ma
- State Key Laboratory of Grassland Agro‐Ecosystems, College of EcologyLanzhou UniversityLanzhouChina
| | - Dongshi Wan
- State Key Laboratory of Grassland Agro‐Ecosystems, College of EcologyLanzhou UniversityLanzhouChina
| | - Tao Ma
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River EngineeringSichuan UniversityChengduChina
| | - Guangpeng Ren
- State Key Laboratory of Grassland Agro‐Ecosystems, College of EcologyLanzhou UniversityLanzhouChina
| | - Dafu Ru
- State Key Laboratory of Grassland Agro‐Ecosystems, College of EcologyLanzhou UniversityLanzhouChina
| |
Collapse
|
15
|
Chen T, Duan W. DNA methylation changes were involved in inhibiting ethylene signaling and delaying senescence of tomato fruit under low temperature. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01229-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Vatov E, Zentgraf U, Ludewig U. Moderate DNA methylation changes associated with nitrogen remobilization and leaf senescence in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4733-4752. [PMID: 35552412 PMCID: PMC9366325 DOI: 10.1093/jxb/erac167] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The lifespan of plants is restricted by environmental and genetic components. Following the transition to reproductive growth, leaf senescence ends cellular life in monocarpic plants to remobilize nutrients to storage organs. In Arabidopsis, we initially observed altered leaf to seed ratios, faster senescence progression, altered leaf nitrogen recovery after transient nitrogen removal, and ultimately enhanced nitrogen remobilization from the leaves in two methylation mutants (ros1 and the triple dmr1/2 cmt3 knockout). Analysis of the DNA methylome in wild type Col-0 leaves identified an initial moderate decline of cytosine methylation with progressing leaf senescence, predominantly in the CG context. Late senescence was associated with moderate de novo methylation of cytosines, primarily in the CHH context. Relatively few differentially methylated regions, including one in the ROS1 promoter linked to down-regulation of ROS1, were present, but these were unrelated to known senescence-associated genes. Differential methylation patterns were identified in transcription factor binding sites, such as the W-boxes that are targeted by WRKYs. Methylation in artificial binding sites impaired transcription factor binding in vitro. However, it remains unclear how moderate methylome changes during leaf senescence are linked with up-regulated genes during senescence.
Collapse
Affiliation(s)
- Emil Vatov
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart, D-70593, Germany
- Center for Molecular Biology of Plants (ZMBP), University of Tübingen, Tübingen, D-72076, Germany
| | - Ulrike Zentgraf
- Center for Molecular Biology of Plants (ZMBP), University of Tübingen, Tübingen, D-72076, Germany
| | | |
Collapse
|
17
|
Cruzan MB, Streisfeld MA, Schwoch JA. Fitness effects of somatic mutations accumulating during vegetative growth. Evol Ecol 2022. [DOI: 10.1007/s10682-022-10188-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AbstractThe unique life form of plants promotes the accumulation of somatic mutations that can be passed to offspring in the next generation, because the same meristem cells responsible for vegetative growth also generate gametes for sexual reproduction. However, little is known about the consequences of somatic mutation accumulation for offspring fitness. We evaluate the fitness effects of somatic mutations in Mimulus guttatus by comparing progeny from self-pollinations made within the same flower (autogamy) to progeny from self-pollinations made between stems on the same plant (geitonogamy). The effects of somatic mutations are evident from this comparison, as autogamy leads to homozygosity of a proportion of somatic mutations, but progeny from geitonogamy remain heterozygous for mutations unique to each stem. In two different experiments, we find consistent fitness effects of somatic mutations from individual stems. Surprisingly, several progeny groups from autogamous crosses displayed increases in fitness compared to progeny from geitonogamy crosses, likely indicating that beneficial somatic mutations occurred in some stems. These results support the hypothesis that somatic mutations accumulate during vegetative growth, but they are filtered by different forms of selection that occur throughout development, resulting in the culling of expressed deleterious mutations and the retention of beneficial mutations.
Collapse
|
18
|
Xie J, Dawwam GE, Sehim AE, Li X, Wu J, Chen S, Zhang D. Drought Stress Triggers Shifts in the Root Microbial Community and Alters Functional Categories in the Microbial Gene Pool. Front Microbiol 2021; 12:744897. [PMID: 34745045 PMCID: PMC8566882 DOI: 10.3389/fmicb.2021.744897] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
Drought is a major threat to crop productivity and causes decreased plant growth, poor yields, and crop failure. Nevertheless, the frequency of droughts is expected to increase in the coming decades. The microbial communities associated with crop plants can influence how plants respond to various stresses; hence, microbiome manipulation is fast becoming an effective strategy for improving the stress tolerance of plants. The effect of drought stress on the root microbiome of perennial woody plants is currently poorly understood. Using Populus trees as a model ecosystem, we found that the diversity of the root microbial community decreased during drought treatment and that compositional shifts in microbes during drought stress were driven by the relative abundances of a large number of dominant phyla, including Actinobacteria, Firmicutes, and Proteobacteria. A subset of microbes, including Streptomyces rochei, Bacillus arbutinivorans, B. endophyticus, B. megaterium, Aspergillus terreus, Penicillium raperi, Trichoderma ghanense, Gongronella butleri, and Rhizopus stolonifer, was isolated from the drought-treated poplar rhizosphere soils, which have potentially beneficial to plant fitness. Further controlled inoculation experiments showed that the isolated bacterial and fungal isolates positively impacted plant growth and drought tolerance. Collectively, our results demonstrate the impact of drought on root microbiome structure and provide a novel example of manipulating root microbiomes to improve plant tolerance.
Collapse
Affiliation(s)
- Jianbo Xie
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Ghada E Dawwam
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| | - Amira E Sehim
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| | - Xian Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jiadong Wu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Sisi Chen
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
19
|
Jocković M, Jocić S, Cvejić S, Marjanović-Jeromela A, Jocković J, Radanović A, Miladinović D. Genetic Improvement in Sunflower Breeding—Integrated Omics Approach. PLANTS 2021; 10:plants10061150. [PMID: 34200113 PMCID: PMC8228292 DOI: 10.3390/plants10061150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 01/23/2023]
Abstract
Foresight in climate change and the challenges ahead requires a systematic approach to sunflower breeding that will encompass all available technologies. There is a great scarcity of desirable genetic variation, which is in fact undiscovered because it has not been sufficiently researched as detection and designing favorable genetic variation largely depends on thorough genome sequencing through broad and deep resequencing. Basic exploration of genomes is insufficient to find insight about important physiological and molecular mechanisms unique to crops. That is why integrating information from genomics, epigenomics, transcriptomics, proteomics, metabolomics and phenomics enables a comprehensive understanding of the molecular mechanisms in the background of architecture of many important quantitative traits. Omics technologies offer novel possibilities for deciphering the complex pathways and molecular profiling through the level of systems biology and can provide important answers that can be utilized for more efficient breeding of sunflower. In this review, we present omics profiling approaches in order to address their possibilities and usefulness as a potential breeding tools in sunflower genetic improvement.
Collapse
Affiliation(s)
- Milan Jocković
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia; (S.J.); (S.C.); (A.M.-J.); (A.R.); (D.M.)
- Correspondence:
| | - Siniša Jocić
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia; (S.J.); (S.C.); (A.M.-J.); (A.R.); (D.M.)
| | - Sandra Cvejić
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia; (S.J.); (S.C.); (A.M.-J.); (A.R.); (D.M.)
| | - Ana Marjanović-Jeromela
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia; (S.J.); (S.C.); (A.M.-J.); (A.R.); (D.M.)
| | - Jelena Jocković
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Dositeja Obradovića 3, 21000 Novi Sad, Serbia;
| | - Aleksandra Radanović
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia; (S.J.); (S.C.); (A.M.-J.); (A.R.); (D.M.)
| | - Dragana Miladinović
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia; (S.J.); (S.C.); (A.M.-J.); (A.R.); (D.M.)
| |
Collapse
|
20
|
Zhang Z, Wang H, Wang Y, Xi F, Wang H, Kohnen MV, Gao P, Wei W, Chen K, Liu X, Gao Y, Han X, Hu K, Zhang H, Zhu Q, Zheng Y, Liu B, Ahmad A, Hsu YH, Jacobsen SE, Gu L. Whole-genome characterization of chronological age-associated changes in methylome and circular RNAs in moso bamboo (Phyllostachys edulis) from vegetative to floral growth. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:435-453. [PMID: 33506534 DOI: 10.1111/tpj.15174] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/30/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
In mammals, DNA methylation is associated with aging. However, age-related DNA methylation changes during phase transitions largely remain unstudied in plants. Moso bamboo (Phyllostachys edulis) requires a very long time to transition from the vegetative to the floral phase. To comprehensively investigate the association of DNA methylation with aging, we present here single-base-resolution DNA methylation profiles using both high-throughput bisulfite sequencing and single-molecule nanopore-based DNA sequencing, covering the long period of vegetative growth and transition to flowering in moso bamboo. We discovered that CHH methylation gradually accumulates from vegetative to reproductive growth in a time-dependent fashion. Differentially methylated regions, correlating with chronological aging, occurred preferentially at both transcription start sites and transcription termination sites. Genes with CG methylation changes showed an enrichment of Gene Ontology (GO) categories in 'vegetative to reproductive phase transition of meristem'. Combining methylation data with mRNA sequencing revealed that DNA methylation in promoters, introns and exons may have different roles in regulating gene expression. Finally, circular RNA (circRNA) sequencing revealed that the flanking introns of circRNAs are hypermethylated and enriched in long terminal repeat (LTR) retrotransposons. Together, the observations in this study provide insights into the dynamic DNA methylation and circRNA landscapes, correlating with chronological age, which paves the way to study further the impact of epigenetic factors on flowering in moso bamboo.
Collapse
Affiliation(s)
- Zeyu Zhang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huihui Wang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongsheng Wang
- Basic Forestry and Proteomics Research Center, College of life science, Fuzhou, 350002, China
| | - Feihu Xi
- Basic Forestry and Proteomics Research Center, College of life science, Fuzhou, 350002, China
| | - Huiyuan Wang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Markus V Kohnen
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Pengfei Gao
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wentao Wei
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Kai Chen
- Basic Forestry and Proteomics Research Center, College of life science, Fuzhou, 350002, China
| | - Xuqing Liu
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yubang Gao
- Basic Forestry and Proteomics Research Center, College of life science, Fuzhou, 350002, China
| | - Ximei Han
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Kaiqiang Hu
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hangxiao Zhang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qiang Zhu
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yushan Zheng
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Bo Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ayaz Ahmad
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Steven E Jacobsen
- Department of Molecular, Cell & Developmental Biology, Howard Hughes Medical Institute, University of California, Los Angeles, CA, 90095, USA
| | - Lianfeng Gu
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
21
|
D'Amico-Willman KM, Anderson ES, Gradziel TM, Fresnedo-Ramírez J. Relative Telomere Length and Telomerase Reverse Transcriptase (TERT) Expression Are Associated with Age in Almond ( Prunus dulcis [Mill.] D.A.Webb). PLANTS (BASEL, SWITZERLAND) 2021; 10:189. [PMID: 33498228 PMCID: PMC7909263 DOI: 10.3390/plants10020189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 01/02/2023]
Abstract
While all organisms age, our understanding of how aging occurs varies among species. The aging process in perennial plants is not well-defined, yet can have implications on production and yield of valuable fruit and nut crops. Almond exhibits an age-related disorder known as non-infectious bud failure (BF) that affects vegetative bud development, indirectly affecting kernel yield. This species and disorder present an opportunity to address aging in a commercially relevant and vegetatively propagated perennial crop. The hypothesis tested in this study was that relative telomere length and/or telomerase reverse transcriptase (TERT) expression can serve as biomarkers of aging in almond. Relative telomere lengths and expression of TERT, a subunit of the enzyme telomerase, were measured via qPCR methods using bud and leaf samples collected from distinct age cohorts over a two-year period. Results from this work show a marginal but significant association between both relative telomere length and TERT expression, and age, suggesting that as almonds age, telomeres shorten and TERT expression decreases. This work provides information on potential biomarkers of perennial plant aging, contributing to our knowledge of this process. In addition, these results provide opportunities to address BF in almond breeding and nursery propagation.
Collapse
Affiliation(s)
- Katherine M. D'Amico-Willman
- Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 446911, USA;
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH 432102, USA
| | | | - Thomas M. Gradziel
- Department of Plant Sciences, University of California, Davis, CA 95616, USA;
| | - Jonathan Fresnedo-Ramírez
- Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 446911, USA;
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH 432102, USA
| |
Collapse
|
22
|
Application of the MSAP Technique to Evaluate Epigenetic Changes in Plant Conservation. Int J Mol Sci 2020; 21:ijms21207459. [PMID: 33050382 PMCID: PMC7589462 DOI: 10.3390/ijms21207459] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/29/2020] [Accepted: 10/08/2020] [Indexed: 02/08/2023] Open
Abstract
Epigenetic variation, and particularly DNA methylation, is involved in plasticity and responses to changes in the environment. Conservation biology studies have focused on the measurement of this variation to establish demographic parameters, diversity levels and population structure to design the appropriate conservation strategies. However, in ex situ conservation approaches, the main objective is to guarantee the characteristics of the conserved material (phenotype and epi-genetic). We review the use of the Methylation Sensitive Amplified Polymorphism (MSAP) technique to detect changes in the DNA methylation patterns of plant material conserved by the main ex situ plant conservation methods: seed banks, in vitro slow growth and cryopreservation. Comparison of DNA methylation patterns before and after conservation is a useful tool to check the fidelity of the regenerated plants, and, at the same time, may be related with other genetic variations that might appear during the conservation process (i.e., somaclonal variation). Analyses of MSAP profiles can be useful in the management of ex situ plant conservation but differs in the approach used in the in situ conservation. Likewise, an easy-to-use methodology is necessary for a rapid interpretation of data, in order to be readily implemented by conservation managers.
Collapse
|
23
|
Zhang Z, Sun Y, Li Y. Plant rejuvenation: from phenotypes to mechanisms. PLANT CELL REPORTS 2020; 39:1249-1262. [PMID: 32780162 DOI: 10.1007/s00299-020-02577-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/28/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
Plant rejuvenation refers to the reversal of the adult phase in plants and the recovery of part or all of juvenile plant characteristics. The growth and reproductive vitality of plants can be increased after rejuvenation. In recent years, research has successfully reversed the development clock in plants by certain methods; created rejuvenated plants and revealed the basic rules of plant morphology, physiology and reproduction. Here, we reconstitute the changes at the morphological and macromolecular levels, including those in RNA, phytohormones and DNA, during plant rejuvenation. In addition, the characteristics of plant phase changes that can be used as references for plant rejuvenation are also summarized. We further propose possible mechanisms for plant rejuvenation, methods for reversing plant development and problems that should be avoided. Overall, this study highlights the physiological and molecular events involved in plant rejuvenation.
Collapse
Affiliation(s)
- Zijie Zhang
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Laboratory For Tree Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Yuhan Sun
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Laboratory For Tree Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Yun Li
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Laboratory For Tree Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| |
Collapse
|
24
|
Arano-Varela H, Fernández FJ, Estrada-Zúñiga ME, Cruz-Sosa F. Verbascoside production in long-term Buddleja cordata Kunth cell suspension cultures. 3 Biotech 2020; 10:245. [PMID: 32411569 PMCID: PMC7214575 DOI: 10.1007/s13205-020-02222-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 04/24/2020] [Indexed: 01/13/2023] Open
Abstract
Previously, our group reported the establishment of a white callus cell line of Buddleja cordata Kunth that is a high producer of the secondary metabolite, verbascoside (VB, also named acteoside), under suspension culture conditions. Here, we present experimental evidence of the sustained ability of that cellular line to grow and produce high amounts of VB for 5 years of continuous culture. Cellular line profiles were determined at the early (at the beginning) and late stages (at the end of 5 years of continuous subculturing) by analyzing relevant parameters of culture growth, i.e., specific growth rate [µ], doubling time [dt], and growth index [GI], as well as VB production. Late-stage cultures exhibited a 61% faster growth rate than early-stage subcultures, and 25 and 3% lower doubling time and growth index. The extents of growth phases were found to be different. Similar amounts of biomass were found (9.5 g and 9.4 g L-1). Verbascoside production increased parallel to cell growth; maximal yield level occurred in the mid-exponential phase and lasted until the end of the stationary phase (i.e., from the 15th to the 25th day and from the 9th to the 21st day for the early and late stages, correspondingly). The content of VB was higher in the late-stage culture (1.43 ± 0945 g L-1) than in the early-stage culture (1.21 ± 0.0286 g L-1). Productivity values point out the potential use of B. cordata cell line in the biotechnological production of VB and for research focused on the biochemistry of secondary metabolism.
Collapse
Affiliation(s)
- H. Arano-Varela
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco No. 186, Col. Vicentina, CP 09340 Mexico City, Mexico
| | - F. J. Fernández
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco No. 186, Col. Vicentina, CP 09340 Mexico City, Mexico
| | - M. E. Estrada-Zúñiga
- Centro de Investigación en Recursos Bióticos-Facultad de Ciencias, Universidad Autónoma del Estado de Mexico, Carretera Toluca-Ixtlahuaca km 14.5, C.P. 50285 Toluca, Estado de Mexico Mexico
| | - F. Cruz-Sosa
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco No. 186, Col. Vicentina, CP 09340 Mexico City, Mexico
| |
Collapse
|
25
|
Muniandy K, Tan MH, Shehnaz S, Song BK, Ayub Q, Rahman S. Cytosine methylation of rice mitochondrial DNA from grain and leaf tissues. PLANTA 2020; 251:57. [PMID: 32008119 DOI: 10.1007/s00425-020-03349-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
The rice leaf mitochondrial DNA is more methylated compared to the rice grain mitochondrial DNA. The old rice leaf mitochondrial DNA has also a higher methylation level than the young rice leaf mitochondrial DNA. The presence of DNA methylation in rice organelles has not been well characterized. We have previously shown that cytosine methylation of chloroplast DNA is different between leaf and grain, and varies between young and old leaves in rice. However, the variation in cytosine methylation of mitochondrial DNA is still poorly characterized. In this study, we have investigated cytosine methylation of mitochondrial DNA in the rice grain and leaf. Based on CpG, CHG, and CHH methylation analyses, the leaf mitochondrial DNA was found to be more methylated compared to the grain mitochondrial DNA. The methylation of the leaf mitochondrial DNA was also higher in old compared to young leaves. Differences in methylation were observed at different cytosine positions of the mitochondrial DNA between grain and leaf, although there were also positions with a similar level of high methylation in all the tissues examined. The differentially methylated cytosine positions in rice mitochondrial DNA were observed mostly in the intergenic region and in some mitochondrial-specific genes involved in ATP production, transcription, and translation. The functional importance of cytosine methylation in the life cycle of rice mitochondria is still to be determined.
Collapse
Affiliation(s)
- Kanagesswari Muniandy
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
- Genomics Facility, Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Mun Hua Tan
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, 3220, Australia
- Deakin Genomics Centre, Deakin University, Geelong, VIC, 3220, Australia
| | - Saiyara Shehnaz
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
- Genomics Facility, Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Beng Kah Song
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
- Genomics Facility, Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Qasim Ayub
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
- Genomics Facility, Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Sadequr Rahman
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
- Genomics Facility, Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
26
|
Hewitt A. Genetic and environmental factors in the trade-off between sexual and asexual reproduction of a rare clonal angiosperm. AUSTRAL ECOL 2019. [DOI: 10.1111/aec.12846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Alison Hewitt
- School of Science and Health; Western Sydney University; Locked Bag 1797 Penrith NSW 2751 Australia
| |
Collapse
|
27
|
Schoen DJ, Schultz ST. Somatic Mutation and Evolution in Plants. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2019. [DOI: 10.1146/annurev-ecolsys-110218-024955] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Somatic mutations are common in plants, and they may accumulate and be passed on to gametes. The determinants of somatic mutation accumulation include the intraorganismal selective effect of mutations, the number of cell divisions that separate the zygote from the formation of gametes, and shoot apical meristem structure and branching. Somatic mutations can promote the evolution of diploidy, polyploidy, sexual recombination, outcrossing, clonality, and separate sexes, and they may contribute genetic variability in many other traits. The amplification of beneficial mutations via intraorganismal selection may relax selection to reduce the genomic mutation rate or to protect the germline in plants. The total rate of somatic mutation, the distribution of selective effects and fates in the plant body, and the degree to which the germline is sheltered from somatic mutations are still poorly understood. Our knowledge can be improved through empirical estimates of mutation rates and effects on cell lineages and whole organisms, such as estimates of the reduction in fitness of progeny produced by within- versus between-flower crosses on the same plant, mutation coalescent studies within the canopy, and incorporation of somatic mutation into theoretical models of plant evolutionary genetics.
Collapse
Affiliation(s)
- Daniel J. Schoen
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
| | - Stewart T. Schultz
- Department of Ecology, Agronomy, and Aquaculture, University of Zadar, 23000 Zadar, Croatia
| |
Collapse
|
28
|
Sanchez-Muñoz R, Moyano E, Khojasteh A, Bonfill M, Cusido RM, Palazon J. Genomic methylation in plant cell cultures: A barrier to the development of commercial long-term biofactories. Eng Life Sci 2019; 19:872-879. [PMID: 32624979 DOI: 10.1002/elsc.201900024] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/29/2019] [Accepted: 04/24/2019] [Indexed: 12/29/2022] Open
Abstract
Plant cell biofactories offer great advantages for the production of plant compounds of interest, although certain limitations still need to be overcome before their maximum potential is reached. One obstacle is the gradual loss of secondary metabolite production during in vitro culture maintenance, which is an important impediment in the development of large-scale production systems. The relationship between in vitro maintenance and epigenetic changes has been demonstrated in several plant species; in particular, methylation levels have been found to increase in in vitro cultures over time. Higher DNA methylation levels have been correlated with a low yield of secondary metabolites in in vitro plant cell cultures. The longer the period of subculturing, the more methylated cytosines were found throughout the genome, and secondary metabolism decreased significantly. This review summarizes different studies on epigenetic changes during the maintenance of in vitro cell cultures and the insights they provide on the mechanisms involved. It concludes by looking at the perspectives for new approaches designed to avoid declines in metabolite production.
Collapse
Affiliation(s)
- Raul Sanchez-Muñoz
- Departament de Ciències Experimentals i de la Salut Universitat Pompeu Fabra Barcelona Spain
| | - Elisabeth Moyano
- Departament de Ciències Experimentals i de la Salut Universitat Pompeu Fabra Barcelona Spain
| | - Abbas Khojasteh
- Secció de Fisiologia Vegetal Facultat de Farmacia Universitat de Barcelona Barcelona Spain
| | - Mercedes Bonfill
- Secció de Fisiologia Vegetal Facultat de Farmacia Universitat de Barcelona Barcelona Spain
| | - Rosa M Cusido
- Secció de Fisiologia Vegetal Facultat de Farmacia Universitat de Barcelona Barcelona Spain
| | - Javier Palazon
- Secció de Fisiologia Vegetal Facultat de Farmacia Universitat de Barcelona Barcelona Spain
| |
Collapse
|
29
|
Wang L, Ji Y, Hu Y, Hu H, Jia X, Jiang M, Zhang X, Zhao L, Zhang Y, Jia Y, Qin C, Yu L, Huang J, Yang S, Hurst LD, Tian D. The architecture of intra-organism mutation rate variation in plants. PLoS Biol 2019; 17:e3000191. [PMID: 30964866 PMCID: PMC6456163 DOI: 10.1371/journal.pbio.3000191] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/06/2019] [Indexed: 12/30/2022] Open
Abstract
Given the disposability of somatic tissue, selection can favor a higher mutation rate in the early segregating soma than in germline, as seen in some animals. Although in plants intra-organismic mutation rate heterogeneity is poorly resolved, the same selectionist logic can predict a lower rate in shoot than in root and in longer-lived terminal tissues (e.g., leaves) than in ontogenetically similar short-lived ones (e.g., petals), and that mutation rate heterogeneity should be deterministic with no significant differences between biological replicates. To address these expectations, we sequenced 754 genomes from various tissues of eight plant species. Consistent with a selectionist model, the rate of mutation accumulation per unit time in shoot apical meristem is lower than that in root apical tissues in perennials, in which a high proportion of mutations in shoots are themselves transmissible, but not in annuals, in which somatic mutations tend not to be transmissible. Similarly, the number of mutations accumulated in leaves is commonly lower than that within a petal of the same plant, and there is no more heterogeneity in accumulation rates between replicate branches than expected by chance. High mutation accumulation in runners of strawberry is, we argue, the exception that proves the rule, as mutation transmission patterns indicate that runner has a restricted germline. However, we also find that in vitro callus tissue has a higher mutation rate (per unit time) than the wild-grown comparator, suggesting nonadaptive mutational "fragility". As mutational fragility does not obviously explain why the shoot-root difference varies with plant longevity, we conclude that some mutation rate variation between tissues is consistent with selectionist theory but that a mechanistic null of mutational fragility should be considered.
Collapse
Affiliation(s)
- Long Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yilun Ji
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yingwen Hu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Huaying Hu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xianqin Jia
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Mengmeng Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiaohui Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Lina Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yanchun Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yanxiao Jia
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Chao Qin
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Luyao Yu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ju Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Sihai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Laurence D. Hurst
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Dacheng Tian
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
30
|
Varga S, Soulsbury CD. Arbuscular mycorrhizal fungi change host plant DNA methylation systemically. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:278-283. [PMID: 30253017 DOI: 10.1111/plb.12917] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/19/2018] [Indexed: 06/08/2023]
Abstract
DNA methylation is an important epigenetic mechanism regulating gene expression in plants. DNA methylation has been shown to vary among species and also among plant tissues. However, no study has evaluated whether arbuscular mycorrhizal (AM) fungi affect DNA methylation levels in a tissue-specific manner. We investigated whether symbiosis with AM fungi affects DNA methylation in the host, focusing on different plant tissues (roots versus leaves) and across time. We carried out a 6-month pot experiment using Geranium robertianum in symbiosis with the AM fungus Funneliformis mosseae. Our results show that the pattern of total DNA methylation differed between leaves and roots and was related to when plants were harvested, confirming that DNA methylation is a process that occurs dynamically throughout an organism's lifetime. More importantly, the presence of AM fungus in roots of our experimental plants had a positive effect on total DNA methylation in both tissues. This study shows that colonisation by AM fungi can affect DNA methylation levels in their hosts and that plant DNA methylation varies in an age- and tissue-specific manner.
Collapse
Affiliation(s)
- S Varga
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln, UK
| | - C D Soulsbury
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln, UK
| |
Collapse
|
31
|
Plitta-Michalak BP, Naskret-Barciszewska MZ, Kotlarski S, Tomaszewski D, Tylkowski T, Barciszewski J, Chmielarz P, Michalak M. Changes in genomic 5-methylcytosine level mirror the response of orthodox (Acer platanoides L.) and recalcitrant (Acer pseudoplatanus L.) seeds to severe desiccation. TREE PHYSIOLOGY 2018; 38:617-629. [PMID: 29121348 DOI: 10.1093/treephys/tpx134] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 09/26/2017] [Indexed: 06/07/2023]
Abstract
Poor storability of recalcitrant seeds is due to their inability to tolerate low moisture content. Understanding the processes underlying their recalcitrance is a prerequisite to developing a maintenance strategy and prolonging their lifespan. Multiple studies have investigated the differences between orthodox (desiccation-tolerant) and recalcitrant (desiccation-sensitive) seeds. Information on epigenetic regulation, however, is lacking and thus limits our understanding of the processes defining the physiology of seeds. In the present comparative study, changes in the global levels of 5-methylcytosine (m5C) in orthodox and recalcitrant seeds of Acer platanoides L. and Acer pseudoplatanus L. were characterized during progressive stages of severe drying. Concomitant with their differential sensitivity to desiccation stress, we demonstrate variation in the response of embryonic axes and cotyledons to water deficit at the level of DNA methylation. Results indicate that desiccation-induced changes in m5C are both tissue- and seed category-specific and are highly correlated with recalcitrant seed viability. Moreover, we demonstrate that m5C global changes in response to desiccation are not retained in DNA isolated from seedlings, except in seedlings that are derived from strongly desiccated orthodox seeds (moisture content of 3.5%). Finally, the potential utilization of m5C status as a universal seed viability marker is discussed.
Collapse
Affiliation(s)
| | | | - Szymon Kotlarski
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| | - Dominik Tomaszewski
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| | - Tadeusz Tylkowski
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| | - Jan Barciszewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Pawel Chmielarz
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| | - Marcin Michalak
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| |
Collapse
|
32
|
Großkinsky DK, Syaifullah SJ, Roitsch T. Integration of multi-omics techniques and physiological phenotyping within a holistic phenomics approach to study senescence in model and crop plants. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:825-844. [PMID: 29444308 DOI: 10.1093/jxb/erx333] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The study of senescence in plants is complicated by diverse levels of temporal and spatial dynamics as well as the impact of external biotic and abiotic factors and crop plant management. Whereas the molecular mechanisms involved in developmentally regulated leaf senescence are very well understood, in particular in the annual model plant species Arabidopsis, senescence of other organs such as the flower, fruit, and root is much less studied as well as senescence in perennials such as trees. This review addresses the need for the integration of multi-omics techniques and physiological phenotyping into holistic phenomics approaches to dissect the complex phenomenon of senescence. That became feasible through major advances in the establishment of various, complementary 'omics' technologies. Such an interdisciplinary approach will also need to consider knowledge from the animal field, in particular in relation to novel regulators such as small, non-coding RNAs, epigenetic control and telomere length. Such a characterization of phenotypes via the acquisition of high-dimensional datasets within a systems biology approach will allow us to systematically characterize the various programmes governing senescence beyond leaf senescence in Arabidopsis and to elucidate the underlying molecular processes. Such a multi-omics approach is expected to also spur the application of results from model plants to agriculture and their verification for sustainable and environmentally friendly improvement of crop plant stress resilience and productivity and contribute to improvements based on postharvest physiology for the food industry and the benefit of its customers.
Collapse
Affiliation(s)
- Dominik K Großkinsky
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Højbakkegård Allé, Taastrup, Denmark
| | - Syahnada Jaya Syaifullah
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Højbakkegård Allé, Taastrup, Denmark
| | - Thomas Roitsch
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Højbakkegård Allé, Taastrup, Denmark
- Department of Adaptive Biotechnologies, Global Change Research Institute, CAS, v.v.i., Drásov, Czech Republic
| |
Collapse
|
33
|
Yolcu S, Li X, Li S, Kim YJ. Beyond the genetic code in leaf senescence. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:801-810. [PMID: 29253191 DOI: 10.1093/jxb/erx401] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 05/10/2017] [Indexed: 06/07/2023]
Abstract
Leaf senescence is not only genetically programmed but also induced by exogenous stress to ensure completion of the plant life cycle, successful reproduction and environmental adaptability. Genetic reprogramming is a major aspect of leaf senescence, and the senescence signaling that follows is controlled by a complex regulatory network. Recent studies suggest that the activity of transcription factors together with epigenetic mechanisms ensures the robustness of this network, with the latter including chromatin remodeling, DNA modification, and RNA-mediated control of transcription factors and other senescence-associated genes. In this review, we provide an overview of the relevant epigenetic mechanisms and summarize recent findings of epigenetic regulators of plant leaf senescence involved in DNA methylation and histone modification along with the functions of small RNAs in this process.
Collapse
Affiliation(s)
- Seher Yolcu
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, Republic of Korea
| | - Xiaojie Li
- Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Shengben Li
- Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yun Ju Kim
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, Republic of Korea
| |
Collapse
|
34
|
Ma K, Sun L, Cheng T, Pan H, Wang J, Zhang Q. Epigenetic Variance, Performing Cooperative Structure with Genetics, Is Associated with Leaf Shape Traits in Widely Distributed Populations of Ornamental Tree Prunus mume. FRONTIERS IN PLANT SCIENCE 2018; 9:41. [PMID: 29441078 PMCID: PMC5797549 DOI: 10.3389/fpls.2018.00041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/09/2018] [Indexed: 05/23/2023]
Abstract
Increasing evidence shows that epigenetics plays an important role in phenotypic variance. However, little is known about epigenetic variation in the important ornamental tree Prunus mume. We used amplified fragment length polymorphism (AFLP) and methylation-sensitive amplified polymorphism (MSAP) techniques, and association analysis and sequencing to investigate epigenetic variation and its relationships with genetic variance, environment factors, and traits. By performing leaf sampling, the relative total methylation level (29.80%) was detected in 96 accessions of P. mume. And the relative hemi-methylation level (15.77%) was higher than the relative full methylation level (14.03%). The epigenetic diversity (I∗ = 0.575, h∗ = 0.393) was higher than the genetic diversity (I = 0.484, h = 0.319). The cultivated population displayed greater epigenetic diversity than the wild populations in both southwest and southeast China. We found that epigenetic variance and genetic variance, and environmental factors performed cooperative structures, respectively. In particular, leaf length, width and area were positively correlated with relative full methylation level and total methylation level, indicating that the DNA methylation level played a role in trait variation. In total, 203 AFLP and 423 MSAP associated markers were detected and 68 of them were sequenced. Homologous analysis and functional prediction suggested that the candidate marker-linked genes were essential for leaf morphology development and metabolism, implying that these markers play critical roles in the establishment of leaf length, width, area, and ratio of length to width.
Collapse
Affiliation(s)
- Kaifeng Ma
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Lidan Sun
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Huitang Pan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| |
Collapse
|
35
|
Saini R, Singh AK, Dhanapal S, Saeed TH, Hyde GJ, Baskar R. Brief temperature stress during reproductive stages alters meiotic recombination and somatic mutation rates in the progeny of Arabidopsis. BMC PLANT BIOLOGY 2017; 17:103. [PMID: 28615006 PMCID: PMC5471674 DOI: 10.1186/s12870-017-1051-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 06/01/2017] [Indexed: 05/02/2023]
Abstract
BACKGROUND Plants exposed to environmental stresses draw upon many genetic and epigenetic strategies, with the former sometimes modulated by the latter. This can help the plant, and its immediate progeny, at least, to better endure the stress. Some evidence has led to proposals that (epi) genetic changes can be both selective and sustainably heritable, while other evidence suggests that changes are effectively stochastic, and important only because they induce genetic variation. One type of stress with an arguably high level of stochasticity in its effects is temperature stress. Studies of how heat and cold affect the rates of meiotic recombination (MR) and somatic mutations (SMs, which are potentially heritable in plants) report increases, decreases, or no effect. Collectively, they do not point to any consistent patterns. Some of this variability, however, might arise from the stress being applied for such an extended time, typically days or weeks. Here, we adopted a targeted approach by (1) limiting exposure to one hour; and (2) timing it to coincide with (a) gamete, and early gametophyte, development, a period of high stress sensitivity; and (b) a late stage of vegetative development. RESULTS For plants (Arabidopsis thaliana) otherwise grown at 22 °C, we measured the effects of a 1 h exposure to cold (12 °C) or heat (32 °C) on the rates of MR, and four types of SMs (frameshift mutations; intrachromosomal recombination; base substitutions; transpositions) in the F1 progeny. One parent (wild type) was stressed, the other (unstressed) carried a genetic event detector. When rates were compared to those in progeny of control (both parents unstressed) two patterns emerged. In the progeny of younger plants (stressed at 36 days; pollinated at 40 days) heat and cold either had no effect (on MR) or (for SMs) had effects that were rare and stochastic. In the progeny of older plants (stressed at 41 days; pollinated at 45 days), while effects were also infrequent, those that were seen followed a consistent pattern: rates of all five genetic events were lowest at 12 °C and highest at 32 °C, i.e. they varied in a "dose-response" manner. This pattern was strongest (or, in the case of MR, only apparent) in progeny whose stressed parent was female. CONCLUSION While the infrequency of effects suggests the need for cautious inference, the consistency of responses in the progeny of older plants, indicate that in some circumstances the level of stochasticity in inherited genetic responses to heat or cold stress can be context-dependent, possibly reflecting life-cycle stages in the parental generation that are variably stress sensitive.
Collapse
Affiliation(s)
- Ramswaroop Saini
- Department of Biotechnology, Indian Institute of Technology–Madras, Bhupat and Jyoti Mehta School of Biosciences, Chennai, 600 036 India
| | - Amit Kumar Singh
- Department of Biotechnology, Indian Institute of Technology–Madras, Bhupat and Jyoti Mehta School of Biosciences, Chennai, 600 036 India
| | - Shanmuhapreya Dhanapal
- Department of Biotechnology, Indian Institute of Technology–Madras, Bhupat and Jyoti Mehta School of Biosciences, Chennai, 600 036 India
| | - Thoufeequl Hakeem Saeed
- Department of Biotechnology, Indian Institute of Technology–Madras, Bhupat and Jyoti Mehta School of Biosciences, Chennai, 600 036 India
| | - Geoffrey J. Hyde
- Write about Research, 14 Randwick Street, Randwick, Sydney, 2031 Australia
| | - Ramamurthy Baskar
- Department of Biotechnology, Indian Institute of Technology–Madras, Bhupat and Jyoti Mehta School of Biosciences, Chennai, 600 036 India
| |
Collapse
|
36
|
Epigenetic Inheritance and Its Role in Evolutionary Biology: Re-Evaluation and New Perspectives. BIOLOGY 2016; 5:biology5020024. [PMID: 27231949 PMCID: PMC4929538 DOI: 10.3390/biology5020024] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/26/2016] [Accepted: 05/11/2016] [Indexed: 01/08/2023]
Abstract
Epigenetics increasingly occupies a pivotal position in our understanding of inheritance, natural selection and, perhaps, even evolution. A survey of the PubMed database, however, reveals that the great majority (>93%) of epigenetic papers have an intra-, rather than an inter-generational focus, primarily on mechanisms and disease. Approximately ~1% of epigenetic papers even mention the nexus of epigenetics, natural selection and evolution. Yet, when environments are dynamic (e.g., climate change effects), there may be an “epigenetic advantage” to phenotypic switching by epigenetic inheritance, rather than by gene mutation. An epigenetically-inherited trait can arise simultaneously in many individuals, as opposed to a single individual with a gene mutation. Moreover, a transient epigenetically-modified phenotype can be quickly “sunsetted”, with individuals reverting to the original phenotype. Thus, epigenetic phenotype switching is dynamic and temporary and can help bridge periods of environmental stress. Epigenetic inheritance likely contributes to evolution both directly and indirectly. While there is as yet incomplete evidence of direct permanent incorporation of a complex epigenetic phenotype into the genome, doubtlessly, the presence of epigenetic markers and the phenotypes they create (which may sort quite separately from the genotype within a population) will influence natural selection and, so, drive the collective genotype of a population.
Collapse
|
37
|
Wang W, Ma L, Becher H, Garcia S, Kovarikova A, Leitch IJ, Leitch AR, Kovarik A. Astonishing 35S rDNA diversity in the gymnosperm species Cycas revoluta Thunb. Chromosoma 2015; 125:683-99. [PMID: 26637996 PMCID: PMC5023732 DOI: 10.1007/s00412-015-0556-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 11/05/2015] [Indexed: 11/28/2022]
Abstract
In all eukaryotes, the highly repeated 35S ribosomal DNA (rDNA) sequences encoding 18S-5.8S-26S ribosomal RNA (rRNA) typically show high levels of intragenomic uniformity due to homogenisation processes, leading to concerted evolution of 35S rDNA repeats. Here, we compared 35S rDNA divergence in several seed plants using next generation sequencing and a range of molecular and cytogenetic approaches. Most species showed similar 35S rDNA homogeneity indicating concerted evolution. However, Cycas revoluta exhibits an extraordinary diversity of rDNA repeats (nucleotide sequence divergence of different copies averaging 12 %), influencing both the coding and non-coding rDNA regions nearly equally. In contrast, its rRNA transcriptome was highly homogeneous suggesting that only a minority of genes (<20 %) encode functional rRNA. The most common SNPs were C > T substitutions located in symmetrical CG and CHG contexts which were also highly methylated. Both functional genes and pseudogenes appear to cluster on chromosomes. The extraordinary high levels of 35S rDNA diversity in C. revoluta, and probably other species of cycads, indicate that the frequency of repeat homogenisation has been much lower in this lineage, compared with all other land plant lineages studied. This has led to the accumulation of methylation-driven mutations and pseudogenisation. Potentially, the reduced homology between paralogs prevented their elimination by homologous recombination, resulting in long-term retention of rDNA pseudogenes in the genome.
Collapse
Affiliation(s)
- Wencai Wang
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Lu Ma
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Hannes Becher
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Sònia Garcia
- Laboratori de Botànica-Unitat associada CSIC, Facultat de Farmàcia, Universitat de Barcelona, 08028, Barcelona, Catalonia, Spain
| | - Alena Kovarikova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, CZ-61265, Czech Republic
| | - Ilia J Leitch
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK
| | - Andrew R Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Ales Kovarik
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, CZ-61265, Czech Republic.
| |
Collapse
|