1
|
Kolupaev YE, Yemets A, Yastreb TO, Blume Y. Functional interaction of melatonin with gasotransmitters and ROS in plant adaptation to abiotic stresses. FRONTIERS IN PLANT SCIENCE 2024; 15:1505874. [PMID: 39726429 PMCID: PMC11669522 DOI: 10.3389/fpls.2024.1505874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024]
Abstract
Melatonin is considered a multifunctional stress metabolite and a novel plant hormone affecting seed germination, root architecture, circadian rhythms, leaf senescence, and fruit ripening. Melatonin functions related to plant adaptation to stress stimuli of various natures are considered especially important. One of the key components of melatonin's stress-protective action is its ability to neutralise reactive oxygen species (ROS) and reactive nitrogen species directly. However, many of its effects are related to its involvement in the signalling network of plant cells and its influence on the expression of a large number of genes important for adaptation to adverse factors. Insights into the functional relationships of melatonin with gasotransmitters (GT) - gaseous molecules performing signalling functions - are still emerging. This review has analysed and summarised the experimental data that testify to the participation of the main GTs - nitric oxide, hydrogen sulfide, and carbon monoxide - in the implementation of the protective effect of melatonin when plants are exposed to abiotic stimuli of various nature. In addition, modulation by melatonin of one of the most important components in the action of GTs and ROS - post-translational modifications of proteins and the influence of ROS and GTs on melatonin synthesis in plants under stress conditions and the specific physiological effects of exogenous melatonin and GTs have been reviewed. Finally, the prospects of the GTs' practical application to achieve synergistic stress-protective effects on plants have been considered.
Collapse
Affiliation(s)
- Yuriy E. Kolupaev
- Yuriev Plant Production Institute, National Academy of Agrarian Sciences of Ukraine, Kharkiv, Ukraine
| | - Alla Yemets
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Tetiana O. Yastreb
- Yuriev Plant Production Institute, National Academy of Agrarian Sciences of Ukraine, Kharkiv, Ukraine
| | - Yaroslav Blume
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
2
|
Jiang S, Lan Z, Zhang Y, Kang X, Zhao L, Wu X, Gao H. Mechanisms by Which Exogenous Substances Enhance Plant Salt Tolerance through the Modulation of Ion Membrane Transport and Reactive Oxygen Species Metabolism. Antioxidants (Basel) 2024; 13:1050. [PMID: 39334709 PMCID: PMC11428486 DOI: 10.3390/antiox13091050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/30/2024] Open
Abstract
Soil salinization is one of the major abiotic stresses affecting plant growth and development. Plant salt tolerance is controlled by complex metabolic pathways. Exploring effective methods and mechanisms to improve crop salt tolerance has been a key aspect of research on the utilization of saline soil. Exogenous substances, such as plant hormones and signal transduction substances, can regulate ion transmembrane transport and eliminate reactive oxygen species (ROS) to reduce salt stress damage by activating various metabolic processes. In this review, we summarize the mechanisms by which exogenous substances regulate ion transmembrane transport and ROS metabolism to improve plant salt tolerance. The molecular and physiological relationships among exogenous substances in maintaining the ion balance and enhancing ROS clearance are examined, and trends and research directions for the application of exogenous substances for improving plant salt tolerance are proposed.
Collapse
Affiliation(s)
- Shiqing Jiang
- Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Zuwen Lan
- Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Yinkang Zhang
- Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Xinna Kang
- Shijiazhuang Academy of Agriculture and Forestry Sciences, Shijiazhuang 050080, China
| | - Liran Zhao
- Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Xiaolei Wu
- Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Hongbo Gao
- Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
3
|
Zhou S, Wang W, Wang P, Ma H, Li W. The role of reactive oxygen species in regulation of the plasma membrane H+-ATPase activity in Masson pine (Pinus massoniana Lamb.) roots responding to acid stress. TREE PHYSIOLOGY 2024; 44:tpae083. [PMID: 38982738 DOI: 10.1093/treephys/tpae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/21/2024] [Accepted: 07/04/2024] [Indexed: 07/11/2024]
Abstract
To understand the role of reactive oxygen species (ROS) in regulation of the plasma membrane (PM) H+-ATPase in acid-stressed Masson pine roots, different acidity (pH 6.6 as the control, pH 5.6 and pH 4.6) of simulated acid rain (SAR) added with and without external chemicals (H2O2, enzyme inhibitors and ROS scavenger) was prepared. After 30 days of SAR exposure, the plant morphological phenotype attributes, levels of cellular ROS and lipid peroxidation, enzymatic activities of antioxidants, PM nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity and PM H+-ATPase activity in pine seedlings were measured. Compared with the control, the growth of pine seedlings exposed to SAR in the presence or absence of H2O2 was well-maintained, but the application of Na3VO4, 1,3-dimethyl-2-thiourea, N, N-dimethylthiourea (DMTU) and diphenyleneiodonium chloride (DPI) caused a substantial growth inhibition. In addition, SAR exposure, SAR with H2O2 treatment, and SAR with Na3VO4 treatment increased the cellular H2O2 content, O2- content and malondialdehyde (MDA) content, while the use of DMTU and DPI lead to relatively low levels. Similarly, the enzymatic activities of antioxidants, PM NADPH oxidase and PM H+-ATPase in acid stressed pine seedlings elevated with the increasing acidity. A significant stimulation of these enzymatic activities obtained from SAR with H2O2 treatment was observed, whereas which decreased obviously with the addition of Na3VO4, DMTU and DPI (P < 0.05). Moreover, a positive correlation was found between plant morphological attributes and the PM H+-ATPase activity (P < 0.05). Besides, the PM H+-ATPase activity positively correlated with the cellular ROS contents and the enzymatic activities of antioxidants and PM NADPH oxidase (P < 0.05). Therefore, the PM H+-ATPase is instrumental in the growth of pine seedlings resisting to acid stress by enhancing its activity. The process involves the signaling transduction of cellular ROS and coordination with PM NADPH oxidase.
Collapse
Affiliation(s)
- Sijie Zhou
- College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, P.R. China
- Cooperative College, Jiangsu Vocational College of Business, Nantong 226011, P.R. China
| | - Wenxin Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Ping Wang
- College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, P.R. China
| | - Huiyan Ma
- College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, P.R. China
| | - Wenhui Li
- College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, P.R. China
| |
Collapse
|
4
|
Khan S, Alvi AF, Fatma M, Al-Hashimi A, Sofo A, Khan NA. Relative effects of melatonin and hydrogen sulfide treatments in mitigating salt damage in wheat. FRONTIERS IN PLANT SCIENCE 2024; 15:1406092. [PMID: 39119490 PMCID: PMC11306083 DOI: 10.3389/fpls.2024.1406092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024]
Abstract
Soil salinity poses a significant threat to agricultural productivity, impacting the growth and yield of wheat (Triticum aestivum L.) plants. This study investigates the potential of melatonin (MT; 100 µM) and hydrogen sulfide (H2S; 200 µM sodium hydrosulfide, NaHS) to confer the tolerance of wheat plants to 100 mM NaCl. Salinity stress induced the outburst of reactive oxygen species (ROS) resulting in damage to the chloroplast structure, growth, photosynthesis, and yield. Application of either MT or NaHS augmented the activity of antioxidant enzymes, superoxide dismutase, ascorbate peroxidase, glutathione reductase, and reduced glutathione (GSH) levels, upregulated the expression of Na+ transport genes (SOS1, SOS2, SOS3, NHX1), resulting in mitigation of salinity stress. Thus, improved stomatal behavior, gas-exchange parameters, and maintenance of chloroplast structure resulted in enhanced activity of the Calvin cycle enzymes and overall enhancement of growth, photosynthetic, and yield performance of plants under salinity stress. The use of DL-propargylglycine (PAG, an inhibitor of hydrogen sulfide biosynthesis) and p-chlorophenyl alanine (p-CPA, an inhibitor of melatonin biosynthesis) to plants under salt stress showed the comparative necessity of MT and H2S in mitigation of salinity stress. In the presence of PAG, more pronounced detrimental effects were observed than in the presence of p-CPA, emphasizing that MT was involved in mitigating salinity through various potential pathways, one of which was through H2S.
Collapse
Affiliation(s)
- Sheen Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Ameena Fatima Alvi
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Mehar Fatma
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Abdulrahman Al-Hashimi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Adriano Sofo
- Department of European and Mediterranean Cultures, Architecture, Environment, Cultural Heritage (DiCEM), University of Basilicata, Matera, Italy
| | - Nafees A. Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
5
|
Abdoli M, Amerian MR, Heidari M, Ebrahimi A. Synergistic effects of melatonin and 24-epibrassinolide on chickpea water deficit tolerance. BMC PLANT BIOLOGY 2024; 24:671. [PMID: 39004702 PMCID: PMC11247889 DOI: 10.1186/s12870-024-05380-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Water deficiency stress reduces yield in grain legumes, primarily due to a decrease in the pods number. Melatonin (ML) and 24-epibrassinolide (EBL) are recognized for their hormone-like properties that improve plant tolerance to abiotic stresses. This study aimed to assess the impact of different concentrations of ML (0, 100, and 200 µM) and EBL (0, 3, and 6 µM) on the growth, biochemical, and physiological characteristics of chickpea plants under water-stressed conditions. RESULTS The study's findings indicated that under water-stressed conditions, a decrease in seed (30%) and pod numbers (31%), 100-seed weight (17%), total chlorophyll content (46%), stomatal conductance (33%), as well as an increase in H2O2 (62%), malondialdehyde content (40%), and electrolyte leakage index (40%), resulted in a 40% reduction in chickpea plants grain yield. Our findings confirmed that under water-stressed conditions, seed oil, seed oil yield, and seed protein yield dropped by 20%, 55%, and 36%, respectively. The concurrent exogenous application of ML and EBL significantly reduces oxidative stress, plasma membrane damage, and reactive oxygen species (ROS) content. This treatment also leads to increased yield and its components, higher pigment content, enhanced oil and protein yield, and improved enzymatic and non-enzymatic antioxidant activities such as catalase, superoxide dismutase, polyphenol oxidase, ascorbate peroxidase, guaiacol peroxidase, flavonoid, and carotenoid. Furthermore, it promotes the accumulation of osmoprotectants such as proline, total soluble protein, and sugars. CONCLUSIONS Our study found that ML and EBL act synergistically to regulate plant growth, photosynthesis, osmoprotectants accumulation, antioxidant defense systems, and maintain ROS homeostasis, thereby mitigating the adverse effects of water deficit conditions. ML and EBL are key regulatory network components in stressful conditions, with significant potential for future research and practical applications. The regulation metabolic pathways of ML and EBL in water-stressed remains unknown. As a result, future research should aim to elucidate the molecular mechanisms by employing genome editing, RNA sequencing, microarray, transcriptomic, proteomic, and metabolomic analyses to identify the mechanisms involved in plant responses to exogenous ML and EBL under water deficit conditions. Furthermore, the economical applications of synthetic ML and EBL could be an interesting strategy for improving plant tolerance.
Collapse
Affiliation(s)
- Matin Abdoli
- Agronomy and Plant Breeding Department, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran
| | - Mohamad Reza Amerian
- Agronomy and Plant Breeding Department, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran.
| | - Mostafa Heidari
- Agronomy and Plant Breeding Department, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran
| | - Amin Ebrahimi
- Agronomy and Plant Breeding Department, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran.
| |
Collapse
|
6
|
Khalofah A, Bamatov I, Zargar M. Interaction of melatonin and H 2S mitigates NaCl toxicity summer savory (Satureja hortensis L.) through Modulation of biosynthesis of secondary metabolites and physio-biochemical attributes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47757-47770. [PMID: 39007975 DOI: 10.1007/s11356-024-34356-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/07/2024] [Indexed: 07/16/2024]
Abstract
As versatile signaling molecules, melatonin (ML) and hydrogen sulfide (H2S) are well-known for their roles in response to abiotic stresses. However, their cross-talk to the regulation of biochemical defence responses and secondary metabolite synthesis during salinity has received less attention. Here, the role of ML-H2S interplay in inducing defensive responses and the biosynthesis of essential oil compounds in summer savoury plants under NaCl treatment was investigated. NaCl treatment, by increasing Na accumulation, disrupting nitrogen metabolism, and inducing oxidative stress, lowered photosynthetic pigments and savoury growth. NaCl treatment also resulted in a decrease in γ-terpinene (10.3%), α-terpinene (21.9%), and p-cymene (15.3%), while an increase in carvacrol (9.1%) was observed over the control. ML and ML + H2S increased the activity of antioxidant enzymes and the level of total phenols and flavonoids, resulting in decreased levels of hydrogen peroxide and superoxide anion and alleviation of oxidative damage under salinity. ML and ML + H2S increased K uptake and restored K/Na homeostasis, thus protecting the photosynthetic apparatus against NaCl-induced toxicity. ML and ML + H2S treatments also improved nitrate/ammonium homeostasis and stimulated nitrogen metabolism, leading to improved summer savoury adaptation to NaCl stress. ML and ML + H2S changed the composition of essential oils, leading to an increase in the monoterpene hydrocarbons and oxygenated monoterpenes in plants stressed with NaCl. However, the addition of an H2S scavenger, hypotaurine, inhibited the protective effects of the ML and ML + H2S treatments under NaCl stress, which could confirm the function of H2S as a signaling molecule in the downstream defence pathway induced by ML.
Collapse
Affiliation(s)
- Ahlam Khalofah
- Biology Department, Faculty of Science, King Khalid University, P.O.Box 9004, Abha, 61413, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Ibragim Bamatov
- All-Russian Research Institute of Reclaimed Lands. V. V. Dokuchaev Soil Science Institute, Moscow, Russia
| | - Meisam Zargar
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, Moscow, 117198, Russia.
| |
Collapse
|
7
|
Muhammad I, Khan A, Mustafa AEZMA, Elshikh MS, Shen W. Elucidating the modulatory effect of melatonin on enzyme activity and oxidative stress in wheat: a global meta-analysis. PHYSIOLOGIA PLANTARUM 2024; 176:e14294. [PMID: 38634335 DOI: 10.1111/ppl.14294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
In our comprehensive meta-analysis, we initially collected 177 publications focusing on the impact of melatonin on wheat. After meticulous screening, 40 published studies were selected, encompassing 558 observations for antioxidant enzymes, 312 for reactive oxygen species (ROS), and 92 for soluble biomolecules (soluble sugar and protein). This analysis revealed significant heterogeneity across studies (I2 > 99% for enzymes, ROS, and soluble biomolecules) and notable publication bias, indicating the complexity and variability in the research field. Melatonin application generally increased antioxidant enzyme activities [superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX)] in wheat, particularly under stress conditions, such as high temperature and heavy-metal exposure. Compared to control, melatonin application increased SOD, POD, CAT, and APX activities by 29.5, 16.96, 35.98, and 171.64%, respectively. Moreover, oxidative stress markers like hydrogen peroxide (H2O2), superoxide anion (O2), and malondialdehyde (MDA) decreased with melatonin by 23.73, 13.64, and 21.91%, respectively, suggesting a reduction in oxidative stress. The analysis also highlighted melatonin's role in improving carbohydrate metabolism and antioxidant defenses. Melatonin showed an overall increase of 12.77% in soluble sugar content, and 22.76% in glutathione peroxidase (GPX) activity compared to the control. However, the effects varied across different wheat varieties, environmental conditions, and application methods. Our study also uncovered complex relationships between antioxidant enzyme activities and H2O2 levels, indicating a nuanced regulatory role of melatonin in oxidative stress responses. Our meta-analysis demonstrates the significant role of melatonin in increasing wheat resilience to abiotic stressors, potentially through its regulatory impact on antioxidant defense systems and stress response.
Collapse
Affiliation(s)
- Ihsan Muhammad
- Guangxi Key Laboratory of Forest Ecology and Conservation, State Key Laboratory for Conservation and Utilization of Agro-bioresources, College of Forestry, Guangxi University, Nanning, Guangxi, China
| | - Ahmad Khan
- Department of Agronomy, The University of Agriculture, Peshawar, Pakistan
| | - Abd El-Zaher M A Mustafa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Weijun Shen
- Guangxi Key Laboratory of Forest Ecology and Conservation, State Key Laboratory for Conservation and Utilization of Agro-bioresources, College of Forestry, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
8
|
Liu Y, Xu J, Lu X, Huang M, Mao Y, Li C, Yu W, Li C. Carbon monoxide is involved in melatonin-enhanced drought resistance in tomato seedlings by enhancing chlorophyll synthesis pathway. BMC PLANT BIOLOGY 2024; 24:97. [PMID: 38331770 PMCID: PMC10854177 DOI: 10.1186/s12870-024-04793-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND Drought is thought to be a major abiotic stress that dramatically limits tomato growth and production. As signal molecule, melatonin (MT) and carbon monoxide (CO) can enhance plant stress resistance. However, the effect and underlying mechanism of CO involving MT-mediated drought resistance in seedling growth remains unknown. In this study, tomato (Solanum lycopersicum L. 'Micro-Tom') seedlings were used to investigate the interaction and mechanism of MT and CO in response to drought stress. RESULTS The growth of tomato seedlings was inhibited significantly under drought stress. Exogenous MT or CO mitigated the drought-induced impairment in a dose-dependent manner, with the greatest efficiency provided by 100 and 500 µM, respectively. But application of hemoglobin (Hb, a CO scavenger) restrained the positive effects of MT on the growth of tomato seedlings under drought stress. MT and CO treatment promoted chlorophyll a (Chl a) and chlorophyll a (Chl b) accumulations. Under drought stress, the intermediate products of chlorophyll biosynthesis such as protoporphyrin IX (Proto IX), Mg-protoporphyrin IX (Mg-Proto IX), potochlorophyllide (Pchlide) and heme were increased by MT or CO, but uroporphyrinogen III (Uro III) content decreased in MT-treated or CO-treated tomato seedlings. Meanwhile, MT or CO up-regulated the expression of chlorophyll and heme synthetic-related genes SlUROD, SlPPOX, SlMGMT, SlFECH, SlPOR, SlChlS, and SlCAO. However, the effects of MT on chlorophyll biosynthesis were almost reversed by Hb. CONCLUSION The results suggested that MT and CO can alleviate drought stress and facilitate the synthesis of Chl and heme in tomato seedlings. CO played an essential role in MT-enhanced drought resistance via facilitating chlorophyll biosynthesis pathway.
Collapse
Affiliation(s)
- Yunzhi Liu
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Junrong Xu
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Xuefang Lu
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Mengxiao Huang
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Yuanzhi Mao
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Chuanghao Li
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Wenjin Yu
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Changxia Li
- College of Agriculture, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
9
|
Khan MN, Siddiqui MH, AlSolami MA, Siddiqui ZH. Melatonin-regulated heat shock proteins and mitochondrial ATP synthase induce drought tolerance through sustaining ROS homeostasis in H 2S-dependent manner. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108231. [PMID: 38056039 DOI: 10.1016/j.plaphy.2023.108231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 10/17/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023]
Abstract
Drought is thought to be one of the major global hazards to crop production. Understanding the role of melatonin (Mel) during plant adaptive responses to drought stress (DS) was the aim of the current investigation. Involvement of hydrogen sulfide (H2S) was also explored in Mel-regulated mechanisms of plants' tolerance to DS. A perusal of the data shows that exposure of tomato plants to DS elevated the activity of mitochondrial enzymes viz. pyruvate dehydrogenase, malate dehydrogenase, and citrate synthase. Whereas the activity of ATP synthase and ATPase was downregulated under stress conditions. Under DS, an increase in the expression level of heat shock proteins (HSPs) and activation level of antioxidant defense system was observed as well. On the other hand, an increase in the activity of NADPH oxidase and glycolate oxidase was observed along with the commencement of oxidative stress and accompanying damage. Application of 30 μM Mel to drought-stressed plants enhanced H2S accumulation and further elevated the activity of mitochondrial enzymes, activation level of the defense system, and expression of HSP17.6 and HSP70. Positive effect of Mel on these attributes was reflected by reduced level of ROS and related damage. However, application of H2S biosynthesis inhibitor DL-propargylglycine reversed the effect of Mel on the said attributes and again the damaging effects of drought were observed even in presence of Mel. This observation led us to conclude that Mel-regulated defense mechanisms operate through endogenous H2S under DS conditions.
Collapse
Affiliation(s)
- M Nasir Khan
- Department of Biology, College of Haql, University of Tabuk, Tabuk, 71491, Saudi Arabia.
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mazen A AlSolami
- Department of Biology, College of Haql, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Zahid Hameed Siddiqui
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| |
Collapse
|
10
|
Khan MN, Siddiqui MH, Alhussaen KM, El-Alosey AR, AlOmrani MAM, Kalaji HM. Titanium dioxide nanoparticles require K + and hydrogen sulfide to regulate nitrogen and carbohydrate metabolism during adaptive response to drought and nickel stress in cucumber. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122008. [PMID: 37356795 DOI: 10.1016/j.envpol.2023.122008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/21/2023] [Accepted: 06/08/2023] [Indexed: 06/27/2023]
Abstract
Crop plants face severe yield losses worldwide owing to their exposure to multiple abiotic stresses. The study described here, was conducted to comprehend the response of cucumber seedlings to drought (induced by 15% w/v polyethylene glycol 8000; PEG) and nickel (Ni) stress in presence or absence of titanium dioxide nanoparticle (nTiO2). In addition, it was also investigated how nitrogen (N) and carbohydrate metabolism, as well as the defense system, are affected by endogenous potassium (K+) and hydrogen sulfide (H2S). Cucumber seedlings were subjected to Ni stress and drought, which led to oxidative stress and triggered the defense system. Under the stress, N and carbohydrate metabolism were differentially affected. Supplementation of the stressed seedlings with nTiO2 (15 mg L-1) enhanced the activity of antioxidant enzymes, ascorbate-glutathione (AsA-GSH) system and elevated N and carbohydrates metabolism. Application of nTiO2 also enhanced the accumulation of phytochelatins and activity of the enzymes of glyoxalase system that provided additional protection against the metal and toxic methylglyoxal. Osmotic stress brought on by PEG and Ni, was countered by the increase of proline and carbohydrates levels, which helped the seedlings keep their optimal level of hydration. Application nTiO2 improved the biosynthesis of H2S and K+ retention through regulating Cys biosynthesis and H+-ATPase activity, respectively. Observed outcomes lead to the conclusion that nTiO2 maintains redox homeostasis, and normal functioning of N and carbohydrates metabolism that resulted in the protection of cucumber seedlings against drought and Ni stress. Use of 20 mM tetraethylammonium chloride (K+- channel blocker), 500 μM sodium orthovanadate (PM H+-ATPase inhibitor), and 1 mM hypotaurine (H2S scavenger) demonstrate that endogenous K+ and H2S were crucial for the nTiO2-induced modulation of plants' adaptive responses to the imposed stress.
Collapse
Affiliation(s)
- M Nasir Khan
- Department of Biology, College of Haql, University of Tabuk, Tabuk, 71491, Saudi Arabia.
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Khalaf M Alhussaen
- Department of Biology, College of Haql, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Alaa Rafat El-Alosey
- Department of Biology, College of Haql, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | | | - Hazem M Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences SGGW, 159 Nowoursynowska 159, 02-776, Warsaw, Poland
| |
Collapse
|
11
|
Khan MN, Siddiqui MH, Mukherjee S, AlSolami MA, Alhussaen KM, AlZuaibr FM, Siddiqui ZH, Al-Amri AA, Alsubaie QD. Melatonin involves hydrogen sulfide in the regulation of H +-ATPase activity, nitrogen metabolism, and ascorbate-glutathione system under chromium toxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121173. [PMID: 36740162 DOI: 10.1016/j.envpol.2023.121173] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 01/18/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Contamination of soils with chromium (Cr) jeopardized agriculture production globally. The current study was planned with the aim to better comprehend how melatonin (Mel) and hydrogen sulfide (H2S) regulate antioxidant defense system, potassium (K) homeostasis, and nitrogen (N) metabolism in tomato seedlings under Cr toxicity. The data reveal that application of 30 μM Mel to the seedlings treated with 25 μM Cr has a positive effect on H2S metabolism that resulted in a considerable increase in H2S. Exogenous Mel improved phytochelatins content and H+-ATPase activity with an associated increase in K content as well. Use of tetraethylammonium chloride (K+-channel blocker) and sodium orthovanadate (H+-ATPase inhibitor) showed that Mel maintained K homeostasis through regulating H+-ATPase activity under Cr toxicity. Supplementation of the stressed seedlings with Mel substantially scavenged excess reactive oxygen species (ROS) that maintained ROS homeostasis. Reduced electrolyte leakage and lipid peroxidation were additional signs of Mel's ROS scavenging effects. In addition, Mel also maintained normal functioning of nitrogen (N) metabolism and ascorbate-glutathione (AsA-GSH) system. Improved level of N fulfilled its requirement for various enzymes that have induced resilience during Cr stress. Additionally, the AsA-GSH cycle's proper operation maintained redox equilibrium, which is necessary for the biological system to function normally. Conversely, 1 mM hypotaurine (H2S scavenger) abolished the Mel-effect and again Cr-induced impairment on the above-mentioned parameters was observed even in presence of Mel. Therefore, based on the observed findings, we concluded that Mel needs endogenous H2S to alleviate Cr-induced impairments in tomato seedlings.
Collapse
Affiliation(s)
- M Nasir Khan
- Department of Biology, College of Haql, University of Tabuk, Tabuk, 71491, Saudi Arabia.
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451 Saudi Arabia
| | - Soumya Mukherjee
- Department of Botany, Jangipur College, University of Kalyani, Jangipur, India
| | - Mazen A AlSolami
- Department of Biology, College of Haql, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Khalaf M Alhussaen
- Department of Biology, College of Haql, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Fahad M AlZuaibr
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Zahid H Siddiqui
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Abdullah A Al-Amri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451 Saudi Arabia
| | - Qasi D Alsubaie
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451 Saudi Arabia
| |
Collapse
|
12
|
Islam S, Shah SH, Corpas FJ, Alamri S, Mohammad F. Plant growth regulators mediated mitigation of salt-induced toxicities in mustard (Brassica juncea L.) by modifying the inherent defense system. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:1002-1018. [PMID: 36898213 DOI: 10.1016/j.plaphy.2023.02.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/08/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Salt stress is one of the common environmental threats to crop growth, development, and productivity. Plant growth regulators (PGRs) are natural messengers and are known to play pivotal roles at different stages of the growth and development of plants under various environmental conditions. Keeping in mind the importance of PGRs in stress management, a factorial randomized pot experiment was conducted to evaluate the efficiency of three selected PGRs, namely gibberellic acid (GA3), salicylic acid (SA) and triacontanol (Tria) for the amelioration of NaCl stress in mustard. Plants were subjected to four concentrations of NaCl (0, 50, 100 and 150 mM). Two foliar sprays of PGRs (GA3, SA and Tria), each at 5 μM were applied to the foliage of plants using a hand sprayer. The increasing levels of NaCl decreased growth, physio-biochemical, histochemical and yield parameters in a dose-dependent manner while increasing activities of antioxidant enzymes, contents of osmolytes and oxidative stress biomarkers linearly with increasing levels of NaCl. The spray of GA3, SA and Tria under stressed-free and stressed conditions improved the aforesaid attributes while decreasing the generation of stress biomarkers. Of sprayed PGRs, SA proved to be the best for alleviating the adverse effect of NaCl stress. Furthermore, it provides experimental data for its possible biotechnological applications in mustard crops exposed to high concentrations of salinity and possibly to other environmental stresses which have associated oxidative stress.
Collapse
Affiliation(s)
- Shaistul Islam
- Advanced Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| | - Sajad Hussain Shah
- Advanced Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Profesor Albareda 1, E-18008, Granada, Spain
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Firoz Mohammad
- Advanced Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
13
|
Sun C, Meng S, Wang B, Zhao S, Liu Y, Qi M, Wang Z, Yin Z, Li T. Exogenous melatonin enhances tomato heat resistance by regulating photosynthetic electron flux and maintaining ROS homeostasis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:197-209. [PMID: 36724704 DOI: 10.1016/j.plaphy.2023.01.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/26/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Heat stress reduces plant growth and reproduction and increases agricultural risks. As a natural compound, melatonin modulates broad aspects of the responses of plants to various biotic and abiotic stresses. However, regulation of the photosynthetic electron transfer, reactive oxygen species (ROS) homeostasis and the redox state of redox-sensitive proteins in the tolerance to heat stress induced by melatonin remain largely unknown. The oxygen evolution complex activity on the electron-donating side of photosystem II (PSII) is inhibited, and the electron transfer process from QA to QB on the electron-accepting side of PSII is inhibited. In this case, heat stress decreased the chlorophyll content, carbon assimilation rate, PSII activity, and the proportion of light absorbed by tomato seedlings during electron transfer. The ROS burst led to the breakdown of the PSII core protein. However, exogenous melatonin increased the net photosynthetic rate by 11.3% compared with heat stress, substantially reducing the restriction of photosynthetic systems induced by heat stress. Additionally, melatonin reduces the oxidative damage to PSII by balancing electron transfer on the donor, reactive center, and acceptor sides. Melatonin was used under heat stress to increase the activity of the antioxidant enzyme and preserve ROS equilibrium. In addition, redox proteomics also showed that melatonin controls the redox levels of proteins involved in photosynthesis, and stress and defense processes, which enhances the expression of oxidative genes. In conclusion, melatonin via controlling the photosynthetic electron transport and antioxidant, melatonin increased tomato heat stress tolerance and aided plant growth.
Collapse
Affiliation(s)
- Cong Sun
- Key Laboratory of Fruit Postharvest Biology, Shenyang, 110866, China; Key Laboratory of Protected Horticulture, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, 110866, China; College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China; Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Sida Meng
- Key Laboratory of Fruit Postharvest Biology, Shenyang, 110866, China; Key Laboratory of Protected Horticulture, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, 110866, China; College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Baofeng Wang
- Key Laboratory of Fruit Postharvest Biology, Shenyang, 110866, China; Key Laboratory of Protected Horticulture, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, 110866, China; College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Siting Zhao
- Key Laboratory of Fruit Postharvest Biology, Shenyang, 110866, China; Key Laboratory of Protected Horticulture, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, 110866, China; College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yulong Liu
- Mudanjiang Forest Ecosystem Positioning Observation and Research Station, Heilongjiang Ecological Institute, Harbin 150081, China
| | - Mingfang Qi
- Key Laboratory of Fruit Postharvest Biology, Shenyang, 110866, China; Key Laboratory of Protected Horticulture, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, 110866, China; College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhenqi Wang
- Guizhou Aerospace Intelligent Agriculture Co., Ltd., Guizhou, 550000, China
| | - Zepeng Yin
- Key Laboratory of Fruit Postharvest Biology, Shenyang, 110866, China; Key Laboratory of Protected Horticulture, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, 110866, China; College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Tianlai Li
- Key Laboratory of Fruit Postharvest Biology, Shenyang, 110866, China; Key Laboratory of Protected Horticulture, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, 110866, China; College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
14
|
Hilal B, Khan TA, Fariduddin Q. Recent advances and mechanistic interactions of hydrogen sulfide with plant growth regulators in relation to abiotic stress tolerance in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:1065-1083. [PMID: 36921557 DOI: 10.1016/j.plaphy.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/20/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Adverse environmental constraints such as drought, heat, cold, salinity, and heavy metal toxicity are the primary concerns of the agricultural industry across the globe, as these stresses negatively affect yield and quality of crop production and therefore can be a major threat to world food security. Recently, it has been demonstrated that hydrogen sulfide (H2S), which is well-known as a gasotransmitter in animals, also plays a potent role in various growth and developmental processes in plants. H2S, as a potent signaling molecule, is involved in several plant processes such as in the regulation of stomatal pore movements, seed germination, photosynthesis and plant adaptation to environmental stress through gene regulation, post-translation modification of proteins and redox homeostasis. Moreover, a number of experimental studies have revealed that H2S could improve the adaptation capabilities of plants against diverse environmental constraints by mitigating the toxic and damaging effects triggered by stressful environments. An attempt has been made to uncover recent development in the biosynthetic and metabolic pathways of H2S and various physiological functions modulated in plants, H2S donors, their functional mechanism, and application in plants. Specifically, our focus has been on how H2S is involved in combating the destructive effects of abiotic stresses and its role in persulfidation. Furthermore, we have comprehensively elucidated the crosstalk of H2S with plant growth regulators.
Collapse
Affiliation(s)
- Bisma Hilal
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Tanveer Ahmad Khan
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Qazi Fariduddin
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
15
|
Shah AA, Ahmed S, Malik A, Naheed K, Hussain S, Yasin NA, Javad S, Siddiqui MH, Ali HM, Ali A. Potassium silicate and zinc oxide nanoparticles modulate antioxidant system, membranous H +-ATPase and nitric oxide content in faba bean ( Vicia faba) seedlings exposed to arsenic toxicity. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:146-159. [PMID: 35272762 DOI: 10.1071/fp21301] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Current research focused on the potential role of zinc oxide nanoparticles (ZnONPs) and potassium (K+ ) in mitigation of arsenic (As) toxicity in Vicia faba L. seedlings. Faba bean seedlings were grown for 30days in potted soil. As stress curtailed root and shoot length, chlorophyll (Chl) content and net photosynthetic rate in V. faba seedlings. However, ZnONPs and K+ curtailed As stress in faba bean seedling through enhanced activity of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and peroxidase (POD) enzyme. Furthermore, ZnONPs and K+ significantly enhanced cysteine (Cys) content and serine acetyletransferase (SAT) activity in faba bean seedling exposed to As-toxificated soil. Application of ZnONPs and K+ curtailed superoxide ionic content and hydrogen peroxide (H2 O2 ) accumulation in V. faba seedlings exposed to As-polluted soil. Nitric oxide (NO) content also increased in faba bean seedlings treated with ZnONPs and K+ in normal and As-polluted soil. As stress alleviation was credited to reduce As uptake in faba bean seedlings treated with synergistic application of ZnONPs and K+ . It is proposed that K+ interaction with nanoparticles can be exploited at molecular level to understand the mechanisms involved in abiotic stress tolerance.
Collapse
Affiliation(s)
- Anis Ali Shah
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Lahore, Pakistan
| | - Shakil Ahmed
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Aqsa Malik
- Department of Botany, University of Narowal, Narowal, Pakistan
| | - Kishwar Naheed
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Saber Hussain
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Nasim Ahmad Yasin
- Senior Superintendent Garden, RO-II Office, University of the Punjab, Lahore, Pakistan
| | - Sumera Javad
- Department of Botany, Lahore College Women University, Lahore, Pakistan
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hayssam M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Aamir Ali
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| |
Collapse
|
16
|
Aghdam MS, Mukherjee S, Flores FB, Arnao MB, Luo Z, Corpas FJ. Functions of Melatonin during Postharvest of Horticultural Crops. PLANT & CELL PHYSIOLOGY 2023; 63:1764-1786. [PMID: 34910215 DOI: 10.1093/pcp/pcab175] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/11/2021] [Accepted: 12/14/2021] [Indexed: 05/14/2023]
Abstract
Melatonin, a tryptophan-derived molecule, is endogenously generated in animal, plant, fungal and prokaryotic cells. Given its antioxidant properties, it is involved in a myriad of signaling functions associated with various aspects of plant growth and development. In higher plants, melatonin (Mel) interacts with plant regulators such as phytohormones, as well as reactive oxygen and nitrogen species including hydrogen peroxide (H2O2), nitric oxide (NO) and hydrogen sulfide (H2S). It shows great potential as a biotechnological tool to alleviate biotic and abiotic stress, to delay senescence and to conserve the sensory and nutritional quality of postharvest horticultural products which are of considerable economic importance worldwide. This review provides a comprehensive overview of the biochemistry of Mel, whose endogenous induction and exogenous application can play an important biotechnological role in enhancing the marketability and hence earnings from postharvest horticultural crops.
Collapse
Affiliation(s)
- Morteza Soleimani Aghdam
- Department of Horticultural Science, Imam Khomeini International University, Qazvin 34148-96818, Iran
| | - Soumya Mukherjee
- Department of Botany, Jangipur College, University of Kalyani, West Bengal 742213, India
| | - Francisco Borja Flores
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Espinardo-Murcia 30100, Spain
| | - Marino B Arnao
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, Murcia 30100, Spain
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Francisco J Corpas
- Department of Biochemistry, Cell and Molecular Biology of Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín, CSIC, C/Profesor Albareda, 1, Granada 18008, Spain
| |
Collapse
|
17
|
Free Radicals Mediated Redox Signaling in Plant Stress Tolerance. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010204. [PMID: 36676153 PMCID: PMC9864231 DOI: 10.3390/life13010204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
Abiotic and biotic stresses negatively affect plant cellular and biological processes, limiting their growth and productivity. Plants respond to these environmental cues and biotrophic attackers by activating intricate metabolic-molecular signaling networks precisely and coordinately. One of the initial signaling networks activated is involved in the generation of reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species (RSS). Recent research has exemplified that ROS below the threshold level can stimulate plant survival by modulating redox homeostasis and regulating various genes of the stress defense pathway. In contrast, RNS regulates the stress tolerance potential of crop plants by modulating post-translation modification processes, such as S-nitrosation and tyrosine nitration, improving the stability of protein and DNA and activating the expression of downstream stress-responsive genes. RSS has recently emerged as a new warrior in combating plant stress-induced oxidative damage by modulating various physiological and stress-related processes. Several recent findings have corroborated the existence of intertwined signaling of ROS/RNS/RSS, playing a substantial role in crop stress management. However, the molecular mechanisms underlying their remarkable effect are still unknown. This review comprehensively describes recent ROS/RNS/RSS biology advancements and how they can modulate cell signaling and gene regulation for abiotic stress management in crop plants. Further, the review summarizes the latest information on how these ROS/RNS/RSS signaling interacts with other plant growth regulators and modulates essential plant functions, particularly photosynthesis, cell growth, and apoptosis.
Collapse
|
18
|
Pan Y, Xu X, Li L, Sun Q, Wang Q, Huang H, Tong Z, Zhang J. Melatonin-mediated development and abiotic stress tolerance in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1100827. [PMID: 36778689 PMCID: PMC9909564 DOI: 10.3389/fpls.2023.1100827] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/02/2023] [Indexed: 05/13/2023]
Abstract
Melatonin is a multifunctional molecule that has been widely discovered in most plants. An increasing number of studies have shown that melatonin plays essential roles in plant growth and stress tolerance. It has been extensively applied to alleviate the harmful effects of abiotic stresses. In view of its role in regulating aspects of plant growth and development, we ponder and summarize the scientific discoveries about seed germination, root development, flowering, fruit maturation, and senescence. Under abiotic and biotic stresses, melatonin brings together many pathways to increase access to treatments for the symptoms of plants and to counteract the negative effects. It has the capacity to tackle regulation of the redox, plant hormone networks, and endogenous melatonin. Furthermore, the expression levels of several genes and the contents of diverse secondary metabolites, such as polyphenols, terpenoids, and alkaloids, were significantly altered. In this review, we intend to examine the actions of melatonin in plants from a broader perspective, explore the range of its physiological functions, and analyze the relationship between melatonin and other metabolites and metabolic pathways.
Collapse
Affiliation(s)
- Yue Pan
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Xiaoshan Xu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Lei Li
- Hunan Academy of Forestry, Changsha, Hunan, China
| | - Qinglin Sun
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Qiguang Wang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Huahong Huang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Zaikang Tong
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, China
- *Correspondence: Zaikang Tong, ; Junhong Zhang,
| | - Junhong Zhang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, China
- *Correspondence: Zaikang Tong, ; Junhong Zhang,
| |
Collapse
|
19
|
Sati H, Khandelwal A, Pareek S. Effect of exogenous melatonin in fruit postharvest, crosstalk with hormones, and defense mechanism for oxidative stress management. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Hansika Sati
- Department of Agriculture and Environmental Sciences National Institute of Food Technology Entrepreneurship and Management Kundli Sonipat India
| | - Aparna Khandelwal
- Department of Biochemistry Pandit Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences Rohtak Haryana India
| | - Sunil Pareek
- Department of Agriculture and Environmental Sciences National Institute of Food Technology Entrepreneurship and Management Kundli Sonipat India
| |
Collapse
|
20
|
Huang X, Tanveer M, Min Y, Shabala S. Melatonin as a regulator of plant ionic homeostasis: implications for abiotic stress tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5886-5902. [PMID: 35640481 DOI: 10.1093/jxb/erac224] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Melatonin is a highly conserved and ubiquitous molecule that operates upstream of a broad array of receptors in animal systems. Since melatonin was discovered in plants in 1995, hundreds of papers have been published revealing its role in plant growth, development, and adaptive responses to the environment. This paper summarizes the current state of knowledge of melatonin's involvement in regulating plant ion homeostasis and abiotic stress tolerance. The major topics covered here are: (i) melatonin's control of H+-ATPase activity and its implication for plant adaptive responses to various abiotic stresses; (ii) regulation of the reactive oxygen species (ROS)-Ca2+ hub by melatonin and its role in stress signaling; and (iii) melatonin's regulation of ionic homeostasis via hormonal cross-talk. We also show that the properties of the melatonin molecule allow its direct scavenging of ROS, thus preventing negative effects of ROS-induced activation of ion channels. The above 'desensitization' may play a critical role in preventing stress-induced K+ loss from the cytosol as well as maintaining basic levels of cytosolic Ca2+ required for optimal cell operation. Future studies should focus on revealing the molecular identity of transporters that could be directly regulated by melatonin and providing a bioinformatic analysis of evolutionary aspects of melatonin sensing and signaling.
Collapse
Affiliation(s)
- Xin Huang
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, Guangdong, China
| | - Mohsin Tanveer
- Tasmanian Institute of Agriculture, University of Tasmania, Tas, Hobart, Australia
| | - Yu Min
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, Guangdong, China
| | - Sergey Shabala
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, Guangdong, China
- Tasmanian Institute of Agriculture, University of Tasmania, Tas, Hobart, Australia
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
21
|
Shamloo-Dashtpagerdi R, Lindlöf A, Tahmasebi S. Evidence that miR168a contributes to salinity tolerance of Brassica rapa L. via mediating melatonin biosynthesis. PHYSIOLOGIA PLANTARUM 2022; 174:e13790. [PMID: 36169653 DOI: 10.1111/ppl.13790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Melatonin is a master regulator of diverse biological processes, including plant's abiotic stress responses and tolerance. Despite the extensive information on the role of melatonin in response to abiotic stress, how plants regulate endogenous melatonin content under stressful conditions remains largely unknown. In this study, we computationally mined Expressed Sequence Tag (EST) libraries of salinity-exposed Chinese cabbage (Brassica rapa) to identify the most reliable differentially expressed miRNA and its target gene(s). In light of these analyses, we found that miR168a potentially targets a key melatonin biosynthesis gene, namely O-METHYLTRANSFERASE 1 (OMT1). Accordingly, molecular and physiochemical evaluations were performed in a separate salinity experiment using contrasting B. rapa genotypes. Then, the association between B. rapa salinity tolerance and changes in measured molecular and physiochemical characteristics was determined. Results indicated that the expression profiles of miR168a and OMT1 significantly differed between B. rapa genotypes. Moreover, the expression profiles of miR168a and OMT1 significantly correlated with more melatonin content, robust antioxidant activities, and better ion homeostasis during salinity stress. Our results suggest that miR168a plausibly mediates melatonin biosynthesis, mainly through the OMT1 gene, under salinity conditions and thereby contributes to the salinity tolerance of B. rapa. To our knowledge, this is the first report on the role of miR168a and OMT1 in B. rapa salinity response.
Collapse
Affiliation(s)
| | | | - Sirous Tahmasebi
- Seed and Plant Improvement Research Department, Fars Agricultural and Natural Resources Research and Education Center, AREEO, Shiraz, Iran
| |
Collapse
|
22
|
Altaf MA, Shahid R, Altaf MM, Kumar R, Naz S, Kumar A, Alam P, Tiwari RK, Lal MK, Ahmad P. Melatonin: First-line soldier in tomato under abiotic stress current and future perspective. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 185:188-197. [PMID: 35700585 DOI: 10.1016/j.plaphy.2022.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 05/13/2022] [Accepted: 06/02/2022] [Indexed: 05/26/2023]
Abstract
Melatonin is a natural, multifunctional, nontoxic, regulatory, and ubiquitous biomolecule, having low molecular weight and pleiotropic effects in the plant kingdom. It is a recently discovered plant master regulator which has a crucial role under abiotic stress conditions (salinity, drought, heat, cold, alkalinity, acid rain, ozone, and metals stress). In the solanaceous family, the tomato is highly sensitive to abiotic stresses that affect its growth and development, ultimately hampering production and productivity. Melatonin acts as a strong antioxidant, bio-stimulator, and growth regulator, facilitating photosynthesis, delaying leaf senescence, and increasing the antioxidant enzymes system through direct scavenging of reactive oxygen species (ROS) under abiotic stresses. In addition, melatonin also boosts morphological traits such as vegetative growth, leaf photosynthesis, root architecture system, mineral nutrient elements, and antioxidant activities in tomato plants, confirming their tolerances against salinity, drought, heat, cold, alkalinity, acid rain, chemical, pathogen, and metals stress. In this review, an attempt has been made to summarize the potential role of melatonin for tomato plant endurance towards abiotic stresses, along with the known relationship between the two.
Collapse
Affiliation(s)
| | - Rabia Shahid
- School of Management, Hainan University, Haikou, 570228, China
| | | | - Ravinder Kumar
- ICAR-Central Potato Research Institute, Shimla, 171001, HP, India
| | - Safina Naz
- Department of Horticulture, Bahauddin Zakariya University, Multan, Pakistan
| | - Awadhesh Kumar
- ICAR-National Rice Research Institute, Cuttack, 753006, Odisha, India
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Alkharj, 11942, Saudi Arabia
| | - Rahul Kumar Tiwari
- ICAR-Central Potato Research Institute, Shimla, 171001, HP, India; ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Milan Kumar Lal
- ICAR-Central Potato Research Institute, Shimla, 171001, HP, India; ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Parvaiz Ahmad
- Department of Botany, GDC, Pulwama, 192301, Jammu and Kashmir, India.
| |
Collapse
|
23
|
Xie Q, Zhang Y, Cheng Y, Tian Y, Luo J, Hu Z, Chen G. The role of melatonin in tomato stress response, growth and development. PLANT CELL REPORTS 2022; 41:1631-1650. [PMID: 35575808 DOI: 10.1007/s00299-022-02876-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/19/2022] [Accepted: 04/20/2022] [Indexed: 05/27/2023]
Abstract
Melatonin has attracted widespread attention after its discovery in higher plants. Tomato is a key model economic crop for studying fleshy fruits. Many studies have shown that melatonin plays important role in plant stress resistance, growth, and development. However, the research progress on the role of melatonin and related mechanisms in tomatoes have not been systematically summarized. This paper summarizes the detection methods and anabolism of melatonin in tomatoes, including (1) the role of melatonin in combating abiotic stresses, e.g., drought, heavy metals, pH, temperature, salt, salt and heat, cold and drought, peroxidation hydrogen and carbendazim, etc., (2) the role of melatonin in combating biotic stresses, such as tobacco mosaic virus and foodborne bacillus, and (3) the role of melatonin in tomato growth and development, such as fruit ripening, postharvest shelf life, leaf senescence and root development. In addition, the future research directions of melatonin in tomatoes are explored in combination with the role of melatonin in other plants. This review can provide a theoretical basis for enhancing the scientific understanding of the role of melatonin in tomatoes and the improved breeding of fruit crops.
Collapse
Affiliation(s)
| | - Yu Zhang
- Chongqing University, Chongqing, China
| | | | | | | | - Zongli Hu
- Chongqing University, Chongqing, China
| | | |
Collapse
|
24
|
Martínez-Lorente SE, Pardo-Hernández M, Martí-Guillén JM, López-Delacalle M, Rivero RM. Interaction between Melatonin and NO: Action Mechanisms, Main Targets, and Putative Roles of the Emerging Molecule NOmela. Int J Mol Sci 2022; 23:ijms23126646. [PMID: 35743084 PMCID: PMC9223470 DOI: 10.3390/ijms23126646] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 12/15/2022] Open
Abstract
Melatonin (MEL), a ubiquitous indolamine molecule, has gained interest in the last few decades due to its regulatory role in plant metabolism. Likewise, nitric oxide (NO), a gasotransmitter, can also affect plant molecular pathways due to its function as a signaling molecule. Both MEL and NO can interact at multiple levels under abiotic stress, starting with their own biosynthetic pathways and inducing a particular signaling response in plants. Moreover, their interaction can result in the formation of NOmela, a very recently discovered nitrosated form of MEL with promising roles in plant physiology. This review summarizes the role of NO and MEL molecules during plant development and fruit ripening, as well as their interactions. Due to the impact of climate-change-related abiotic stresses on agriculture, this review also focuses on the role of these molecules in mediating abiotic stress tolerance and the main mechanisms by which they operate, from the upregulation of the entire antioxidant defense system to the post-translational modifications (PTMs) of important molecules. Their individual interaction and crosstalk with phytohormones and H2S are also discussed. Finally, we introduce and summarize the little information available about NOmela, an emerging and still very unknown molecule, but that seems to have a stronger potential than MEL and NO separately in mediating plant stress response.
Collapse
Affiliation(s)
- Sara E. Martínez-Lorente
- Center of Edaphology and Applied Biology of Segura CEBAS-CSIC, Campus Universitario Espinardo, 30100 Murcia, Spain; (S.E.M.-L.); (M.P.-H.); (J.M.M.-G.); (M.L.-D.)
| | - Miriam Pardo-Hernández
- Center of Edaphology and Applied Biology of Segura CEBAS-CSIC, Campus Universitario Espinardo, 30100 Murcia, Spain; (S.E.M.-L.); (M.P.-H.); (J.M.M.-G.); (M.L.-D.)
| | - José M. Martí-Guillén
- Center of Edaphology and Applied Biology of Segura CEBAS-CSIC, Campus Universitario Espinardo, 30100 Murcia, Spain; (S.E.M.-L.); (M.P.-H.); (J.M.M.-G.); (M.L.-D.)
- Faculty of Biology, Department of Plant Physiology, University of Murcia, Campus Universitario Espinardo, 30100 Murcia, Spain
| | - María López-Delacalle
- Center of Edaphology and Applied Biology of Segura CEBAS-CSIC, Campus Universitario Espinardo, 30100 Murcia, Spain; (S.E.M.-L.); (M.P.-H.); (J.M.M.-G.); (M.L.-D.)
| | - Rosa M. Rivero
- Center of Edaphology and Applied Biology of Segura CEBAS-CSIC, Campus Universitario Espinardo, 30100 Murcia, Spain; (S.E.M.-L.); (M.P.-H.); (J.M.M.-G.); (M.L.-D.)
- Correspondence: ; Tel.: +34-968396200 (ext. 445379)
| |
Collapse
|
25
|
Mfarrej MFB, Wang X, Hamzah Saleem M, Hussain I, Rasheed R, Arslan Ashraf M, Iqbal M, Sohaib Chattha M, Nasser Alyemeni M. Hydrogen sulphide and nitric oxide mitigate the negative impacts of waterlogging stress on wheat (Triticum aestivum L.). PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:670-683. [PMID: 34783146 DOI: 10.1111/plb.13358] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Nitric oxide (NO) and hydrogen sulphide (H2 S) are important gaseous signalling molecules that regulate key physiochemical mechanisms of plants under environmental stresses. A number of attempts have been made to improve waterlogging tolerance in plants, but with limited success. Having said that, NO and H2 S are vital signalling molecules, but their role in mitigating waterlogging effects on crop plants is not well established. We investigated the efficacy of exogenous NO and H2 S to alleviate waterlogging effects in two wheat cultivars (Galaxy-2013 and FSD-2008). Waterlogging produced a noticeable reduction in plant growth, yield, chlorophyll, soluble sugars and free amino acids. Besides, waterlogging induced severe oxidative damage seen as higher cellular TBARS and H2 O2 content. Antioxidant enzyme activity increased together with a notable rise in Fe2+ and Mn2+ content. Proline content was higher in waterlogged plants compared with non-waterlogged plants. In contrast, waterlogging caused a substantial decline in endogenous levels of essential nutrients (K+ , Ca2+ and Mg2+ ). Waterlogged conditions led to Fe2+ and Mn2+ toxicity due to rapid reduction of Fe3+ and Mn3+ in the soil. Exogenous NO and H2 S significantly protected plants from waterlogging effects by enhancing the oxidative defence and regulating nutritional status. Besides, the protective effects of exogenous NO were more prominent as compared with effects of H2 S. Further, we did not study the effect of H2 S and NO on photosynthetic attributes and expression of stress-related genes. Therefore, future studies should examine the effects of H2 S and NO on wheat physiology and gene expression under waterlogging.
Collapse
Affiliation(s)
- M F B Mfarrej
- Department of Life and Environmental Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi, United Arab Emirates
| | - X Wang
- College of Life Sciences, Yan'an University, Yan'an, China
| | - M Hamzah Saleem
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - I Hussain
- Department of Botany, Government College University Faisalabad and Pakistan, Faisalabad, Pakistan
| | - R Rasheed
- Department of Botany, Government College University Faisalabad and Pakistan, Faisalabad, Pakistan
| | - M Arslan Ashraf
- Department of Botany, Government College University Faisalabad and Pakistan, Faisalabad, Pakistan
| | - M Iqbal
- Department of Botany, Government College University Faisalabad and Pakistan, Faisalabad, Pakistan
| | - M Sohaib Chattha
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, USA
| | - M Nasser Alyemeni
- Department of Botany and Microbiology, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
26
|
Gu Q, Xiao Q, Chen Z, Han Y. Crosstalk between Melatonin and Reactive Oxygen Species in Plant Abiotic Stress Responses: An Update. Int J Mol Sci 2022; 23:ijms23105666. [PMID: 35628474 PMCID: PMC9143051 DOI: 10.3390/ijms23105666] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023] Open
Abstract
Melatonin acts as a multifunctional molecule that takes part in various physiological processes, especially in the protection against abiotic stresses, such as salinity, drought, heat, cold, heavy metals, etc. These stresses typically elicit reactive oxygen species (ROS) accumulation. Excessive ROS induce oxidative stress and decrease crop growth and productivity. Significant advances in melatonin initiate a complex antioxidant system that modulates ROS homeostasis in plants. Numerous evidences further reveal that melatonin often cooperates with other signaling molecules, such as ROS, nitric oxide (NO), and hydrogen sulfide (H2S). The interaction among melatonin, NO, H2S, and ROS orchestrates the responses to abiotic stresses via signaling networks, thus conferring the plant tolerance. In this review, we summarize the roles of melatonin in establishing redox homeostasis through the antioxidant system and the current progress of complex interactions among melatonin, NO, H2S, and ROS in higher plant responses to abiotic stresses. We further highlight the vital role of respiratory burst oxidase homologs (RBOHs) during these processes. The complicated integration that occurs between ROS and melatonin in plants is also discussed.
Collapse
Affiliation(s)
- Quan Gu
- School of Biological Food and Environment, Hefei University, Hefei 230601, China; (Q.G.); (Q.X.)
| | - Qingqing Xiao
- School of Biological Food and Environment, Hefei University, Hefei 230601, China; (Q.G.); (Q.X.)
| | - Ziping Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- Correspondence: (Z.C.); (Y.H.)
| | - Yi Han
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
- Correspondence: (Z.C.); (Y.H.)
| |
Collapse
|
27
|
Srivastava V, Chowdhary AA, Verma PK, Mehrotra S, Mishra S. Hydrogen sulfide-mediated mitigation and its integrated signaling crosstalk during salinity stress. PHYSIOLOGIA PLANTARUM 2022; 174:e13633. [PMID: 35060139 DOI: 10.1111/ppl.13633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/16/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Environmental stresses negatively affect plant development and significantly influence global agricultural productivity. The growth suppression due to soil salinity involves osmotic stress, which is accompanied by ion toxicity, nutritional imbalance, and oxidative stress. The amelioration of salinity stress is one of the fundamental goals to be achieved to ensure food security and better meet the issues related to global hunger. The application of exogenous chemicals is the imperative and efficient choice to alleviate stress in the agricultural field. Among them, hydrogen sulfide (H2 S, a gasotransmitter) is known for its efficient role in stress mitigation, including salinity stress, along with other biological features related to growth and development in plants. H2 S plays a role in improving photosynthesis and ROS homeostasis, and interacts with other signaling components in a cascade fashion. The current review gives a comprehensive view of the participation of H2 S in salinity stress alleviation in plants. Further, its crosstalk with other stress ameliorating signaling component or supplement (e.g., NO, H2 O2 , melatonin) is also covered and discussed. Finally, we discuss the possible prospects to meet with success in agricultural fields.
Collapse
Affiliation(s)
- Vikas Srivastava
- Department of Botany, School of Life Sciences, Central University of Jammu, Samba, Jammu and Kashmir (UT), India
| | - Aksar Ali Chowdhary
- Department of Botany, School of Life Sciences, Central University of Jammu, Samba, Jammu and Kashmir (UT), India
| | - Praveen Kumar Verma
- Plant Immunity Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Shakti Mehrotra
- Department of Biotechnology, Institute of Engineering and Technology, Lucknow, Uttar Pradesh, India
| | - Sonal Mishra
- Department of Botany, School of Life Sciences, Central University of Jammu, Samba, Jammu and Kashmir (UT), India
| |
Collapse
|
28
|
Melatonin Confers Plant Cadmium Tolerance: An Update. Int J Mol Sci 2021; 22:ijms222111704. [PMID: 34769134 PMCID: PMC8583868 DOI: 10.3390/ijms222111704] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023] Open
Abstract
Cadmium (Cd) is one of the most injurious heavy metals, affecting plant growth and development. Melatonin (N-acetyl-5-methoxytryptamine) was discovered in plants in 1995, and it is since known to act as a multifunctional molecule to alleviate abiotic and biotic stresses, especially Cd stress. Endogenously triggered or exogenously applied melatonin re-establishes the redox homeostasis by the improvement of the antioxidant defense system. It can also affect the Cd transportation and sequestration by regulating the transcripts of genes related to the major metal transport system, as well as the increase in glutathione (GSH) and phytochelatins (PCs). Melatonin activates several downstream signals, such as nitric oxide (NO), hydrogen peroxide (H2O2), and salicylic acid (SA), which are required for plant Cd tolerance. Similar to the physiological functions of NO, hydrogen sulfide (H2S) is also involved in the abiotic stress-related processes in plants. Moreover, exogenous melatonin induces H2S generation in plants under salinity or heat stress. However, the involvement of H2S action in melatonin-induced Cd tolerance is still largely unknown. In this review, we summarize the progresses in various physiological and molecular mechanisms regulated by melatonin in plants under Cd stress. The complex interactions between melatonin and H2S in acquisition of Cd stress tolerance are also discussed.
Collapse
|
29
|
Jahan MS, Guo S, Sun J, Shu S, Wang Y, El-Yazied AA, Alabdallah NM, Hikal M, Mohamed MHM, Ibrahim MFM, Hasan MM. Melatonin-mediated photosynthetic performance of tomato seedlings under high-temperature stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:309-320. [PMID: 34392044 DOI: 10.1016/j.plaphy.2021.08.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 05/21/2023]
Abstract
Photosynthesis is a fundamental biosynthetic process in plants that can enhance carbon absorption and increase crop productivity. Heat stress severely inhibits photosynthetic efficiency. Melatonin is a bio-stimulator capable of regulating diverse abiotic stress tolerances. However, the underlying mechanisms of melatonin-mediated photosynthesis in plants exposed to heat stress largely remain elucidated. Our results revealed that melatonin treatment (100 μM) in tomato seedlings increased the endogenous melatonin levels and photosynthetic pigment content along with upregulated of their biosynthesis gene expression under high-temperature stress (42 °C for 24 h), whereas heat stress significantly decreased the values of gas exchange parameters. Under heat stress, melatonin boosted CO2 assimilation, i.e., Vc,max (maximum rate of ribulose-1,5-bisphosphate carboxylase, Rubisco), and Jmax (electron transport of Rubisco generation) and also enhanced the Rubisco and FBPase activities, which resulted in upregulated photosynthetic related gene expression. In addition, heat stress greatly reduced the photochemical chemistry of photosystem II (PSII) and photosystem I (PSI), particularly the maximum quantum efficiency of PSII (Fv/Fm) and PSI (Pm). Conversely, melatonin supplementation increased the chlorophyll a fluorescence parameters led to amplifying the electron transport efficiency. Moreover, heat stress decreased the actual PSII efficiency (ΦPSII), electron transport rate (ETR) and photochemical quenching coefficient (qP), while increasing nonphotochemical quenching (NPQ); however, melatonin reversed these values, which helps to fostering the dissipation of excess excitation energy. Taken together, our results provide a concrete insight into the efficacy of melatonin-mediated photosynthesis performance in a high-temperature regime.
Collapse
Affiliation(s)
- Mohammad Shah Jahan
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Shirong Guo
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| | - Jin Sun
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Sheng Shu
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yu Wang
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Ahmed Abou El-Yazied
- Department of Horticulture, Faculty of Agriculture, Ain Shams University, Cairo, 11566, Egypt
| | - Nadiyah M Alabdallah
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 383, Dammam, Saudi Arabia
| | - Mohamed Hikal
- Department of Biochemistry, Faculty of Agriculture, Ain Shams University, Cairo, 11566, Egypt
| | - Mostafa H M Mohamed
- Department of Horticulture, Faculty of Agriculture, Benha University, Benha, 13736, Egypt
| | - Mohamed F M Ibrahim
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, Cairo, 11566, Egypt
| | - Md Mahadi Hasan
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu Province, China
| |
Collapse
|