1
|
Cao H, Sun J, Hua Q, Huang T, Wei Y, Zhan Y, Yao X, Zhang T, Yang Y, Xu W, Bai T, Tian Y, Zhang L, Wang K, Ji GJ. Decreased inter-hemispheric cooperation in major depressive disorder and its association with neurotransmitter profiles. J Affect Disord 2024; 359:109-116. [PMID: 38768823 DOI: 10.1016/j.jad.2024.05.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Inter-hemispheric cooperation is a prominent feature of the human brain, and previous neuroimaging studies have revealed aberrant inter-hemispheric cooperation patterns in patients with major depressive disorder (MDD). Typically, inter-hemispheric cooperation is examined by calculating the functional connectivity (FC) between each voxel in one hemisphere and its anatomical (structurally homotopic) counterpart in the opposite hemisphere. However, bilateral hemispheres are actually asymmetric in anatomy. METHODS In the present study, we utilized connectivity between functionally homotopic voxels (CFH) to investigate abnormal inter-hemispheric cooperation in 96 MDD patients compared to 173 age- and sex-matched healthy controls (HCs). In addition, we analyzed the spatial correlations between abnormal CFH and the density maps of 13 neurotransmitter receptors and transporters. RESULTS The CFH values in bilateral orbital frontal gyri and bilateral postcentral gyri were abnormally decreased in patients with MDD. Furthermore, these CFH abnormalities were correlated with clinical symptoms. In addition, the abnormal CFH pattern in MDD patients was spatially correlated with the distribution pattern of 5-HT1AR. LIMITATIONS drug effect; the cross-sectional research design precludes causal inferences; the neurotransmitter atlases selected were constructed from healthy individuals rather than MDD patients. CONCLUSION These findings characterized the abnormal inter-hemispheric cooperation in MDD using a novel method and the underlying neurotransmitter mechanism, which promotes our understanding of the pathophysiology of depression.
Collapse
Affiliation(s)
- Hai Cao
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China; Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui Province, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Jinmei Sun
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Qiang Hua
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Tongqing Huang
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Yuqing Wei
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Yuqian Zhan
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Xiaoqing Yao
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Ting Zhang
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China; Department of Psychiatry, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Psychology and Sleep Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yinian Yang
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Wenqiang Xu
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Tongjian Bai
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Yanghua Tian
- Department of Psychology and Sleep Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lei Zhang
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China.
| | - Kai Wang
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China; Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China; Anhui Institute of Translational Medicine, Hefei, China.
| | - Gong-Jun Ji
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China; Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui Province, China; Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China; Anhui Institute of Translational Medicine, Hefei, China.
| |
Collapse
|
2
|
You B, Wen H, Jackson T. Resting-state brain activity as a biomarker of chronic pain impairment and a mediator of its association with pain resilience. Hum Brain Mapp 2024; 45:e26780. [PMID: 38984446 PMCID: PMC11234141 DOI: 10.1002/hbm.26780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 06/02/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024] Open
Abstract
Past cross-sectional chronic pain studies have revealed aberrant resting-state brain activity in regions involved in pain processing and affect regulation. However, there is a paucity of longitudinal research examining links of resting-state activity and pain resilience with changes in chronic pain outcomes over time. In this prospective study, we assessed the status of baseline (T1) resting-state brain activity as a biomarker of later impairment from chronic pain and a mediator of the relation between pain resilience and impairment at follow-up. One hundred forty-two adults with chronic musculoskeletal pain completed a T1 assessment comprising a resting-state functional magnetic resonance imaging scan based on regional homogeneity (ReHo) and self-report measures of demographics, pain characteristics, psychological status, pain resilience, pain severity, and pain impairment. Subsequently, pain impairment was reassessed at a 6-month follow-up (T2). Hierarchical multiple regression and mediation analyses assessed relations of T1 ReHo and pain resilience scores with changes in pain impairment. Higher T1 ReHo values in the right caudate nucleus were associated with increased pain impairment at T2, after controlling for all other statistically significant self-report measures. ReHo also partially mediated associations of T1 pain resilience dimensions with T2 pain impairment. T1 right caudate nucleus ReHo emerged as a possible biomarker of later impairment from chronic musculoskeletal pain and a neural mechanism that may help to explain why pain resilience is related to lower levels of later chronic pain impairment. Findings provide empirical foundations for prospective extensions that assess the status of ReHo activity and self-reported pain resilience as markers for later impairment from chronic pain and targets for interventions to reduce impairment. PRACTITIONER POINTS: Resting-state markers of impairment: Higher baseline (T1) regional homogeneity (ReHo) values, localized in the right caudate nucleus, were associated with exacerbations in impairment from chronic musculoskeletal pain at a 6-month follow-up, independent of T1 demographics, pain experiences, and psychological factors. Mediating role of ReHo values: ReHo values in the right caudate nucleus also mediated the relationship between baseline pain resilience levels and later pain impairment among participants. Therapeutic implications: Findings provide empirical foundations for research extensions that evaluate (1) the use of resting-state activity in assessment to identify people at risk for later impairment from pain and (2) changes in resting-state activity as biomarkers for the efficacy of treatments designed to improve resilience and reduce impairment among those in need.
Collapse
Affiliation(s)
- Beibei You
- School of NursingGuizhou Medical UniversityGuian New DistrictChina
| | - Hongwei Wen
- Key Laboratory of Cognition and Personality (Ministry of Education), Faculty of PsychologySouthwest UniversityChongqingChina
| | - Todd Jackson
- Department of PsychologyUniversity of MacauTaipaMacau, SARChina
| |
Collapse
|
3
|
Zhou J, Wang Y, Luo X, Fitzgerald PB, Cash RFH, Fitzgibbon BM, Che X. Revisiting the effects of rTMS over the dorsolateral prefrontal cortex on pain: An updated systematic review and meta-analysis. Brain Stimul 2024; 17:928-937. [PMID: 39089648 DOI: 10.1016/j.brs.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Our previous study synthesized the analgesic effects of repetitive Transcranial Magnetic Stimulation (rTMS) over the dorsolateral prefrontal cortex (DLPFC) trials up to 2019. There has been a significant increase in pain trials in the past few years, along with methodological variabilities such as sample size, stimulation intensity, and rTMS paradigms. OBJECTIVES/METHODS This study therefore updated the effects of DLPFC-rTMS on chronic pain and quantified the impact of methodological differences across studies. RESULTS A total of 36 studies were included. Among them, 26 studies were clinical trials (update = 9, 307/711 patients), and 10 (update = 1, 34/249 participants) were provoked pain studies. The updated meta-analysis does not support an effect on neuropathic pain after including the additional trials (pshort-term = 0.20, pmid-term = 0.50). However, there is medium-to-large analgesic effect in migraine trials extending up to six weeks follow-up (SMDmid-term = -0.80, SMDlong-term = -0.51), that was not previously reported. Methodological differences wthine the studies were considered. DLPFC-rTMS also induces potential improvement in the emotional aspects of pain (SMDshort-term = -0.28). CONCLUSIONS The updated systematic meta-analysis continues to support analgesic effects for chronic pain overall. However, the updated results no longer support DLPFC-rTMS for pain relief in neuropathic pain, and do supports DLPFC-rTMS in the management of migraine. There is also evidence for DLPFC-rTMS to improve emotional aspects of pain.
Collapse
Affiliation(s)
- Jie Zhou
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Ying Wang
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Xi Luo
- School of Nursing, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Paul B Fitzgerald
- School of Medicine and Psychology, The Australian National University, Australian Capital Territory, Australia; Monarch Research Institute, Monarch Mental Health Group, Australia
| | - Robin F H Cash
- Melbourne Neuropsychiatry Centre, The University of Melbourne, Victoria, Australia
| | - Bernadette M Fitzgibbon
- School of Medicine and Psychology, The Australian National University, Australian Capital Territory, Australia; Monarch Research Institute, Monarch Mental Health Group, Australia
| | - Xianwei Che
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.
| |
Collapse
|
4
|
Kankane AK, Pandey AK, Patil MR, Agarwal A. Role of Repetitive Transcranial Magnetic Stimulation in Treatment of Fibromyalgia: A Randomized Controlled Trial. Ann Indian Acad Neurol 2024; 27:158-164. [PMID: 38751921 PMCID: PMC11093157 DOI: 10.4103/aian.aian_1041_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/21/2024] [Accepted: 04/03/2024] [Indexed: 05/18/2024] Open
Abstract
Background and Objective Fibromyalgia syndrome (FMS) is a chronic disease characterized by widespread, persistent musculoskeletal pain in association with impaired health-related quality of life. Repetitive transcranial magnetic stimulation (rTMS) is an emerging tool for the management of fibromyalgia. There is no standardized protocol of rTMS for the treatment of FMS, and both low- and high-frequency stimulation of the dorsolateral prefrontal cortex (DLPFC) are described in the literature with variable efficacy. The objective of this study was to determine the effectiveness of rTMS in people with fibromyalgia and compare the response of low- and high-frequency stimulation with sham stimulation. Materials and Methods This study was a single-blinded, randomized, placebo-controlled trial. Ninety patients with the diagnosis of FMS were randomly allocated into one of the following three groups: low-frequency (1 Hz) group, high-frequency (10 Hz) group, and sham group. Pain, depression, anxiety, and quality of life were measured using the Numerical Pain Rating Scale (NPRS), Hamilton Anxiety Rating Scale (HAM-A), Hamilton Depression Rating Scale (HDRS), and Revised Fibromyalgia Impact Questionnaire (FIQR) immediately following treatment as well as at 1 and 3 months after treatment. The data was statistically analyzed using Statistical Package for the Social Sciences version 23 software. P value < 0.05 was considered statistically significant. Results Intergroup analysis revealed a significant improvement in NPRS, HAM-A, HDRS, and FIQR scores in both low- and high- frequency groups immediately following treatment and for 3 months after treatment. No significant difference in the efficacy of low- and high-frequency stimulation was noticed. Conclusions rTMS is an effective mode of treatment in people with FMS. Both low and high frequencies of stimulation at DLPFC are equally effective in reducing pain and associated symptoms.
Collapse
Affiliation(s)
| | - Atul Kumar Pandey
- Department of Neurology, MLB Medical College Jhansi, Uttar Pradesh, India
| | | | - Arpit Agarwal
- Department of Neurology, MLB Medical College Jhansi, Uttar Pradesh, India
| |
Collapse
|
5
|
Wang Y, Tan B, Shi S, Ye Y, Che X. Dopamine D2 receptor antagonist modulates rTMS-induced pain experiences and corticospinal excitability dependent on stimulation targets. Int J Clin Health Psychol 2024; 24:100413. [PMID: 37954401 PMCID: PMC10632113 DOI: 10.1016/j.ijchp.2023.100413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/14/2023] [Indexed: 11/14/2023] Open
Abstract
Both the primary motor cortex (M1) and dorsolateral prefrontal cortex (DLPFC) rTMS have the potential to reduce certain chronic pain conditions. However, the analgesic mechanisms remain unclear, in which M1- and DLPFC-rTMS may have different impact on the release of dopamine receptor D2 neurotransmissions (DRD2). Using a double-blind, randomised, sham- and placebo-controlled design, this study investigated the influence of DRD2 antagonist on rTMS-induced analgesia and corticospinal excitability across the M1 and DLPFC. Healthy participants in each group (M1, DLPFC, or Sham) received an oral dose of chlorpromazine or placebo before the delivery of rTMS in two separate sessions. Heat pain and cortical excitability were assessed before drug administration and after rTMS intervention. DRD2 antagonist selectively abolished the increased heat pain threshold induced by DLPFC stimulation and increased pain unpleasantness. The absence of analgesic effects in DLPFC stimulation was not accompanied by plastic changes in the corticospinal pathway. In contrast, DRD2 antagonist increased corticospinal excitability and rebalanced excitation-inhibition relationship following motor cortex stimulation, although there were no clear changes in pain experiences. These novel findings together highlight the influence of dopaminergic neurotransmission on rTMS-induced analgesia and corticospinal excitability dependent on stimulation targets.
Collapse
Affiliation(s)
- Ying Wang
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Bolin Tan
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Shuyan Shi
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Yang Ye
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Xianwei Che
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- TMS Centre, Deqing Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Holm A, Orenius T, Karttunen N, Ristolainen L, Kautiainen H, Hurri H. Impact of antidepressant medication on the analgetic effect of repetitive transcranial magnetic stimulation treatment of neuropathic pain. Preliminary findings from a registry study. Scand J Pain 2023; 23:670-676. [PMID: 37459208 DOI: 10.1515/sjpain-2023-0021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/05/2023] [Indexed: 10/20/2023]
Abstract
OBJECTIVES Repetitive transcranial magnetic stimulation (rTMS) has been found to be effective in chronic neuropathic pain conditions. However, information about the combined effects of rTMS and antidepressant treatment is scarce. We studied the outcome of rTMS and concurrent antidepressant treatment in patients with neuropathic pain. METHODS In this retrospective, real-world study, 34 patients with neuropathic pain, who were considered resistant or not benefitting from conventional treatment, received rTMS treatment between 2017 and 2020. Pain-related factors were measured using the Numerical Rating Scale (NRS), Global Impression of Change (GIC), and Beck Depression Inventory. RESULTS A decrease in pain intensity and pain interference assessed with NRS was observed after 10 treatment sessions in 16 patients. The impression of change was positive in 20 patients. Half of the patients (n=17) used antidepressant medication, while half (n=17) did not. A concurrent use of antidepressants with therapeutic rTMS was significantly linked with less pain intensity relief when compared with the nonuse of antidepressants (p=0.019). The impression of change was significantly in favor of the antidepressant nonuser group (p=0.002). No group differences in pain interference were found between the groups. CONCLUSIONS Therapeutic rTMS for neuropathic pain is plausibly sensitive to interference with antidepressant medication. The exact mechanism of our findings remains to be elucidated; confirmatory studies are warranted.
Collapse
Affiliation(s)
- Anu Holm
- Satakunta University of Applied Sciences (SAMK), Pori, Finland
- SataDiag, Hospital District of Satakunta, Pori, Finland
- Recuror Oy, Turku, Finland
| | | | - Nina Karttunen
- Satakunta University of Applied Sciences (SAMK), Pori, Finland
- SataDiag, Hospital District of Satakunta, Pori, Finland
| | | | - Hannu Kautiainen
- Unit of Primary Health Care, Helsinki University Central Hospital, Helsinki, Finland
- Department of General Practice, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
7
|
Wang H, Hu Y, Deng J, Ye Y, Huang M, Che X, Yu L. A randomised sham-controlled study evaluating rTMS analgesic efficacy for postherpetic neuralgia. Front Neurosci 2023; 17:1158737. [PMID: 37250417 PMCID: PMC10213647 DOI: 10.3389/fnins.2023.1158737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/18/2023] [Indexed: 05/31/2023] Open
Abstract
Context Postherpetic neuralgia (PHN) is a refractory neuropathic pain condition in which new treatment options are being developed. Repetitive transcranial magnetic stimulation (rTMS) may have the potential to reduce pain sensations in patients with postherpetic neuralgia. Objectives This study investigated the efficacy on postherpetic neuralgia by stimulating two potential targets, the motor cortex (M1) and the dorsolateral prefrontal cortex (DLPFC). Methods This is a double-blind, randomised, sham-controlled study. Potential participants were recruited from Hangzhou First People's Hospital. Patients were randomly assigned to either the M1, DLPFC or Sham group. Patients received ten daily sessions of 10-Hz rTMS in 2 consecutive weeks. The primary outcome measure was visual analogue scale (VAS) assessed at baseline, first week of treatment (week 1), post-treatment (week 2), 1-week (week 4), 1-month (week 6) and 3-month (week 14) follow-up. Results Of sixty patients enrolled, 51 received treatment and completed all outcome assessments. M1 stimulation resulted in a larger analgesia during and after treatment compared to the Sham (week 2 - week 14, p < 0.005), as well as to the DLPFC stimulation (week 1 - week 14, p < 0.05). In addition to pain, sleep disturbance was significantly improved and relieved by targeting either the M1 or the DLPFC (M1: week 4 - week 14, p < 0.01; DLPFC: week 4 - week 14, p < 0.01). Moreover, pain sensations following M1 stimulation uniquely predicted improvement in sleep quality. Conclusion M1 rTMS is superior to DLPFC stimulation in treating PHN with excellent pain response and long-term analgesia. Meanwhile, M1 and DLPFC stimulation were equally effective in improving sleep quality in PHN. Clinical trial registration https://www.chictr.org.cn/, identifier ChiCTR2100051963.
Collapse
Affiliation(s)
- Huan Wang
- Zhejiang Chinese Medicine University, Hangzhou, China
- Department of Anesthesiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yuzhong Hu
- Zhejiang Chinese Medicine University, Hangzhou, China
| | - Jiayi Deng
- Zhejiang Chinese Medicine University, Hangzhou, China
| | - Yang Ye
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Manli Huang
- Department of Mental Health, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- The Key Laboratory of Mental Disorder Management of Zhejiang Province, Hangzhou, China
| | - Xianwei Che
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- TMS Center, Deqing Hospital of Hangzhou Normal University, Deqing, China
| | - Liang Yu
- Zhejiang Chinese Medicine University, Hangzhou, China
- Department of Pain, The Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
8
|
Fernandez-Fairen M, Calderón-Ospina CA, Chen J, Duarte Vega M, Fernández-Villacorta F, Gómez-García F, López-Almejo L, Manzano-García A, Hernández-Méndez Villamil E, Helito CP, Ruiz-Rodríguez D, Salas-Morales G, Servin-Caamaño A, Lara-Solares A, Puello-Vales M, Vargas-Schaffer G. A Latin American consensus meeting on the essentials of mixed pain. Curr Med Res Opin 2023; 39:451-466. [PMID: 36772818 DOI: 10.1080/03007995.2023.2177401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
OBJECTIVES The term "mixed pain" has been established when a mixture of different pain components (e.g. nociceptive, neuropathic, and nociplastic) are present. It has gained more and more acceptance amongst pain experts worldwide, but many questions around the concept of mixed pain are still unsolved. The sensation of pain is very personal. Cultural, social, personal experiences, idiomatic, and taxonomic differences should be taken into account during pain assessment. Therefore, a Latin American consensus committee was formed to further elaborate the essentials of mixed pain, focusing on the specific characteristics of the Latin American population. METHODS The current approach was based on a systematic literature search and review carried out in Medline. Eight topics about the definition, diagnosis, and treatment of mixed pain were discussed and voted for by a Latin American consensus committee and recommendations were expressed. RESULTS At the end of the meeting a total of 14 voting sheets were collected. The full consensus was obtained for 21 of 25 recommendations (15 strong agreement and 6 unanimous agreement) formulated for the above described 8 topics (7 of the 8 topics had for all questions at least a strong agreement - 1 topic had no agreement for all 4 questions). CONCLUSION In a subject as complex as mixed pain, a consensus has been reached among Latin American specialists on points related to the definition and essence of this pain, its diagnosis and treatment. Recommendations for diagnosis and treatment of mixed pain in Latin America were raised.
Collapse
Affiliation(s)
| | - Carlos Alberto Calderón-Ospina
- Center for Research in Genetics and Genomics (CIGGUR), GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Juythel Chen
- Clínica del Dolor. Hospital Santo Tomás, Ciudad de Panamá, Panama
| | - Manuel Duarte Vega
- Unidad de Medicina Basada en la Evidencia, Nuevo Hospital Civil de Guadalajara, Guadalajara, Mexico
| | | | | | - Leonardo López-Almejo
- Clinica de Cirugia y Rehabilitacion de Plexo Braquial y Nervio, Periférico, Aguascalientes, Mexico
| | | | | | | | - Delia Ruiz-Rodríguez
- Unidad de Tratamiento del Dolor, Servicio Medicina Física y Rehabilitación, Hospital Clínico, Universidad de Chile, Santiago de Chile, Chile
| | | | | | - Argelia Lara-Solares
- Departamento de Medicina del Dolor y Paliativa, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Marcelo Puello-Vales
- Hospital Central de las Fuerzas Armadas Doctor Vinicio Calventi, Santo Domingo, República Dominicana
| | - Grisell Vargas-Schaffer
- Clínica del Dolor, Centro Hospitalario de la Universidad de Montreal (CHUM), Montreal, Canadá
| |
Collapse
|
9
|
Alcon CA, Wang-Price S. Non-invasive brain stimulation and pain neuroscience education in the cognitive-affective treatment of chronic low back pain: Evidence and future directions. FRONTIERS IN PAIN RESEARCH 2022; 3:959609. [PMID: 36438443 PMCID: PMC9686004 DOI: 10.3389/fpain.2022.959609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/24/2022] [Indexed: 11/12/2022] Open
Abstract
Chronic low back pain (CLBP) is among the leading causes of disability worldwide. Beyond the physical and functional limitations, people's beliefs, cognitions, and perceptions of their pain can negatively influence their prognosis. Altered cognitive and affective behaviors, such as pain catastrophizing and kinesiophobia, are correlated with changes in the brain and share a dynamic and bidirectional relationship. Similarly, in the presence of persistent pain, attentional control mechanisms, which serve to organize relevant task information are impaired. These deficits demonstrate that pain may be a predominant focus of attentional resources, leaving limited reserve for other cognitively demanding tasks. Cognitive dysfunction may limit one's capacity to evaluate, interpret, and revise the maladaptive thoughts and behaviors associated with catastrophizing and fear. As such, interventions targeting the brain and resultant behaviors are compelling. Pain neuroscience education (PNE), a cognitive intervention used to reconceptualize a person's pain experiences, has been shown to reduce the effects of pain catastrophizing and kinesiophobia. However, cognitive deficits associated with chronic pain may impact the efficacy of such interventions. Non-invasive brain stimulation (NIBS), such as transcranial direct current stimulation (tDCS) or repetitive transcranial magnetic stimulation (rTMS) has been shown to be effective in the treatment of anxiety, depression, and pain. In addition, as with the treatment of most physical and psychological diagnoses, an active multimodal approach is considered to be optimal. Therefore, combining the neuromodulatory effects of NIBS with a cognitive intervention such as PNE could be promising. This review highlights the cognitive-affective deficits associated with CLBP while focusing on current evidence for cognition-based therapies and NIBS.
Collapse
Affiliation(s)
- Cory A. Alcon
- Department of Physical Therapy, High Point University, High Point, NC, United States
- School of Physical Therapy, Texas Woman’s University, Dallas, TX, United States
- Correspondence: Cory A. Alcon
| | - Sharon Wang-Price
- School of Physical Therapy, Texas Woman’s University, Dallas, TX, United States
| |
Collapse
|
10
|
Papadogiannis A, Dimitrov E. A Possible Mechanism for Development of Working Memory Impairment in Male Mice Subjected to Inflammatory Pain. Neuroscience 2022; 503:17-27. [PMID: 36100034 PMCID: PMC9588797 DOI: 10.1016/j.neuroscience.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 11/15/2022]
Abstract
We studied the effects of inflammatory pain on working memory and correlated the pain effects with changes in dendritic spine density and glutamate signaling in the medial prefrontal cortex (mPFC) of male and female mice. Injection of Complete Freund's Adjuvant (CFA) into the hind paw modeled inflammatory pain. The CFA equally decreased the mechanical thresholds in both sexes. The density of dendritic spines, as a marker for neuronal input, increased on the dendrites of both, pyramidal cells and interneurons in males but only on the dendrites of interneurons in CFA injected females. Next, we injected virus with glutamate sensor (pAAV5.hSyn.iGluSnFr) into the mPFC and used fiber photometry to record glutamate signaling during Y-maze spontaneous alternations test, which is a test for working memory in rodents. The detected fluorescent signal was higher during correct alternations when compared to incorrect alternations in both sexes. The CFA injection did not change the pattern of glutamate fluorescence during the test but the female mice made fewer incorrect alternations than their male counterparts. Furthermore, while the CFA injection decreased the expression of the glutamate transporter VGlut1 on the soma of mPFC neurons in both sexes, the decrease was sex dependent. We concluded that inflammatory pain, which increases sensory input into the mPFC neurons, may impair working memory by altering the glutamate signaling. The glutamate deficit that develops as a result of the pain is more pronounced in male mice in comparison to female mice.
Collapse
Affiliation(s)
- Alexander Papadogiannis
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, United States.
| | - Eugene Dimitrov
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, United States.
| |
Collapse
|
11
|
Li C, Sun M, Tian S. Research Hotspots and Effectiveness of Transcranial Magnetic Stimulation in Pain: A Bibliometric Analysis. Front Hum Neurosci 2022; 16:887246. [PMID: 35814960 PMCID: PMC9264350 DOI: 10.3389/fnhum.2022.887246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/25/2022] [Indexed: 12/03/2022] Open
Abstract
Transcranial magnetic stimulation, as a relatively new type of treatment, is a safe and non-invasive method for pain therapy. Here, we used CiteSpace software to visually analyze 440 studies concerning transcranial magnetic stimulation in pain research from 2010 to 2021, indexed by Web of Science, to clarify the research hotspots in different periods and characterize the process of discovery in this field. The United States ranked first in this field. Lefaucheur JP, Fregni F, and Andrade ACD made great contributions to this field of study. The most prolific institution was University of São Paulo. The four main hot keywords were neuropathic pain, motor cortex, connectivity, and non-invasive brain stimulation. There were three main points that were generally accepted: (1) definite analgesic effect of high-frequency rTMS of M1 contralateral to pain side in neuropathic pain; (2) there are inconclusive recommendations regarding rTMS of the dorsolateral prefrontal cortex (DLPFC) in fibromyalgia and neuropathic pain; (3) there is low-quality evidence that single doses of high-frequency rTMS of the motor cortex may have short-term effects on chronic pain. This bibliometric analysis indicated that prospective, multi-center, large-sample, randomized controlled trials are still needed to further verify the effectiveness of various transcranial magnetic stimulation parameters in pain research.
Collapse
Affiliation(s)
- Chong Li
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Mingyu Sun
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Shiliu Tian
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Science of Ministry of Education, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai, China
- Fujian Sports Vocational Education and Technical College, Fuzhou, China
| |
Collapse
|
12
|
Atilgan H, Doody M, Oliver DK, McGrath TM, Shelton AM, Echeverria-Altuna I, Tracey I, Vyazovskiy VV, Manohar SG, Packer AM. Human lesions and animal studies link the claustrum to perception, salience, sleep and pain. Brain 2022; 145:1610-1623. [PMID: 35348621 PMCID: PMC9166552 DOI: 10.1093/brain/awac114] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 11/24/2022] Open
Abstract
The claustrum is the most densely interconnected region in the human brain. Despite the accumulating data from clinical and experimental studies, the functional role of the claustrum remains unknown. Here, we systematically review claustrum lesion studies and discuss their functional implications. Claustral lesions are associated with an array of signs and symptoms, including changes in cognitive, perceptual and motor abilities; electrical activity; mental state; and sleep. The wide range of symptoms observed following claustral lesions do not provide compelling evidence to support prominent current theories of claustrum function such as multisensory integration or salience computation. Conversely, the lesions studies support the hypothesis that the claustrum regulates cortical excitability. We argue that the claustrum is connected to, or part of, multiple brain networks that perform both fundamental and higher cognitive functions. As a multifunctional node in numerous networks, this may explain the manifold effects of claustrum damage on brain and behaviour.
Collapse
Affiliation(s)
- Huriye Atilgan
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Max Doody
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - David K. Oliver
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Thomas M. McGrath
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Andrew M. Shelton
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | | | - Irene Tracey
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital and Merton College, University of Oxford, Oxford OX3 9DU, UK
| | | | - Sanjay G. Manohar
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Adam M. Packer
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, UK
| |
Collapse
|
13
|
Xiong HY, Zheng JJ, Wang XQ. Non-invasive Brain Stimulation for Chronic Pain: State of the Art and Future Directions. Front Mol Neurosci 2022; 15:888716. [PMID: 35694444 PMCID: PMC9179147 DOI: 10.3389/fnmol.2022.888716] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/27/2022] [Indexed: 12/13/2022] Open
Abstract
As a technique that can guide brain plasticity, non-invasive brain stimulation (NIBS) has the potential to improve the treatment of chronic pain (CP) because it can interfere with ongoing brain neural activity to regulate specific neural networks related to pain management. Treatments of CP with various forms of NIBS, such as repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS), using new parameters of stimulation have achieved encouraging results. Evidence of moderate quality indicates that high-frequency rTMS of the primary motor cortex has a clear effect on neuropathic pain (NP) and fibromyalgia. However, evidence on its effectiveness regarding pain relief in other CP conditions is conflicting. Concerning tDCS, evidence of low quality supports its benefit for CP treatment. However, evidence suggesting that it exerts a small treatment effect on NP and headaches is also conflicting. In this paper, we describe the underlying principles behind these commonly used stimulation techniques; and summarize the results of randomized controlled trials, systematic reviews, and meta-analyses. Future research should focus on a better evaluation of the short-term and long-term effectiveness of all NIBS techniques and whether they decrease healthcare use, as well as on the refinement of selection criteria.
Collapse
Affiliation(s)
- Huan-Yu Xiong
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | | | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
| |
Collapse
|
14
|
Yang QH, Zhang YH, Du SH, Wang YC, Fang Y, Wang XQ. Non-invasive Brain Stimulation for Central Neuropathic Pain. Front Mol Neurosci 2022; 15:879909. [PMID: 35663263 PMCID: PMC9162797 DOI: 10.3389/fnmol.2022.879909] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/04/2022] [Indexed: 12/15/2022] Open
Abstract
The research and clinical application of the noninvasive brain stimulation (NIBS) technique in the treatment of neuropathic pain (NP) are increasing. In this review article, we outline the effectiveness and limitations of the NIBS approach in treating common central neuropathic pain (CNP). This article summarizes the research progress of NIBS in the treatment of different CNPs and describes the effects and mechanisms of these methods on different CNPs. Repetitive transcranial magnetic stimulation (rTMS) analgesic research has been relatively mature and applied to a variety of CNP treatments. But the optimal stimulation targets, stimulation intensity, and stimulation time of transcranial direct current stimulation (tDCS) for each type of CNP are still difficult to identify. The analgesic mechanism of rTMS is similar to that of tDCS, both of which change cortical excitability and synaptic plasticity, regulate the release of related neurotransmitters and affect the structural and functional connections of brain regions associated with pain processing and regulation. Some deficiencies are found in current NIBS relevant studies, such as small sample size, difficulty to avoid placebo effect, and insufficient research on analgesia mechanism. Future research should gradually carry out large-scale, multicenter studies to test the stability and reliability of the analgesic effects of NIBS.
Collapse
Affiliation(s)
- Qi-Hao Yang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yong-Hui Zhang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Shu-Hao Du
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yu-Chen Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yu Fang
- School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai, China
- *Correspondence: Yu Fang,
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
- Xue-Qiang Wang,
| |
Collapse
|
15
|
Orme WH, Fowler JC, Bradshaw MR, Carlson M, Hadden J, Daniel J, Flack JN, Freeland D, Head J, Marder K, Weinstein BL, Madan A. Functional Rehabilitation: An Integrated Treatment Model for Patients With Complex Physical and Psychiatric Conditions. J Psychiatr Pract 2022; 28:193-202. [PMID: 35511095 DOI: 10.1097/pra.0000000000000623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The health care delivery system in the United States, structured to provide single-disease care, presents unique challenges for patients with complex physical and psychiatric comorbidities. Patients in these populations are often referred to multiple specialty clinics, encounter little continuity of care or collaboration among their providers, incur high health care costs, and experience poor treatment outcomes. Given these barriers, questions remain about the extent to which siloed and fragmented care, as opposed to the complex nature of the illnesses themselves, contribute to poor outcomes. If given the opportunity to receive well-integrated, consistent, and personalized care, can patients with historically difficult-to-treat comorbid medical and mental illnesses make progress? This article describes an innovative model of care called functional rehabilitation that is designed to address existing barriers in treatment. The functional rehabilitation program seeks to disrupt the escalating effects of interacting comorbidities by offering highly collaborative treatment from a small team of clinicians, personalized interventions using a shared decision-making framework, multipronged treatment options, colocation in a large hospital system, and significant 1:1 time with patients. The article includes a case example with longitudinal outcome data that illustrates how progress can be made with appropriate programmatic supports. Future research should examine the cost-effectiveness of this model of care.
Collapse
|
16
|
Tang Y, Chen H, Zhou Y, Tan ML, Xiong SL, Li Y, Ji XH, Li YS. Analgesic Effects of Repetitive Transcranial Magnetic Stimulation in Patients With Advanced Non-Small-Cell Lung Cancer: A Randomized, Sham-Controlled, Pilot Study. Front Oncol 2022; 12:840855. [PMID: 35372024 PMCID: PMC8969560 DOI: 10.3389/fonc.2022.840855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/25/2022] [Indexed: 12/30/2022] Open
Abstract
Objective Current pharmacological intervention for the cancer-related pain is still limited. The aim of this study was to explore whether repetitive transcranial magnetic stimulation (rTMS) could be an effective adjuvant therapy to reduce pain in patients with advanced non-small cell lung cancer (NSCLC). Methods This was a randomized, sham–controlled study. A total of 41 advanced NSCLC patients with uncontrolled pain (score≥4 on pain intensity assessed with an 11-point numeric rating scale) were randomized to receive active (10 Hz, 2000 stimuli) (n = 20) or sham rTMS (n = 20) for 3 weeks. Pain was the primary outcome and was assessed with the Numeric Rating Scale (NRS). Secondary outcomes were oral morphine equivalent (OME) daily dose, quality of life (WHO Quality of Life-BREF), and psychological distress (the Hospital Depression and Anxiety Scale). All outcomes were measured at baseline, 3 days, 1 week, 2 weeks, and 3 weeks. Results The pain intensity in both groups decreased gradually from day 3 and decreased to the lowest at the week 3, with a decrease rate of 41.09% in the rTMS group and 23.23% in the sham group. The NRS score of the rTMS group was significantly lower than that of the sham group on the week 2 (p < 0.001, Cohen’s d =1.135) and week 3 (p=0.017, Cohen’s d = -0.822). The OME daily dose, physiology and psychology domains of WHOQOL-BREF scores, as well as the HAM-A and HAM-D scores all were significantly improved at week 3 in rTMS group. Conclusion Advanced NSCL patients with cancer pain treated with rTMS showed better greater pain relief, lower dosage of opioid, and better mood states and quality of life. rTMS is expected to be a new effective adjuvant therapy for cancer pain in advanced NSCLC patients.
Collapse
Affiliation(s)
- Ying Tang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Han Chen
- Department of Rehabilitation, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yi Zhou
- Department of Rehabilitation, Southwest Hospital, Army Medical University, Chongqing, China
| | - Ming-Liang Tan
- Department of Rehabilitation, Southwest Hospital, Army Medical University, Chongqing, China
| | - Shuang-Long Xiong
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Yan Li
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Xiao-Hui Ji
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Yong-Sheng Li
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
17
|
Ye Y, Wang J, Che X. Concurrent TMS-EEG to Reveal the Neuroplastic Changes in the Prefrontal and Insular Cortices in the Analgesic Effects of DLPFC-rTMS. Cereb Cortex 2022; 32:4436-4446. [DOI: 10.1093/cercor/bhab493] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/21/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022] Open
Abstract
Abstract
The dorsolateral prefrontal cortex (DLPFC) is an important target for repetitive transcranial magnetic stimulation (rTMS) to reduce pain. However, the analgesic efficacy of DLPFC-rTMS needs to be optimized, in which the mechanisms of action remain unclear. Concurrent TMS and electroencephalogram (TMS-EEG) is able to evaluate neuroplastic changes beyond the motor cortex. Using TMS-EEG, this study was designed to investigate the local and distributed neuroplastic changes associated with DLPFC analgesia. Thirty-four healthy adults received DLPFC or sham stimulation in a randomized, crossover design. In each session, participants underwent cold pain and TMS-EEG assessment both before and after 10-Hz rTMS. We provide novel findings that DLPFC analgesia is associated with a smaller N120 amplitude in the contralateral prefrontal cortex as well as with a larger N120 peak in the ipsilateral insular cortex. Furthermore, there was a strong negative correlation between N120 changes of these two regions whereby the amplitude changes of this dyad were associated with increased pain threshold. In addition, DLPFC stimulation enhanced coherence between the prefrontal and somatosensory cortices oscillating in the gamma frequency. Overall, our data present novel evidence on local and distributed neuroplastic changes associated with DLPFC analgesia.
Collapse
|
18
|
Che X, Cash RFH, Luo X, Luo H, Lu X, Xu F, Zang YF, Fitzgerald PB, Fitzgibbon BM. High-frequency rTMS over the dorsolateral prefrontal cortex on chronic and provoked pain: A systematic review and meta-analysis. Brain Stimul 2021; 14:1135-1146. [PMID: 34280583 DOI: 10.1016/j.brs.2021.07.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND High-frequency rTMS over the dorsolateral prefrontal cortex (DLPFC) has demonstrated mixed effects on chronic and provoked pain. OBJECTIVES/METHODS In this study, a meta-analysis was conducted to characterise the potential analgesic effects of high-frequency rTMS over the DLPFC on both chronic and provoked pain. RESULTS A total of 626 studies were identified in a systematic search. Twenty-six eligible studies were included for the quantitative review, among which 17 modulated chronic pain and the remaining investigated the influence on provoked pain. The left side DLPFC was uniformly targeted in the chronic pain studies. While our data identified no overall effect of TMS across chronic pain conditions, there was a significant short-term analgesia in neuropathic pain conditions only (SMD = -0.87). In terms of long-lasting analgesia, there was an overall pain reduction in the midterm (SMD = -0.53, 24.6 days average) and long term (SMD = -0.63, 3 months average) post DLPFC stimulation, although these effects were not observed within specific chronic pain conditions. Surprisingly, the number of sessions was demonstrated to have no impact on rTMS analgesia. In the analysis of provoked pain, our data also indicated a significant analgesic effect following HF-rTMS over the DLPFC (SMD = -0.73). Importantly, we identified a publication bias in the studies of provoked pain but not for chronic pain conditions. CONCLUSIONS Overall, our findings support that HF-DLPFC stimulation is able to induce an analgesic effect in chronic pain and in response to provoked pain. These results highlight the potential of DLPFC-rTMS in the management of certain chronic pain conditions and future directions are discussed to enhance the potential long-term analgesic effects.
Collapse
Affiliation(s)
- Xianwei Che
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China; Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China.
| | - Robin F H Cash
- Melbourne Neuropsychiatry Centre, The University of Melbourne, Victoria, Australia; Department of Biomedical Engineering, The University of Melbourne, Victoria, Australia
| | - Xi Luo
- Shenzhen Key Laboratory of Affective and Social Cognitive Science, School of Psychology, Shenzhen University, Shenzhen, China
| | - Hong Luo
- Children and Adolescents Mental Health Joint Clinic, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Xiaodong Lu
- Department of Neurology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Feng Xu
- Shenzhen Yingchi Technology Co., Ltd, China
| | - Yu-Feng Zang
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China; Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Paul B Fitzgerald
- Epworth Centre for Innovation in Mental Health, Epworth Healthcare and Monash University Department of Psychiatry, Victoria, Australia
| | - Bernadette M Fitzgibbon
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Australia
| |
Collapse
|
19
|
Tanwar S, Mattoo B, Kumar U, Bhatia R. Repetitive transcranial magnetic stimulation of the prefrontal cortex for fibromyalgia syndrome: a randomised controlled trial with 6-months follow up. Adv Rheumatol 2020; 60:34. [DOI: 10.1186/s42358-020-00135-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/28/2020] [Indexed: 12/29/2022] Open
Abstract
Abstract
Objectives
Fibromyalgia Syndrome (FMS), is a chronic pain disorder with poorly understood pathophysiology. In recent years, repetitive transcranial magnetic stimulation (rTMS) has been recommended for pain relief in various chronic pain disorders. The objective of the present research was to study the effect of low frequency rTMS over the right dorsolateral prefrontal cortex (DLPFC) on pain status in FMS.
Methods
Ninety diagnosed cases of FMS were randomized into Sham-rTMS and Real-rTMS groups. Real rTMS (1 Hz/1200 pulses/8 trains/90% resting motor threshold) was delivered over the right DLPFC for 5 consecutive days/week for 4 weeks. Pain was assessed by subjective and objective methods along with oxidative stress markers. Patients were followed up for 6 months (post-rTMS;15 days, 3 months and 6 months).
Results
In Real-rTMS group, average pain ratings and associated symptoms showed significant improvement post rTMS. The beneficial effects of rTMS lasted up to 6 months in the follow-up phase. In Sham-rTMS group, no significant change in pain ratings was observed.
Conclusion
Right DLPFC rTMS can significantly reduce pain and associated symptoms of FMS probably through targeting spinal pain circuits and top-down pain modulation .
Trial registration: Ref No: CTRI/2013/12/004228.
Collapse
|
20
|
Pomytkin AN, Kaleda VG, Klochkova IV, Lebedeva IS. [The effectiveness of high-frequency rhythmic transcranial magnetic stimulation in endogenous depressive disorders in youth]. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 119:38-45. [PMID: 31994512 DOI: 10.17116/jnevro201911912138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
AIM To search for neurophysiological predictors of the effectiveness of rhythmic transcranial magnetic stimulation (rTMS) of the left dorsolateral prefrontal cortex in patients with depressive disorder of various nosology. MATERIAL AND METHODS Thirty-four young male patients with protracted treatment resistant depression were studied using psychopathological, psychometric methods and encephalography. A search for predictors of therapeutic efficacy was carried out in a wide range of neurophysiological indicators using different high-frequency rTMS protocols (10 Hz and 20 Hz).. RESULTS AND CONCLUSION The most significant changes were obtained using rTMS with a frequency of 20 Hz. A favorable effect of treatment was correlated with higher spectral power of the alpha- and beta 1-rhythm bands in EEG.
Collapse
Affiliation(s)
| | - V G Kaleda
- Mental Health Research Center, Moscow, Russia
| | | | | |
Collapse
|
21
|
Abstract
Acute pain has an evolutionary role in the detection of physical harm and the response to it. In some cases, however, acute pain can impair function and lead to other morbidities. Chronic pain, meanwhile, can present as a psychopathological condition that significantly interferes with daily living. Most basic and translational pain research has focused on the molecular and cellular mechanisms in the spinal and peripheral nervous systems. In contrast, the brain plays a key role in the affective manifestation and cognitive control of pain. In particular, several cortical regions, such as the somatosensory cortex, prefrontal cortex, insular, and anterior cingulate cortex, are well known to be activated by acute pain signals, and neurons in these regions have been demonstrated to undergo changes in response to chronic pain. Furthermore, these cortical regions can project to a number of forebrain and limbic structures to exert powerful top-down control of not only sensory pain transmission but also affective pain expression, and such cortical regulatory mechanisms are particularly relevant in chronic pain states. Newer techniques have emerged that allow for detailed studies of central pain circuits in animal models, as well as how such circuits are modified by the presence of chronic pain and other predisposing psychosomatic factors. These mechanistic approaches can complement imaging in human studies. At the therapeutic level, a number of pharmacological and nonpharmacological interventions have recently been shown to engage these top-down control systems to provide analgesia. In this review, we will discuss how pain signals reach important cortical regions and how these regions in turn project to subcortical areas of the brain to exert profound modulation of the pain experience. In addition, we will discuss the clinical relevance of such top-down pain regulation mechanisms.
Collapse
|
22
|
Kragel PA, Koban L, Barrett LF, Wager TD. Representation, Pattern Information, and Brain Signatures: From Neurons to Neuroimaging. Neuron 2018; 99:257-273. [PMID: 30048614 PMCID: PMC6296466 DOI: 10.1016/j.neuron.2018.06.009] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 01/22/2023]
Abstract
Human neuroimaging research has transitioned from mapping local effects to developing predictive models of mental events that integrate information distributed across multiple brain systems. Here we review work demonstrating how multivariate predictive models have been utilized to provide quantitative, falsifiable predictions; establish mappings between brain and mind with larger effects than traditional approaches; and help explain how the brain represents mental constructs and processes. Although there is increasing progress toward the first two of these goals, models are only beginning to address the latter objective. By explicitly identifying gaps in knowledge, research programs can move deliberately and programmatically toward the goal of identifying brain representations underlying mental states and processes.
Collapse
Affiliation(s)
- Philip A Kragel
- Department of Psychology and Neuroscience and the Institute of Cognitive Science, University of Colorado, Boulder, CO, USA; Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA
| | - Leonie Koban
- Department of Psychology and Neuroscience and the Institute of Cognitive Science, University of Colorado, Boulder, CO, USA
| | - Lisa Feldman Barrett
- Department of Psychology, Northeastern University, Boston, MA, USA; Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Tor D Wager
- Department of Psychology and Neuroscience and the Institute of Cognitive Science, University of Colorado, Boulder, CO, USA.
| |
Collapse
|
23
|
Ong WY, Stohler CS, Herr DR. Role of the Prefrontal Cortex in Pain Processing. Mol Neurobiol 2018; 56:1137-1166. [PMID: 29876878 PMCID: PMC6400876 DOI: 10.1007/s12035-018-1130-9] [Citation(s) in RCA: 380] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/14/2018] [Indexed: 12/16/2022]
Abstract
The prefrontal cortex (PFC) is not only important in executive functions, but also pain processing. The latter is dependent on its connections to other areas of the cerebral neocortex, hippocampus, periaqueductal gray (PAG), thalamus, amygdala, and basal nuclei. Changes in neurotransmitters, gene expression, glial cells, and neuroinflammation occur in the PFC during acute and chronic pain, that result in alterations to its structure, activity, and connectivity. The medial PFC (mPFC) could serve dual, opposing roles in pain: (1) it mediates antinociceptive effects, due to its connections with other cortical areas, and as the main source of cortical afferents to the PAG for modulation of pain. This is a ‘loop’ where, on one side, a sensory stimulus is transformed into a perceptual signal through high brain processing activity, and perceptual activity is then utilized to control the flow of afferent sensory stimuli at their entrance (dorsal horn) to the CNS. (2) It could induce pain chronification via its corticostriatal projection, possibly depending on the level of dopamine receptor activation (or lack of) in the ventral tegmental area-nucleus accumbens reward pathway. The PFC is involved in biopsychosocial pain management. This includes repetitive transcranial magnetic stimulation, transcranial direct current stimulation, antidepressants, acupuncture, cognitive behavioral therapy, mindfulness, music, exercise, partner support, empathy, meditation, and prayer. Studies demonstrate the role of the PFC during placebo analgesia, and in establishing links between pain and depression, anxiety, and loss of cognition. In particular, losses in PFC grey matter are often reversible after successful treatment of chronic pain.
Collapse
Affiliation(s)
- Wei-Yi Ong
- Department of Anatomy, National University of Singapore, Singapore, 119260, Singapore.
- Neurobiology and Ageing Research Programme, National University of Singapore, Singapore, 119260, Singapore.
| | | | - Deron R Herr
- Department of Pharmacology, National University of Singapore, Singapore, 119260, Singapore.
| |
Collapse
|
24
|
Shimizu T, Hosomi K, Maruo T, Goto Y, Shimokawa T, Haruhiko K, Saitoh Y. Repetitive transcranial magnetic stimulation accuracy as a spinal cord stimulation outcome predictor in patients with neuropathic pain. J Clin Neurosci 2018; 53:100-105. [PMID: 29699887 DOI: 10.1016/j.jocn.2018.04.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 04/09/2018] [Indexed: 11/24/2022]
Abstract
OBJECT Spinal cord stimulation (SCS) is an effective albeit invasive and relatively expensive treatment of neuropathic pain. Repetitive transcranial magnetic stimulation (rTMS) over the primary motor cortex (M1) is a non-invasive treatment of neuropathic pain. The aim of the current study was to investigate whether rTMS can predict the successful outcome of SCS. METHODS The study population consisted of 22 patients with neuropathic pain who had undergone SCS and rTMS. We conducted statistical analyses to identify the factors that predict pain reduction following SCS. RESULTS Multiple regression analyses showed that only degree of pain relief following rTMS was statistically correlated with success in SCS; on the other hand, age, sex, lesion location, pain duration and laterality, and targeted extremities were not correlated. Using receiver-operating characteristic (ROC) curve analyses of the pain relief following rTMS, the diagnostic sensitivity for successful SCS was 0.60 and the specificity was 0.83. CONCLUSIONS The degree of pain relief following rTMS over M1 is a significant prognostic factor of SCS outcome in patients with intractable neuropathic pain. SIGNIFICANCE The current study provides evidence showing that rTMS, a non-invasive and relatively easy to administer procedure, may aid in the selection of suitable candidates for SCS treatment.
Collapse
Affiliation(s)
- Takeshi Shimizu
- Department of Neuromodulation and Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Neurosurgery, Otemae Hospital, 1-5-34 Otemae, Osaka, Osaka 540-0008, Japan; Center for Pain Management, Osaka University Hospital, 2-15 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Koichi Hosomi
- Department of Neuromodulation and Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Center for Pain Management, Osaka University Hospital, 2-15 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Tomoyuki Maruo
- Department of Neuromodulation and Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Neurosurgery, Otemae Hospital, 1-5-34 Otemae, Osaka, Osaka 540-0008, Japan.
| | - Yuko Goto
- Department of Neuromodulation and Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Toshio Shimokawa
- Clinical Research Center, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan.
| | - Kishima Haruhiko
- Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Center for Pain Management, Osaka University Hospital, 2-15 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Youichi Saitoh
- Department of Neuromodulation and Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Center for Pain Management, Osaka University Hospital, 2-15 Yamadaoka, Suita, Osaka 565-0871, Japan. http://www.neuromod.med.osaka-u.ac.jp/eng/access.html
| |
Collapse
|
25
|
Hallett M, Di Iorio R, Rossini PM, Park JE, Chen R, Celnik P, Strafella AP, Matsumoto H, Ugawa Y. Contribution of transcranial magnetic stimulation to assessment of brain connectivity and networks. Clin Neurophysiol 2017; 128:2125-2139. [PMID: 28938143 DOI: 10.1016/j.clinph.2017.08.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 07/31/2017] [Accepted: 08/12/2017] [Indexed: 01/01/2023]
Abstract
The goal of this review is to show how transcranial magnetic stimulation (TMS) techniques can make a contribution to the study of brain networks. Brain networks are fundamental in understanding how the brain operates. Effects on remote areas can be directly observed or identified after a period of stimulation, and each section of this review will discuss one method. EEG analyzed following TMS is called TMS-evoked potentials (TEPs). A conditioning TMS can influence the effect of a test TMS given over the motor cortex. A disynaptic connection can be tested also by assessing the effect of a pre-conditioning stimulus on the conditioning-test pair. Basal ganglia-cortical relationships can be assessed using electrodes placed in the process of deep brain stimulation therapy. Cerebellar-cortical relationships can be determined using TMS over the cerebellum. Remote effects of TMS on the brain can be found as well using neuroimaging, including both positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). The methods complement each other since they give different views of brain networks, and it is often valuable to use more than one technique to achieve converging evidence. The final product of this type of work is to show how information is processed and transmitted in the brain.
Collapse
Affiliation(s)
- Mark Hallett
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA.
| | - Riccardo Di Iorio
- Department of Geriatrics, Institute of Neurology, Neuroscience and Orthopedics, Catholic University, Policlinic A. Gemelli Foundation, Rome, Italy
| | - Paolo Maria Rossini
- Department of Geriatrics, Institute of Neurology, Neuroscience and Orthopedics, Catholic University, Policlinic A. Gemelli Foundation, Rome, Italy; Brain Connectivity Laboratory, IRCCS San Raffaele Pisana, Rome, Italy
| | - Jung E Park
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA; Department of Neurology, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - Robert Chen
- Krembil Research Institute, University of Toronto, Toronto, Canada; Department of Medicine (Neurology), University of Toronto, Toronto, Canada
| | - Pablo Celnik
- Department of Physical Medicine and Rehabilitation, Johns Hopkins School of Medicine, USA
| | - Antonio P Strafella
- Krembil Research Institute, University of Toronto, Toronto, Canada; Morton and Gloria Shulman Movement Disorder Unit & E.J. Safra Parkinson Disease Program, Toronto Western Hospital, UHN, Canada; Research Imaging Centre, Campbell Family Mental Health Research Institute, CAMH, University of Toronto, Ontario, Canada
| | | | - Yoshikazu Ugawa
- Department of Neurology, School of Medicine, Fukushima Medical University, Japan; Fukushima Global Medical Science Center, Advanced Clinical Research Center, Fukushima Medical University, Japan
| |
Collapse
|
26
|
Peterchev AV, Luber B, Westin GG, Lisanby SH. Pulse Width Affects Scalp Sensation of Transcranial Magnetic Stimulation. Brain Stimul 2016; 10:99-105. [PMID: 28029593 DOI: 10.1016/j.brs.2016.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/24/2016] [Accepted: 09/26/2016] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Scalp sensation and pain comprise the most common side effect of transcranial magnetic stimulation (TMS), which can reduce tolerability and complicate experimental blinding. OBJECTIVE We explored whether changing the width of single TMS pulses affects the quality and tolerability of the resultant somatic sensation. METHODS Using a controllable pulse parameter TMS device with a figure-8 coil, single monophasic magnetic pulses inducing electric field with initial phase width of 30, 60, and 120 µs were delivered in 23 healthy volunteers. Resting motor threshold of the right first dorsal interosseus was determined for each pulse width, as reported previously. Subsequently, pulses were delivered over the left dorsolateral prefrontal cortex at each of the three pulse widths at two amplitudes (100% and 120% of the pulse-width-specific motor threshold), with 20 repetitions per condition delivered in random order. After each pulse, subjects rated 0-to-10 visual analog scales for Discomfort, Sharpness, and Strength of the sensation. RESULTS Briefer TMS pulses with amplitude normalized to the motor threshold were perceived as slightly more uncomfortable than longer pulses (with an average 0.89 point increase on the Discomfort scale for pulse width of 30 µs compared to 120 µs). The sensation of the briefer pulses was felt to be substantially sharper (2.95 points increase for 30 µs compared to 120 µs pulse width), but not stronger than longer pulses. As expected, higher amplitude pulses increased the perceived discomfort and strength, and, to a lesser degree the perceived sharpness. CONCLUSIONS Our findings contradict a previously published hypothesis that briefer TMS pulses are more tolerable. We discovered that the opposite is true, which merits further study as a means of enhancing tolerability in the context of repetitive TMS.
Collapse
Affiliation(s)
- Angel V Peterchev
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA; Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA.
| | - Bruce Luber
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Gregory G Westin
- Division of Vascular and Endovascular Surgery, New York University Langone Medical Center, New York, NY, USA
| | - Sarah H Lisanby
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA; Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| |
Collapse
|
27
|
Kumru H, Albu S, Vidal J, Tormos JM. Effectiveness of repetitive trancranial or peripheral magnetic stimulation in neuropathic pain. Disabil Rehabil 2016; 39:856-866. [PMID: 27494799 DOI: 10.3109/09638288.2016.1170213] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE Maladaptive plasticity in the sensorimotor system, following neurological lesions or diseases, plays a central role in the generation and maintenance of neuropathic pain. Repetitive magnetic stimulation of the central and peripheral nervous system has gained relevance as noninvasive approach for neuromodulation and pain relief. Systematic reviews that evaluate the effectiveness and specificity of different protocols of repetitive magnetic stimulation to control neuropathic pain in clinical populations have the potential to improve the therapeutic applicability of this technique. METHODS Studies whose primary goal was to evaluate the effectiveness of repetitive magnetic stimulation for the treatment of various types of neuropathic pain published in PubMed until August 2015 have been included in this systematic review. RESULTS A total of 39 articles fulfilling the inclusion criteria were analyzed of which 37 studies investigated pain modulation using repetitive magnetic stimulation over the motor or non-motor cortices and two studies evaluated pain modulation using repetitive peripheral magnetic stimulation protocols. CONCLUSIONS Repetitive transcranial magnetic stimulation of the primary motor cortex using high frequency stimulation protocols can effectively reduce neuropathic pain, particularly in individuals with pain related to non-cerebral lesions. The application of multiple sessions can lead to long-lasting pain modulation and cumulative effects. Implications for Rehabilitation Maladaptive plasticity plays a central role in sensitization of nociceptive pathways, generation and maintainance of neuropathic pain; Most neuropathic pain conditions are refractory to pharmacological therapies; Repetitive magnetic stimulation of the central and peripheral nervous system has gained relevance as noninvasive approach for neuromodulation and pain relief.
Collapse
Affiliation(s)
- Hatice Kumru
- a Institut Guttmann, Institut Universitari de Neurorehabilitació Adscrit a la UAB , Badalona, Barcelona , Spain.,b Universidad Autonoma de Barcelona , Bellaterra, Cerdanyola del Vallès , Spain.,c Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol , Badalona, Barcelona , Spain
| | | | - Joan Vidal
- a Institut Guttmann, Institut Universitari de Neurorehabilitació Adscrit a la UAB , Badalona, Barcelona , Spain.,b Universidad Autonoma de Barcelona , Bellaterra, Cerdanyola del Vallès , Spain.,c Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol , Badalona, Barcelona , Spain
| | - Josep Maria Tormos
- a Institut Guttmann, Institut Universitari de Neurorehabilitació Adscrit a la UAB , Badalona, Barcelona , Spain.,b Universidad Autonoma de Barcelona , Bellaterra, Cerdanyola del Vallès , Spain.,c Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol , Badalona, Barcelona , Spain
| |
Collapse
|
28
|
Uglem M, Omland P, Engstrøm M, Gravdahl G, Linde M, Hagen K, Sand T. Non-invasive cortical modulation of experimental pain in migraine. Clin Neurophysiol 2016; 127:2362-9. [DOI: 10.1016/j.clinph.2016.03.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/10/2016] [Accepted: 03/12/2016] [Indexed: 11/29/2022]
|
29
|
Ma SM, Ni JX, Li XY, Yang LQ, Guo YN, Tang YZ. High-Frequency Repetitive Transcranial Magnetic Stimulation Reduces Pain in Postherpetic Neuralgia. PAIN MEDICINE 2015; 16:2162-70. [DOI: 10.1111/pme.12832] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 04/18/2015] [Accepted: 05/16/2015] [Indexed: 01/12/2023]
|
30
|
Moisset X, de Andrade D, Bouhassira D. From pulses to pain relief: an update on the mechanisms of rTMS-induced analgesic effects. Eur J Pain 2015; 20:689-700. [DOI: 10.1002/ejp.811] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2015] [Indexed: 12/12/2022]
Affiliation(s)
- X. Moisset
- Inserm U-987; Centre d'Evaluation et de Traitement de la Douleur; CHU Ambroise Paré; Assistance Publique Hôpitaux de Paris; Boulogne Billancourt France
- Clermont Université; Université d'Auvergne; Neuro-Dol; Inserm U-1107; Clermont-Ferrand France
- Service de Neurologie; CHU Gabriel Montpied; Clermont Université; Université d'Auvergne; Clermont-Ferrand France
| | - D.C. de Andrade
- Department of Neurology; Pain Center; University of São Paulo; Brazil
- Transcranial Magnetic Stimulation Laboratory; Instituto de Psiquiatria; University of São Paulo; Brazil
- Instituto do Câncer Octavio Frias de Oliveira; University of São Paulo; Brazil
| | - D. Bouhassira
- Inserm U-987; Centre d'Evaluation et de Traitement de la Douleur; CHU Ambroise Paré; Assistance Publique Hôpitaux de Paris; Boulogne Billancourt France
- Université Versailles-Saint-Quentin; Versailles France
| |
Collapse
|
31
|
Roland LT, Peelle JE, Kallogjeri D, Nicklaus J, Piccirillo JF. The effect of noninvasive brain stimulation on neural connectivity in Tinnitus: A randomized trial. Laryngoscope 2015; 126:1201-6. [PMID: 26422238 DOI: 10.1002/lary.25650] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 08/03/2015] [Accepted: 08/10/2015] [Indexed: 12/26/2022]
Abstract
OBJECTIVES/HYPOTHESIS To explore neural connectivity changes associated with repetitive transcranial magnetic stimulation (rTMS) to the temporoparietal junction for patients with bothersome tinnitus. STUDY DESIGN Randomized, double-blind, controlled clinical trial. METHODS Thirty patients with subjective, nonpulsatile tinnitus for 6 months duration or longer and a score of 36 or greater on the Tinnitus Handicap Inventory completed the study. Participants were randomized to receive either sham or active treatment with rTMS to the temporoparietal junction for either 2 or 4 weeks of therapy. Participants underwent resting state functional connectivity magnetic resonance imaging before therapy and immediately following treatment. Functional connectivity changes between active and sham treatment groups were compared using regions of interest in auditory, default mode, ventral attention, and executive attention networks. RESULTS Sixteen patients received active rTMS treatment; 14 patients received sham treatment. There were no differences between the active and sham groups in baseline functional connectivity. Neither treatment with rTMS nor sham therapy resulted in statistically significant functional connectivity changes in the examined brain networks. CONCLUSIONS The analysis did not identify any changes in neural connectivity following treatment in patients with bothersome tinnitus. These results are consistent with our findings of lack of symptom changes previously reported in the same group of patients. Measures of neural connectivity may inform future work using rTMS to better understand the possible benefits of neural stimulation for tinnitus. LEVEL OF EVIDENCE 1b. Laryngoscope, 126:1201-1206, 2016.
Collapse
Affiliation(s)
- Lauren T Roland
- Department of Otolaryngology-Head and Neck Surgery, Washington University in St. Louis School of Medicine, St. Louis, Missouri, U.S.A
| | - Jonathan E Peelle
- Department of Otolaryngology-Head and Neck Surgery, Washington University in St. Louis School of Medicine, St. Louis, Missouri, U.S.A
| | - Dorina Kallogjeri
- Department of Otolaryngology-Head and Neck Surgery, Washington University in St. Louis School of Medicine, St. Louis, Missouri, U.S.A
| | - Joyce Nicklaus
- Department of Otolaryngology-Head and Neck Surgery, Washington University in St. Louis School of Medicine, St. Louis, Missouri, U.S.A
| | - Jay F Piccirillo
- Department of Otolaryngology-Head and Neck Surgery, Washington University in St. Louis School of Medicine, St. Louis, Missouri, U.S.A
| |
Collapse
|
32
|
Significance of Non-phase Locked Oscillatory Brain Activity in Response to Noxious Stimuli. Can J Neurol Sci 2015; 42:436-43. [PMID: 26329603 DOI: 10.1017/cjn.2015.294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Although current pain-evoked electroencephalographic (EEG) studies provide valuable information regarding human brain regions involved in pain, they have mostly considered neuronal responses which oscillate in phase following a painful event. In many instances, cortical neurons respond by generating bursts of activity that are slightly out of phase from trial-to-trial. These types of activity bursts are known as induced brain responses. The significance of induced brain responses to pain is still unknown. METHODS In this study, 23 healthy subjects were given both non-painful and painful transcutaneous electrical stimulations in separate testing blocks (stimulation strength was kept constant within blocks). Subjective intensity was rated using a numerical rating scale, while cerebral activity tied to each stimulation was measured using EEG recordings. Induced brain responses were identified using a time frequency wavelet transform applied to average-removed single trials. RESULTS Results showed a pain-specific burst of induced theta activity occurring between 180 and 500 ms post-shock onset. Source current density estimations located this activity within the dorsolateral prefrontal cortex (DLPFC, bilaterally), however, only right DLPFC activity predicted a decrease in subjective pain as testing progressed. CONCLUSION This finding suggests that non-phase locked neuronal responses in the right DLPFC contribute to the endogenous attenuation of pain through time. PERSPECTIVE This article presents neuroimaging findings demonstrating that, in response to pain, non-phase locked bursts of theta activity located in the right dorsolateral prefrontal cortex are associated with a progressive decrease in subjective pain intensity, which has potentially important implications regarding how humans endogenously control their experiences of pain.
Collapse
|
33
|
Abstract
This article discusses current trends in managing cancer pain, with specific regard to opioid transmission, descending pathway inhabitation, and ways to facilitate the endogenous antinociceptive chemicals in the human body. Various techniques for opioid and nonopioid control of potential pain situations of patients with cancer are discussed. The benefits of using pharmacogenetics to assess the appropriate medications are addressed. Finally, specific treatment of abdominal cancer pain using radiofrequency lesioning is discussed.
Collapse
Affiliation(s)
- Brian Kahan
- The Kahan Center for Pain Management, 2002 Medical Parkway, Suite 150, Annapolis, MD 21401, USA.
| |
Collapse
|
34
|
Gorelick DA, Zangen A, George MS. Transcranial magnetic stimulation in the treatment of substance addiction. Ann N Y Acad Sci 2014; 1327:79-93. [PMID: 25069523 DOI: 10.1111/nyas.12479] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Transcranial magnetic stimulation (TMS) is a noninvasive method of brain stimulation used to treat a variety of neuropsychiatric disorders, but is still in the early stages of study as addiction treatment. We identified 19 human studies using repetitive TMS (rTMS) to manipulate drug craving or use, which exposed a total of 316 adults to active rTMS. Nine studies involved tobacco, six alcohol, three cocaine, and one methamphetamine. The majority of studies targeted high-frequency (5-20 Hz; expected to stimulate neuronal activity) rTMS pulses to the dorsolateral prefrontal cortex. Only five studies were controlled clinical trials: two of four nicotine trials found decreased cigarette smoking; the cocaine trial found decreased cocaine use. Many aspects of optimal treatment remain unknown, including rTMS parameters, duration of treatment, relationship to cue-induced craving, and concomitant treatment. The mechanisms of rTMS potential therapeutic action in treating addictions are poorly understood, but may involve increased dopamine and glutamate function in corticomesolimbic brain circuits and modulation of neural activity in brain circuits that mediate cognitive processes relevant to addiction, such as response inhibition, selective attention, and reactivity to drug-associated cues. rTMS treatment of addiction must be considered experimental at this time, but appears to have a promising future.
Collapse
Affiliation(s)
- David A Gorelick
- Chemistry and Drug Metabolism Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland; Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland
| | | | | |
Collapse
|
35
|
Ding L, Shou G, Yuan H, Urbano D, Cha YH. Lasting modulation effects of rTMS on neural activity and connectivity as revealed by resting-state EEG. IEEE Trans Biomed Eng 2014; 61:2070-80. [PMID: 24686227 DOI: 10.1109/tbme.2014.2313575] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The long-lasting neuromodulatory effects of repetitive transcranial magnetic stimulation (rTMS) are of great interest for therapeutic applications in various neurological and psychiatric disorders, due to which functional connectivity among brain regions is profoundly disturbed. Classic TMS studies selectively alter neural activity in specific brain regions and observe neural activity changes on nonperturbed areas to infer underlying connectivity and its changes. Less has been indicated in direct measures of functional connectivity and/or neural network and on how connectivity/network alterations occur. Here, we developed a novel analysis framework to directly investigate both neural activity and connectivity changes induced by rTMS from resting-state EEG (rsEEG) acquired in a group of subjects with a chronic disorder of imbalance, known as the mal de debarquement syndrome (MdDS). Resting-state activity in multiple functional brain areas was identified through a data-driven blind source separation analysis on rsEEG data, and the connectivity among them was characterized using a phase synchronization measure. Our study revealed that there were significant long-lasting changes in resting-state neural activity, in theta, low alpha, and high alpha bands and neural networks in theta, low alpha, high alpha and beta bands, over broad cortical areas 4 to 5 h after the last application of rTMS in a consecutive five-day protocol. Our results of rsEEG connectivity further indicated that the changes, mainly in the alpha band, over the parietal and occipital cortices from pre- to post-TMS sessions were significantly correlated, in both magnitude and direction, to symptom changes in this group of subjects with MdDS. This connectivity measure not only suggested that rTMS can generate positive treatment effects in MdDS patients, but also revealed new potential targets for future therapeutic trials to improve treatment effects. It is promising that the new connectivity measure from rsEEG can be used to understand the variability in treatment response to rTMS in brain disorders with impaired functional connectivity and, eventually, to determine individually tailored stimulation parameters and treatment procedures in rTMS.
Collapse
|
36
|
George MS, Raman R, Benedek DM, Pelic CG, Grammer GG, Stokes KT, Schmidt M, Spiegel C, Dealmeida N, Beaver KL, Borckardt JJ, Sun X, Jain S, Stein MB. A two-site pilot randomized 3 day trial of high dose left prefrontal repetitive transcranial magnetic stimulation (rTMS) for suicidal inpatients. Brain Stimul 2014; 7:421-31. [PMID: 24731434 DOI: 10.1016/j.brs.2014.03.006] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 03/07/2014] [Accepted: 03/11/2014] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Suicide attempts and completed suicides are common, yet there are no proven acute medication or device treatments for treating a suicidal crisis. Repeated daily left prefrontal repetitive transcranial magnetic stimulation (rTMS) for 4-6 weeks is a new FDA-approved treatment for acute depression. Some open-label rTMS studies have found rapid reductions in suicidality. DESIGN This study tests whether a high dose of rTMS to suicidal inpatients is feasible and safe, and also whether this higher dosing might rapidly improve suicidal thinking. This prospective, 2-site, randomized, active sham-controlled (1:1 randomization) design incorporated 9 sessions of rTMS over 3 days as adjunctive to usual inpatient suicidality treatment. The setting was two inpatient military hospital wards (one VA, the other DOD). PATIENTS Research staff screened approximately 377 inpatients, yielding 41 adults admitted for suicidal crisis. Because of the funding source, all patients also had either post-traumatic stress disorder, mild traumatic brain injury, or both. TMS METHODS Repetitive TMS (rTMS) was delivered to the left prefrontal cortex with a figure-eight solid core coil at 120% motor threshold, 10 Hertz (Hz), 5 second (s) train duration, 10 s intertrain interval for 30 minutes (6000 pulses) 3 times daily for 3 days (total 9 sessions; 54,000 stimuli). Sham rTMS used a similar coil that contained a metal insert blocking the magnetic field and utilized electrodes on the scalp, which delivered a matched somatosensory sensation. MAIN OUTCOME MEASURE Primary outcomes were the daily change in severity of suicidal thinking as measured by the Beck Scale of Suicidal Ideation (SSI) administered at baseline and then daily, as well as subjective visual analog scale measures before and after each TMS session. Mixed model repeated measures (MMRM) analysis was performed on modified intent to treat (mITT) and completer populations. RESULTS This intense schedule of rTMS with suicidal inpatients was feasible and safe. Minimal side effects occurred, none differing by arm, and the 3-day retention rate was 88%. No one died of suicide within the 6 month followup. From the mITT analyses, SSI scores declined rapidly over the 3 days for both groups (sham change -15.3 points, active change -15.4 points), with a trend for more rapid decline on the first day with active rTMS (sham change -6.4 points, active -10.7 points, P = 0.12). This decline was more pronounced in the completers subgroup [sham change -5.9 (95% CI: -10.1, -1.7), active -13 points (95% CI: -18.7, -7.4); P = 0.054]. Subjective ratings of 'being bothered by thoughts of suicide' declined non-significantly more with active rTMS than with sham at the end of 9 sessions of treatment in the mITT analysis [sham change -31.9 (95% CI: -41.7, -22.0), active change -42.5 (95% CI: -53.8, -31.2); P = 0.17]. There was a significant decrease in the completers sample [sham change -24.9 (95% CI: -34.4, -15.3), active change -43.8 (95% CI: -57.2, -30.3); P = 0.028]. CONCLUSIONS Delivering high doses of left prefrontal rTMS over three days (54,000 stimuli) to suicidal inpatients is possible and safe, with few side effects and no worsening of suicidal thinking. The suggestions of a rapid anti-suicide effect (day 1 SSI data, Visual Analogue Scale data over the 3 days) need to be tested for replication in a larger sample. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT01212848, TMS for suicidal ideation.
Collapse
Affiliation(s)
- Mark S George
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA; Brain Stimulation Division, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA.
| | - Rema Raman
- Department of Psychiatry, University of California at San Diego (UCSD), USA
| | | | - Christopher G Pelic
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA; Brain Stimulation Division, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | | | - Karen T Stokes
- Department of Psychiatry, University of California at San Diego (UCSD), USA
| | - Matthew Schmidt
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA; Brain Stimulation Division, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | - Chad Spiegel
- Walter Reed National Military Medical Center, USA
| | | | - Kathryn L Beaver
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA; Brain Stimulation Division, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | - Jeffrey J Borckardt
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA; Brain Stimulation Division, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | - Xiaoying Sun
- Department of Psychiatry, University of California at San Diego (UCSD), USA
| | - Sonia Jain
- Department of Psychiatry, University of California at San Diego (UCSD), USA
| | - Murray B Stein
- Department of Psychiatry, University of California at San Diego (UCSD), USA
| |
Collapse
|
37
|
Vuckovic A, Hasan MA, Fraser M, Conway BA, Nasseroleslami B, Allan DB. Dynamic oscillatory signatures of central neuropathic pain in spinal cord injury. THE JOURNAL OF PAIN 2014; 15:645-55. [PMID: 24589821 PMCID: PMC4058526 DOI: 10.1016/j.jpain.2014.02.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 02/05/2014] [Accepted: 02/18/2014] [Indexed: 12/29/2022]
Abstract
Central neuropathic pain (CNP) is believed to be accompanied by increased activation of the sensorimotor cortex. Our knowledge of this interaction is based mainly on functional magnetic resonance imaging studies, but there is little direct evidence on how these changes manifest in terms of dynamic neuronal activity. This study reports on the presence of transient electroencephalography (EEG)-based measures of brain activity during motor imagery in spinal cord–injured patients with CNP. We analyzed dynamic EEG responses during imaginary movements of arms and legs in 3 groups of 10 volunteers each, comprising able-bodied people, paraplegic patients with CNP (lower abdomen and legs), and paraplegic patients without CNP. Paraplegic patients with CNP had increased event-related desynchronization in the theta, alpha, and beta bands (16–24 Hz) during imagination of movement of both nonpainful (arms) and painful limbs (legs). Compared to patients with CNP, paraplegics with no pain showed a much reduced power in relaxed state and reduced event-related desynchronization during imagination of movement. Understanding these complex dynamic, frequency-specific activations in CNP in the absence of nociceptive stimuli could inform the design of interventional therapies for patients with CNP and possibly further understanding of the mechanisms involved. Perspective This study compares the EEG activity of spinal cord–injured patients with CNP to that of spinal cord–injured patients with no pain and also to that of able-bodied people. The study shows that the presence of CNP itself leads to frequency-specific EEG signatures that could be used to monitor CNP and inform neuromodulatory treatments of this type of pain.
Collapse
Affiliation(s)
- Aleksandra Vuckovic
- Biomedical Engineering Division, University of Glasgow, Glasgow, United Kingdom.
| | - Muhammad A Hasan
- Biomedical Engineering Division, University of Glasgow, Glasgow, United Kingdom; Department of Biomedical Engineering, NED University of Engineering and Technology, Karachi, Pakistan
| | - Matthew Fraser
- Queen Elizabeth National Spinal Injuries Unit, Southern General Hospital, Glasgow, United Kingdom
| | - Bernard A Conway
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Bahman Nasseroleslami
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, United Kingdom; Department of Biology, Northeastern University, Boston, Massachusetts
| | - David B Allan
- Queen Elizabeth National Spinal Injuries Unit, Southern General Hospital, Glasgow, United Kingdom
| |
Collapse
|
38
|
Ciampi de Andrade D, Mhalla A, Adam F, Texeira MJ, Bouhassira D. Repetitive transcranial magnetic stimulation induced analgesia depends on N-methyl-d-aspartate glutamate receptors. Pain 2014; 155:598-605. [DOI: 10.1016/j.pain.2013.12.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 12/03/2013] [Accepted: 12/10/2013] [Indexed: 12/21/2022]
|