1
|
Pinto LG, Vilar B, McNaughton PA. PGE 2 and HCN2 ion channels are critical mediators of pain initiated by angiotensin II. Brain Behav Immun 2024; 125:268-279. [PMID: 39736364 DOI: 10.1016/j.bbi.2024.12.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/19/2024] [Accepted: 12/26/2024] [Indexed: 01/01/2025] Open
Abstract
Angiotensin II is well known to have an important influence on blood pressure, mediated via the angiotensin II type 1 receptor (AT1R), but more recent studies have shown that angiotensin II may play an important additional role in eliciting pain via a distinct action at the angiotensin II type 2 receptor (AT2R). Signalling pathways that link activation of AT2R to a sensation of pain are, however, incompletely understood. Here we use rodent inflammatory pain models to confirm that selective activation of AT2R triggers aversive responses, and that these are abolished by either antagonism or genetic deletion of AT2R. Pain induced by AT2R activation is abolished by pharmacological block or genetic deletion of the HCN2 ion channel, which other studies have implicated in several distinct pain modalities. We found, however, no evidence for direct activation of isolated nociceptive neurons by AT2R agonists. In agreement, the effect of AT2R agonists was completely abolished by the cyclooxygenase (COX) inhibitor indomethacin or by selective antagonism of the EP4 receptor for PGE2, showing that PGE2 is a critical extracellular mediator that transmits the signal from AT2R to nociceptive neurons and causes activation of HCN2 ion channels. When inflammatory pain was induced by injection of carrageenan, pharmacological inhibition or genetic deletion of AT2R gave near-complete pain relief, together with a reduction in chemokine and PGE2 release. This study shows that angiotensin II is an important pro-inflammatory mediator that causes pain indirectly by activating AT2 receptors on non-neuronal cells, stimulating the release of PGE2 that mediates activation of HCN2 ion channels in nociceptive neurons.
Collapse
Affiliation(s)
- Larissa Garcia Pinto
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, Guy's Campus, London Bridge, London SE1 1UL, UK
| | - Bruno Vilar
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, Guy's Campus, London Bridge, London SE1 1UL, UK
| | - Peter A McNaughton
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, Guy's Campus, London Bridge, London SE1 1UL, UK.
| |
Collapse
|
2
|
Park KD, Son JY, Kim HK, Kim YM, Ju JS, Jo MJ, Park MK, Lee MK, Ahn DK. Differential Regulation of Intracisternally Injected Angiotensin II-Induced Mechanical Allodynia and Thermal Hyperalgesia in Rats. Biomedicines 2023; 11:3279. [PMID: 38137500 PMCID: PMC10741042 DOI: 10.3390/biomedicines11123279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The present study examined the underlying mechanisms of mechanical allodynia and thermal hyperalgesia induced by the intracisternal injection of angiotensin (Ang) II. Intracisternal Ang II injection decreased the air puff threshold and head withdrawal latency. To determine the operative receptors for each distinct type of pain behavior, we intracisternally injected Ang II receptor antagonists 2 h after Ang II injection. Losartan, an Ang II type 1 receptor (AT1R) antagonist, alleviated mechanical allodynia. Conversely, PD123319, an Ang II type 1 receptor (AT2R) antagonist, blocked only thermal hyperalgesia. Immunofluorescence analyses revealed the co-localization of AT1R with the astrocyte marker GFAP in the trigeminal subnucleus caudalis and co-localization of AT2R with CGRP-positive neurons in the trigeminal ganglion. Intracisternal pretreatment with minocycline, a microglial inhibitor, did not affect Ang II-induced mechanical allodynia, whereas L-α-aminoadipate, an astrocyte inhibitor, significantly inhibited Ang II-induced mechanical allodynia. Furthermore, subcutaneous pretreatment with botulinum toxin type A significantly alleviated Ang II-induced thermal hyperalgesia, but not Ang II-induced mechanical allodynia. These results indicate that central Ang II-induced nociception is differentially regulated by AT1R and AT2R. Thus, distinct therapeutic targets must be regulated to overcome pain symptoms caused by multiple underlying mechanisms.
Collapse
Affiliation(s)
- Ki-Don Park
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea; (K.-D.P.); (J.-Y.S.); (H.-K.K.); (Y.-M.K.); (J.-S.J.); (M.-J.J.)
| | - Jo-Young Son
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea; (K.-D.P.); (J.-Y.S.); (H.-K.K.); (Y.-M.K.); (J.-S.J.); (M.-J.J.)
| | - Hak-Kyun Kim
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea; (K.-D.P.); (J.-Y.S.); (H.-K.K.); (Y.-M.K.); (J.-S.J.); (M.-J.J.)
| | - Yu-Mi Kim
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea; (K.-D.P.); (J.-Y.S.); (H.-K.K.); (Y.-M.K.); (J.-S.J.); (M.-J.J.)
| | - Jin-Sook Ju
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea; (K.-D.P.); (J.-Y.S.); (H.-K.K.); (Y.-M.K.); (J.-S.J.); (M.-J.J.)
| | - Min-Jeong Jo
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea; (K.-D.P.); (J.-Y.S.); (H.-K.K.); (Y.-M.K.); (J.-S.J.); (M.-J.J.)
| | - Min-Kyoung Park
- Department of Dental Hygiene, Kyung-Woon University, Gumi 39160, Republic of Korea;
| | - Min-Kyung Lee
- Department of Dental Hygiene, Dong-Eui University, Busan 47340, Republic of Korea;
| | - Dong-Kuk Ahn
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea; (K.-D.P.); (J.-Y.S.); (H.-K.K.); (Y.-M.K.); (J.-S.J.); (M.-J.J.)
| |
Collapse
|
3
|
Shepherd AJ, Rice AS, Smith MT. Angiotensin II type 2 receptor signalling as a pain target: Bench, bedside and back-translation. Curr Opin Pharmacol 2023; 73:102415. [PMID: 38041933 PMCID: PMC11789660 DOI: 10.1016/j.coph.2023.102415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 12/04/2023]
Abstract
Translating promising preclinical pain relief data for novel molecules from drug discovery to positive clinical trial outcomes is challenging. The angiotensin II type 2 (AT2) receptor is a clinically-validated target based upon positive proof-of-concept clinical trial data in patients with post-herpetic neuralgia. This trial was conducted because AT2 receptor antagonists evoked pain relief in rodent models of neuropathic pain. EMA401 was selected as the drug candidate based upon its suitable preclinical toxicity and safety profile and good pharmacokinetics. Herein, we provide an overview of the discovery, preclinical and clinical development of EMA401, for the alleviation of peripheral neuropathic pain.
Collapse
Affiliation(s)
- Andrew J Shepherd
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew Sc Rice
- Pain Research, Department of Surgery & Cancer, Imperial College London, London, UK
| | - Maree T Smith
- School of Biomedical Sciences, The University of Queensland, St Lucia Campus, Brisbane, Queensland, Australia.
| |
Collapse
|
4
|
Thouaye M, Yalcin I. Neuropathic pain: From actual pharmacological treatments to new therapeutic horizons. Pharmacol Ther 2023; 251:108546. [PMID: 37832728 DOI: 10.1016/j.pharmthera.2023.108546] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 09/07/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
Neuropathic pain, caused by a lesion or disease affecting the somatosensory system, affects between 3 and 17% of the general population. The treatment of neuropathic pain is challenging due to its heterogeneous etiologies, lack of objective diagnostic tools and resistance to classical analgesic drugs. First-line treatments recommended by the Special Interest Group on Neuropathic Pain (NeuPSIG) and European Federation of Neurological Societies (EFNS) include gabapentinoids, tricyclic antidepressants (TCAs) and selective serotonin noradrenaline reuptake inhibitors (SNRIs). Nevertheless these treatments have modest efficacy or dose limiting side effects. There is therefore a growing number of preclinical and clinical studies aim at developing new treatment strategies to treat neuropathic pain with better efficacy, selectivity, and less side effects. In this review, after a brief description of the mechanisms of action, efficacy, and limitations of current therapeutic drugs, we reviewed new preclinical and clinical targets currently under investigation, as well as promising non-pharmacological alternatives and their potential co-use with pharmacological treatments.
Collapse
Affiliation(s)
- Maxime Thouaye
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Ipek Yalcin
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France; Department of Psychiatry and Neuroscience, Université Laval, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
5
|
Vieira TN, Saraiva ALL, Guimarães RM, Luiz JPM, Pinto LG, de Melo Rodrigues Ávila V, Goulart LR, Cunha-Junior JP, McNaughton PA, Cunha TM, Ferreira J, Silva CR. Angiotensin type 2 receptor antagonism as a new target to manage gout. Inflammopharmacology 2022; 30:2399-2410. [PMID: 36173505 DOI: 10.1007/s10787-022-01076-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/15/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND There is a growing search for therapeutic targets in the treatment of gout. The present study aimed to evaluate the analgesic and anti-inflammatory potential of angiotensin type 2 receptor (AT2R) antagonism in an acute gout attack mouse model. METHODS Male wild-type (WT) C57BL/6 mice either with the AT2R antagonist, PD123319 (10 pmol/joint), or with vehicle injections, or AT2R KO mice, received intra-articular (IA) injection of monosodium urate (MSU) crystals (100 µg/joint), that induce the acute gout attack, and were tested for mechanical allodynia, thermal hyperalgesia, spontaneous nociception and ankle edema development at several times after the injections. To test an involvement of AT2R in joint pain, mice received an IA administration of angiotensin II (0.05-5 nmol/joint) with or without PD123319, and were also evaluated for pain and edema development. Ankle joint tissue samples from mice undergoing the above treatments were assessed for myeloperoxidase activity, IL-1β release, mRNA expression analyses and nitrite/nitrate levels, 4 h after injections. RESULTS AT2R antagonism has robust antinociceptive effects on mechanical allodynia (44% reduction) and spontaneous nociception (56%), as well as anti-inflammatory effects preventing edema formation (45%), reducing myeloperoxidase activity (54%) and IL-1β levels (32%). Additionally, Agtr2tm1a mutant mice have largely reduced painful signs of gout. Angiotensin II administration causes pain and inflammation, which was prevented by AT2R antagonism, as observed in mechanical allodynia 4 h (100%), spontaneous nociception (46%), cold nociceptive response (54%), edema formation (83%), myeloperoxidase activity (48%), and IL-1β levels (89%). PD123319 treatment also reduces NO concentrations (74%) and AT2R mRNA levels in comparison with MSU untreated mice. CONCLUSION Our findings show that AT2R activation contributes to acute pain in experimental mouse models of gout. Therefore, the antagonism of AT2R may be a potential therapeutic option to manage gout arthritis.
Collapse
Affiliation(s)
- Thiago Neves Vieira
- Graduate Program in Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, 38408-100, Brazil
| | - André L Lopes Saraiva
- Graduate Program in Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, 38408-100, Brazil
| | - Rafaela Mano Guimarães
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - João Paulo Mesquita Luiz
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Larissa Garcia Pinto
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Veridiana de Melo Rodrigues Ávila
- Graduate Program in Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, 38408-100, Brazil
| | - Luiz Ricardo Goulart
- Graduate Program in Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, 38408-100, Brazil
| | - Jair Pereira Cunha-Junior
- Department of Immunology, Institute of Sciences Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, 38405-318, Brazil
| | - Peter Anthony McNaughton
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Thiago Mattar Cunha
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Juliano Ferreira
- Graduated Program in Pharmacology, Pharmacology Department, Federal University of Santa Catarina (UFSC), Florianopolis, SC, 88049-900, Brazil
| | - Cassia Regina Silva
- Graduate Program in Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, 38408-100, Brazil.
- LABITOX, Post-Graduated Program in Genetics and Biochemistry, Biotechnology Institute, Federal University of Uberlândia, Av. Pará 1720-Campus Umuarama, Jardim Umuarama-Bloco 2E-Officeroom 224, Uberlândia, MG, 38408-100, Brazil.
| |
Collapse
|
6
|
Smith MT. Nonopioid analgesics discovery and the Valley of Death: EMA401 from concept to clinical trial. Pain 2022; 163:S15-S28. [PMID: 35984369 PMCID: PMC10578428 DOI: 10.1097/j.pain.0000000000002675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/22/2022] [Accepted: 04/28/2022] [Indexed: 12/23/2022]
Affiliation(s)
- Maree T Smith
- Centre for Integrated Preclinical Drug Development, School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
7
|
Steckelings UM, Widdop RE, Sturrock ED, Lubbe L, Hussain T, Kaschina E, Unger T, Hallberg A, Carey RM, Sumners C. The Angiotensin AT 2 Receptor: From a Binding Site to a Novel Therapeutic Target. Pharmacol Rev 2022; 74:1051-1135. [PMID: 36180112 PMCID: PMC9553111 DOI: 10.1124/pharmrev.120.000281] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/19/2022] [Accepted: 06/27/2022] [Indexed: 11/22/2022] Open
Abstract
Discovered more than 30 years ago, the angiotensin AT2 receptor (AT2R) has evolved from a binding site with unknown function to a firmly established major effector within the protective arm of the renin-angiotensin system (RAS) and a target for new drugs in development. The AT2R represents an endogenous protective mechanism that can be manipulated in the majority of preclinical models to alleviate lung, renal, cardiovascular, metabolic, cutaneous, and neural diseases as well as cancer. This article is a comprehensive review summarizing our current knowledge of the AT2R, from its discovery to its position within the RAS and its overall functions. This is followed by an in-depth look at the characteristics of the AT2R, including its structure, intracellular signaling, homo- and heterodimerization, and expression. AT2R-selective ligands, from endogenous peptides to synthetic peptides and nonpeptide molecules that are used as research tools, are discussed. Finally, we summarize the known physiological roles of the AT2R and its abundant protective effects in multiple experimental disease models and expound on AT2R ligands that are undergoing development for clinical use. The present review highlights the controversial aspects and gaps in our knowledge of this receptor and illuminates future perspectives for AT2R research. SIGNIFICANCE STATEMENT: The angiotensin AT2 receptor (AT2R) is now regarded as a fully functional and important component of the renin-angiotensin system, with the potential of exerting protective actions in a variety of diseases. This review provides an in-depth view of the AT2R, which has progressed from being an enigma to becoming a therapeutic target.
Collapse
Affiliation(s)
- U Muscha Steckelings
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Robert E Widdop
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Edward D Sturrock
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Lizelle Lubbe
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Tahir Hussain
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Elena Kaschina
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Thomas Unger
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Anders Hallberg
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Robert M Carey
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Colin Sumners
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| |
Collapse
|
8
|
Gao W, Shen L, Long DD, Pan TT, Wang D, Chai XQ, Hu SS. Angiotensin II type 2 receptor pharmacological agonist, C21, reduces the inflammation and pain hypersensitivity in mice with joint inflammatory pain. Int Immunopharmacol 2022; 110:108921. [PMID: 35724606 DOI: 10.1016/j.intimp.2022.108921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/19/2022] [Accepted: 06/01/2022] [Indexed: 11/15/2022]
Abstract
Primary and secondary hyperalgesia develop in response to chronic joint inflammation due to peripheral and central mechanisms. Synovial macrophage and spinal microglia are involved in pain sensitization in arthritis. The level of angiotensin II type 2 receptor (AT2R) is related to the severity of arthritis. This study aimed to determine the role of AT2R in primary and secondary hyperalgesia in joint inflammatory pain in mice. After intra-articular CFA injection, primary hyperalgesia in the ipsilateral knee joint was measured by pressure application meter and gait analysis, secondary hypersensitivity in ipsilateral hind-paw was measured by von-Frey and Hargreaves tests following a combination of global AT2R-deficient (Agtr2-/-) mice and AT2R pharmacological agonist C21. Synovial macrophage and spinal microglia were collected for flow cytometry. Morphological reconstruction of microglia was detected by immunostaining. AT2R expression was investigated by quantitative polymerase chain reaction and western blot. Neuronal hyperactivity was evaluated by c-Fos and CGRP immunostaining. We found that pain hypersensitivity and synovial inflammation in Agtr2-/- mice were significantly exacerbated compared with wild-type mice; conversely, systemically administrated C21 attenuated both of the symptoms. Additionally, spinal microglia were activated, and an abundant increase of spinal AT2R was expressed on activated microglia in response to peripheral joint inflammation. Intrathecally-administrated C21 reversed the secondary hypersensitivity, accompanied by alleviation of spinal microglial activation, spinal neuronal hyperactivity, and calcitonin gene-related peptide content. These findings revealed a beneficial role of AT2R activating stimulation against pain hypersensitivity in joint inflammatory pain via direct modulation of synovial macrophage and spinal microglial activity.
Collapse
Affiliation(s)
- Wei Gao
- Anhui Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Liang Shen
- Department of Anesthesiology, Anhui Provincial Hospital Affiliated to Medical University, Hefei 230036, China
| | - Dan-Dan Long
- Department of Anesthesiology, Anhui Provincial Hospital Affiliated to Medical University, Hefei 230036, China
| | - Ting-Ting Pan
- Department of Anesthesiology, Anhui Provincial Hospital Affiliated to Medical University, Hefei 230036, China
| | - Di Wang
- Department of Anesthesiology, Anhui Provincial Hospital Affiliated to Medical University, Hefei 230036, China
| | - Xiao-Qing Chai
- Anhui Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Shan-Shan Hu
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| |
Collapse
|
9
|
AT2R activation increases in vitro angiogenesis in pregnant human uterine artery endothelial cells. PLoS One 2022; 17:e0267826. [PMID: 35486619 PMCID: PMC9053770 DOI: 10.1371/journal.pone.0267826] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/15/2022] [Indexed: 12/04/2022] Open
Abstract
Angiogenesis is vital during pregnancy for remodeling and enhancing vasodilation of maternal uterine arteries, and increasing uterine blood flow. Abnormal angiogenesis is associated with decreased uteroplacental blood flow and development of pregnancy disorders such as gestational hypertension, preeclampsia, fetal growth restriction, preterm delivery, stillbirth, and miscarriage. The mechanisms that contribute to normal angiogenesis remain obscure. Our previous studies demonstrated that expression of the angiotensin type 2 receptor (AT2R) is increased while the angiotensin type 1 receptor (AT1R) is unchanged in the endothelium of uterine arteries, and that AT2R-mediated pregnancy adaptation facilitates enhanced vasodilation and uterine arterial blood flow. However, the role of AT2R in regulating angiogenesis during pregnancy has never been studied. This study examines whether or not AT2R activation induces angiogenesis and, if so, what mechanisms are involved. To this end, we used primary human uterine artery endothelial cells (hUAECs) isolated from pregnant and nonpregnant women undergoing hysterectomy. The present study shows that Compound 21, a selective AT2R agonist, induced proliferation of pregnant-hUAECs, but not nonpregnant-hUAECs, in a concentration-dependent manner, and that this C21-induced mitogenic effect was blocked by PD123319, a selective AT2R antagonist. The mitogenic effects induced by C21 were inhibited by blocking JNK—but not ERK, PI3K, and p38—signaling pathways. In addition, C21 concentration dependently increased cell migration and capillary-like tube formation in pregnant-hUAECs. The membrane-based antibody array showed that C21 increased expression of multiple angiogenic proteins, including EGF, bFGF, leptin, PLGF, IGF-1, and angiopoietins. Our qPCR analysis demonstrates that C21-induced increase in expression of these angiogenic proteins correlates with a proportional increase in mRNA expression, indicating that AT2R activates angiogenic proteins at the transcriptional level. In summary, the present study shows that AT2R activation induces angiogenesis of hUAECs in a pregnancy-specific manner through JNK-mediated pathways with associated transcriptional upregulation of multiple proangiogenic proteins.
Collapse
|
10
|
Recent Advances in the Endogenous Brain Renin-Angiotensin System and Drugs Acting on It. J Renin Angiotensin Aldosterone Syst 2021; 2021:9293553. [PMID: 34925551 PMCID: PMC8651430 DOI: 10.1155/2021/9293553] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/14/2021] [Accepted: 10/23/2021] [Indexed: 12/22/2022] Open
Abstract
The RAS (renin-angiotensin system) is the part of the endocrine system that plays a prime role in the control of essential hypertension. Since the discovery of brain RAS in the seventies, continuous efforts have been put by the scientific committee to explore it more. The brain has shown the presence of various components of brain RAS such as angiotensinogen (AGT), converting enzymes, angiotensin (Ang), and specific receptors (ATR). AGT acts as the precursor molecule for Ang peptides—I, II, III, and IV—while the enzymes such as prorenin, ACE, and aminopeptidases A and N synthesize it. AT1, AT2, AT4, and mitochondrial assembly receptor (MasR) are found to be plentiful in the brain. The brain RAS system exhibits pleiotropic properties such as neuroprotection and cognition along with regulation of blood pressure, CVS homeostasis, thirst and salt appetite, stress, depression, alcohol addiction, and pain modulation. The molecules acting through RAS predominantly ARBs and ACEI are found to be effective in various ongoing and completed clinical trials related to cognition, memory, Alzheimer's disease (AD), and pain. The review summarizes the recent advances in the brain RAS system highlighting its significance in pathophysiology and treatment of the central nervous system-related disorders.
Collapse
|
11
|
Király K, Karádi DÁ, Zádor F, Mohammadzadeh A, Galambos AR, Balogh M, Riba P, Tábi T, Zádori ZS, Szökő É, Fürst S, Al-Khrasani M. Shedding Light on the Pharmacological Interactions between μ-Opioid Analgesics and Angiotensin Receptor Modulators: A New Option for Treating Chronic Pain. Molecules 2021; 26:6168. [PMID: 34684749 PMCID: PMC8537077 DOI: 10.3390/molecules26206168] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/20/2022] Open
Abstract
The current protocols for neuropathic pain management include µ-opioid receptor (MOR) analgesics alongside other drugs; however, there is debate on the effectiveness of opioids. Nevertheless, dose escalation is required to maintain their analgesia, which, in turn, contributes to a further increase in opioid side effects. Finding novel approaches to effectively control chronic pain, particularly neuropathic pain, is a great challenge clinically. Literature data related to pain transmission reveal that angiotensin and its receptors (the AT1R, AT2R, and MAS receptors) could affect the nociception both in the periphery and CNS. The MOR and angiotensin receptors or drugs interacting with these receptors have been independently investigated in relation to analgesia. However, the interaction between the MOR and angiotensin receptors has not been excessively studied in chronic pain, particularly neuropathy. This review aims to shed light on existing literature information in relation to the analgesic action of AT1R and AT2R or MASR ligands in neuropathic pain conditions. Finally, based on literature data, we can hypothesize that combining MOR agonists with AT1R or AT2R antagonists might improve analgesia.
Collapse
MESH Headings
- Analgesics/pharmacology
- Analgesics, Opioid/pharmacology
- Animals
- Chronic Pain/drug therapy
- Humans
- Neuralgia/drug therapy
- Nociception/drug effects
- Pain Management/methods
- Proto-Oncogene Mas
- Receptors, Angiotensin/drug effects
- Receptors, Angiotensin/metabolism
- Receptors, Opioid/agonists
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/drug effects
- Receptors, Opioid, mu/metabolism
Collapse
Affiliation(s)
- Kornél Király
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| | - Dávid Á. Karádi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| | - Ferenc Zádor
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (T.T.); (É.S.)
| | - Amir Mohammadzadeh
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| | - Anna Rita Galambos
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| | - Mihály Balogh
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| | - Pál Riba
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| | - Tamás Tábi
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (T.T.); (É.S.)
| | - Zoltán S. Zádori
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| | - Éva Szökő
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (T.T.); (É.S.)
| | - Susanna Fürst
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| |
Collapse
|
12
|
Rice ASC, Dworkin RH, Finnerup NB, Attal N, Anand P, Freeman R, Piaia A, Callegari F, Doerr C, Mondal S, Narayanan N, Ecochard L, Flossbach Y, Pandhi S. Efficacy and safety of EMA401 in peripheral neuropathic pain: results of 2 randomised, double-blind, phase 2 studies in patients with postherpetic neuralgia and painful diabetic neuropathy. Pain 2021; 162:2578-2589. [PMID: 33675631 DOI: 10.1097/j.pain.0000000000002252] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/09/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT The analgesic efficacy and safety of 2 phase 2b studies of EMA401 (a highly selective angiotensin II type 2 receptor antagonist) in patients with postherpetic neuralgia (EMPHENE) and painful diabetic neuropathy (EMPADINE) were reported. These were multicentre, randomised, double-blind treatment studies conducted in participants with postherpetic neuralgia or type I/II diabetes mellitus with painful distal symmetrical sensorimotor neuropathy. Participants were randomised 1:1:1 to either placebo, EMA401 25 mg, or 100 mg twice daily (b.i.d) in the EMPHENE and 1:1 to placebo or EMA401 100 mg b.i.d. in the EMPADINE. The primary outcome for both the studies was change in weekly mean of the 24-hour average pain score, using a numeric rating scale from baseline to week 12. Both the studies were prematurely terminated due to preclinical hepatotoxicity on long-term dosing, although not observed in these studies. Out of the planned participants, a total of 129/360 (EMPHENE) and 137/400 (EMPADINE) participants were enrolled. The least square mean reduction in numeric rating scale pain score was numerically in favour of EMA401 100 mg arm in both EMPHENE (treatment difference: -0.5 [95% confidence interval: -1.6 to 0.6; P value: 0.35]) and EMPADINE (treatment difference: -0.6 [95% confidence interval: -1.4 to 0.1; P value: 0.10]) at the end of week 12. However, as the studies were terminated prematurely, no firm conclusion could be drawn but the consistent clinical improvement in pain intensity reduction across these 2 studies in 2 different populations is worth noting.
Collapse
Affiliation(s)
- Andrew S C Rice
- Department of Surgery and Cancer, Pain Research, Imperial College London, London, United Kingdom
| | - Robert H Dworkin
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Nanna B Finnerup
- Department of Clinical Medicine, Danish Pain Research Center, Aarhus University, Aarhus, Denmark
| | - Nadine Attal
- INSERM U987, Ambroise Paré Hospital, APHP, Boulogne-Billancourt, Paris, France
- Université Versailles Saint Quentin- en Yvelines (UVSQ), Versailles, France
| | - Praveen Anand
- Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Roy Freeman
- Center for Autonomic and Peripheral Nerve Disorders, Beth Israel Deaconess Medical Center, Harvard Medical School Boston, Boston, MA, United States
| | | | | | - Christie Doerr
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, United States
| | | | | | | | | | | |
Collapse
|
13
|
Cascella M, Del Gaudio A, Vittori A, Bimonte S, Del Prete P, Forte CA, Cuomo A, De Blasio E. COVID-Pain: Acute and Late-Onset Painful Clinical Manifestations in COVID-19 - Molecular Mechanisms and Research Perspectives. J Pain Res 2021; 14:2403-2412. [PMID: 34408485 PMCID: PMC8364364 DOI: 10.2147/jpr.s313978] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/01/2021] [Indexed: 01/08/2023] Open
Abstract
Although the respiratory manifestations of COVID-19 are predominant, signs and symptoms of an extra-pulmonary involvement are usually encompassed among the clinical picture of the disease. Several painful manifestations can occur during the acute phase but also as short- or long-term complications. Myalgia, joint pain, sore throat, abdominal pain, chest pain, and headache usually accompany respiratory symptoms, but they can also occur as isolated clinical findings or can be expressed regardless of the severity of COVID-19. On these premises, given the vast spectrum of clinical manifestations and the complexity of their pathogenesis, it would be more appropriate to refer to "COVID-pain", an umbrella term useful for encompassing all these clinical manifestations in a separate chapter of the disease. In this scenario, we addressed the topic from a molecular perspective, trying to provide explanations for the underlying pathophysiological processes. Consequently, this narrative review is aimed at dissecting the mechanisms of acute and chronic painful manifestations, summarizing fundamental concepts on the matter, controversies, current research gaps, and potential developments in this field.
Collapse
Affiliation(s)
- Marco Cascella
- Division of Anesthesia and Pain Medicine, Istituto Nazionale Tumori-IRCCS-“Fondazione G. Pascale”, Naples, 80131, Italy
| | - Alfredo Del Gaudio
- DSC Anestesia e Rianimazione 2, IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013, FG, Italy
| | - Alessandro Vittori
- Department of Anesthesiology and Critical Care, ARCO, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Sabrina Bimonte
- Division of Anesthesia and Pain Medicine, Istituto Nazionale Tumori-IRCCS-“Fondazione G. Pascale”, Naples, 80131, Italy
| | - Paola Del Prete
- Direzione Scientifica, Istituto Nazionale Tumori-IRCCS-“Fondazione G. Pascale”, Naples, 80131, Italy
| | - Cira Antonietta Forte
- Division of Anesthesia and Pain Medicine, Istituto Nazionale Tumori-IRCCS-“Fondazione G. Pascale”, Naples, 80131, Italy
| | - Arturo Cuomo
- Division of Anesthesia and Pain Medicine, Istituto Nazionale Tumori-IRCCS-“Fondazione G. Pascale”, Naples, 80131, Italy
| | - Elvio De Blasio
- DSC Anestesia e Rianimazione 2, IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013, FG, Italy
- Multidisciplinary Emergency Unit for COVID-19 Campania, Naples, 80100, Italy
| |
Collapse
|
14
|
Avsar T, Yigit BN, Turan G, Altunsu D, Calis S, Kurt B, Kilic T, Yavuz Ergun M, Durdagi S, Acar M. Development of imidazolone based angiotensin II receptor type I inhibitor small molecule as a chemotherapeutic agent for cell cycle inhibition. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1954098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Timucin Avsar
- Department of Medical Biology, School of Medicine, Bahcesehir University, Istanbul, Turkey
- Neuroscience Program, Health Sciences Institute, Bahcesehir University, Istanbul, Turkey
- Neuroscience Laboratory, Health Sciences Institute, Bahcesehir University, Istanbul, Turkey
| | - Berfu Nur Yigit
- Neuroscience Program, Health Sciences Institute, Bahcesehir University, Istanbul, Turkey
- Neuroscience Laboratory, Health Sciences Institute, Bahcesehir University, Istanbul, Turkey
| | - Gizem Turan
- Neuroscience Program, Health Sciences Institute, Bahcesehir University, Istanbul, Turkey
- Neuroscience Laboratory, Health Sciences Institute, Bahcesehir University, Istanbul, Turkey
| | - Deniz Altunsu
- Neuroscience Program, Health Sciences Institute, Bahcesehir University, Istanbul, Turkey
- Neuroscience Laboratory, Health Sciences Institute, Bahcesehir University, Istanbul, Turkey
| | - Seyma Calis
- Neuroscience Laboratory, Health Sciences Institute, Bahcesehir University, Istanbul, Turkey
- Graduate School of Science, Engineering and Technology, Molecular Biology, Genetics and Biotechnology Graduate Program, Istanbul Technical University, Istanbul, Turkey
| | - Bahar Kurt
- Neuroscience Laboratory, Health Sciences Institute, Bahcesehir University, Istanbul, Turkey
| | - Turker Kilic
- Neuroscience Program, Health Sciences Institute, Bahcesehir University, Istanbul, Turkey
- Neuroscience Laboratory, Health Sciences Institute, Bahcesehir University, Istanbul, Turkey
- Department of Neurosurgery, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - M. Yavuz Ergun
- Department of Chemistry, Dokuz Eylul University, Izmir, Turkey
| | - Serdar Durdagi
- Neuroscience Program, Health Sciences Institute, Bahcesehir University, Istanbul, Turkey
- Department of Biophysics, Computational Biology and Molecular Simulations Laboratory, School of Medicine, Bahcesehir University Istanbul, Turkey
| | - Melih Acar
- Department of Medical Biology, School of Medicine, Bahcesehir University, Istanbul, Turkey
- Neuroscience Laboratory, Health Sciences Institute, Bahcesehir University, Istanbul, Turkey
| |
Collapse
|
15
|
Chen F, Gao W, Hu J, Yang X, Chai X, Wang D. Preoperative angiotensin II type 2 receptor is a predictor for developing chronic post-surgical pain after total knee arthroplasty surgery. Life Sci 2021; 278:119654. [PMID: 34043993 DOI: 10.1016/j.lfs.2021.119654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/07/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE This study aimed to explore whether preoperative angiotensin II type 2 receptor (AT2R) level in knee osteoarthritis (OA) patients was an independent risk factor for chronic post-surgical pain (CPSP) after total knee arthroplasty (TKA). METHODS A total of 220 patients who had undergone unilateral TKA were enrolled from October 2019 to January 2020. Quantitative sensory testing (QST), PainDETECT questionnaires (PD-Q), the Western Ontario McMaster Universities Osteoarthritis Index (WOMAC), the hospital anxiety and depression (HAD) and serum AT2R were collected preoperatively. The primary outcome was the incidence of CPSP, which was defined as the visual analogue scale (VAS) score ≥ 4 in the ipsilateral knee joint six months after operation. RESULTS The prevalence of CPSP was 13.6% (n = 30). Multiple logistic regression analysis showed that patients with higher AT2R level (OR: 1.007, 95% CI: 1.003-1.011) and PD-Q score (OR: 1.146, 95% CI: 1.008-1.298) before surgery had an increased risk of CPSP after surgery, and a combination of preoperative AT2R and PD-Q (Akaike information criterion: 147.2; area under receiver operating characteristic (ROC) curve: 0.890) was able to correctly classify 90.16% of patients into CPSP positive or negative groups. CONCLUSION Our findings suggest that patients with higher preoperative AT2R level are at increased risk of developing CPSP following TKA. AT2R may serve as a candidate predictor for phenotyping CPSP in OA patients.
Collapse
Affiliation(s)
- Fan Chen
- Department of Anesthesiology, Anhui Provincial Hospital, Anhui Medical University, Hefei, China; Department of Anesthesiology, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| | - Wei Gao
- Department of Anesthesiology, Anhui Provincial Hospital, Anhui Medical University, Hefei, China; Department of Anesthesiology, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| | - Jicheng Hu
- Department of Anesthesiology, Anhui Provincial Hospital, Anhui Medical University, Hefei, China; Department of Anesthesiology, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| | - Xinlu Yang
- Department of Anesthesiology, Anhui Provincial Hospital, Anhui Medical University, Hefei, China; Department of Anesthesiology, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| | - Xiaoqing Chai
- Department of Anesthesiology, Anhui Provincial Hospital, Anhui Medical University, Hefei, China; Department of Anesthesiology, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China.
| | - Di Wang
- Department of Anesthesiology, Anhui Provincial Hospital, Anhui Medical University, Hefei, China; Department of Anesthesiology, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China.
| |
Collapse
|
16
|
Feng JH, Sim SM, Park JS, Hong JS, Suh HW. The changes of nociception and the signal molecules expression in the dorsal root ganglia and the spinal cord after cold water swimming stress in mice. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2021; 25:207-216. [PMID: 33859061 PMCID: PMC8050611 DOI: 10.4196/kjpp.2021.25.3.207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/25/2021] [Accepted: 02/17/2021] [Indexed: 11/22/2022]
Abstract
Several studies have previously reported that exposure to stress provokes behavioral changes, including antinociception, in rodents. In the present study, we studied the effect of acute cold-water (4°C) swimming stress (CWSS) on nociception and the possible changes in several signal molecules in male ICR mice. Here, we show that 3 min of CWSS was sufficient to produce antinociception in tail-flick, hot-plate, von-Frey, writhing, and formalin-induced pain models. Significantly, CWSS strongly reduced nociceptive behavior in the first phase, but not in the second phase, of the formalin-induced pain model. We further examined some signal molecules' expressions in the dorsal root ganglia (DRG) and spinal cord to delineate the possible molecular mechanism involved in the antinociceptive effect under CWSS. CWSS reduced p-ERK, p-AMPKα1, p-AMPKα2, p-Tyk2, and p-STAT3 expression both in the spinal cord and DRG. However, the phosphorylation of mTOR was activated after CWSS in the spinal cord and DRG. Moreover, p-JNK and p-CREB activation were significantly increased by CWSS in the spinal cord, whereas CWSS alleviated JNK and CREB phosphorylation levels in DRG. Our results suggest that the antinociception induced by CWSS may be mediated by several molecules, such as ERK, JNK, CREB, AMPKα1, AMPKα2, mTOR, Tyk2, and STAT3 located in the spinal cord and DRG.
Collapse
Affiliation(s)
- Jing-Hui Feng
- Department of Pharmacology and Institute of Natural Medicine, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Su-Min Sim
- Department of Pharmacology and Institute of Natural Medicine, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Jung-Seok Park
- Department of Physical Education, Hallym University, Chuncheon 24252, Korea
| | - Jae-Seung Hong
- Department of Physical Education, Hallym University, Chuncheon 24252, Korea
| | - Hong-Won Suh
- Department of Pharmacology and Institute of Natural Medicine, College of Medicine, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
17
|
Abstract
Growing evidence implicates the renin-angiotensin system (RAS) in multiple facets of neuropathic pain (NP). This narrative review focuses primarily on the major bioactive RAS peptide, Angiotensin II (Ang II), and its receptors, namely type 1 (AT1R) and type 2 (AT2R). Both receptors are involved in the development of NP and represent potential therapeutic targets. We first discuss the potential role of Ang II receptors in modulation of NP in the central nervous system. Ang II receptor expression is widespread in circuits associated with the perception and modulation of pain, but more studies are required to fully characterize receptor distribution, downstream signaling, and therapeutic potential of targeting the central nervous system RAS in NP. We then describe the peripheral neuronal and nonneuronal distribution of the RAS, and its contribution to NP. Other RAS modulators (such as Ang (1-7)) are briefly reviewed as well. AT1R antagonists are analgesic across different pain models, including NP. Several studies show neuronal protection and outgrowth downstream of AT2R activation, which may lead to the use of AT2R agonists in NP. However, blockade of AT2R results in analgesia. Furthermore, expression of the RAS in the immune system and a growing appreciation of neuroimmune crosstalk in NP add another layer of complexity and therapeutic potential of targeting this pathway. A growing number of human studies also hint at the analgesic potential of targeting Ang II signaling. Altogether, Ang II receptor signaling represents a promising, far-reaching, and novel strategy to treat NP.
Collapse
|
18
|
Zanata GC, Pinto LG, da Silva NR, Lopes AHP, de Oliveira FFB, Schivo IRS, Cunha FQ, McNaughton P, Cunha TM, Silva RL. Blockade of bradykinin receptors or angiotensin II type 2 receptor prevents paclitaxel-associated acute pain syndrome in mice. Eur J Pain 2021; 25:189-198. [PMID: 32965065 DOI: 10.1002/ejp.1660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 06/30/2020] [Accepted: 09/07/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Paclitaxel (PCX) is the first-line choice for the treatment of several types of cancer, including breast, ovarian, and lung cancers. However, patients who receive even a single dose with PCX commonly develop mechanical and cold allodynia, a symptom known as PCX-associated acute pain syndrome (P-APS). Here, we assessed possible involvement of kinin-kallikrein and renin-angiotensin systems in P-APS in mice. METHODS Male mice C57Bl/6 wild type (WT) and knockouts for bradykinin receptors, B1 (B1-/- ) and B2 (B2-/- ), were used. Mechanical and cold allodynia were evaluated by using von Frey filaments and acetone test, respectively. P-APS was induced by administration of PCX 4 mg/kg, i.v.. ACE inhibitors (captopril and enalapril), antagonists for angiotensin II type 1 (losartan) and type 2 ([AT2R]; PD123319 and EMA 401) receptors were administrated prior the treatment with PCX. RT-PCR was used to analyse the expression of mRNA for B1, B2 and AT2R receptors. RESULTS Administration of PCX in B1-/- and B2-/- mice induced lower mechanical and cold allodynia compared to the WT. However, the pre-treatment with ACE inhibitors reduced the development of mechanical and cold allodynia in P-APS. Surprisingly, we found that mice pre-treatment with the PD123319 or EMA401, but not losartan, prevented the development of mechanical and cold allodynia induced by PCX. CONCLUSION Our results demonstrated the involvement of bradykinin receptors B1 and B2 as well as AT2R in the induction of P-APS in mice, and suggest the use of AT2R antagonists as a potential therapy for the prevention of P-APS in humans. SIGNIFICANCE Kinin-kallikrein and renin-angiotensin systems, through B1, B2 and AT2 receptors, potentiates paclitaxel-associated acute pain syndrome (P-APS) in mice. Antagonists for AT2R are potential alternatives to prevent P-APS.
Collapse
Affiliation(s)
- Graziele C Zanata
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil
- Barão de Maua University Center, Ribeirão Preto, Brazil
| | - Larissa G Pinto
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Nicole R da Silva
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil
| | - Alexandre H P Lopes
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil
| | - Francisco F B de Oliveira
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - Ieda R S Schivo
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil
| | - Peter McNaughton
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Thiago M Cunha
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil
| | - Rangel L Silva
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
19
|
Szczepanska-Sadowska E, Cudnoch-Jedrzejewska A, Sadowski B. Differential role of specific cardiovascular neuropeptides in pain regulation: Relevance to cardiovascular diseases. Neuropeptides 2020; 81:102046. [PMID: 32284215 DOI: 10.1016/j.npep.2020.102046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 03/27/2020] [Accepted: 03/29/2020] [Indexed: 12/11/2022]
Abstract
In many instances, the perception of pain is disproportionate to the strength of the algesic stimulus. Excessive or inadequate pain sensation is frequently observed in cardiovascular diseases, especially in coronary ischemia. The mechanisms responsible for individual differences in the perception of cardiovascular pain are not well recognized. Cardiovascular disorders may provoke pain in multiple ways engaging molecules released locally in the heart due to tissue ischemia, inflammation or cellular stress, and through neurogenic and endocrine mechanisms brought into action by hemodynamic disturbances. Cardiovascular neuropeptides, namely angiotensin II (Ang II), angiotensin-(1-7) [Ang-(1-7)], vasopressin, oxytocin, and orexins belong to this group. Although participation of these peptides in the regulation of circulation and pain has been firmly established, their mutual interaction in the regulation of pain in cardiovascular diseases has not been profoundly analyzed. In the present review we discuss the regulation of the release, and mechanisms of the central and systemic actions of these peptides on the cardiovascular system in the context of their central and peripheral nociceptive (Ang II) and antinociceptive [Ang-(1-7), vasopressin, oxytocin, orexins] properties. We also consider the possibility that they may play a significant role in the modulation of pain in cardiovascular diseases. The rationale for focusing attention on these very compounds was based on the following premises (1) cardiovascular disturbances influence the release of these peptides (2) they regulate vascular tone and cardiac function and can influence the intensity of ischemia - the factor initiating pain signals in the cardiovascular system, (3) they differentially modulate nociception through peripheral and central mechanisms, and their effect strongly depends on specific receptors and site of action. Accordingly, an altered release of these peptides and/or pharmacological blockade of their receptors may have a significant but different impact on individual sensation of pain and comfort of an individual patient.
Collapse
Affiliation(s)
- Ewa Szczepanska-Sadowska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, Warsaw, Poland.
| | - Agnieszka Cudnoch-Jedrzejewska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, Warsaw, Poland
| | - Bogdan Sadowski
- School of Engineering and Health, Bitwy Warszawskiej 1920 r. 18, Warsaw, Poland
| |
Collapse
|
20
|
Abstract
The active hormone of the renin-angiotensin system (RAS), angiotensin II (Ang II), is involved in several human diseases, driving the development and clinical use of several therapeutic drugs, mostly angiotensin I converting enzyme (ACE) inhibitors and angiotensin receptor type I (AT1R) antagonists. However, angiotensin peptides can also bind to receptors different from AT1R, in particular, angiotensin receptor type II (AT2R), resulting in biological and physiological effects different, and sometimes antagonistic, of their binding to AT1R. In the present Perspective, the components of the RAS and the therapeutic tools developed to control it will be reviewed. In particular, the characteristics of AT2R and tools to modulate its functions will be discussed. Agonists or antagonists to AT2R are potential therapeutics in cardiovascular diseases, for agonists, and in the control of pain, for antagonists, respectively. However, controlling their binding properties and their targeting to the target tissues must be optimized.
Collapse
Affiliation(s)
- Lucienne Juillerat-Jeanneret
- Transplantation Center, Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Chemin des Boveresses 155, CH1011 Lausanne, Switzerland
| |
Collapse
|
21
|
Advanced glycation endproducts produced by in vitro glycation of type I collagen modulate the functional and secretory behavior of dorsal root ganglion cells cultivated in two-dimensional system. Exp Cell Res 2019; 382:111475. [PMID: 31255600 DOI: 10.1016/j.yexcr.2019.06.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 06/15/2019] [Accepted: 06/19/2019] [Indexed: 12/24/2022]
Abstract
Advanced glycation end-products (AGEs) are proteins/lipids that are glycated upon sugar exposure and are often increased during inflammatory diseases such as osteoarthritis and neurodegenerative disorders. Here, we developed an extracellular matrix (ECM) using glycated type I collagen (ECM-GC), which produced similar levels of AGEs to those detected in the sera of arthritic mice. In order to determine whether AGEs were sufficient to stimulate sensory neurons, dorsal root ganglia (DRGs) cells were cultured on ECM-GC or ECM-NC-coated plates. ECM-GC or ECM-NC were favorable for DRG cells expansion. However, ECM-GC cultivated neurons displayed thinner F-actin filaments, rounded morphology, and reduced neuron interconnection compared to ECM-NC. In addition, ECM-GC did not affect RAGE expression levels in the neurons, although induced rapid p38, MAPK and ERK activation. Finally, ECM-GC stimulated the secretion of nitrite and TNF-α by DRG cells. Taken together, our in vitro glycated ECM model suitably mimics the in vivo microenvironment of inflammatory disorders and provides new insights into the role of ECM impairment as a nociceptive stimulus.
Collapse
|
22
|
Shepherd AJ, Mohapatra DP. Attenuation of Unevoked Mechanical and Cold Pain Hypersensitivities Associated With Experimental Neuropathy in Mice by Angiotensin II Type-2 Receptor Antagonism. Anesth Analg 2019; 128:e84-e87. [PMID: 31094778 PMCID: PMC6652216 DOI: 10.1213/ane.0000000000003857] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent findings from a phase II clinical trial showed analgesic effects of an angiotensin II type-2 receptor (AT2R) antagonist in postherpetic neuralgia patients. This study aimed to investigate whether AT2R antagonism could provide effective analgesia in voluntary measures of unevoked/ongoing pain-like behaviors in mice with experimental neuropathy. Mice were subjected to spared nerve injury to induce neuropathy and tested in 2 operant behavioral tests to measure ongoing mechanical and cold pain hypersensitivities. Systemic administration of an AT2R antagonist provided effective analgesia in these behavioral measures of mechanical and cold pain in spared nerve injury mice, suggesting its effectiveness in neuropathic pain.
Collapse
Affiliation(s)
- Andrew J Shepherd
- From the Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine in St Louis, St Louis, Missouri
| | | |
Collapse
|
23
|
Losartan treatment attenuates the development of neuropathic thermal hyperalgesia induced by peripheral nerve injury in rats. Life Sci 2019; 220:147-155. [DOI: 10.1016/j.lfs.2019.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/25/2019] [Accepted: 02/02/2019] [Indexed: 12/19/2022]
|
24
|
Abstract
Peripheral nerve damage initiates a complex series of structural and cellular processes that culminate in chronic neuropathic pain. The recent success of a type 2 angiotensin II (Ang II) receptor (AT2R) antagonist in a phase II clinical trial for the treatment of postherpetic neuralgia suggests angiotensin signaling is involved in neuropathic pain. However, transcriptome analysis indicates a lack of AT2R gene (Agtr2) expression in human and rodent sensory ganglia, raising questions regarding the tissue/cell target underlying the analgesic effect of AT2R antagonism. We show that selective antagonism of AT2R attenuates neuropathic but not inflammatory mechanical and cold pain hypersensitivity behaviors in mice. Agtr2-expressing macrophages (MΦs) constitute the predominant immune cells that infiltrate the site of nerve injury. Interestingly, neuropathic mechanical and cold pain hypersensitivity can be attenuated by chemogenetic depletion of peripheral MΦs and AT2R-null hematopoietic cell transplantation. Our study identifies AT2R on peripheral MΦs as a critical trigger for pain sensitization at the site of nerve injury, and therefore proposes a translatable peripheral mechanism underlying chronic neuropathic pain.
Collapse
|
25
|
Angiotensin II Triggers Peripheral Macrophage-to-Sensory Neuron Redox Crosstalk to Elicit Pain. J Neurosci 2018; 38:7032-7057. [PMID: 29976627 DOI: 10.1523/jneurosci.3542-17.2018] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 05/03/2018] [Accepted: 05/07/2018] [Indexed: 12/20/2022] Open
Abstract
Injury, inflammation, and nerve damage initiate a wide variety of cellular and molecular processes that culminate in hyperexcitation of sensory nerves, which underlies chronic inflammatory and neuropathic pain. Using behavioral readouts of pain hypersensitivity induced by angiotensin II (Ang II) injection into mouse hindpaws, our study shows that activation of the type 2 Ang II receptor (AT2R) and the cell-damage-sensing ion channel TRPA1 are required for peripheral mechanical pain sensitization induced by Ang II in male and female mice. However, we show that AT2R is not expressed in mouse and human dorsal root ganglia (DRG) sensory neurons. Instead, expression/activation of AT2R on peripheral/skin macrophages (MΦs) constitutes a critical trigger of mouse and human DRG sensory neuron excitation. Ang II-induced peripheral mechanical pain hypersensitivity can be attenuated by chemogenetic depletion of peripheral MΦs. Furthermore, AT2R activation in MΦs triggers production of reactive oxygen/nitrogen species, which trans-activate TRPA1 on mouse and human DRG sensory neurons via cysteine modification of the channel. Our study thus identifies a translatable immune cell-to-sensory neuron signaling crosstalk underlying peripheral nociceptor sensitization. This form of cell-to-cell signaling represents a critical peripheral mechanism for chronic pain and thus identifies multiple druggable analgesic targets.SIGNIFICANCE STATEMENT Pain is a widespread health problem that is undermanaged by currently available analgesics. Findings from a recent clinical trial on a type II angiotensin II receptor (AT2R) antagonist showed effective analgesia for neuropathic pain. AT2R antagonists have been shown to reduce neuropathy-, inflammation- and bone cancer-associated pain in rodents. We report that activation of AT2R in macrophages (MΦs) that infiltrate the site of injury, but not in sensory neurons, triggers an intercellular redox communication with sensory neurons via activation of the cell damage/pain-sensing ion channel TRPA1. This MΦ-to-sensory neuron crosstalk results in peripheral pain sensitization. Our findings provide an evidence-based mechanism underlying the analgesic action of AT2R antagonists, which could accelerate the development of efficacious non-opioid analgesic drugs for multiple pain conditions.
Collapse
|
26
|
A convenient transesterification method for synthesis of AT2 receptor ligands with improved stability in human liver microsomes. Bioorg Med Chem Lett 2017; 28:519-522. [PMID: 29279275 DOI: 10.1016/j.bmcl.2017.11.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/15/2017] [Accepted: 11/24/2017] [Indexed: 11/20/2022]
Abstract
A series of AT2R ligands have been synthesized applying a quick, simple, and safe transesterification-type reaction whereby the sulfonyl carbamate alkyl tail of the selective AT2R antagonist C38 was varied. Furthermore, a limited number of compounds where acyl sulfonamides and sulfonyl ureas served as carboxylic acid bioisosteres were synthesized and evaluated. By reducing the size of the alkyl chain of the sulfonyl carbamates, ligands 7a and 7b were identified with significantly improved in vitro metabolic stability in both human and mouse liver microsomes as compared to C38 while retaining the AT2R binding affinity and AT2R/AT1R selectivity. Eight of the compounds synthesized exhibit an improved stability in human microsomes as compared to C38.
Collapse
|
27
|
Khan N, Muralidharan A, Smith MT. Attenuation of the Infiltration of Angiotensin II Expressing CD3 + T-Cells and the Modulation of Nerve Growth Factor in Lumbar Dorsal Root Ganglia - A Possible Mechanism Underpinning Analgesia Produced by EMA300, An Angiotensin II Type 2 (AT 2) Receptor Antagonist. Front Mol Neurosci 2017; 10:389. [PMID: 29200998 PMCID: PMC5696600 DOI: 10.3389/fnmol.2017.00389] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/07/2017] [Indexed: 12/25/2022] Open
Abstract
Recent preclinical and proof-of-concept clinical studies have shown promising analgesic efficacy of selective small molecule angiotensin II type 2 (AT2) receptor antagonists in the alleviation of peripheral neuropathic pain. However, their cellular and molecular mechanism of action requires further investigation. To address this issue, groups of adult male Sprague–Dawley rats with fully developed unilateral hindpaw hypersensitivity, following chronic constriction injury (CCI) of the sciatic nerve, received a single intraperitoneal bolus dose of the small molecule AT2 receptor antagonist, EMA300 (10 mg kg-1), or vehicle. At the time of peak EMA300-mediated analgesia (∼1 h post-dosing), groups of CCI-rats administered either EMA300 or vehicle were euthanized. A separate group of rats that underwent sham surgery were also included. The lumbar (L4–L6) dorsal root ganglia (DRGs) were obtained from all experimental cohorts and processed for immunohistochemistry and western blot studies. In vehicle treated CCI-rats, there was a significant increase in the expression levels of angiotensin II (Ang II), but not the AT2 receptor, in the ipsilateral lumbar DRGs. The elevated levels of Ang II in the ipsilateral lumbar DRGs of CCI-rats were at least in part contributed by CD3+ T-cells, satellite glial cells (SGCs) and subsets of neurons. Our findings suggest that the analgesic effect of EMA300 in CCI-rats involves multimodal actions that appear to be mediated at least in part by a significant reduction in the otherwise increased expression levels of Ang II as well as the number of Ang II-expressing CD3+ T-cells in the ipsilateral lumbar DRGs of CCI-rats. Additionally, the acute anti-allodynic effects of EMA300 in CCI-rats were accompanied by rescue of the otherwise decreased expression of mature nerve growth factor (NGF) in the ipsilateral lumbar DRGs of CCI-rats. In contrast, the increased expression levels of TrkA and glial fibrillary acidic protein in the ipsilateral lumbar DRGs of vehicle-treated CCI-rats were not attenuated by a single bolus dose of EMA300. Consistent with our previous findings, there was also a significant decrease in the augmented levels of the downstream mediators of Ang II/AT2 receptor signaling, i.e., phosphorylated-p38 mitogen-activated protein kinase (MAPK) and phosphorylated-p44/p42 MAPK, in the ipsilateral lumbar DRGs.
Collapse
Affiliation(s)
- Nemat Khan
- UQ Center for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Arjun Muralidharan
- UQ Center for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Maree T Smith
- UQ Center for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.,School of Pharmacy, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
28
|
Abstract
Many cancerous solid tumors metastasize to the bone and induce pain (cancer-induced bone pain [CIBP]). Cancer-induced bone pain is often severe because of enhanced inflammation, rapid bone degradation, and disease progression. Opioids are prescribed to manage this pain, but they may enhance bone loss and increase tumor proliferation, further compromising patient quality of life. Angiotensin-(1-7) (Ang-(1-7)) binds and activates the Mas receptor (MasR). Angiotensin-(1-7)/MasR activation modulates inflammatory signaling after acute tissue insult, yet no studies have investigated whether Ang-(1-7)/MasR play a role in CIBP. We hypothesized that Ang-(1-7) inhibits CIBP by targeting MasR in a murine model of breast CIBP. 66.1 breast cancer cells were implanted into the femur of BALB/cAnNHsd mice as a model of CIBP. Spontaneous and evoked pain behaviors were assessed before and after acute and chronic administration of Ang-(1-7). Tissues were collected from animals for ex vivo analyses of MasR expression, tumor burden, and bone integrity. Cancer inoculation increased spontaneous pain behaviors by day 7 that were significantly reduced after a single injection of Ang-(1-7) and after sustained administration. Preadministration of A-779 a selective MasR antagonist prevented this reduction, whereas pretreatment with the AT2 antagonist had no effect; an AT1 antagonist enhanced the antinociceptive activity of Ang-(1-7) in CIBP. Repeated Ang-(1-7) administration did not significantly change tumor burden or bone remodeling. Data here suggest that Ang-(1-7)/MasR activation significantly attenuates CIBP, while lacking many side effects seen with opioids. Thus, Ang-(1-7) may be an alternative therapeutic strategy for the nearly 90% of patients with advanced-stage cancer who experience excruciating pain.
Collapse
|
29
|
Knezevic NN, Yekkirala A, Yaksh TL. Basic/Translational Development of Forthcoming Opioid- and Nonopioid-Targeted Pain Therapeutics. Anesth Analg 2017; 125:1714-1732. [PMID: 29049116 PMCID: PMC5679134 DOI: 10.1213/ane.0000000000002442] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Opioids represent an efficacious therapeutic modality for some, but not all pain states. Singular reliance on opioid therapy for pain management has limitations, and abuse potential has deleterious consequences for patient and society. Our understanding of pain biology has yielded insights and opportunities for alternatives to conventional opioid agonists. The aim is to have efficacious therapies, with acceptable side effect profiles and minimal abuse potential, which is to say an absence of reinforcing activity in the absence of a pain state. The present work provides a nonexclusive overview of current drug targets and potential future directions of research and development. We discuss channel activators and blockers, including sodium channel blockers, potassium channel activators, and calcium channel blockers; glutamate receptor-targeted agents, including N-methyl-D-aspartate, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid, and metabotropic receptors. Furthermore, we discuss therapeutics targeted at γ-aminobutyric acid, α2-adrenergic, and opioid receptors. We also considered antagonists of angiotensin 2 and Toll receptors and agonists/antagonists of adenosine, purine receptors, and cannabinoids. Novel targets considered are those focusing on lipid mediators and anti-inflammatory cytokines. Of interest is development of novel targeting strategies, which produce long-term alterations in pain signaling, including viral transfection and toxins. We consider issues in the development of druggable molecules, including preclinical screening. While there are examples of successful translation, mechanistically promising preclinical candidates may unexpectedly fail during clinical trials because the preclinical models may not recapitulate the particular human pain condition being addressed. Molecular target characterization can diminish the disconnect between preclinical and humans' targets, which should assist in developing nonaddictive analgesics.
Collapse
Affiliation(s)
- Nebojsa Nick Knezevic
- From the *Department of Anesthesiology, Advocate Illinois Masonic Medical Center Chicago, Illinois; Departments of †Anesthesiology and ‡Surgery, University of Illinois, Chicago, Illinois; §Department of Neurobiology, Harvard Medical School, and Boston Children's Hospital, Boston, Massachusetts; ‖Blue Therapeutics, Harvard Innovation Launch Lab, Allston, Massachusetts; and Departments of ¶Anesthesiology and #Pharmacology, University of California, San Diego, La Jolla, California
| | | | | |
Collapse
|
30
|
Abstract
Acute and chronic pain complaints, although common, are generally poorly served by existing therapies. This unmet clinical need reflects a failure to develop novel classes of analgesics with superior efficacy, diminished adverse effects and a lower abuse liability than those currently available. Reasons for this include the heterogeneity of clinical pain conditions, the complexity and diversity of underlying pathophysiological mechanisms, and the unreliability of some preclinical pain models. However, recent advances in our understanding of the neurobiology of pain are beginning to offer opportunities for developing novel therapeutic strategies and revisiting existing targets, including modulating ion channels, enzymes and G-protein-coupled receptors.
Collapse
|
31
|
Zhang H, Han GW, Batyuk A, Ishchenko A, White KL, Patel N, Sadybekov A, Zamlynny B, Rudd MT, Hollenstein K, Tolstikova A, White TA, Hunter MS, Weierstall U, Liu W, Babaoglu K, Moore EL, Katz RD, Shipman JM, Garcia-Calvo M, Sharma S, Sheth P, Soisson SM, Stevens RC, Katritch V, Cherezov V. Structural basis for selectivity and diversity in angiotensin II receptors. Nature 2017; 544:327-332. [PMID: 28379944 PMCID: PMC5525545 DOI: 10.1038/nature22035] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/03/2017] [Indexed: 12/22/2022]
Abstract
Angiotensin II receptors, AT1R and AT2R, serve as key components of the renin-angiotensin-aldosterone system. While AT1R plays a central role in the regulation of blood pressure, the function of AT2R is enigmatic with a variety of reported effects. To elucidate the mechanisms for the functional diversity and ligand selectivity between these receptors, we report crystal structures of the human AT2R bound to an AT2R-selective and an AT1R/AT2R-dual ligand, respectively, capturing the receptor in an active-like conformation. Unexpectedly, helix VIII was found in a non-canonical position, stabilizing the active-like state, but at the same time preventing the recruitment of G proteins/β-arrestins, in agreement with the lack of signaling responses in standard cellular assays. Structure-activity relationship, docking and mutagenesis studies revealed the interactions critical for ligand binding and selectivity. Our results thus provide insights into the structural basis for distinct functions of the angiotensin receptors, and may guide the design of novel selective ligands.
Collapse
Affiliation(s)
- Haitao Zhang
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, California 90089, USA.,Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Gye Won Han
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, California 90089, USA
| | - Alexander Batyuk
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Andrii Ishchenko
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, California 90089, USA
| | - Kate L White
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, California 90089, USA.,Department of Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, California 90089, USA
| | - Nilkanth Patel
- Department of Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, California 90089, USA
| | - Anastasiia Sadybekov
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, California 90089, USA
| | - Beata Zamlynny
- MRL, Merck &Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, USA
| | - Michael T Rudd
- MRL, Merck &Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, USA
| | - Kaspar Hollenstein
- MRL, Merck &Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, USA
| | - Alexandra Tolstikova
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany.,Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Thomas A White
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Mark S Hunter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Uwe Weierstall
- Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
| | - Wei Liu
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA
| | - Kerim Babaoglu
- MRL, Merck &Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, USA
| | - Eric L Moore
- MRL, Merck &Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, USA
| | - Ryan D Katz
- MRL, Merck &Co., Inc., 503 Louise Lane, North Wales, Pennsylvania 19454, USA
| | - Jennifer M Shipman
- MRL, Merck &Co., Inc., 503 Louise Lane, North Wales, Pennsylvania 19454, USA
| | | | - Sujata Sharma
- MRL, Merck &Co., Inc., 503 Louise Lane, North Wales, Pennsylvania 19454, USA
| | - Payal Sheth
- MRL, Merck &Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, USA
| | - Stephen M Soisson
- MRL, Merck &Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, USA
| | - Raymond C Stevens
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, California 90089, USA.,Department of Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, California 90089, USA
| | - Vsevolod Katritch
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, California 90089, USA.,Department of Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, California 90089, USA
| | - Vadim Cherezov
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
32
|
Abstract
Chronic neuropathic pain is a widespread problem with negative personal and societal consequences. Despite considerable clinical neuroscience research, the goal of developing effective, reliable, and durable treatments has remained elusive. The critical role played by the dorsal root ganglion (DRG) in the induction and maintenance of chronic pain has been largely overlooked in these efforts, however. It may be that, by targeting this site, robust new options for pain management will be revealed. This review summarizes recent advances in the knowledge base for DRG-targeted treatments for neuropathic pain:• Pharmacological options including the chemical targeting of voltage-dependent calcium channels, transient receptor potential channels, neurotrophin production, potentiation of opioid transduction pathways, and excitatory glutamate receptors.• Ablation or modulation of the DRG via continuous thermal radiofrequency and pulsed radiofrequency treatments.• Implanted electrical neurostimulator technologies.• Interventions involving the modification of DRG cellular function at the genetic level by using viral vectors and gene silencing methods.
Collapse
|
33
|
Benitez S, Seltzer A, Acosta C. Nociceptor-like rat dorsal root ganglion neurons express the angiotensin-II AT2 receptor throughout development. Int J Dev Neurosci 2016; 56:10-17. [PMID: 27825832 DOI: 10.1016/j.ijdevneu.2016.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 10/31/2016] [Accepted: 11/01/2016] [Indexed: 01/06/2023] Open
Abstract
AT2 receptor (AT2R) plays a functional role in foetal development. Its expression declines in most tissues soon after birth but stays high in sensory areas of the adult nervous system. In the dorsal root ganglia (DRG) the expression pattern of AT2R during development and the identity of the subpopulation expressing it remain unknown. Using a combination of semi-quantitative PCR, western blotting and immunohistochemistry we examined the expression of AT2R at mRNA and protein levels in rat DRGs from embryonic day 15 (E15) until postnatal day 30 (PN30). We found that both AT2R mRNA and protein levels exhibited only minor (statistically non-significant) fluctuations from E15 to PN30. Detailed quantitative analysis of ABC/DAB AT2R staining showed a) that the receptor was present in most neurons at E15 and E18 and b) that postnatally it was predominantly expressed by small DRG neurons. Given that small neurons are putative C-nociceptors and the proposed role of AT2R in neuropathic pain, we next examined whether these AT2R-positive neurons co-localized with Ret and trkA embryonically and with IB4-binding postnatally. Most AT2R-positive neurons expressed trkA embryonically and bound IB4 postnatally. We found strong positive statistically highly significant correlations between AT2R cytoplasmic%intensities and trkA at E15/E18 and with Ret only at E18. Cytoplasmic AT2R also strongly and positively correlated with IB4-binding at PN3, 15 and 30. Our demonstration that a subpopulation of C-nociceptor-like neurons expresses AT2R during development supports a role for this receptor in neuropathic pain.
Collapse
Affiliation(s)
- Sergio Benitez
- Instituto de Histología y Embriología de Mendoza (IHEM), Facultad de Ciencias Medicas, Universidad Nacional de Cuyo, 5500, Mendoza, Argentina
| | - Alicia Seltzer
- Instituto de Histología y Embriología de Mendoza (IHEM), Facultad de Ciencias Medicas, Universidad Nacional de Cuyo, 5500, Mendoza, Argentina
| | - Cristian Acosta
- Instituto de Histología y Embriología de Mendoza (IHEM), Facultad de Ciencias Medicas, Universidad Nacional de Cuyo, 5500, Mendoza, Argentina.
| |
Collapse
|
34
|
Norman BH, McDermott JS. Targeting the Nerve Growth Factor (NGF) Pathway in Drug Discovery. Potential Applications to New Therapies for Chronic Pain. J Med Chem 2016; 60:66-88. [DOI: 10.1021/acs.jmedchem.6b00964] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Bryan H. Norman
- Discovery Chemistry
Research and Technologies and ‡Neurophysiology, Lilly Research Laboratories, A Division of Eli Lilly and Company, Indianapolis, Lilly
Corporate Center, Indiana 46285, United States
| | - Jeff S. McDermott
- Discovery Chemistry
Research and Technologies and ‡Neurophysiology, Lilly Research Laboratories, A Division of Eli Lilly and Company, Indianapolis, Lilly
Corporate Center, Indiana 46285, United States
| |
Collapse
|
35
|
Selective small molecule angiotensin II type 2 receptor antagonists for neuropathic pain: preclinical and clinical studies. Pain 2016; 157 Suppl 1:S33-S41. [PMID: 26785154 DOI: 10.1097/j.pain.0000000000000369] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neuropathic pain affects up to 10% of the general population, but drug treatments recommended for the treatment of neuropathic pain are associated with modest efficacy and/or produce dose-limiting side effects. Hence, neuropathic pain is an unmet medical need. In the past 2 decades, research on the pathobiology of neuropathic pain has revealed many novel pain targets for use in analgesic drug discovery programs. However, these efforts have been largely unsuccessful as molecules that showed promising pain relief in rodent models of neuropathic pain generally failed to produce analgesia in early phase clinical trials in patients with neuropathic pain. One notable exception is the angiotensin II type 2 (AT2) receptor that has clinical validity on the basis of a successful double-blind, randomized, placebo-controlled, clinical trial of EMA401, a highly selective, orally active, peripherally restricted AT2 receptor antagonist in patients with postherpetic neuralgia. In this study, we review research to date on target validation, efficacy, and mode of action of small molecule AT2 receptor antagonists in rodent models of peripheral neuropathic pain and in cultured human sensory neurons, the preclinical pharmacokinetics of these compounds, and the outcome of the above clinical trial.
Collapse
|
36
|
Tsuzuki S, Park SH, Eber MR, Peters CM, Shiozawa Y. Skeletal complications in cancer patients with bone metastases. Int J Urol 2016; 23:825-832. [PMID: 27488133 DOI: 10.1111/iju.13170] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/07/2016] [Indexed: 12/13/2022]
Abstract
As a result of significant improvements in current therapies, the life expectancy of cancer patients with bone metastases has dramatically improved. Unfortunately, these patients often experience skeletal complications that significantly impair their quality of life. The major skeletal complications associated with bone metastases include: cancer-induced bone pain, hypercalcemia, pathological bone fractures, metastatic epidural spinal cord compression and cancer cachexia. Once cancer cells invade the bone, they perturb the normal physiology of the marrow microenvironment, resulting in bone destruction, which is believed to be a direct cause of skeletal complications. However, full understanding of the mechanisms responsible for these complications remains unknown. In the present review, we discuss the complications associated with bone metastases along with matched conventional therapeutic strategies. A better understanding of this topic is crucial, as targeting skeletal complications can improve both the morbidity and mortality of patients suffering from bone metastases.
Collapse
Affiliation(s)
- Shunsuke Tsuzuki
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Sun Hee Park
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Matthew R Eber
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Christopher M Peters
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Yusuke Shiozawa
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.
| |
Collapse
|
37
|
Liang Y, Yao S. Potential role of estrogen in maintaining the imbalanced sympathetic and sensory innervation in endometriosis. Mol Cell Endocrinol 2016; 424:42-9. [PMID: 26777300 DOI: 10.1016/j.mce.2016.01.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 11/02/2015] [Accepted: 01/13/2016] [Indexed: 02/07/2023]
Abstract
Endometriosis, one of the most common benign gynecological diseases, affects millions of women of childbearing age. Endometriosis-associated pain is a major cause of disability and compromised quality of life in women. Neuropathic mechanisms are believed to play an important role. An imbalanced sympathetic and sensory innervation (reduced sympathetic innervation, with unchanged or increased sensory innervation in endometriotic lesions) has been demonstrated in endometriosis in recent studies. And it is believed to contribute to the pathogenesis of endometriosis-associated pain. It is primarily considered to be a natural adaptive program to endometriosis-associated inflammation. However, it is important to further clarify whether other potential modulating factors are involved in this dysregulation. It is generally accepted that endometriosis is an estrogen dependent disease. Higher estrogen biosynthesis and lower estrogen inactivation in endometriosis can lead to an excess of local estrogen in endometriotic lesions. In addition to its proliferative and anti-inflammatory actions, local estrogen in endometriosis also exerts potential neuromodulatory effects on the innervation in endometriosis. The aim of this review is to highlight the role of estrogen in mediating this imbalanced sympathetic and sensory innervation in endometriosis, through direct and indirect mechanisms on sympathetic and sensory nerves. Theoretical elaboration of the underlying mechanisms provides new insights in supporting the therapeutic role of estrogen in endometriosis-associated pain.
Collapse
Affiliation(s)
- Yanchun Liang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuzhong Yao
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
38
|
Bessaguet F, Magy L, Desmoulière A, Demiot C. The therapeutic potential of renin angiotensin aldosterone system (RAAS) in chronic pain: from preclinical studies to clinical trials. Expert Rev Neurother 2016; 16:331-9. [DOI: 10.1586/14737175.2016.1150179] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
39
|
Karnik SS, Unal H, Kemp JR, Tirupula KC, Eguchi S, Vanderheyden PML, Thomas WG. International Union of Basic and Clinical Pharmacology. XCIX. Angiotensin Receptors: Interpreters of Pathophysiological Angiotensinergic Stimuli [corrected]. Pharmacol Rev 2015; 67:754-819. [PMID: 26315714 PMCID: PMC4630565 DOI: 10.1124/pr.114.010454] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The renin angiotensin system (RAS) produced hormone peptides regulate many vital body functions. Dysfunctional signaling by receptors for RAS peptides leads to pathologic states. Nearly half of humanity today would likely benefit from modern drugs targeting these receptors. The receptors for RAS peptides consist of three G-protein-coupled receptors—the angiotensin II type 1 receptor (AT1 receptor), the angiotensin II type 2 receptor (AT2 receptor), the MAS receptor—and a type II trans-membrane zinc protein—the candidate angiotensin IV receptor (AngIV binding site). The prorenin receptor is a relatively new contender for consideration, but is not included here because the role of prorenin receptor as an independent endocrine mediator is presently unclear. The full spectrum of biologic characteristics of these receptors is still evolving, but there is evidence establishing unique roles of each receptor in cardiovascular, hemodynamic, neurologic, renal, and endothelial functions, as well as in cell proliferation, survival, matrix-cell interaction, and inflammation. Therapeutic agents targeted to these receptors are either in active use in clinical intervention of major common diseases or under evaluation for repurposing in many other disorders. Broad-spectrum influence these receptors produce in complex pathophysiological context in our body highlights their role as precise interpreters of distinctive angiotensinergic peptide cues. This review article summarizes findings published in the last 15 years on the structure, pharmacology, signaling, physiology, and disease states related to angiotensin receptors. We also discuss the challenges the pharmacologist presently faces in formally accepting newer members as established angiotensin receptors and emphasize necessary future developments.
Collapse
Affiliation(s)
- Sadashiva S Karnik
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Hamiyet Unal
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Jacqueline R Kemp
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Kalyan C Tirupula
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Satoru Eguchi
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Patrick M L Vanderheyden
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Walter G Thomas
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| |
Collapse
|
40
|
Anand U, Yiangou Y, Sinisi M, Fox M, MacQuillan A, Quick T, Korchev YE, Bountra C, McCarthy T, Anand P. Mechanisms underlying clinical efficacy of Angiotensin II type 2 receptor (AT2R) antagonist EMA401 in neuropathic pain: clinical tissue and in vitro studies. Mol Pain 2015; 11:38. [PMID: 26111701 PMCID: PMC4482278 DOI: 10.1186/s12990-015-0038-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 06/11/2015] [Indexed: 12/20/2022] Open
Abstract
Background The clinical efficacy of the Angiotensin II (AngII) receptor AT2R antagonist EMA401, a novel peripherally-restricted analgesic, was reported recently in post-herpetic neuralgia. While previous studies have shown that AT2R is expressed by nociceptors in human DRG (hDRG), and that EMA401 inhibits capsaicin responses in cultured hDRG neurons, the expression and levels of its endogenous ligands AngII and AngIII in clinical neuropathic pain tissues, and their signalling pathways, require investigation. We have immunostained AngII, AT2R and the capsaicin receptor TRPV1 in control post-mortem and avulsion injured hDRG, control and injured human nerves, and in cultured hDRG neurons. AngII, AngIII, and Ang-(1-7) levels were quantified by ELISA. The in vitro effects of AngII, AT2R agonist C21, and Nerve growth factor (NGF) were measured on neurite lengths; AngII, NGF and EMA401 effects on expression of p38 and p42/44 MAPK were measured using quantitative immunofluorescence, and on capsaicin responses using calcium imaging. Results AngII immunostaining was observed in approximately 75% of small/medium diameter neurons in control (n = 5) and avulsion injured (n = 8) hDRG, but not large neurons i.e. similar to TRPV1. AngII was co-localised with AT2R and TRPV1 in hDRG and in vitro. AngII staining by image analysis showed no significant difference between control (n = 12) and injured (n = 13) human nerves. AngII levels by ELISA were also similar in control human nerves (4.09 ± 0.36 pmol/g, n = 31), injured nerves (3.99 ± 0.79 pmol/g, n = 7), and painful neuromas (3.43 ± 0.73 pmol/g, n = 12); AngIII and Ang-(1-7) levels were undetectable (<0.03 and 0.05 pmol/g respectively). Neurite lengths were significantly increased in the presence of NGF, AngII and C21 in cultured DRG neurons. AngII and, as expected, NGF significantly increased signal intensity of p38 and p42/44 MAPK, which was reversed by EMA401. AngII mediated sensitization of capsaicin responses was not observed in the presence of MAP kinase inhibitor PD98059, and the kinase inhibitor staurosporine. Conclusion The major AT2R ligand in human peripheral nerves is AngII, and its levels are maintained in injured nerves. EMA401 may act on paracrine/autocrine mechanisms at peripheral nerve terminals, or intracrine mechanisms, to reduce neuropathic pain signalling in AngII/NGF/TRPV1-convergent pathways.
Collapse
Affiliation(s)
- Uma Anand
- Peripheral Neuropathy Unit, Centre for Clinical Translation, Hammersmith Hospital, Imperial College London, Area A, Ground Floor, Du Cane Rd, London, W12 ONN, UK. .,Nanomedicine Research Laboratory, Division of Medicine, Hammersmith Hospital, Imperial College London, BN5 Commonwealth Building, London, W12 0NN, UK.
| | - Yiangos Yiangou
- Peripheral Neuropathy Unit, Centre for Clinical Translation, Hammersmith Hospital, Imperial College London, Area A, Ground Floor, Du Cane Rd, London, W12 ONN, UK.
| | - Marco Sinisi
- Peripheral Neuropathy Unit, Centre for Clinical Translation, Hammersmith Hospital, Imperial College London, Area A, Ground Floor, Du Cane Rd, London, W12 ONN, UK. .,Peripheral Nerve Injury Unit, Royal National Orthopaedic Hospital, Stanmore, Middlesex, HA7 4LP, UK.
| | - Michael Fox
- Peripheral Neuropathy Unit, Centre for Clinical Translation, Hammersmith Hospital, Imperial College London, Area A, Ground Floor, Du Cane Rd, London, W12 ONN, UK. .,Peripheral Nerve Injury Unit, Royal National Orthopaedic Hospital, Stanmore, Middlesex, HA7 4LP, UK.
| | - Anthony MacQuillan
- Peripheral Neuropathy Unit, Centre for Clinical Translation, Hammersmith Hospital, Imperial College London, Area A, Ground Floor, Du Cane Rd, London, W12 ONN, UK. .,Peripheral Nerve Injury Unit, Royal National Orthopaedic Hospital, Stanmore, Middlesex, HA7 4LP, UK.
| | - Tom Quick
- Peripheral Neuropathy Unit, Centre for Clinical Translation, Hammersmith Hospital, Imperial College London, Area A, Ground Floor, Du Cane Rd, London, W12 ONN, UK. .,Peripheral Nerve Injury Unit, Royal National Orthopaedic Hospital, Stanmore, Middlesex, HA7 4LP, UK.
| | - Yuri E Korchev
- Nanomedicine Research Laboratory, Division of Medicine, Hammersmith Hospital, Imperial College London, BN5 Commonwealth Building, London, W12 0NN, UK.
| | - Chas Bountra
- University of Oxford Structural Genomics Consortium, Old Road, Campus Research Building, Roosevelt Drive, Headington, Oxford, OX3 7DQ, UK.
| | - Tom McCarthy
- Spinifex Pharmaceuticals Pty Ltd, Corporate One, Suite G5, 84 Hotham St, Preston, VIC, 3072, Australia.
| | - Praveen Anand
- Peripheral Neuropathy Unit, Centre for Clinical Translation, Hammersmith Hospital, Imperial College London, Area A, Ground Floor, Du Cane Rd, London, W12 ONN, UK.
| |
Collapse
|
41
|
Yaksh TL, Woller SA, Ramachandran R, Sorkin LS. The search for novel analgesics: targets and mechanisms. F1000PRIME REPORTS 2015; 7:56. [PMID: 26097729 PMCID: PMC4447049 DOI: 10.12703/p7-56] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The management of the pain state is of great therapeutic relevance to virtually every medical specialty. Failure to manage its expression has deleterious consequence to the well-being of the organism. An understanding of the complex biology of the mechanisms underlying the processing of nociceptive information provides an important pathway towards development of novel and robust therapeutics. Importantly, preclinical models have been of considerable use in determining the linkage between mechanism and the associated behaviorally defined pain state. This review seeks to provide an overview of current thinking targeting pain biology, the use of preclinical models and the development of novel pain therapeutics. Issues pertinent to the strengths and weaknesses of current development strategies for analgesics are considered.
Collapse
|
42
|
Borsook D, Hargreaves R, Bountra C, Porreca F. Lost but making progress--Where will new analgesic drugs come from? Sci Transl Med 2015; 6:249sr3. [PMID: 25122640 DOI: 10.1126/scitranslmed.3008320] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There is a critical need for effective new pharmacotherapies for pain. The paucity of new drugs successfully reaching the clinic calls for a reassessment of current analgesic drug discovery approaches. Many points early in the discovery process present significant hurdles, making it critical to exploit advances in pain neurobiology to increase the probability of success. In this review, we highlight approaches that are being pursued vigorously by the pain community for drug discovery, including innovative preclinical pain models, insights from genetics, mechanistic phenotyping of pain patients, development of biomarkers, and emerging insights into chronic pain as a disorder of both the periphery and the brain. Collaborative efforts between pharmaceutical, academic, and public entities to advance research in these areas promise to de-risk potential targets, stimulate investment, and speed evaluation and development of better pain therapies.
Collapse
Affiliation(s)
- David Borsook
- Center for Pain and the Brain, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Richard Hargreaves
- Center for Pain and the Brain, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Chas Bountra
- Department of Clinical Medicine, University of Oxford, Oxford OX1 2JD, UK
| | - Frank Porreca
- Center for Pain and the Brain and Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA.
| |
Collapse
|
43
|
Gudes S, Barkai O, Caspi Y, Katz B, Lev S, Binshtok AM. The role of slow and persistent TTX-resistant sodium currents in acute tumor necrosis factor-α-mediated increase in nociceptors excitability. J Neurophysiol 2015; 113:601-19. [PMID: 25355965 PMCID: PMC4297796 DOI: 10.1152/jn.00652.2014] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 10/26/2014] [Indexed: 12/12/2022] Open
Abstract
Tetrodotoxin-resistant (TTX-r) sodium channels are key players in determining the input-output properties of peripheral nociceptive neurons. Changes in gating kinetics or in expression levels of these channels by proinflammatory mediators are likely to cause the hyperexcitability of nociceptive neurons and pain hypersensitivity observed during inflammation. Proinflammatory mediator, tumor necrosis factor-α (TNF-α), is secreted during inflammation and is associated with the early onset, as well as long-lasting, inflammation-mediated increase in excitability of peripheral nociceptive neurons. Here we studied the underlying mechanisms of the rapid component of TNF-α-mediated nociceptive hyperexcitability and acute pain hypersensitivity. We showed that TNF-α leads to rapid onset, cyclooxygenase-independent pain hypersensitivity in adult rats. Furthermore, TNF-α rapidly and substantially increases nociceptive excitability in vitro, by decreasing action potential threshold, increasing neuronal gain and decreasing accommodation. We extended on previous studies entailing p38 MAPK-dependent increase in TTX-r sodium currents by showing that TNF-α via p38 MAPK leads to increased availability of TTX-r sodium channels by partial relief of voltage dependence of their slow inactivation, thereby contributing to increase in neuronal gain. Moreover, we showed that TNF-α also in a p38 MAPK-dependent manner increases persistent TTX-r current by shifting the voltage dependence of activation to a hyperpolarized direction, thus producing an increase in inward current at functionally critical subthreshold voltages. Our results suggest that rapid modulation of the gating of TTX-r sodium channels plays a major role in the mediated nociceptive hyperexcitability of TNF-α during acute inflammation and may lead to development of effective treatments for inflammatory pain, without modulating the inflammation-induced healing processes.
Collapse
Affiliation(s)
- Sagi Gudes
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University Faculty of Medicine, Jerusalem, Israel; and The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
| | - Omer Barkai
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University Faculty of Medicine, Jerusalem, Israel; and The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
| | - Yaki Caspi
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University Faculty of Medicine, Jerusalem, Israel; and The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
| | - Ben Katz
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University Faculty of Medicine, Jerusalem, Israel; and The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
| | - Shaya Lev
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University Faculty of Medicine, Jerusalem, Israel; and The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
| | - Alexander M Binshtok
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University Faculty of Medicine, Jerusalem, Israel; and The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
44
|
An Introduction to Pain Pathways and Pain “Targets”. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 131:1-30. [DOI: 10.1016/bs.pmbts.2015.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
45
|
Rice ASC, Smith MT. Angiotensin II type 2-receptor: new clinically validated target in the treatment of neuropathic pain. Clin Pharmacol Ther 2014; 97:128-30. [PMID: 25670516 DOI: 10.1002/cpt.29] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/15/2014] [Accepted: 11/01/2014] [Indexed: 02/03/2023]
Abstract
Neuropathic pain is a large unmet medical need. The angiotensin II type 2 (AT2 ) receptor is a target with promising data in rodent models of peripheral neuropathic pain. The AT2 receptor has attracted attention on the basis of human data from a proof-of-concept clinical trial showing that oral EMA401, a highly selective, peripherally restricted, small molecule AT2 receptor antagonist, at 100 mg twice-daily for 4 weeks, alleviated postherpetic neuralgia, an often intractable type of peripheral neuropathic pain.
Collapse
Affiliation(s)
- A S C Rice
- Department of Surgery and Cancer, Imperial College London, London, SW10 9NH, UK
| | | |
Collapse
|
46
|
Usoskin D, Furlan A, Islam S, Abdo H, Lönnerberg P, Lou D, Hjerling-Leffler J, Haeggström J, Kharchenko O, Kharchenko PV, Linnarsson S, Ernfors P. Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat Neurosci 2014; 18:145-53. [PMID: 25420068 DOI: 10.1038/nn.3881] [Citation(s) in RCA: 1426] [Impact Index Per Article: 129.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 10/22/2014] [Indexed: 12/17/2022]
Abstract
The primary sensory system requires the integrated function of multiple cell types, although its full complexity remains unclear. We used comprehensive transcriptome analysis of 622 single mouse neurons to classify them in an unbiased manner, independent of any a priori knowledge of sensory subtypes. Our results reveal eleven types: three distinct low-threshold mechanoreceptive neurons, two proprioceptive, and six principal types of thermosensitive, itch sensitive, type C low-threshold mechanosensitive and nociceptive neurons with markedly different molecular and operational properties. Confirming previously anticipated major neuronal types, our results also classify and provide markers for new, functionally distinct subtypes. For example, our results suggest that itching during inflammatory skin diseases such as atopic dermatitis is linked to a distinct itch-generating type. We demonstrate single-cell RNA-seq as an effective strategy for dissecting sensory responsive cells into distinct neuronal types. The resulting catalog illustrates the diversity of sensory types and the cellular complexity underlying somatic sensation.
Collapse
Affiliation(s)
- Dmitry Usoskin
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Alessandro Furlan
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Saiful Islam
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Hind Abdo
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Peter Lönnerberg
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Daohua Lou
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jens Hjerling-Leffler
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jesper Haeggström
- Division of Physiological Chemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Olga Kharchenko
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Peter V Kharchenko
- 1] Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA. [2] Division of Hematology/Oncology, Children's Hospital, Boston, Massachusetts, USA
| | - Sten Linnarsson
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Patrik Ernfors
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
47
|
Smith MT, Muralidharan A. Targeting angiotensin II type 2 receptor pathways to treat neuropathic pain and inflammatory pain. Expert Opin Ther Targets 2014; 19:25-35. [PMID: 25315162 DOI: 10.1517/14728222.2014.957673] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Neuropathic pain and chronic inflammatory pain are large unmet medical needs. Over the past two decades, numerous 'pain targets' have been identified for analgesic drug discovery. Despite promising results in rodent pain models, many compounds modulating such targets lacked efficacy in clinical trials. An exception is oral EMA401, a small-molecule angiotensin II type 2 receptor (AT2R) antagonist. AREAS COVERED Herein, angiotensin II/AT2R signaling-induced hyperexcitability and abnormal sprouting of cultured dorsal root ganglion neurons, together with radioligand binding, pharmacokinetics, analgesic efficacy and mode of action of small-molecule AT2R antagonists in rodent models of peripheral neuropathic and chronic inflammatory pain, are reviewed. The findings of a successful Phase IIa clinical trial of EMA401 in patients with neuropathic pain are presented in brief. EXPERT OPINION The functional importance of angiotensin II/AT2R signaling has remained enigmatic for decades, and there are no clinically available medications that target the AT2R. However, on the basis of preclinical findings and recent clinical trial data showing that the peripherally restricted, small-molecule AT2R antagonist, EMA401, successfully alleviated neuropathic pain in a Phase II clinical trial, the AT2R is receiving considerable attention as a new therapeutic target with human validation for the relief of peripheral neuropathic and chronic inflammatory pain conditions.
Collapse
Affiliation(s)
- Maree T Smith
- The University of Queensland, Centre for Integrated Preclinical Drug Development , St Lucia Campus, Brisbane, Queensland 4072 , Australia +61 7 33652554 ; +61 7 33467391 ;
| | | |
Collapse
|
48
|
Wang F, Stefano GB, Kream RM. Epigenetic modification of DRG neuronal gene expression subsequent to nerve injury: etiological contribution to complex regional pain syndromes (Part II). Med Sci Monit 2014; 20:1188-200. [PMID: 25027291 PMCID: PMC4106931 DOI: 10.12659/msm.890707] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Cumulating evidence indicated that nerve injury-associated cellular and molecular changes play an essential role in contributing to the development of pathological pain, and more recent findings implicated the critical role of epigenetic mechanisms in pain-related sensitization in the DRG subsequent to nerve injury. In this part of the dyad review (Part II), we reviewed and paid special attention on the etiological contribution of DGR gene expression modulated by epigenetic mechanisms of CRPS. As essential effectors to different molecular activation, we first discussed the activation of various signaling pathways that subsequently from nerve injury, and in further illustrated the fundamental and functional underpinnings of nerve injury-induced pain, in which we argued for the potential epigenetic mechanisms in response to sensitizing stimuli or injury. Therefore, understanding the specific mediating factors that influence individual epigenetic differences contributing to pain sensitivity and responsiveness to analgesics possesses crucial clinical implications.
Collapse
Affiliation(s)
- Fuzhou Wang
- Department of Anesthesiology and Critical Care Medicine, Affiliated Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, China (mainland)
| | - George B Stefano
- Neuroscience Research Institute, State University of New York at Old Westbury, Old Westbury, China (mainland)
| | - Richard M Kream
- Neuroscience Research Institute, State University of New York at Old Westbury, Old Westbury, China (mainland)
| |
Collapse
|
49
|
Sałat K, Kowalczyk P, Gryzło B, Jakubowska A, Kulig K. New investigational drugs for the treatment of neuropathic pain. Expert Opin Investig Drugs 2014; 23:1093-104. [DOI: 10.1517/13543784.2014.916688] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Kinga Sałat
- Jagiellonian University, Faculty of Pharmacy,
Medyczna 9 St., 30-688 Kraków, Poland
| | - Paula Kowalczyk
- Jagiellonian University, Department of Physicochemical Drug Analysis, Faculty of Pharmacy,
Medyczna 9 St., 30-688 Kraków, Poland
| | - Beata Gryzło
- Jagiellonian University, Department of Physicochemical Drug Analysis, Faculty of Pharmacy,
Medyczna 9 St., 30-688 Kraków, Poland
| | - Anna Jakubowska
- Jagiellonian University, Department of Physicochemical Drug Analysis, Faculty of Pharmacy,
Medyczna 9 St., 30-688 Kraków, Poland
| | - Katarzyna Kulig
- Jagiellonian University, Department of Physicochemical Drug Analysis, Faculty of Pharmacy,
Medyczna 9 St., 30-688 Kraków, Poland
| |
Collapse
|
50
|
Affiliation(s)
| | - Cathrine Baastrup
- Danish Pain Research Center, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|