1
|
Murcia G, Alonso R, Berli F, Arias L, Bianchimano L, Pontin M, Fontana A, Casal JJ, Piccoli P. Quantitative Proteomics Analysis of ABA- and GA 3-Treated Malbec Berries Reveals Insights into H 2O 2 Scavenging and Anthocyanin Dynamics. PLANTS (BASEL, SWITZERLAND) 2024; 13:2366. [PMID: 39273850 PMCID: PMC11396855 DOI: 10.3390/plants13172366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024]
Abstract
Abscisic acid (ABA) and gibberellic acid (GA3) are regulators of fruit color and sugar levels, and the application of these hormones is a common practice in commercial vineyards dedicated to the production of table grapes. However, the effects of exogenous ABA and GA3 on wine cultivars remain unclear. We investigated the impact of ABA and GA3 application on Malbec grapevine berries across three developmental stages. We found similar patterns of berry total anthocyanin accumulation induced by both treatments, closely associated with berry H2O2 levels. Quantitative proteomics from berry skins revealed that ABA and GA3 positively modulated antioxidant defense proteins, mitigating H2O2. Consequently, proteins involved in phenylpropanoid biosynthesis were downregulated, leading to decreased anthocyanin content at the almost ripe stage, particularly petunidin-3-G and peonidin-3-G. Additionally, we noted increased levels of the non-anthocyanins E-viniferin and quercetin in the treated berries, which may enhance H2O2 scavenging at the almost ripe stage. Using a linear mixed-effects model, we found statistical significance for fixed effects including the berry H2O2 and sugar contents, demonstrating their roles in anthocyanin accumulation. In conclusion, our findings suggest a common molecular mechanism by which ABA and GA3 influence berry H2O2 content, ultimately impacting anthocyanin dynamics during ripening.
Collapse
Affiliation(s)
- Germán Murcia
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, Buenos Aires C1405, Argentina
| | - Rodrigo Alonso
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Mendoza M5507, Argentina
| | - Federico Berli
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Mendoza M5507, Argentina
| | - Leonardo Arias
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Mendoza M5507, Argentina
| | - Luciana Bianchimano
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, Buenos Aires C1405, Argentina
| | | | - Ariel Fontana
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Mendoza M5507, Argentina
| | - Jorge José Casal
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, Buenos Aires C1405, Argentina
- Facultad de Agronomía, CONICET, Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Universidad de Buenos Aires, Buenos Aires C1053, Argentina
| | - Patricia Piccoli
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Mendoza M5507, Argentina
| |
Collapse
|
2
|
Alhelal IM, Albadawi AA, Alsadon AA, Alenazi MM, Ibrahim AA, Shady M, Al-Dubai AA. Effects of Shading Nets Color on the Internal Environmental Conditions, Light Spectral Distribution, and Strawberry Growth and Yield in Greenhouses. PLANTS (BASEL, SWITZERLAND) 2024; 13:2318. [PMID: 39204754 PMCID: PMC11359001 DOI: 10.3390/plants13162318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Greenhouses are used to create the appropriate environment for plant growth. Controlling the level of lighting using shading nets is one of the most commonly used methods for making suitable environmental modifications in greenhouses. The objective of this study was to examine the impact of three colored shading nets (green, black, and beige at shading rates of 50%) on inside air temperature, relative humidity, and spectral distribution of light in a greenhouse, as well as their effect on the growth and yield of strawberry plants. Data were collected during winter (December and January) and spring (March and April) months from shaded and unshaded blocks. The green net had the highest transmittance to solar radiation (τSR) during the two periods (38% and 35%, respectively) and the highest transmittance to photosynthetically active radiation (τPAR) of 34% during spring months, while the beige net had the highest τPAR of 27% during winter months. The black net had the smallest τPAR values during the two periods (22% and 29%, respectively). The lowest total light levels per season for solar radiation (SR) and photosynthetically active radiation (PAR) (746.8 and 293.7 MJ·m-2, respectively) were obtained under the black net, compared with (906.7 and 320.8 MJ·m-2, respectively) for the beige net, and (969.6 and 337.2 MJ·m-2, respectively) for the green net. The ratio of PAR to SR (PAR:SR) was 41% and 44% outside and inside the greenhouse for the control (without shade), respectively. The black net had the highest ratio of PAR:SR (39%) among the treatment nets. The green net transmitted more light in the blue-green region (400 to 570 nm) and transmitted the highest photon flux at 480 nm, while the beige net increased the infrared radiation flux from 730 nm and above and transmitted the highest photon flux at 604 nm. The study found that the green net increased the ratio of blue to red light (B/R), while the beige and green nets reduced the red to far-red light (R/FR) ratio. The photosynthetic rate, conductance to water, and transpiration were significantly higher for strawberries grown under the beige net. These results indicate that the beige net positively influenced leaf and stem characteristics, leading to improved strawberry yields. The best yields of strawberries were obtained under the beige net and the control group (no shade), surpassing the yields achieved under the black net by 26.3% and 21.4%, respectively.
Collapse
Affiliation(s)
- Ibrahim M. Alhelal
- Department of Agricultural Engineering, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (I.M.A.); (M.S.)
| | - Ammar A. Albadawi
- Department of Agricultural Engineering, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (I.M.A.); (M.S.)
| | - Abdullah A. Alsadon
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (M.M.A.); (A.A.I.); (A.A.A.-D.)
| | - Mekhled M. Alenazi
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (M.M.A.); (A.A.I.); (A.A.A.-D.)
| | - Abdullah A. Ibrahim
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (M.M.A.); (A.A.I.); (A.A.A.-D.)
| | - Mohamed Shady
- Department of Agricultural Engineering, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (I.M.A.); (M.S.)
| | - Abdulhakim A. Al-Dubai
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (M.M.A.); (A.A.I.); (A.A.A.-D.)
| |
Collapse
|
3
|
Liu Z, Shen C, Chen R, Fu Z, Deng X, Xi R. Combination of transcriptomic, biochemical, and physiological analyses reveals sugar metabolism in Camellia drupifera fruit at different developmental stages. FRONTIERS IN PLANT SCIENCE 2024; 15:1424284. [PMID: 39193210 PMCID: PMC11347353 DOI: 10.3389/fpls.2024.1424284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/05/2024] [Indexed: 08/29/2024]
Abstract
Camellia drupifera, a significant woody oil crop in southern China, produces oil from its fruit seeds. Understanding sugar metabolism enzyme regulation is crucial for sugar accumulation and oil synthesis in fruit organs. This study examines the dynamic changes in sugar metabolism across four developmental stages of C. drupifera fruits, from rapid fruit enlargement to oil conversion. We analyzed sugar content, enzyme activity, and transcriptomic data to identify key periods and mechanisms involved in sugar metabolism. Our findings indicate that photosynthetic products are rapidly transported from leaves to fruit organs after synthesis, with transport efficiency decreasing significantly after 48 hours. September was identified as a critical period for oil conversion, during which the highest sucrose levels and SuSy-II enzyme activity were detected in the kernels. A positive correlation was found between high expression of ten genes related to sugar metabolism enzymes and sugar transport proteins and sucrose content. Notably, the expression levels of c158337.graph_c0 (SPS), c166323.graph_c0 (SuSy), c159295.graph_c0 (SUC2-like), and c156402.graph_c0 (SUC2-like) significantly increased during the oil conversion phase.These findings provide a crucial theoretical foundation for elucidating the molecular mechanisms of sugar metabolism in C. drupifera fruits, offering insights that could enhance its economic yield.
Collapse
Affiliation(s)
- Zhen Liu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou, China
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Chunhui Shen
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou, China
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Ruifan Chen
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou, China
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Zhiqiang Fu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou, China
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xiaomei Deng
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou, China
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Ruchun Xi
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou, China
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
4
|
Chen X, Gao J, Shen Y. Abscisic acid controls sugar accumulation essential to strawberry fruit ripening via the FaRIPK1-FaTCP7-FaSTP13/FaSPT module. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1400-1417. [PMID: 38815085 DOI: 10.1111/tpj.16862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 05/05/2024] [Accepted: 05/11/2024] [Indexed: 06/01/2024]
Abstract
Strawberry is considered as a model plant for studying the ripening of abscisic acid (ABA)-regulated non-climacteric fruits, a process in which sugar plays a fundamental role, while how ABA regulates sugar accumulation remains unclear. This study provides a direct line of physiological, biochemical, and molecular evidence that ABA signaling regulates sugar accumulation via the FaRIPK1-FaTCP7-FaSTP13/FaSPT signaling pathway. Herein, FaRIPK1, a red-initial protein kinase 1 previously identified in strawberry fruit, not only interacted with the transcription factor FaTCP7 (TEOSINTE BRANCHEN 1, CYCLOIDEA, and PCF) but also phosphorylated the critical Ser89 and Thr93 sites of FaTCP7, which negatively regulated strawberry fruit ripening, as evidenced by the transient overexpression (OE) and virus-induced gene silencing transgenic system. Furthermore, the DAP-seq experiments revealed that FvTCP7 bound the motif "GTGGNNCCCNC" in the promoters of two sugar transporter genes, FaSTP13 (sugar transport protein 13) and FaSPT (sugar phosphate/phosphate translocator), inhibiting their transcription activities as determined by the electrophoretic mobility shift assay, yeast one-hybrid, and dual-luciferase reporter assays. The downregulated FaSTP13 and FaSPT transcripts in the FaTCP7-OE fruit resulted in a reduction in soluble sugar content. Consistently, the yeast absorption test revealed that the two transporters had hexose transport activity. Especially, the phosphorylation-inhibited binding of FaTCP7 to the promoters of FaSTP13 and FaSPT could result in the release of their transcriptional activities. In addition, the phosphomimetic form FaTCP7S89D or FaTCP7T93D could rescue the phenotype of FaTCP7-OE fruits. Importantly, exogenous ABA treatment enhanced the FaRIPK1-FaTCP7 interaction. Overall, we found direct evidence that ABA signaling controls sugar accumulation during strawberry fruit ripening via the "FaRIPK1-FaTCP7-FaSTP13/FaSPT" module.
Collapse
Affiliation(s)
- Xuexue Chen
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 BeiNong Road, Beijing, 102206, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiahui Gao
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 BeiNong Road, Beijing, 102206, China
| | - Yuanyue Shen
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 BeiNong Road, Beijing, 102206, China
| |
Collapse
|
5
|
Li X, Yan Y, Wang L, Li G, Wu Y, Zhang Y, Xu L, Wang S. Integrated Transcriptomic and Metabolomic Analysis Revealed Abscisic Acid-Induced Regulation of Monoterpene Biosynthesis in Grape Berries. PLANTS (BASEL, SWITZERLAND) 2024; 13:1862. [PMID: 38999702 PMCID: PMC11243831 DOI: 10.3390/plants13131862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024]
Abstract
Monoterpenes are a class of volatile organic compounds that play crucial roles in imparting floral and fruity aromas to Muscat-type grapes. However, our understanding of the regulatory mechanisms underpinning monoterpene biosynthesis in grapes, particularly following abscisic acid (ABA) treatment, remains elusive. This study aimed to explore the impact of exogenous ABA on monoterpene biosynthesis in Ruiduhongyu grape berries by employing Headspace Solid-Phase Micro-Extraction Gas Chromatography-Mass Spectrometry (HS-SPME/GC-MS) analysis and transcriptome sequencing. The results suggested significant differences in total soluble solids (TSS), pH, and total acid content. ABA treatment resulted in a remarkable increase in endogenous ABA levels, with concentrations declining from veraison to ripening stages. ABA treatment notably enhanced monoterpene concentrations, particularly at the E_L37 and E_L38 stages, elevating the overall floral aroma of grape berries. According to the variable gene expression patterns across four developmental stages in response to ABA treatment, the E_L37 stage had the largest number of differential expressed genes (DEGs), which was correlated with a considerable change in free monoterpenes. Furthermore, functional annotation indicated that the DEGs were significantly enriched in primary and secondary metabolic pathways, underlining the relationship between ABA, sugar accumulation, and monoterpene biosynthesis. ABA treatment upregulated key genes involved in the methylerythritol phosphate (MEP) pathway, enhancing carbon allocation and subsequently impacting terpene synthesis. This study also identified transcription factors, including MYB and AP2/ERF families, potentially modulating monoterpene and aroma-related genes. Weighted gene co-expression network analysis (WGCNA) linked ABA-induced gene expression to monoterpene accumulation, highlighting specific modules enriched with genes associated with monoterpene biosynthesis; one of these modules (darkgreen) contained genes highly correlated with most monoterpenes, emphasizing the role of ABA in enhancing grape quality during berry maturation. Together, these findings provide valuable insights into the multifaceted effects of exogenous ABA on monoterpene compounds and grape berry flavor development, offering potential applications in viticulture and enology.
Collapse
Affiliation(s)
- Xiangyi Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yixuan Yan
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guanhan Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yusen Wu
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Ying Zhang
- Grape and Wine Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Lurong Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shiping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
6
|
Gabay G, Flaishman MA. Genetic and molecular regulation of chilling requirements in pear: breeding for climate change resilience. FRONTIERS IN PLANT SCIENCE 2024; 15:1347527. [PMID: 38736438 PMCID: PMC11082341 DOI: 10.3389/fpls.2024.1347527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/09/2024] [Indexed: 05/14/2024]
Abstract
Pear (Pyrus spp.) is a deciduous fruit tree that requires exposure to sufficient chilling hours during the winter to establish dormancy, followed by favorable heat conditions during the spring for normal vegetative and floral budbreak. In contrast to most temperate woody species, apples and pears of the Rosaceae family are insensitive to photoperiod, and low temperature is the major factor that induces growth cessation and dormancy. Most European pear (Pyrus Communis L.) cultivars need to be grown in regions with high chilling unit (CU) accumulation to ensure early vegetative budbreak. Adequate vegetative budbreak time will ensure suitable metabolite accumulation, such as sugars, to support fruit set and vegetative development, providing the necessary metabolites for optimal fruit set and development. Many regions that were suitable for pear production suffer from a reduction in CU accumulation. According to climate prediction models, many temperate regions currently suitable for pear cultivation will experience a similar accumulation of CUs as observed in Mediterranean regions. Consequently, the Mediterranean region can serve as a suitable location for conducting pear breeding trials aimed at developing cultivars that will thrive in temperate regions in the decades to come. Due to recent climatic changes, bud dormancy attracts more attention, and several studies have been carried out aiming to discover the genetic and physiological factors associated with dormancy in deciduous fruit trees, including pears, along with their related biosynthetic pathways. In this review, current knowledge of the genetic mechanisms associated with bud dormancy in European pear and other Pyrus species is summarized, along with metabolites and physiological factors affecting dormancy establishment and release and chilling requirement determination. The genetic and physiological insights gained into the factors regulating pear dormancy phase transition and determining chilling requirements can accelerate the development of new pear cultivars better suited to both current and predicted future climatic conditions.
Collapse
Affiliation(s)
- Gilad Gabay
- French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boker, Israel
| | - Moshe A. Flaishman
- Institute of Plant Sciences, Volcani Research Center, Rishon Lezion, Israel
| |
Collapse
|
7
|
Stanfield RC, Forrestel EJ, Elmendorf KE, Bagshaw SB, Bartlett MK. Phloem anatomy predicts berry sugar accumulation across 13 wine-grape cultivars. FRONTIERS IN PLANT SCIENCE 2024; 15:1360381. [PMID: 38576794 PMCID: PMC10991835 DOI: 10.3389/fpls.2024.1360381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/19/2024] [Indexed: 04/06/2024]
Abstract
Introduction Climate change is impacting the wine industry by accelerating ripening processes due to warming temperatures, especially in areas of significant grape production like California. Increasing temperatures accelerate the rate of sugar accumulation (measured in ⁰Brix) in grapes, however this presents a problem to wine makers as flavor profiles may need more time to develop properly. To alleviate the mismatch between sugar accumulation and flavor compounds, growers may sync vine cultivars with climates that are most amenable to their distinct growing conditions. However, the traits which control such cultivar specific climate adaptation, especially for ⁰Brix accumulation rate, are poorly understood. Recent studies have shown that higher rates of fruit development and sugar accumulation are predicted by larger phloem areas in different organs of the plant. Methods Here we test this phloem area hypothesis using a common garden experiment in the Central Valley of Northern California using 18 cultivars of the common grapevine (Vitis vinifera) and assess the grape berry sugar accumulation rates as a function of phloem area in leaf and grape organs. Results We find that phloem area in the leaf petiole organ as well as the berry pedicel is a significant predictor of ⁰Brix accumulation rate across 13 cultivars and that grapes from warm climates overall have larger phloem areas than those from hot climates. In contrast, other physiological traits such as photosynthetic assimilation and leaf water potential did not predict berry accumulation rates. Discussion As hot climate cultivars have lower phloem areas which would slow down brix accumulation, growers may have inadvertently been selecting this trait to align flavor development with sugar accumulation across the common cultivars tested. This work highlights a new trait that can be easily phenotyped (i.e., petiole phloem area) and be used for growers to match cultivar more accurately with the temperature specific climate conditions of a growing region to obtain satisfactory sugar accumulation and flavor profiles.
Collapse
Affiliation(s)
- Ryan C. Stanfield
- Department of Biological Sciences, California State University, Stanislaus, Turlock, CA, United States
- Department of Viticulture & Enology, University of California Davis, Davis, CA, United States
| | - Elisabeth J. Forrestel
- Department of Viticulture & Enology, University of California Davis, Davis, CA, United States
| | - Kayla E. Elmendorf
- Department of Viticulture & Enology, University of California Davis, Davis, CA, United States
| | - Sophia B. Bagshaw
- Department of Viticulture & Enology, University of California Davis, Davis, CA, United States
| | - Megan K. Bartlett
- Department of Viticulture & Enology, University of California Davis, Davis, CA, United States
| |
Collapse
|
8
|
Kishor PBK, Guddimalli R, Kulkarni J, Singam P, Somanaboina AK, Nandimandalam T, Patil S, Polavarapu R, Suravajhala P, Sreenivasulu N, Penna S. Impact of Climate Change on Altered Fruit Quality with Organoleptic, Health Benefit, and Nutritional Attributes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17510-17527. [PMID: 37943146 DOI: 10.1021/acs.jafc.3c03312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
As a consequence of global climate change, acute water deficit conditions, soil salinity, and high temperature have been on the rise in their magnitude and frequency, which have been found to impact plant growth and development negatively. However, recent evidence suggests that many fruit plants that face moderate abiotic stresses can result in beneficial effects on the postharvest storage characters of the fruits. Salinity, drought, and high temperature conditions stimulate the synthesis of abscisic acid (ABA), and secondary metabolites, which are vital for fruit quality. The secondary metabolites like phenolic acids and anthocyanins that accumulate under abiotic stress conditions have antioxidant activity, and therefore, such fruits have health benefits too. It has been noticed that fruits accumulate more sugar and anthocyanins owing to upregulation of phenylpropanoid pathway enzymes. The novel information that has been generated thus far indicates that the growth environment during fruit development influences the quality components of the fruits. But the quality depends on the trade-offs between productivity, plant defense, and the frequency, duration, and intensity of stress. In this review, we capture the current knowledge of the irrigation practices for optimizing fruit production in arid and semiarid regions and enhancement in the quality of fruit with the application of exogenous ABA and identify gaps that exist in our understanding of fruit quality under abiotic stress conditions.
Collapse
Affiliation(s)
- P B Kavi Kishor
- Department of Genetics, Osmania University, Hyderabad 500 007, India
| | | | - Jayant Kulkarni
- Department of Botany, Savithribai Phule Pune University, Pune 411 007, India
| | - Prashant Singam
- Department of Genetics, Osmania University, Hyderabad 500 007, India
| | - Anil Kumar Somanaboina
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research Deemed to be University, Vadlamudi, Guntur 522 213, Andhra Pradesh, India
| | - Tejaswi Nandimandalam
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research Deemed to be University, Vadlamudi, Guntur 522 213, Andhra Pradesh, India
| | - Swaroopa Patil
- Department of Botany, Shivaji University, Kolhapur 416 004, Maharashtra, India
| | - Rathnagiri Polavarapu
- Genomix Molecular Diagnostics Pvt. Ltd., Pragathi Nagar, Kukatapally, Hyderabad 500 072, India
| | - Prashanth Suravajhala
- Amrita School of Biotechnology, Amrita Vishwavidyapeetham, Clappana, 690 525, Amritapuri, Vallikavu, Kerala, India & Bioclues.org, Hyderabad, India
| | - Nese Sreenivasulu
- Consumer-Driven Grain Quality and Nutrition Research Unit, International Rice Research Institute, Los Banos, DAPO Box 7777, Metro Manil 1301, Philippines
| | - Suprasanna Penna
- Amity Centre for Nuclear Biotechnology, Amity Institute of Biotechnology, Amity University of Maharashtra, Mumbai 410 206, India
| |
Collapse
|
9
|
Li J, Zhu R, Zhang M, Cao B, Li X, Song B, Liu Z, Wu J. Natural variations in the PbCPK28 promoter regulate sugar content through interaction with PbTST4 and PbVHA-A1 in pear. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:124-141. [PMID: 36710644 DOI: 10.1111/tpj.16126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Soluble sugars play an important role in plant growth, development and fruit quality. Pear fruits have demonstrated a considerable improvement in sugar quality during their long history of selection. However, little is known about the underlying molecular mechanisms accompanying the changes in fruit sugar content as a result of selection by horticulturists. Here, we identified a calcium-dependent protein kinase (PbCPK28), which is located on LG15 and is present within a selective sweep region, thus linked to the quantitative trait loci for soluble solids. Association analysis indicates that a single nucleotide polymorphism-13 variation (SNP13T/C ) in the PbCPK28 regulatory region led to fructose content diversity in pear. Elevated expression of PbCPK28 resulted in significantly increased fructose levels in pear fruits. Furthermore, PbCPK28 interacts with and phosphorylates PbTST4, a proton antiporter, thereby coupling the sugar import into the vacuole with proton export. We demonstrated that residues S277 and S314 of PbTST4 are crucial for its function. Additionally, PbCPK28 interacts with and phosphorylates the vacuolar hydrogen proton pump PbVHA-A1, which could provide proton motive forces for PbTST4. We also found that the T11 and Y120 phosphorylation sites in PbVHA-A1 are essential for its function. Evolution analysis and yeast-two-hybrid results support that the CPK-TST/CPK-VHA-A regulatory network is highly conserved in plants, especially the corresponding phosphorylation sites. Together, our work identifies an agriculturally important natural variation and an important regulatory network, allowing genetic improvement of fruit sugar contents in pears through modulation of PbCPK28 expression and phosphorylation of PbTST4 and PbVHA-A1.
Collapse
Affiliation(s)
- Jiaming Li
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Rongxiang Zhu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Mingyue Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Beibei Cao
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xiaolong Li
- College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang, 311200, China
| | - Bobo Song
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, 20742, USA
| | - Jun Wu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu, 210014, China
| |
Collapse
|
10
|
Cataldo E, Fucile M, Manzi D, Masini CM, Doni S, Mattii GB. Sustainable Soil Management: Effects of Clinoptilolite and Organic Compost Soil Application on Eco-Physiology, Quercitin, and Hydroxylated, Methoxylated Anthocyanins on Vitis vinifera. PLANTS (BASEL, SWITZERLAND) 2023; 12:708. [PMID: 36840056 PMCID: PMC9967315 DOI: 10.3390/plants12040708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Climate change and compostinS1g methods have an important junction on the phenological and ripening grapevine phases. Moreover, the optimization of these composting methods in closed-loop corporate chains can skillfully address the waste problem (pomace, stalks, and pruning residues) in viticultural areas. Owing to the ongoing global warming, in many wine-growing regions, there has been unbalanced ripening, with tricky harvests. Excessive temperatures in fact impoverish the anthocyanin amount of the must while the serious water deficits do not allow a correct development of the berry, stopping its growth processes. This experiment was created to improve the soil management and the quality of the grapes, through the application of a new land conditioner (Zeowine) to the soil, derived from the compost processes of industrial wine, waste, and zeolite. Three treatments on a Sangiovese vineyard were conducted: Zeowine (ZW) (30 tons per ha), Zeolite (Z) (10 tons per ha), and Compost (C) (20 tons per ha). During the two seasons (2021-2022), measurements were made of single-leaf gas exchange and leaf midday water potential, as well as chlorophyll fluorescence. In addition, the parameters of plant yield, yeast assimilable nitrogen, technological maturity, fractionation of anthocyanins (Cyanidin-3-glucoside, Delphinidin-3-glucoside, Malvidin-3-acetylglucoside, Malvidin-3-cumarylglucoside, Malvidin-3-glucoside, Peonidin-3-acetylglucoside, Peonidin-3-cumarylglucoside, Peonidin-3-glucoside, and Petunidin-3-glucoside), Caffeic Acid, Coumaric Acid, Gallic Acid, Ferulic Acid, Kaempferol-3-O-glucoside, Quercetin-3-O-rutinoside, Quercetin-3-O-glucoside, Quercetin-3-O-galactoside, and Quercetin-3-O-glucuronide were analyzed. The Zeowine and zeolite showed less negative water potential, higher photosynthesis, and lower leaf temperature. Furthermore, they showed higher levels of anthocyanin accumulation and a lower level of quercetin. Finally, the interaction of the beneficial results of Zeowine (soil and grapevines) was evidenced by the embellishment of the nutritional and water efficiency, the minimizing of the need for fertilizers, the closure of the production cycle of waste material from the supply chain, and the improvement of the quality of the wines.
Collapse
Affiliation(s)
- Eleonora Cataldo
- DAGRI, Department of Agriculture, Food, Environment, and Forestry Sciences and Technologies, University of Florence, 50019 Sesto Fiorentino, FI, Italy
| | - Maddalena Fucile
- DAGRI, Department of Agriculture, Food, Environment, and Forestry Sciences and Technologies, University of Florence, 50019 Sesto Fiorentino, FI, Italy
| | | | | | - Serena Doni
- CNR IRET, Via Moruzzi, 1, 56124 Pisa, PI, Italy
| | - Giovan Battista Mattii
- DAGRI, Department of Agriculture, Food, Environment, and Forestry Sciences and Technologies, University of Florence, 50019 Sesto Fiorentino, FI, Italy
| |
Collapse
|
11
|
Xu W, Liu Z, Zhao Z, Zhang S, Li M, Guo D, Liu JH, Li C. The functional analysis of sugar transporter proteins in sugar accumulation and pollen tube growth in pummelo ( Citrus grandis). FRONTIERS IN PLANT SCIENCE 2023; 13:1106219. [PMID: 36684762 PMCID: PMC9846575 DOI: 10.3389/fpls.2022.1106219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Sugar transporter proteins (STPs) play vital roles in sugar transport and allocation of carbon sources in plants. However, the evolutionary dynamics of this important gene family and their functions are still largely unknown in citrus, which is the largest fruit crop in the world. In this study, fourteen non-redundant CgSTP family members were identified in pummelo (Citrus grandis). A comprehensive analysis based on the biochemical characteristics, the chromosomal location, the exon-intron structures and the evolutionary relationships demonstrated the conservation and the divergence of CgSTPs. Moreover, CgSTP4, 11, 13, 14 were proofed to be localized in plasma membrane and have glucose transport activity in yeast. The hexose content were significantly increased with the transient overexpression of CgSTP11 and CgSTP14. In addition, antisense repression of CgSTP4 induced the shorter pollen tube length in vitro, implying the potential role of CgSTP4 in pummelo pollen tube growth. Taken together, this work explored a framework for understanding the physiological role of CgSTPs and laid a foundation for future functional studies of these members in citrus species.
Collapse
Affiliation(s)
- Weiwei Xu
- Key Laboratory of Horticultural Plant Biology Ministry of Education (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Ziyan Liu
- Key Laboratory of Horticultural Plant Biology Ministry of Education (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Zeqi Zhao
- Key Laboratory of Horticultural Plant Biology Ministry of Education (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Shuhang Zhang
- Key Laboratory of Horticultural Plant Biology Ministry of Education (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Mengdi Li
- Key Laboratory of Horticultural Plant Biology Ministry of Education (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Dayong Guo
- Key Laboratory of Horticultural Plant Biology Ministry of Education (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology Ministry of Education (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Chunlong Li
- Key Laboratory of Horticultural Plant Biology Ministry of Education (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
12
|
Arias LA, Berli F, Fontana A, Bottini R, Piccoli P. Climate Change Effects on Grapevine Physiology and Biochemistry: Benefits and Challenges of High Altitude as an Adaptation Strategy. FRONTIERS IN PLANT SCIENCE 2022; 13:835425. [PMID: 35693157 PMCID: PMC9178254 DOI: 10.3389/fpls.2022.835425] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/05/2022] [Indexed: 06/15/2023]
Abstract
Grapevine berry quality for winemaking depends on complex and dynamic relationships between the plant and the environment. Winemakers around the world are demanding a better understanding of the factors that influence berry growth and development. In the last decades, an increment in air temperature, CO2 concentration and dryness occurred in wine-producing regions, affecting the physiology and the biochemistry of grapevines, and by consequence the berry quality. The scientific community mostly agrees in a further raise as a result of climate change during the rest of the century. As a consequence, areas most suitable for viticulture are likely to shift into higher altitudes where mean temperatures are suitable for grape cultivation. High altitude can be defined as the minimum altitude at which the grapevine growth and development are differentially affected. At these high altitudes, the environments are characterized by high thermal amplitudes and great solar radiations, especially ultraviolet-B (UV-B). This review summarizes the environmental contribution of global high altitude-related climatic variables to the grapevine physiology and wine composition, for a better evaluation of the possible establishment of vineyards at high altitude in climate change scenarios.
Collapse
Affiliation(s)
- Leonardo A. Arias
- Grupo de Bioquímica Vegetal, Instituto de Biología Agrícola de Mendoza, CONICET, Chacras de Coria, Argentina
| | - Federico Berli
- Grupo de Bioquímica Vegetal, Instituto de Biología Agrícola de Mendoza, CONICET, Chacras de Coria, Argentina
| | - Ariel Fontana
- Grupo de Bioquímica Vegetal, Instituto de Biología Agrícola de Mendoza, CONICET, Chacras de Coria, Argentina
| | - Rubén Bottini
- Instituto Argentino de Veterinaria, Ambiente y Salud, Universidad Juan Agustín Maza, Guaymallén, Argentina
| | - Patricia Piccoli
- Grupo de Bioquímica Vegetal, Instituto de Biología Agrícola de Mendoza, CONICET, Chacras de Coria, Argentina
| |
Collapse
|
13
|
Li L, Liu J, Liang Q, Feng Y, Wang C, Wu S, Li Y. Downregulation of lncRNA PpL-T31511 and Pp-miRn182 Promotes Hydrogen Cyanamide-Induced Endodormancy Release through the PP2C-H 2O 2 Pathway in Pear ( Pyrus pyrifolia). Int J Mol Sci 2021; 22:ijms222111842. [PMID: 34769273 PMCID: PMC8584160 DOI: 10.3390/ijms222111842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022] Open
Abstract
Bud endodormancy is an important, complex process subject to both genetic and epigenetic control, the mechanism of which is still unclear. The endogenous hormone abscisic acid (ABA) and its signaling pathway play important roles in the endodormancy process, in which the type 2C protein phosphatases (PP2Cs) is key to the ABA signal pathway. Due to its excellent effect on endodormancy release, hydrogen cyanamide (HC) treatment is considered an effective measure to study the mechanism of endodormancy release. In this study, RNA-Seq analysis was conducted on endodormant floral buds of pear (Pyrus pyrifolia) with HC treatment, and the HC-induced PP2C gene PpPP2C1 was identified. Next, software prediction, expression tests and transient assays revealed that lncRNA PpL-T31511-derived Pp-miRn182 targets PpPP2C1. The expression analysis showed that HC treatment upregulated the expression of PpPP2C1 and downregulated the expression of PpL-T31511 and Pp-miRn182. Moreover, HC treatment inhibited the accumulation of ABA signaling pathway-related genes and hydrogen peroxide (H2O2). Furthermore, overexpression of Pp-miRn182 reduced the inhibitory effect of PpPP2C1 on the H2O2 content. In summary, our study suggests that downregulation of PpL-T31511-derived Pp-miRn182 promotes HC-induced endodormancy release in pear plants through the PP2C-H2O2 pathway.
Collapse
Affiliation(s)
- Liang Li
- College of Horticulture, Fujian Agriculture and Forestry University, Cangshan District, Fuzhou 350002, China; (L.L.); (J.L.); (Q.L.); (Y.F.); (C.W.); (S.W.)
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Jinan District, Fuzhou 350013, China
| | - Jinhang Liu
- College of Horticulture, Fujian Agriculture and Forestry University, Cangshan District, Fuzhou 350002, China; (L.L.); (J.L.); (Q.L.); (Y.F.); (C.W.); (S.W.)
| | - Qin Liang
- College of Horticulture, Fujian Agriculture and Forestry University, Cangshan District, Fuzhou 350002, China; (L.L.); (J.L.); (Q.L.); (Y.F.); (C.W.); (S.W.)
| | - Yu Feng
- College of Horticulture, Fujian Agriculture and Forestry University, Cangshan District, Fuzhou 350002, China; (L.L.); (J.L.); (Q.L.); (Y.F.); (C.W.); (S.W.)
| | - Chao Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Cangshan District, Fuzhou 350002, China; (L.L.); (J.L.); (Q.L.); (Y.F.); (C.W.); (S.W.)
| | - Shaohua Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Cangshan District, Fuzhou 350002, China; (L.L.); (J.L.); (Q.L.); (Y.F.); (C.W.); (S.W.)
| | - Yongyu Li
- College of Horticulture, Fujian Agriculture and Forestry University, Cangshan District, Fuzhou 350002, China; (L.L.); (J.L.); (Q.L.); (Y.F.); (C.W.); (S.W.)
- Correspondence:
| |
Collapse
|
14
|
Pan W, Liang J, Sui J, Li J, Liu C, Xin Y, Zhang Y, Wang S, Zhao Y, Zhang J, Yi M, Gazzarrini S, Wu J. ABA and Bud Dormancy in Perennials: Current Knowledge and Future Perspective. Genes (Basel) 2021; 12:genes12101635. [PMID: 34681029 PMCID: PMC8536057 DOI: 10.3390/genes12101635] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/15/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
Bud dormancy is an evolved trait that confers adaptation to harsh environments, and affects flower differentiation, crop yield and vegetative growth in perennials. ABA is a stress hormone and a major regulator of dormancy. Although the physiology of bud dormancy is complex, several advancements have been achieved in this field recently by using genetics, omics and bioinformatics methods. Here, we review the current knowledge on the role of ABA and environmental signals, as well as the interplay of other hormones and sucrose, in the regulation of this process. We also discuss emerging potential mechanisms in this physiological process, including epigenetic regulation.
Collapse
Affiliation(s)
- Wenqiang Pan
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193, China; (W.P.); (J.L.); (J.L.); (C.L.); (Y.X.); (Y.Z.); (S.W.); (Y.Z.); (J.Z.); (M.Y.)
| | - Jiahui Liang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193, China; (W.P.); (J.L.); (J.L.); (C.L.); (Y.X.); (Y.Z.); (S.W.); (Y.Z.); (J.Z.); (M.Y.)
| | - Juanjuan Sui
- Biology and Food Engineering College, Fuyang Normal University, Fuyang 236037, China;
| | - Jingru Li
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193, China; (W.P.); (J.L.); (J.L.); (C.L.); (Y.X.); (Y.Z.); (S.W.); (Y.Z.); (J.Z.); (M.Y.)
| | - Chang Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193, China; (W.P.); (J.L.); (J.L.); (C.L.); (Y.X.); (Y.Z.); (S.W.); (Y.Z.); (J.Z.); (M.Y.)
| | - Yin Xin
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193, China; (W.P.); (J.L.); (J.L.); (C.L.); (Y.X.); (Y.Z.); (S.W.); (Y.Z.); (J.Z.); (M.Y.)
| | - Yanmin Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193, China; (W.P.); (J.L.); (J.L.); (C.L.); (Y.X.); (Y.Z.); (S.W.); (Y.Z.); (J.Z.); (M.Y.)
| | - Shaokun Wang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193, China; (W.P.); (J.L.); (J.L.); (C.L.); (Y.X.); (Y.Z.); (S.W.); (Y.Z.); (J.Z.); (M.Y.)
| | - Yajie Zhao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193, China; (W.P.); (J.L.); (J.L.); (C.L.); (Y.X.); (Y.Z.); (S.W.); (Y.Z.); (J.Z.); (M.Y.)
| | - Jie Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193, China; (W.P.); (J.L.); (J.L.); (C.L.); (Y.X.); (Y.Z.); (S.W.); (Y.Z.); (J.Z.); (M.Y.)
- Biotechnology Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350001, China
| | - Mingfang Yi
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193, China; (W.P.); (J.L.); (J.L.); (C.L.); (Y.X.); (Y.Z.); (S.W.); (Y.Z.); (J.Z.); (M.Y.)
| | - Sonia Gazzarrini
- Department of Biological Sciences, University of Toronto, Toronto, ON M1C 1A4, Canada;
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G3, Canada
| | - Jian Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193, China; (W.P.); (J.L.); (J.L.); (C.L.); (Y.X.); (Y.Z.); (S.W.); (Y.Z.); (J.Z.); (M.Y.)
- Correspondence:
| |
Collapse
|
15
|
Savoi S, Torregrosa L, Romieu C. Transcripts switched off at the stop of phloem unloading highlight the energy efficiency of sugar import in the ripening V. vinifera fruit. HORTICULTURE RESEARCH 2021; 8:193. [PMID: 34465746 PMCID: PMC8408237 DOI: 10.1038/s41438-021-00628-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 06/03/2021] [Accepted: 06/15/2021] [Indexed: 05/24/2023]
Abstract
Transcriptomic changes at the cessation of sugar accumulation in the pericarp of Vitis vinifera were addressed on single berries re-synchronised according to their individual growth patterns. The net rates of water, sugars and K+ accumulation inferred from individual growth and solute concentration confirmed that these inflows stopped simultaneously in the ripe berry, while the small amount of malic acid remaining at this stage was still being oxidised at low rate. Re-synchronised individual berries displayed negligible variations in gene expression among triplicates. RNA-seq studies revealed sharp reprogramming of cell-wall enzymes and structural proteins at the stop of phloem unloading, associated with an 80% repression of multiple sugar transporters and aquaporins on the plasma or tonoplast membranes, with the noticeable exception of H+/sugar symporters, which were rather weakly and constitutively expressed. This was verified in three genotypes placed in contrasted thermo-hydric conditions. The prevalence of SWEET suggests that electrogenic transporters would play a minor role on the plasma membranes of SE/CC complex and the one of the flesh, while sucrose/H+ exchangers dominate on its tonoplast. Cis-regulatory elements present in their promoters allowed to sort these transporters in different groups, also including specific TIPs and PIPs paralogs, and cohorts of cell wall-related genes. Together with simple thermodynamic considerations, these results lead to propose that H+/sugar exchangers at the tonoplast, associated with a considerably acidic vacuolar pH, may exhaust cytosolic sugars in the flesh and alleviate the need for supplementary energisation of sugar transport at the plasma membrane.
Collapse
Affiliation(s)
- Stefania Savoi
- AGAP, Montpellier University, CIRAD, INRAe, Institut Agro-Montpellier, UMT génovigne, 34060, 2 place Viala, Montpellier CEDEX, France
| | - Laurent Torregrosa
- AGAP, Montpellier University, CIRAD, INRAe, Institut Agro-Montpellier, UMT génovigne, 34060, 2 place Viala, Montpellier CEDEX, France
| | - Charles Romieu
- AGAP, Montpellier University, CIRAD, INRAe, Institut Agro-Montpellier, UMT génovigne, 34060, 2 place Viala, Montpellier CEDEX, France.
| |
Collapse
|
16
|
Xu Q, Liesche J. Sugar export from Arabidopsis leaves: actors and regulatory strategies. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5275-5284. [PMID: 34037757 DOI: 10.1093/jxb/erab241] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
Plant acclimation and stress responses depend on the dynamic optimization of carbon balance between source and sink organs. This optimization also applies to the leaf export rate of photosynthetically produced sugars. So far, investigations into the molecular mechanisms of how the rate is controlled have focused on sugar transporters responsible for loading sucrose into the phloem sieve element-companion cell complex of leaf veins. Here, we take a broader view of the various proteins with potential direct influence on the leaf sugar export rate in the model plant Arabidopsis thaliana, helped by the cell type-specific transcriptome data that have recently become available. Furthermore, we integrate current information on the regulation of these potential target proteins. Our analysis identifies putative control points and units of transcriptionally and post-transcriptionally co-regulated genes. Most notable is the potential regulatory unit of sucrose transporters (SUC2, SWEET11, SWEET12, and SUC4) and proton pumps (AHA3 and AVP1). Our analysis can guide future research aimed at understanding the regulatory network controlling leaf sugar export by providing starting points for characterizing regulatory strategies and identifying regulatory factors that link sugar export rate to the major signaling pathways.
Collapse
Affiliation(s)
- Qiyu Xu
- College of Life Sciences, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
- Biomass Energy Center for Arid and Semiarid Lands, Northwest A&F University, Yangling, China
| | - Johannes Liesche
- College of Life Sciences, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
- Biomass Energy Center for Arid and Semiarid Lands, Northwest A&F University, Yangling, China
- Institute for Molecular Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
17
|
Dayer S, Murcia G, Prieto JA, Durán M, Martínez L, Píccoli P, Perez Peña J. Non-structural carbohydrates and sugar export in grapevine leaves exposed to different light regimes. PHYSIOLOGIA PLANTARUM 2021; 171:728-738. [PMID: 33159334 DOI: 10.1111/ppl.13258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/17/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Light is a main environmental factor that determines leaf microclimate within the vine, as well as its photosynthesis and carbohydrate metabolism. This study aimed to examine the relationships between photosynthesis, carbohydrate metabolism, and the expression of related genes in leaves of grapevine grown under different radiation regimes. During the 2014/2015 growing season, an experiment was conducted on a Malbec vineyard (Vitis vinifera L.) in which four radiation exposure treatments were established on the leaves: (1) East, (2) West, (3) Sun, and (4) Shade (i.e., reduction in light intensity). Diurnal dynamics of photosynthesis and non-structural carbohydrates were measured and leaf export rates were calculated. Transcript profiles of leaf sugar transporters (VvHT1, VvHT3, VvSUC27), a sucrose phosphate synthase enzyme (VvSPS), and invertases (VvGIN1, VvCWI) were also examined. We showed that East and Sun leaves had higher daily photosynthetic and export rates than West leaves, which was mainly explained by the environmental conditions (air and leaf temperature, VPDleaf-air ) and leaf water status. Shade leaves accumulated less starch and soluble sugars than exposed leaves, which correlated with a higher expression of hexose transporters and invertases. The hypotheses that these sugars in Shade leaves would play a role as signaling molecules and/or have increased sink strength and phloem unloading are discussed. These results allow us to understand the physiological and molecular behavior of leaves exposed to different radiation regimes, which can be used to design appropriate vineyard management practices.
Collapse
Affiliation(s)
- Silvina Dayer
- Ecofisiologia de la vid, INTA EEA Mendoza, Luján de Cuyo, Argentina
- Ecophysiologie et Genomique Fonctionelle de la Vigne (EGFV), University of Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d'Ornon, France
| | - Germán Murcia
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Jorge A Prieto
- Ecofisiologia de la vid, INTA EEA Mendoza, Luján de Cuyo, Argentina
| | - Martin Durán
- Laboratorio de Fisiología Vegetal, Instituto de Biología Agrícola de Mendoza, Facultad de Ciencias Agrarias, CONICET-UNCuyo, Mendoza, Argentina
| | - Liliana Martínez
- Laboratorio de Fisiología Vegetal, Instituto de Biología Agrícola de Mendoza, Facultad de Ciencias Agrarias, CONICET-UNCuyo, Mendoza, Argentina
| | - Patricia Píccoli
- Laboratorio de Bioquímica Vegetal, Instituto de Biología Agrícola de Mendoza, Facultad de Ciencias Agrarias, CONICET-UNCuyo, Mendoza, Argentina
| | - Jorge Perez Peña
- Ecofisiologia de la vid, INTA EEA Mendoza, Luján de Cuyo, Argentina
| |
Collapse
|
18
|
Zhang J, Zhou T, Zhang C, Zheng W, Li J, Jiang W, Xiao C, Wei D, Yang C, Xu R, Gong A, Bi Y. Gibberellin disturbs the balance of endogenesis hormones and inhibits adventitious root development of Pseudostellaria heterophylla through regulating gene expression related to hormone synthesis. Saudi J Biol Sci 2021; 28:135-147. [PMID: 33424290 PMCID: PMC7783660 DOI: 10.1016/j.sjbs.2020.09.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 11/30/2022] Open
Abstract
The adventitious roots of some plants will develop into tuberous roots which are widely used in many traditional Chinese medicines, including Pseudostellaria heterophylla. If adventitious root development is inhibited, the yield of Chinese medicinal materials will be reduced. Gibberellic acid is an important phytohormone that promotes plant growth and increases the resistance to drought, flood or disease. However, the effects of gibberellic acid on adventitious roots of Pseudostellaria heterophylla are not clear. Here, we reports GA3 suppressed adventitious root development of Pseudostellaria heterophylla by disturbing the balance of endogenesis hormones. By detecting the contents of various endogenous hormones, we found that the development of adventitious roots negatively correlated with the content of CA3 in tuberous roots. Exogenous GA3 treatment decreased the diameter of adventitious roots, but increased the length of adventitious roots of Pseudostellaria heterophylla. In contrast, blocking the biosynthesis of GA3 suppressed stem growth and promoted the xylem of tuberous roots development. Moreover, exogenous GA3 treatment resulted in imbalance of endogenesis hormones by regulating their synthesis-related genes expression in xylem of tuberous roots. These results suggest GA3 broke the established distribution of hormones by regulating synthesis, transport and biological activation of hormones to activate the apical meristem and suppress lateral meristem. Regulating GA3 signaling during adventitious roots development would be one of the possible ways to increase the yield of P. heterophylla.
Collapse
Affiliation(s)
- Jinqiang Zhang
- Guizhou University of Chinese Traditional Medicine, Guiyang 550025, China
| | - Tao Zhou
- Guizhou University of Chinese Traditional Medicine, Guiyang 550025, China
| | - Chen Zhang
- Guizhou University of Chinese Traditional Medicine, Guiyang 550025, China
| | - Wei Zheng
- Guizhou University of Chinese Traditional Medicine, Guiyang 550025, China.,Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Jun Li
- Guizhou University of Chinese Traditional Medicine, Guiyang 550025, China
| | - Weike Jiang
- Guizhou University of Chinese Traditional Medicine, Guiyang 550025, China
| | - Chenghong Xiao
- Guizhou University of Chinese Traditional Medicine, Guiyang 550025, China
| | - Dequn Wei
- Guizhou University of Chinese Traditional Medicine, Guiyang 550025, China
| | - Changgui Yang
- Guizhou University of Chinese Traditional Medicine, Guiyang 550025, China
| | - Rong Xu
- Guizhou University of Chinese Traditional Medicine, Guiyang 550025, China
| | - Anhui Gong
- Guizhou University of Chinese Traditional Medicine, Guiyang 550025, China
| | - Yan Bi
- Guizhou University of Chinese Traditional Medicine, Guiyang 550025, China
| |
Collapse
|
19
|
Wu X, Liu J, Meng Q, Fang S, Kang J, Guo Q. Differences in carbon and nitrogen metabolism between male and female Populus cathayana in response to deficient nitrogen. TREE PHYSIOLOGY 2021; 41:119-133. [PMID: 32822497 DOI: 10.1093/treephys/tpaa108] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
Sexual dimorphism occurs regarding carbon and nitrogen metabolic processes in response to nitrogen supply. Differences in fixation and remobilization of carbon and allocation and assimilation of nitrogen between sexes may differ under severe defoliation. The dioecious species Populus cathayana was studied after two defoliation treatments with two N levels. Males had a higher capacity of carbon fixation because of higher gas exchange and fluorescence traits of leaves after severe long-term defoliation under deficient N. Males had higher leaf abscisic acid, stomatal conductance and leaf sucrose phosphate synthase activity increasing transport of sucrose to sinks. Males had a higher carbon sink than females, because under N-deficient conditions, males accumulated >131.10% and 90.65% root starch than males in the control, whereas females accumulated >40.55% and 52.81%, respectively, than females in the control group. Males allocated less non-protein N (NNon-p) to leaves, having higher nitrogen use efficiency (photosynthetic nitrogen use efficiency), higher glutamate dehydrogenase (GDH) and higher leaf GDH expression, even after long-term severe defoliation under deficient N. Females had higher leaf jasmonic acid concentration and NNon-p. The present study suggested that females allocated more carbon and nitrogen to defense chemicals than males after long-term severe defoliation under deficient N.
Collapse
Affiliation(s)
- Xiaoyi Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiantong Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Qiqi Meng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Shiyan Fang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jieyu Kang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Qingxue Guo
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
20
|
Hugalde IP, Agüero CB, Barrios-Masias FH, Romero N, Viet Nguyen A, Riaz S, Piccoli P, McElrone AJ, Walker MA, Vila HF. Modeling vegetative vigour in grapevine: unraveling underlying mechanisms. Heliyon 2020; 6:e05708. [PMID: 33385078 PMCID: PMC7770548 DOI: 10.1016/j.heliyon.2020.e05708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/30/2020] [Accepted: 11/09/2020] [Indexed: 11/17/2022] Open
Abstract
Mechanistic modeling constitutes a powerful tool to unravel complex biological phenomena. This study describes the construction of a mechanistic, dynamic model for grapevine plant growth and canopy biomass (vigor). To parametrize and validate the model, the progeny from a cross of Ramsey (Vitis champinii) × Riparia Gloire (V. riparia) was evaluated. Plants with different vigor were grown in a greenhouse during the summer of 2014 and 2015. One set of plants was grafted with Cabernet Sauvignon. Shoot growth rate (b), leaf area (LA), dry biomass, whole plant and root specific hydraulic conductance (kH and Lpr), stomatal conductance (gs), and water potential (Ψ) were measured. Partitioning indices and specific leaf area (SLA) were calculated. The model includes an empirical fit of a purported seasonal pattern of bioactive GAs based on published seasonal evolutionary levels and reference values. The model provided a good fit of the experimental data, with R = 0.85. Simulation of single trait variations defined the individual effect of each variable on vigor determination. The model predicts, with acceptable accuracy, the vigor of a young plant through the measurement of Lpr and SLA. The model also permits further understanding of the functional traits that govern vigor, and, ultimately, could be considered useful for growers, breeders and those studying climate change.
Collapse
Affiliation(s)
- Inés P. Hugalde
- Estación Experimental Agropecuaria Mendoza, INTA, San Martín 3853, M. Drummond, 5507, Mendoza, Argentina
- Dept. Viticulture and Enology, UC Davis, One Shields Ave, Davis, CA 95616, USA
- Corresponding author.
| | - Cecilia B. Agüero
- Dept. Viticulture and Enology, UC Davis, One Shields Ave, Davis, CA 95616, USA
| | - Felipe H. Barrios-Masias
- Dept. Viticulture and Enology, UC Davis, One Shields Ave, Davis, CA 95616, USA
- Dept. Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno, Reno, NV 89557, USA
| | - Nina Romero
- Dept. Viticulture and Enology, UC Davis, One Shields Ave, Davis, CA 95616, USA
| | - Andy Viet Nguyen
- Dept. Viticulture and Enology, UC Davis, One Shields Ave, Davis, CA 95616, USA
| | - Summaira Riaz
- Dept. Viticulture and Enology, UC Davis, One Shields Ave, Davis, CA 95616, USA
| | - Patricia Piccoli
- Instituto de Biología Agrícola de Mendoza, UNCuyo – CONICET, Argentina
| | - Andrew J. McElrone
- Dept. Viticulture and Enology, UC Davis, One Shields Ave, Davis, CA 95616, USA
- USDA-ARS, Davis, CA, 95616, USA
| | - M. Andrew Walker
- Dept. Viticulture and Enology, UC Davis, One Shields Ave, Davis, CA 95616, USA
| | - Hernán F. Vila
- Estación Experimental Agropecuaria Mendoza, INTA, San Martín 3853, M. Drummond, 5507, Mendoza, Argentina
| |
Collapse
|
21
|
Zhang P, Liu Y, Li M, Ma J, Wang C, Su J, Yang D. Abscisic acid associated with key enzymes and genes involving in dynamic flux of water soluble carbohydrates in wheat peduncle under terminal drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:719-728. [PMID: 32353677 DOI: 10.1016/j.plaphy.2020.04.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Remobilization of stem water soluble carbohydrates (WSC) can supply crucial carbon resources for grain filling under drought stress, while the regulatory metabolism associated with abscisic acid (ABA) is still limited. Two cultivars, LJ196 (drought-tolerant) and XD18 (drought-prone), were pot-grown under well-watered (WW) and drought-stressed (DS) conditions. Concentrations of WSC components and ABA, and fructan metabolizing enzymes and genes were investigated in peduncle after anthesis. When compared with those under the WW, LJ196 remained higher grain yield and grain-filling rate than XD18 under the DS. During the early period of grain filling (0-14 DAA), DS increased concentrations of total WSC and its components, but thereafter substantially reduced them. The gene expression levels and enzymatic activities of fructan 1-exohydrolases (1-FEH) and fructan 6-exohydrolases (6-FEH) showed similar trends, whereas those of fructan: fructan 1-fructosyltransferase (1-FFT), and sucrose: fructan 6-fructosyltransferase (6-SFT) were depressed and declined over the period of examination. LJ196 still showed higher levels of ABA and fructan metabolizing. The ABA concentration under the DS was positively and significantly correlated with total WSC and fructan concentration, and expression levels of these enzymes and genes as well, with more prominently with those of 6-FEH. Presumably, ABA could enhance fructan hydrolysis by strongly up-regulating the gene expression and enzymatic activity of 6-FEH to accelerate WSC remobilization. However, stem WSC induced by DS could be not fully remobilized to grains, due to its weaker correlation with grain-filling rate and finally indicating lower grain yield. The findings would provide useful information for wheat production under water-deficit environments.
Collapse
Affiliation(s)
- Peipei Zhang
- Gansu Provincial Key Lab of Aridland Crop Science, Lanzhou, 730070, Gansu, China
| | - Yuan Liu
- Gansu Provincial Key Lab of Aridland Crop Science, Lanzhou, 730070, Gansu, China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Mengfei Li
- Gansu Provincial Key Lab of Aridland Crop Science, Lanzhou, 730070, Gansu, China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Jingfu Ma
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Caixiang Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Junji Su
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Delong Yang
- Gansu Provincial Key Lab of Aridland Crop Science, Lanzhou, 730070, Gansu, China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, Gansu, China.
| |
Collapse
|
22
|
Casolo V, Braidot E, Petrussa E, Zancani M, Vianello A, Boscutti F. Relationships between population traits, nonstructural carbohydrates, and elevation in alpine stands of Vaccinium myrtillus. AMERICAN JOURNAL OF BOTANY 2020; 107:639-649. [PMID: 32239489 PMCID: PMC7217170 DOI: 10.1002/ajb2.1458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/30/2020] [Indexed: 06/11/2023]
Abstract
PREMISE Despite great attention given to the relationship between plant growth and carbon balance in alpine tree species, little is known about shrubs at the treeline. We hypothesized that the pattern of main nonstructural carbohydrates (NSCs) across elevations depends on the interplay between phenotypic trait plasticity, plant-plant interaction, and elevation. METHODS We studied the pattern of NSCs (i.e., glucose, fructose, sucrose, and starch) in alpine stands of Vaccinium myrtillus (above treeline) across an elevational gradient. In the same plots, we measured key growth traits (i.e., anatomical stem features) and shrub cover, evaluating putative relationships with NSCs. RESULTS Glucose content was positively related with altitude, but negatively related with shrub cover. Sucrose decreased at high altitude and in older populations and increased with higher percentage of vascular tissue. Starch content increased at middle and high elevations and in stands with high shrub cover. Moreover, starch content was negatively related with the number of xylem rings and the percentage of phloem tissue, but positively correlated with the percentage of xylem tissue. CONCLUSIONS We found that the increase in carbon reserves across elevations was uncoupled from plant growth, supporting the growth limitation hypothesis, which postulates NSCs accumulate at high elevation as a consequence of low temperature. Moreover, the response of NSC content to the environmental stress caused by elevation was buffered by phenotypic plasticity of plant traits, suggesting that, under climate warming conditions, shrub expansion due to enhanced plant growth would be pronounced in old but sparse stands.
Collapse
Affiliation(s)
- Valentino Casolo
- Department of Agriculture, Food, Environmental and Animal SciencesPlant Biology UnitUniversity of Udinevia delle Scienze 9133100UdineItaly
| | - Enrico Braidot
- Department of Agriculture, Food, Environmental and Animal SciencesPlant Biology UnitUniversity of Udinevia delle Scienze 9133100UdineItaly
| | - Elisa Petrussa
- Department of Agriculture, Food, Environmental and Animal SciencesPlant Biology UnitUniversity of Udinevia delle Scienze 9133100UdineItaly
| | - Marco Zancani
- Department of Agriculture, Food, Environmental and Animal SciencesPlant Biology UnitUniversity of Udinevia delle Scienze 9133100UdineItaly
| | - Angelo Vianello
- Department of Agriculture, Food, Environmental and Animal SciencesPlant Biology UnitUniversity of Udinevia delle Scienze 9133100UdineItaly
| | - Francesco Boscutti
- Department of Agriculture, Food, Environmental and Animal SciencesPlant Biology UnitUniversity of Udinevia delle Scienze 9133100UdineItaly
| |
Collapse
|
23
|
Correia S, Queirós F, Ferreira H, Morais MC, Afonso S, Silva AP, Gonçalves B. Foliar Application of Calcium and Growth Regulators Modulate Sweet Cherry ( Prunus avium L.) Tree Performance. PLANTS 2020; 9:plants9040410. [PMID: 32224852 PMCID: PMC7238238 DOI: 10.3390/plants9040410] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 11/16/2022]
Abstract
Cracking of sweet cherry (Prunus avium L.) fruits is caused by rain events close to harvest. This problem has occurred in most cherry growing regions with significant economic losses. Several orchard management practices have been applied to reduce the severity of this disorder, like the foliar application of minerals or growth regulators. In the present study, we hypothesized that preharvest spray treatments improve the physiological performance of sweet cherry trees and could also mitigate environmental stressful conditions. Effects of repeated foliar spraying of calcium (Ca), gibberellic acid (GA3), abscisic acid (ABA), salicylic acid (SA), glycine betaine (GB), and the biostimulant Ascophyllum nodosum (AN) on the physiological and biochemical performance of ‘Skeena’ sweet cherry trees during two consecutive years (without Ca in 2015 and in 2016 with addition of Ca) were studied. Results showed that in general spray treatments improved the physiological performance and water status of the trees. AN and ABA sprays were demonstrated to be the best compounds for increasing yield and reducing cherry cracking as well as improving photosynthetic performance and leaf metabolites content. In conclusion, AN and ABA might be promising tools in the fruit production system.
Collapse
Affiliation(s)
- Sofia Correia
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; (H.F.); (M.C.M.); (S.A.); (A.P.S.); (B.G.)
- Correspondence:
| | - Filipa Queirós
- National Institute for Agrarian and Veterinary Research (INIAV, I.P.), Pólo de Alcobaça, Estrada de Leiria, 2460-059 Alcobaça, Portugal;
| | - Helena Ferreira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; (H.F.); (M.C.M.); (S.A.); (A.P.S.); (B.G.)
| | - Maria Cristina Morais
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; (H.F.); (M.C.M.); (S.A.); (A.P.S.); (B.G.)
| | - Sílvia Afonso
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; (H.F.); (M.C.M.); (S.A.); (A.P.S.); (B.G.)
| | - Ana Paula Silva
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; (H.F.); (M.C.M.); (S.A.); (A.P.S.); (B.G.)
| | - Berta Gonçalves
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; (H.F.); (M.C.M.); (S.A.); (A.P.S.); (B.G.)
| |
Collapse
|
24
|
Meneses M, García-Rojas M, Muñoz-Espinoza C, Carrasco-Valenzuela T, Defilippi B, González-Agüero M, Meneses C, Infante R, Hinrichsen P. Transcriptomic study of pedicels from GA 3-treated table grape genotypes with different susceptibility to berry drop reveals responses elicited in cell wall yield, primary growth and phenylpropanoids synthesis. BMC PLANT BIOLOGY 2020; 20:66. [PMID: 32041534 PMCID: PMC7011282 DOI: 10.1186/s12870-020-2260-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/20/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Gibberellins (GA3) are the most sprayed growth regulator for table grape production worldwide, increasing berry size of seedless varieties through pericarp cell expansion. However, these treatments also exacerbate berry drop, which has a detrimental effect on the postharvest quality of commercialized clusters. Several studies have suggested that pedicel stiffening caused by GA3 would have a role in this disorder. Nevertheless, transcriptional and phenotypic information regarding pedicel responses to GA3 is minimal. RESULTS Characterization of responses to GA3 treatments using the lines L23 and Thompson Seedless showed that the former was up to six times more susceptible to berry drop than the latter. GA3 also increased the diameter and dry matter percentage of the pedicel on both genotypes. Induction of lignin biosynthesis-related genes by GA3 has been reported, so the quantity of this polymer was measured. The acetyl bromide method detected a decreased concentration of lignin 7 days after GA3 treatment, due to a higher cell wall yield of the isolated fractions of GA3-treated pedicel samples which caused a dilution effect. Thus, an initial enrichment of primary cell wall components in response to GA3 was suggested, particularly in the L23 background. A transcriptomic profiling was performed to identify which genes were associated with these phenotypic changes. This analysis identified 1281 and 1787 genes differentially upregulated by GA3 in L23 and cv. Thompson Seedless, respectively. Concomitantly, 1202 and 1317 downregulated genes were detected in L23 and cv. Thompson Seedless (FDR < 0.05). Gene ontology analysis of upregulated genes showed enrichment in pathways including phenylpropanoids, cell wall metabolism, xylem development, photosynthesis and the cell cycle at 7 days post GA3 application. Twelve genes were characterized by qPCR and striking differences were observed between genotypes, mainly in genes related to cell wall synthesis. CONCLUSIONS High levels of berry drop are related to an early strong response of primary cell wall synthesis in the pedicel promoted by GA3 treatment. Genetic backgrounds can produce similar phenotypic responses to GA3, although there is considerable variation in the regulation of genes in terms of which are expressed, and the extent of transcript levels achieved within the same time frame.
Collapse
Affiliation(s)
- Marco Meneses
- Instituto de Investigaciones Agropecuarias, INIA-La Platina, Santa Rosa 11610, Santiago, Chile
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Campus Sur, Universidad de Chile, Santiago, Chile
| | - Miguel García-Rojas
- Instituto de Investigaciones Agropecuarias, INIA-La Platina, Santa Rosa 11610, Santiago, Chile
| | - Claudia Muñoz-Espinoza
- Instituto de Investigaciones Agropecuarias, INIA-La Platina, Santa Rosa 11610, Santiago, Chile
| | - Tomás Carrasco-Valenzuela
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Bruno Defilippi
- Instituto de Investigaciones Agropecuarias, INIA-La Platina, Santa Rosa 11610, Santiago, Chile
| | | | - Claudio Meneses
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- FONDAP Center for Genome Regulation, Universidad Andres Bello, Santiago, Chile
| | - Rodrigo Infante
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Campus Sur, Universidad de Chile, Santiago, Chile
| | - Patricio Hinrichsen
- Instituto de Investigaciones Agropecuarias, INIA-La Platina, Santa Rosa 11610, Santiago, Chile.
| |
Collapse
|
25
|
Li YM, Forney C, Bondada B, Leng F, Xie ZS. The Molecular Regulation of Carbon Sink Strength in Grapevine ( Vitis vinifera L.). FRONTIERS IN PLANT SCIENCE 2020; 11:606918. [PMID: 33505415 PMCID: PMC7829256 DOI: 10.3389/fpls.2020.606918] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/08/2020] [Indexed: 05/17/2023]
Abstract
Sink organs, the net receivers of resources from source tissues, provide food and energy for humans. Crops yield and quality are improved by increased sink strength and source activity, which are affected by many factors, including sugars and hormones. With the growing global population, it is necessary to increase photosynthesis into crop biomass and yield on a per plant basis by enhancing sink strength. Sugar translocation and accumulation are the major determinants of sink strength, so understanding molecular mechanisms and sugar allocation regulation are conducive to develop biotechnology to enhance sink strength. Grapevine (Vitis vinifera L.) is an excellent model to study the sink strength mechanism and regulation for perennial fruit crops, which export sucrose from leaves and accumulates high concentrations of hexoses in the vacuoles of fruit mesocarp cells. Here recent advances of this topic in grape are updated and discussed, including the molecular biology of sink strength, including sugar transportation and accumulation, the genes involved in sugar mobilization and their regulation of sugar and other regulators, and the effects of hormones on sink size and sink activity. Finally, a molecular basis model of the regulation of sugar accumulation in the grape is proposed.
Collapse
Affiliation(s)
- You-Mei Li
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Charles Forney
- Kentville Research and Development Centre, Agriculture and Agri-Food Canada, Kentville, NS, Canada
| | - Bhaskar Bondada
- Wine Science Center, Washington State University, Richland, WA, United States
| | - Feng Leng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Zhao-Sen Xie
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- *Correspondence: Zhao-Sen Xie,
| |
Collapse
|
26
|
Cai Y, Yan J, Li Q, Deng Z, Liu S, Lu J, Zhang Y. Sucrose transporters of resistant grapevine are involved in stress resistance. PLANT MOLECULAR BIOLOGY 2019; 100:111-132. [PMID: 30806883 DOI: 10.1007/s11103-019-00847-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/20/2019] [Indexed: 05/08/2023]
Abstract
The whole promoter regions of SUTs in Vitis were firstly isolated. SUTs are involved in the adaptation to biotic and abiotic stresses. The vulnerability of Vitis vinifera to abiotic and biotic stresses limits its yields. In contrast, Vitis amurensis displays resistance to environmental stresses, such as microbial pathogens, low temperatures, and drought. Sucrose transporters (SUTs) are important regulators for plant growth and stress tolerance; however, the role that SUTs play in stress resistance in V. amurensis is not known. Using V. amurensis Ruper. 'Zuoshan-1' and V. vinifera 'Chardonnay', we found that SUC27 was highly expressed in several vegetative organs of Zuoshan-1, SUC12 was weakly expressed or absent in most organs in both the species, and the distribution of SUC11 in source and sink organs was highest in Zuoshan-1. A search for cis-regulatory elements in the promoter sequences of SUTs revealed that they were regulated by light, environmental stresses, physiological correlation, and hormones. The SUTs in Zuoshan-1 mostly show a higher and rapid response than in Chardonnay under the induction by Plasmopara viticola infection, cold, water deficit, and dark conditions. The induction of SUTs was associated with the upregulation of key genes involved in sucrose metabolism and the biosynthesis of plant hormones. These results indicate that stress resistance in Zuoshan-1 is governed by the differential distribution and induction of SUTs by various stimuli, and the subsequent promotion of sucrose metabolism and hormone synthesis.
Collapse
Affiliation(s)
- Yumeng Cai
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jing Yan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Qike Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zhefang Deng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Shaoli Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jiang Lu
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yali Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
| |
Collapse
|
27
|
Xue J, Li T, Wang S, Xue Y, Liu X, Zhang X. Defoliation and gibberellin synergistically induce tree peony flowering with non-structural carbohydrates as intermedia. JOURNAL OF PLANT PHYSIOLOGY 2019; 233:31-41. [PMID: 30580057 DOI: 10.1016/j.jplph.2018.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 12/11/2018] [Accepted: 12/11/2018] [Indexed: 06/09/2023]
Abstract
Although the natural florescence of the tree peony is short, it can be lengthened by forcing culture. In this study, both defoliation or gibberellic acid (GA3) treatment individually induced tree peony (Paeonia suffruticosa 'Luo Yang Hong') flowering under forcing culture, and their combination (D + G) accelerated flowering with a GA3-overdose-like phenomenon, indicating that synergism between defoliation and GA3 treatment may occur. Both defoliation and GA3 treatment induced a GA response, including (i) increased GA3 production, (ii) increased PsCPS and PsGA3ox expression, and (iii) decreased PsGA2ox, PsGID1c, and PsGID2 expression; both treatments also positively influenced non-structural carbohydrate (NSC) accumulation. According to the expression of five PsSWEETs, PsSWEET2 and PsSWEET17 may redundantly exercise the crosstalk of defoliation and GA3 treatment by NSC distribution, whereas PsSWEET12 may act by GA modulation; no synergism resulting from the D + G treatment was detected. Tissue-specific analysis indicated that, in sepals, PsSWEET2 and PsSWET7 are both induced by defoliation and GA3 treatment, whereas PsSWEET2 expression showed synergism with the D + G treatment. In summary, defoliation and GA3 treatment synergistically induce tree peony flowering under forcing culture, and NSCs are suggested as key intermedia. Moreover, sepals may play key roles in their synergism, although more direct evidence is still needed.
Collapse
Affiliation(s)
- Jingqi Xue
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Tingting Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Shunli Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yuqian Xue
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xianwu Liu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Xiuxin Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, China.
| |
Collapse
|
28
|
Beauvieux R, Wenden B, Dirlewanger E. Bud Dormancy in Perennial Fruit Tree Species: A Pivotal Role for Oxidative Cues. FRONTIERS IN PLANT SCIENCE 2018; 9:657. [PMID: 29868101 PMCID: PMC5969045 DOI: 10.3389/fpls.2018.00657] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/30/2018] [Indexed: 05/07/2023]
Abstract
For perennial plants, bud dormancy is a crucial step as its progression over winter determines the quality of bud break, flowering, and fruiting. In the past decades, many studies, based on metabolic, physiological, subcellular, genetic, and genomic analyses, have unraveled mechanisms underlying bud dormancy progression. Overall, all the pathways identified are interconnected in a very complex manner. Here, we review early and recent findings on the dormancy processes in buds of temperate fruit trees species including hormonal signaling, the role of plasma membrane, carbohydrate metabolism, mitochondrial respiration and oxidative stress, with an effort to link them together and emphasize the central role of reactive oxygen species accumulation in the control of dormancy progression.
Collapse
|
29
|
Moreno D, Berli F, Bottini R, Piccoli PN, Silva MF. Grapevine tissues and phenology differentially affect soluble carbohydrates determination by capillary electrophoresis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 118:394-399. [PMID: 28711788 DOI: 10.1016/j.plaphy.2017.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/07/2017] [Accepted: 07/08/2017] [Indexed: 06/07/2023]
Abstract
Soluble carbohydrates distribution depends on plant physiology and, among other important factors, determines fruit yield and quality. In plant biology, the analysis of sugars is useful for many purposes, including metabolic studies. Capillary electrophoresis (CE) proved to be a powerful green separation technique with minimal sample preparation, even in complex plant tissues, that can provide high-resolution efficiency. Matrix effect refers to alterations in the analytical response caused by components of a sample other than the analyte of interest. Thus, the assessment and reduction of the matrix factor is fundamental for metabolic studies in different matrices. The present study evaluated the source and levels of matrix effects in the determination of most abundant sugars in grapevine tissues (mature and young leaves, berries and roots) at two phenological growth stages. Sucrose was the sugar that showed the least matrix effects, while fructose was the most affected analyte. Based on plant tissues, young leaves presented the smaller matrix effects, irrespectively of the phenology. These changes may be attributed to considerable differences at chemical composition of grapevine tissues with plant development. Therefore, matrix effect should be an important concern for plant metabolomics.
Collapse
Affiliation(s)
- Daniela Moreno
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Facultad de Ciencias Agrarias, Almirante Brown 500, M5507 Chacras de Coria, Mendoza, Argentina.
| | - Federico Berli
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Facultad de Ciencias Agrarias, Almirante Brown 500, M5507 Chacras de Coria, Mendoza, Argentina.
| | - Rubén Bottini
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Facultad de Ciencias Agrarias, Almirante Brown 500, M5507 Chacras de Coria, Mendoza, Argentina.
| | - Patricia N Piccoli
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Facultad de Ciencias Agrarias, Almirante Brown 500, M5507 Chacras de Coria, Mendoza, Argentina.
| | - María F Silva
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Facultad de Ciencias Agrarias, Almirante Brown 500, M5507 Chacras de Coria, Mendoza, Argentina.
| |
Collapse
|
30
|
Murcia G, Fontana A, Pontin M, Baraldi R, Bertazza G, Piccoli PN. ABA and GA 3 regulate the synthesis of primary and secondary metabolites related to alleviation from biotic and abiotic stresses in grapevine. PHYTOCHEMISTRY 2017; 135:34-52. [PMID: 27998613 DOI: 10.1016/j.phytochem.2016.12.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 12/03/2016] [Accepted: 12/08/2016] [Indexed: 05/03/2023]
Abstract
Plants are able to synthesize a large number of organic compounds. Among them, primary metabolites are known to participate in plant growth and development, whereas secondary metabolites are mostly involved in defense and other facultative processes. In grapevine, one of the major fruit crops in the world, secondary metabolites, mainly polyphenols, are of great interest for the wine industry. Even though there is an extensive literature on the content and profile of those compounds in berries, scarce or no information is available regarding polyphenols in other organs. In addition, little is known about the effect of plant growth regulators (PGRs), ABA and GA3 (extensively used in table grapes) on the synthesis of primary and secondary metabolites in wine grapes. In table grapes, cultural practices include the use of GA3 sprays shortly before veraison, to increase berry and bunch size, and sugar content in fruits. Meanwhile, ABA applications to the berries on pre-veraison improve the skin coloring and sugar accumulation, anticipating the onset of veraison. Accordingly, the aim of this study was to assess and characterize primary and secondary metabolites in leaves, berries and roots of grapevine plants cv. Malbec at veraison, and changes in compositions after ABA and GA3 aerial sprayings. Metabolic profiling was conducted using GC-MS, GC-FID and HPLC-MWD. A large set of metabolites was identified: sugars, alditols, organic acids, amino acids, polyphenols (flavonoids and non-flavonoids) and terpenes (mono-, sesqui-, di- and triterpenes). The obtained results showed that ABA applications elicited synthesis of mono- and sesquiterpenes in all assessed tissues, as well as L-proline, acidic amino acids and anthocyanins in leaves. Additionally, applications with GA3 elicited synthesis of L-proline in berries, and mono- and sesquiterpenes in all the tissues. However, treatment with GA3 seemed to block polyphenol synthesis, mainly in berries. In conclusion, ABA and GA3 applications to grapevine plants cv. Malbec influenced the synthesis of primary and secondary metabolites known to be essential for coping with biotic and abiotic stresses.
Collapse
Affiliation(s)
- Germán Murcia
- Instituto de Biología Agrícola de Mendoza, Facultad de Ciencias Agrarias, CONICET-UNCuyo, A. Brown 500, 5507 Chacras de Coria, Argentina.
| | - Ariel Fontana
- Instituto de Biología Agrícola de Mendoza, Facultad de Ciencias Agrarias, CONICET-UNCuyo, A. Brown 500, 5507 Chacras de Coria, Argentina.
| | - Mariela Pontin
- Instituto de Biología Agrícola de Mendoza, Facultad de Ciencias Agrarias, CONICET-UNCuyo, A. Brown 500, 5507 Chacras de Coria, Argentina; EEA-INTA La Consulta, CC8, 5567, La Consulta, Argentina.
| | - Rita Baraldi
- Instituto di Biometeorologia, CNR, Via P. Gobetti 101, 40129 Bologna, Italy.
| | - Gianpaolo Bertazza
- Instituto di Biometeorologia, CNR, Via P. Gobetti 101, 40129 Bologna, Italy.
| | - Patricia N Piccoli
- Instituto de Biología Agrícola de Mendoza, Facultad de Ciencias Agrarias, CONICET-UNCuyo, A. Brown 500, 5507 Chacras de Coria, Argentina.
| |
Collapse
|