1
|
Tong M, Zhai K, Duan Y, Xia W, Zhao B, Zhang L, Chu J, Yao X. Selenium alleviates the adverse effects of microplastics on kale by regulating photosynthesis, redox homeostasis, secondary metabolism and hormones. Food Chem 2024; 450:139349. [PMID: 38631205 DOI: 10.1016/j.foodchem.2024.139349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/25/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
Kale is a functional food with anti-cancer, antioxidant, and anemia prevention properties. The harmful effects of the emerging pollutant microplastic (MP) on plants have been widely studied, but there is limited research how to mitigate MP damage on plants. Numerous studies have shown that Se is involved in regulating plant resistance to abiotic stresses. The paper investigated impact of MP and Se on kale growth, photosynthesis, reactive oxygen species (ROS) metabolism, phytochemicals, and endogenous hormones. Results revealed that MP triggered a ROS burst, which led to breakdown of antioxidant system in kale, and had significant toxic effects on photosynthetic system, biomass, and accumulation of secondary metabolites, as well as a significant decrease in IAA and a significant increase in GA. Under MP supply, Se mitigated the adverse effects of MP on kale by increasing photosynthetic pigment content, stimulating function of antioxidant system, enhancing secondary metabolite synthesis, and modulating hormonal networks.
Collapse
Affiliation(s)
- Mengting Tong
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Kuizhi Zhai
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Yusui Duan
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Wansheng Xia
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Bingnan Zhao
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Lulu Zhang
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Jianzhou Chu
- School of Life Sciences, Hebei University, Baoding 071002, China.
| | - Xiaoqin Yao
- School of Life Sciences, Hebei University, Baoding 071002, China; Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China; Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding 071002, China.
| |
Collapse
|
2
|
Zada A, Lv M, Li J. Molecular Lesions in BRI1 and Its Orthologs in the Plant Kingdom. Int J Mol Sci 2024; 25:8111. [PMID: 39125682 PMCID: PMC11312156 DOI: 10.3390/ijms25158111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
Brassinosteroids (BRs) are an essential group of plant hormones regulating numerous aspects of plant growth, development, and stress responses. BRI1, along with its co-receptor BAK1, are involved in brassinosteroid sensing and early events in the BR signal transduction cascade. Mutational analysis of a particular gene is a powerful strategy for investigating its biochemical role. Molecular genetic studies, predominantly in Arabidopsis thaliana, but progressively in numerous other plants, have identified many mutants of the BRI1 gene and its orthologs to gain insight into its structure and function. So far, the plant kingdom has identified up to 40 bri1 alleles in Arabidopsis and up to 30 bri1 orthologs in different plants. These alleles exhibit phenotypes that are identical in terms of development and growth. Here, we have summarized bri1 alleles in Arabidopsis and its orthologs present in various plants including monocots and dicots. We have discussed the possible mechanism responsible for the specific allele. Finally, we have briefly debated the importance of these alleles in the research field and the agronomically valuable traits they offer to improve plant varieties.
Collapse
Affiliation(s)
- Ahmad Zada
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Minghui Lv
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
3
|
Samanta S, Seth CS, Roychoudhury A. The molecular paradigm of reactive oxygen species (ROS) and reactive nitrogen species (RNS) with different phytohormone signaling pathways during drought stress in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108259. [PMID: 38154293 DOI: 10.1016/j.plaphy.2023.108259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/13/2023] [Accepted: 12/03/2023] [Indexed: 12/30/2023]
Abstract
Drought is undoubtedly a major environmental constraint that negatively affects agricultural yield and productivity throughout the globe. Plants are extremely vulnerable to drought which imposes several physiological, biochemical and molecular perturbations. Increased generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in different plant organs is one of the inevitable consequences of drought. ROS and RNS are toxic byproducts of metabolic reactions and poise oxidative stress and nitrosative stress that are detrimental for plants. In spite of toxic effects, these potentially active radicals also play a beneficial role in mediating several signal transduction events that lead to plant acclimation and enhanced survival under harsh environmental conditions. The precise understanding of ROS and RNS signaling and their molecular paradigm with different phytohormones, such as auxin, gibberellin, cytokinin, abscisic acid, ethylene, brassinosteroids, strigolactones, jasmonic acid, salicylic acid and melatonin play a pivotal role for maintaining plant fitness and resilience to counteract drought toxicity. Therefore, the present review provides an overview of integrated systemic signaling between ROS, RNS and phytohormones during drought stress based on past and recent advancements and their influential role in conferring protection against drought-induced damages in different plant species. Indeed, it would not be presumptuous to hope that the detailed knowledge provided in this review will be helpful for designing drought-tolerant crop cultivars in the forthcoming times.
Collapse
Affiliation(s)
- Santanu Samanta
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, 700016, West Bengal, India
| | | | - Aryadeep Roychoudhury
- Discipline of Life Sciences, School of Sciences, Indira Gandhi National Open University, Maidan Garhi, New Delhi, 110068, India.
| |
Collapse
|
4
|
Raja B, Vidya R. Application of seaweed extracts to mitigate biotic and abiotic stresses in plants. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:641-661. [PMID: 37363418 PMCID: PMC10284787 DOI: 10.1007/s12298-023-01313-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 06/28/2023]
Abstract
Agriculture sector is facing a lot of constraints such as climate change, increasing population and the use of chemicals, and fertilizers which have significant influence on sustainability. The excessive usage of chemical fertilizers and pesticides has created a significant risk to humans, animals, plants, and the environment. To reduce the dependency on chemical fertilizers and pesticides a biological-based alternative is required. Seaweeds are essential marine resources that contain bioactive compounds and they have several uses in agriculture. The use of seaweed extracts in agriculture can mitigate stress, enhance nutrient efficiency, and boost plant growth. The use of seaweed extracts and their components activate several signaling pathways and defense-related genes/enzymes. In this review, an attempt has been made to explain how seaweed extracts and their bioactive components induce tolerance and promote growth under stress conditions.
Collapse
Affiliation(s)
- Bharath Raja
- VIT School of Agricultural Innovations and Advanced Learning (VAIAL), School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014 India
- VIT School of Agricultural Innovations and Advanced Learning (VAIAL), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014 India
| | - Radhakrishnan Vidya
- VIT School of Agricultural Innovations and Advanced Learning (VAIAL), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014 India
| |
Collapse
|
5
|
Ahmar S, Gruszka D. In-Silico Study of Brassinosteroid Signaling Genes in Rice Provides Insight Into Mechanisms Which Regulate Their Expression. Front Genet 2022; 13:953458. [PMID: 35873468 PMCID: PMC9299959 DOI: 10.3389/fgene.2022.953458] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/14/2022] [Indexed: 12/14/2022] Open
Abstract
Brassinosteroids (BRs) regulate a diverse spectrum of processes during plant growth and development and modulate plant physiology in response to environmental fluctuations and stress factors. Thus, the BR signaling regulators have the potential to be targeted for gene editing to optimize the architecture of plants and make them more resilient to environmental stress. Our understanding of the BR signaling mechanism in monocot crop species is limited compared to our knowledge of this process accumulated in the model dicot species - Arabidopsis thaliana. A deeper understanding of the BR signaling and response during plant growth and adaptation to continually changing environmental conditions will provide insight into mechanisms that govern the coordinated expression of the BR signaling genes in rice (Oryza sativa) which is a model for cereal crops. Therefore, in this study a comprehensive and detailed in silico analysis of promoter sequences of rice BR signaling genes was performed. Moreover, expression profiles of these genes during various developmental stages and reactions to several stress conditions were analyzed. Additionally, a model of interactions between the encoded proteins was also established. The obtained results revealed that promoters of the 39 BR signaling genes are involved in various regulatory mechanisms and interdependent processes that influence growth, development, and stress response in rice. Different transcription factor-binding sites and cis-regulatory elements in the gene promoters were identified which are involved in regulation of the genes’ expression during plant development and reactions to stress conditions. The in-silico analysis of BR signaling genes in O. sativa provides information about mechanisms which regulate the coordinated expression of these genes during rice development and in response to other phytohormones and environmental factors. Since rice is both an important crop and the model species for other cereals, this information may be important for understanding the regulatory mechanisms that modulate the BR signaling in monocot species. It can also provide new ways for the plant genetic engineering technology by providing novel potential targets, either cis-elements or transcriptional factors, to create elite genotypes with desirable traits.
Collapse
Affiliation(s)
- Sunny Ahmar
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Damian Gruszka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| |
Collapse
|
6
|
Zolkiewicz K, Gruszka D. Glycogen synthase kinases in model and crop plants - From negative regulators of brassinosteroid signaling to multifaceted hubs of various signaling pathways and modulators of plant reproduction and yield. FRONTIERS IN PLANT SCIENCE 2022; 13:939487. [PMID: 35909730 PMCID: PMC9335153 DOI: 10.3389/fpls.2022.939487] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/01/2022] [Indexed: 05/15/2023]
Abstract
Glycogen synthase kinases, also known as SHAGGY-like Kinases (GSKs/SKs), are highly conserved serine/threonine protein kinases present both in animals and plants. Plant genomes contain multiple homologs of the GSK3 genes which participate in various biological processes. Plant GSKs/SKs, and their best known representative in Arabidopsis thaliana - Brassinosteroid Insentisive2 (BIN2/SK21) in particular, were first identified as components of the brassinosteroid (BR) signaling pathway. As phytohormones, BRs regulate a wide range of physiological processes in plants - from germination, cell division, elongation and differentiation to leaf senescence, and response to environmental stresses. The GSKs/SKs proteins belong to a group of several highly conserved components of the BR signaling which evolved early during evolution of this molecular relay. However, recent reports indicated that the GSKs/SKs proteins are also implicated in signaling pathways of other phytohormones and stress-response processes. As a consequence, the GSKs/SKs proteins became hubs of various signaling pathways and modulators of plant development and reproduction. Thus, it is very important to understand molecular mechanisms regulating activity of the GSKs/SKs proteins, but also to get insights into role of the GSKs/SKs proteins in modulation of stability and activity of various substrate proteins which participate in the numerous signaling pathways. Although elucidation of these aspects is still in progress, this review presents a comprehensive and detailed description of these processes and their implications for regulation of development, stress response, and reproduction of model and crop species. The GSKs/SKs proteins and their activity are modulated through phosphorylation and de-phosphorylation reactions which are regulated by various proteins. Importantly, both phosphorylations and de-phosphorylations may have positive and negative effects on the activity of the GSKs/SKs proteins. Additionally, the activity of the GSKs/SKs proteins is positively regulated by reactive oxygen species, whereas it is negatively regulated through ubiquitylation, deacetylation, and nitric oxide-mediated nitrosylation. On the other hand, the GSKs/SKs proteins interact with proteins representing various signaling pathways, and on the basis of the complicated network of interactions the GSKs/SKs proteins differentially regulate various physiological, developmental, stress response, and yield-related processes.
Collapse
|
7
|
Luo Q, Ma Y, Chen Z, Xie H, Wang Y, Zhou L, Ma Y. Biochemical responses of hairgrass ( Deschampsia caespitosa) to hydrological change. FRONTIERS IN PLANT SCIENCE 2022; 13:987845. [PMID: 36226294 PMCID: PMC9549154 DOI: 10.3389/fpls.2022.987845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/22/2022] [Indexed: 05/17/2023]
Abstract
Plant growth and development are closely related to water availability. Water deficit and water excess are detrimental to plants, causing a series of damage to plant morphology, physiological and biochemical processes. In the long evolutionary process, plants have evolved an array of complex mechanisms to combat against stressful conditions. In the present study, the duration-dependent changes in ascorbate (AsA) and glutathione (GSH) contents and activities of enzymes involved in the AsA-GSH cycle in hairgrass (Deschampsia caespitosa) in response to water stress was investigated in a pot trial using a complete random block design. The treatments were as follows: (1) heavily waterlogging, (2) moderate waterlogging, (3) light waterlogging, (4) light drought, (5) moderate drought, (6) heavily drought, and (7) a control (CK) with plant be maintained at optimum water availability. The hairgrass plants were subjected to waterlogging or drought for 7, 14, 21 and 28 days and data were measured following treatment. Results revealed that hairgrass subjected to water stress can stimulate enzymatic activities of ascorbate peroxidase (APX), glutathione peroxidase (GPX), glutathione reductase (GR), dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDHAR) and L-galactono-1, 4-lactone dehydrogenase (GalLDH), switched on the ascorbate-glutathione (AsA-GSH) cycle and the L-galactose synthesis, up-regulated the contents of AsA and GSH, and maintained higher ratios of ascorbate to dehydroascorbate (AsA/DHA) and reduced glutathione to oxidized glutathione (GSH/GSSG) to alleviate potential oxidative damage. However, the light waterlogging did not induce hairgrass under stress to switch on the AsA-GSH pathway. In general, the critic substances and enzyme activities in AsA-GSH metabolic pathway increased as the increase of water stress intensity. As the increase of exposure duration, the critic antioxidant substances content and enzyme activities increased first and then maintained a relatively stable higher level. Our findings provide comprehensive information on biochemical responses of hairgrass to hydrological change, which would be a major step for accelerating ecological restoration of degradation alpine marshes in the Qinghai-Tibetan Plateau.
Collapse
Affiliation(s)
- Qiaoyu Luo
- School of Life Sciences, Qinghai Normal University, Xining, China
- Qinghai Provincial Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Tibet Plateau, Qinghai Normal University, Xining, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Yonggui Ma
- School of Life Sciences, Qinghai Normal University, Xining, China
- Qinghai Provincial Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Tibet Plateau, Qinghai Normal University, Xining, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, China
| | - Zhi Chen
- School of Life Sciences, Qinghai Normal University, Xining, China
- Qinghai Provincial Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Tibet Plateau, Qinghai Normal University, Xining, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, China
| | - Huichun Xie
- School of Life Sciences, Qinghai Normal University, Xining, China
- Qinghai Provincial Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Tibet Plateau, Qinghai Normal University, Xining, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, China
| | - Yanlong Wang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Lianyu Zhou
- School of Life Sciences, Qinghai Normal University, Xining, China
- Qinghai Provincial Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Tibet Plateau, Qinghai Normal University, Xining, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, China
| | - Yushou Ma
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
- *Correspondence: Yushou Ma,
| |
Collapse
|
8
|
Živanović B, Milić Komić S, Nikolić N, Mutavdžić D, Srećković T, Veljović Jovanović S, Prokić L. Differential Response of Two Tomato Genotypes, Wild Type cv. Ailsa Craig and Its ABA-Deficient Mutant flacca to Short-Termed Drought Cycles. PLANTS 2021; 10:plants10112308. [PMID: 34834671 PMCID: PMC8617711 DOI: 10.3390/plants10112308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 01/14/2023]
Abstract
Two tomato genotypes with constitutively different ABA level, flacca mutant and wild type of Ailsa Craig cv. (WT), were subjected to three repeated drought cycles, with the aim to reveal the role of the abscisic acid (ABA) threshold in developing drought tolerance. Differential responses to drought of two genotypes were obtained: more pronounced stomatal closure, ABA biosynthesis and proline accumulation in WT compared to the mutant were compensated by dry weight accumulation accompanied by transient redox disbalance in flacca. Fourier-transform infrared (FTIR) spectra analysis of isolated cell wall material and morphological parameter measurements on tomato leaves indicated changes in dry weight accumulation and carbon re-allocation to cell wall constituents in flacca, but not in WT. A higher proportion of cellulose, pectin and lignin in isolated cell walls from flacca leaves further increased with repeated drought cycles. Different ABA-dependent stomatal closure between drought cycles implies that acquisition of stomatal sensitivity may be a part of stress memory mechanism developed under given conditions. The regulatory role of ABA in the cell wall restructuring and growth regulation under low leaf potential was discussed with emphasis on the beneficial effects of drought priming in developing differential defense strategies against drought.
Collapse
Affiliation(s)
- Bojana Živanović
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia; (B.Ž.); (S.M.K.); (N.N.); (D.M.); (T.S.)
| | - Sonja Milić Komić
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia; (B.Ž.); (S.M.K.); (N.N.); (D.M.); (T.S.)
| | - Nenad Nikolić
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia; (B.Ž.); (S.M.K.); (N.N.); (D.M.); (T.S.)
| | - Dragosav Mutavdžić
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia; (B.Ž.); (S.M.K.); (N.N.); (D.M.); (T.S.)
- Center for Green Technologies, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Tatjana Srećković
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia; (B.Ž.); (S.M.K.); (N.N.); (D.M.); (T.S.)
- Center for Green Technologies, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Sonja Veljović Jovanović
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia; (B.Ž.); (S.M.K.); (N.N.); (D.M.); (T.S.)
- Center for Green Technologies, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
- Correspondence: (S.V.J.); (L.P.)
| | - Ljiljana Prokić
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
- Correspondence: (S.V.J.); (L.P.)
| |
Collapse
|
9
|
Mubarik MS, Khan SH, Sajjad M, Raza A, Hafeez MB, Yasmeen T, Rizwan M, Ali S, Arif MS. A manipulative interplay between positive and negative regulators of phytohormones: A way forward for improving drought tolerance in plants. PHYSIOLOGIA PLANTARUM 2021; 172:1269-1290. [PMID: 33421147 DOI: 10.1111/ppl.13325] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/20/2020] [Accepted: 12/23/2020] [Indexed: 05/28/2023]
Abstract
Among different abiotic stresses, drought stress is the leading cause of impaired plant growth and low productivity worldwide. It is therefore essential to understand the process of drought tolerance in plants and thus to enhance drought resistance. Accumulating evidence indicates that phytohormones are essential signaling molecules that regulate diverse processes of plant growth and development under drought stress. Plants can often respond to drought stress through a cascade of phytohormones signaling as a means of plant growth regulation. Understanding biosynthesis pathways and regulatory crosstalk involved in these vital compounds could pave the way for improving plant drought tolerance while maintaining overall plant health. In recent years, the identification of phytohormones related key regulatory genes and their manipulation through state-of-the-art genome engineering tools have helped to improve drought tolerance plants. To date, several genes linked to phytohormones signaling networks, biosynthesis, and metabolism have been described as a promising contender for engineering drought tolerance. Recent advances in functional genomics have shown that enhanced expression of positive regulators involved in hormone biosynthesis could better equip plants against drought stress. Similarly, knocking down negative regulators of phytohormone biosynthesis can also be very effective to negate the negative effects of drought on plants. This review explained how manipulating positive and negative regulators of phytohormone signaling could be improvised to develop future crop varieties exhibiting higher drought tolerance. In addition, we also discuss the role of a promising genome editing tool, CRISPR/Cas9, on phytohormone mediated plant growth regulation for tackling drought stress.
Collapse
Affiliation(s)
- Muhammad Salman Mubarik
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
- Center for Advanced Studies in Agriculture and Food Security (CAS-AFS), University of Agriculture, Faisalabad, Pakistan
| | - Sultan Habibullah Khan
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
- Center for Advanced Studies in Agriculture and Food Security (CAS-AFS), University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Sajjad
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Ali Raza
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | | | - Tahira Yasmeen
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Saleem Arif
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
10
|
Devireddy AR, Zandalinas SI, Fichman Y, Mittler R. Integration of reactive oxygen species and hormone signaling during abiotic stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:459-476. [PMID: 33015917 DOI: 10.1111/tpj.15010] [Citation(s) in RCA: 150] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/16/2020] [Accepted: 09/21/2020] [Indexed: 05/03/2023]
Abstract
Each year, abiotic stress conditions such as drought, heat, salinity, cold and particularly their different combinations, inflict a heavy toll on crop productivity worldwide. The effects of these adverse conditions on plant productivity are becoming ever more alarming in recent years in light of the increased rate and intensity of global climatic changes. Improving crop tolerance to abiotic stress conditions requires a deep understanding of the response of plants to changes in their environment. This response is dependent on early and late signal transduction events that involve important signaling molecules such as reactive oxygen species (ROS), different plant hormones and other signaling molecules. It is the integration of these signaling events, mediated by an interplay between ROS and different plant hormones that orchestrates the plant response to abiotic stress and drive changes in transcriptomic, metabolic and proteomic networks that lead to plant acclimation and survival. Here we review some of the different studies that address hormone and ROS integration during the response of plants to abiotic stress. We further highlight the integration of ROS and hormone signaling during early and late phases of the plant response to abiotic stress, the key role of respiratory burst oxidase homologs in the integration of ROS and hormone signaling during these phases, and the involvement of hormone and ROS in systemic signaling events that lead to systemic acquired acclimation. Lastly, we underscore the need to understand the complex interactions that occur between ROS and different plant hormones during stress combinations.
Collapse
Affiliation(s)
- Amith R Devireddy
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center University of Missouri, 1201 Rollins St, Columbia, MO, 65201, USA
| | - Sara I Zandalinas
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center University of Missouri, 1201 Rollins St, Columbia, MO, 65201, USA
| | - Yosef Fichman
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center University of Missouri, 1201 Rollins St, Columbia, MO, 65201, USA
| | - Ron Mittler
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center University of Missouri, 1201 Rollins St, Columbia, MO, 65201, USA
- Department of Surgery, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center University of Missouri, 1201 Rollins St, Columbia, MO, 65211, USA
| |
Collapse
|
11
|
Gruszka D, Pociecha E, Jurczyk B, Dziurka M, Oliwa J, Sadura I, Janeczko A. Insights into Metabolic Reactions of Semi-Dwarf, Barley Brassinosteroid Mutants to Drought. Int J Mol Sci 2020; 21:ijms21145096. [PMID: 32707671 PMCID: PMC7404083 DOI: 10.3390/ijms21145096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 01/24/2023] Open
Abstract
The roles of endogenous brassinosteroids (BRs) in the modulation of reaction to drought and genetic regulation of this process are still obscure. In this study, a multidirectional analysis was performed on semi-dwarf barley (Hordeum vulgare) Near-Isogenic Lines (NILs) and the reference cultivar “Bowman” to get insights into various aspects of metabolic reaction to drought. The NILs are defective in BR biosynthesis or signaling and displayed an enhanced tolerance to drought. The BR metabolism perturbations affected the glucose and fructose accumulation under the control and stress conditions. The BR metabolism abnormalities negatively affected the sucrose accumulation as well. However, during drought, the BR-deficient NILs accumulated higher contents of sucrose than the “Bowman” cultivar. Under the control conditions, accumulation of transcripts encoding antioxidant enzymes ascorbate peroxidase (HvAPX) and superoxide dismutase (HvSOD) was BR-dependent. However, during drought, the accumulation of HvAPX transcript was BR-dependent, whereas accumulations of transcripts encoding catalase (HvCAT) and HvSOD were not affected by the BR metabolism perturbations. The obtained results reveal a significant role of BRs in regulation of the HvAPX and HvCAT enzymatic activities under control conditions and the HvAPX and HvSOD activities during physiological reactions to drought.
Collapse
Affiliation(s)
- Damian Gruszka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland
- Correspondence:
| | - Ewa Pociecha
- Department of Plant Breeding, Physiology and Seed Science, University of Agriculture in Krakow, 30-239 Krakow, Poland; (E.P.); (B.J.)
| | - Barbara Jurczyk
- Department of Plant Breeding, Physiology and Seed Science, University of Agriculture in Krakow, 30-239 Krakow, Poland; (E.P.); (B.J.)
| | - Michał Dziurka
- The Franciszek Gorski Institute of Plant Physiology, Polish Academy of Sciences, 30-239 Krakow, Poland; (M.D.); (I.S.); (A.J.)
| | - Jakub Oliwa
- Department of Chemistry and Biochemistry, Institute of Basic Sciences, University of Physical Education, 31-571 Krakow, Poland;
| | - Iwona Sadura
- The Franciszek Gorski Institute of Plant Physiology, Polish Academy of Sciences, 30-239 Krakow, Poland; (M.D.); (I.S.); (A.J.)
| | - Anna Janeczko
- The Franciszek Gorski Institute of Plant Physiology, Polish Academy of Sciences, 30-239 Krakow, Poland; (M.D.); (I.S.); (A.J.)
| |
Collapse
|
12
|
Trends in Seaweed Extract Based Biostimulants: Manufacturing Process and Beneficial Effect on Soil-Plant Systems. PLANTS 2020; 9:plants9030359. [PMID: 32178418 PMCID: PMC7154814 DOI: 10.3390/plants9030359] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/31/2022]
Abstract
The time when plant biostimulants were considered as "snake oil" is erstwhile and the skepticism regarding their agricultural benefits has significantly faded, as solid scientific evidences of their positive effects are continuously provided. Currently plant biostimulants are considered as a full-fledged class of agri-inputs and highly attractive business opportunity for major actors of the agroindustry. As the dominant category of the biostimulant segment, seaweed extracts were key in this growing renown. They are widely known as substances with the function of mitigating abiotic stress and enhancing plant productivity. Seaweed extracts are derived from the extraction of several macroalgae species, which depending on the extraction methodology lead to the production of complex mixtures of biologically active compounds. Consequently, plant responses are often inconsistent, and precisely deciphering the involved mechanism of action remains highly intricate. Recently, scientists all over the world have been interested to exploring hidden mechanism of action of these resources through the employment of multidisciplinary and high-throughput approaches, combining plant physiology, molecular biology, agronomy, and multi-omics techniques. The aim of this review is to provide fresh insights into the concept of seaweed extract (SE), through addressing the subject in newfangled standpoints based on current scientific knowledge, and taking into consideration both academic and industrial claims in concomitance with market's requirements. The crucial extraction process as well as the effect of such products on nutrient uptake and their role in abiotic and biotic stress tolerance are scrutinized with emphasizing the involved mechanisms at the metabolic and genetic level. Additionally, some often overlooked and indirect effects of seaweed extracts, such as their influence on plant microbiome are discussed. Finally, the plausible impact of the recently approved plant biostimulant regulation on seaweed extract industry is addressed.
Collapse
|
13
|
Exploring the Brassinosteroid Signaling in Monocots Reveals Novel Components of the Pathway and Implications for Plant Breeding. Int J Mol Sci 2020; 21:ijms21010354. [PMID: 31948086 PMCID: PMC6982108 DOI: 10.3390/ijms21010354] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/28/2019] [Accepted: 01/03/2020] [Indexed: 01/30/2023] Open
Abstract
Brassinosteroids (BRs) are a class of steroidal phytohormones which are key regulators of diverse processes during whole life cycle of plants. Studies conducted in the dicot model species Arabidopsis thaliana have allowed identification and characterization of various components of the BR signaling. It is currently known that the BR signaling is interconnected at various stages with other phytohormonal and stress signaling pathways. It enables a rapid and efficient adaptation of plant metabolism to constantly changing environmental conditions. However, our knowledge about mechanism of the BR signaling in the monocot species is rather limited. Thus, identification of new components of the BR signaling in monocots, including cereals, is an ongoing process and has already led to identification of some monocot-specific components of the BR signaling. It is of great importance as disturbances in the BR signaling influence architecture of mutant plants, and as a consequence, the reaction to environmental conditions. Currently, the modulation of the BR signaling is considered as a target to enhance yield and stress tolerance in cereals, which is of particular importance in the face of global climate change.
Collapse
|
14
|
Zhang C, Shi S, Liu Z, Yang F, Yin G. Drought tolerance in alfalfa (Medicago sativa L.) varieties is associated with enhanced antioxidative protection and declined lipid peroxidation. JOURNAL OF PLANT PHYSIOLOGY 2019; 232:226-240. [PMID: 30537610 DOI: 10.1016/j.jplph.2018.10.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/25/2018] [Accepted: 10/25/2018] [Indexed: 05/23/2023]
Abstract
Drought stress is considered the most adverse factor restricting plant survival, growth, and productivity. The identification of the key adaptive mechanisms to drought stress is essential to enhance the drought resistance of plants. In this study, differential responses of three alfalfa varieties to drought, including Medicago sativa L. cv. Longzhong (drought-tolerant), Longdong (moderate drought-tolerant), and Gannong No. 3 (drought-sensitive), were comparatively studied at morphological, physio-biochemical, and transcriptional levels after a 12-day period of drought stress simulated by -1.2 MPa polyethylene glycol (PEG-6000). The results showed that prolonged drought stress dramatically decreased growth and photosynthetic capacity of three alfalfa varieties while it increased the accumulation of malondialdehyde (MDA), reactive oxygen species (ROS), osmolytes and antioxidants including reduced ascorbate and glutathione, ascorbate peroxidase (APX) activities, and gene expression of antioxidative enzymes (MsCu/Zn-SOD, MsFeSOD, MtPOD, MsGPX, MsAPX, MsMDAR, MtDHAR, and MsGR). Nine days of treatment and some key traits, including the maximum quantum yield of photosystem II (Fv/Fm), the levels of MDA, O2-, and H2O2, the redox states of ascorbate and glutathione, APX activity, and the transcript levels of MsFeSOD, MsGR, and MsMDAR, might contribute to differentiating the drought stress tolerance in alfalfa. Overall, drought-tolerant Longzhong showed the highest water retention, photosynthetic performance, and osmoregulation capacity, the lowest lipid peroxidation, and the highest antioxidant enzyme activities and gene expression, which were mainly involved in the ascorbate-glutathione cycle to maintain the balance between the generation and scavenging of intracellular ROS. These findings highlight that enhanced antioxidative protection and declined lipid peroxidation play an important role in alfalfa tolerance against drought.
Collapse
Affiliation(s)
- Cuimei Zhang
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Centers for Grazing Land Ecosystem Sustainability, Gansu Agricultural University, Lanzhou, 730070, China
| | - Shangli Shi
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Centers for Grazing Land Ecosystem Sustainability, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Zhen Liu
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Centers for Grazing Land Ecosystem Sustainability, Gansu Agricultural University, Lanzhou, 730070, China
| | - Fan Yang
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Centers for Grazing Land Ecosystem Sustainability, Gansu Agricultural University, Lanzhou, 730070, China
| | - Guoli Yin
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Centers for Grazing Land Ecosystem Sustainability, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
15
|
Gruszka D. Crosstalk of the Brassinosteroid Signalosome with Phytohormonal and Stress Signaling Components Maintains a Balance between the Processes of Growth and Stress Tolerance. Int J Mol Sci 2018; 19:ijms19092675. [PMID: 30205610 PMCID: PMC6163518 DOI: 10.3390/ijms19092675] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/22/2018] [Accepted: 09/07/2018] [Indexed: 12/25/2022] Open
Abstract
Brassinosteroids (BRs) are a class of phytohormones, which regulate various processes during plant life cycle. Intensive studies conducted with genetic, physiological and molecular approaches allowed identification of various components participating in the BR signaling—from the ligand perception, through cytoplasmic signal transduction, up to the BR-dependent gene expression, which is regulated by transcription factors and chromatin modifying enzymes. The identification of new components of the BR signaling is an ongoing process, however an emerging view of the BR signalosome indicates that this process is interconnected at various stages with other metabolic pathways. The signaling crosstalk is mediated by the BR signaling proteins, which function as components of the transmembrane BR receptor, by a cytoplasmic kinase playing a role of the major negative regulator of the BR signaling, and by the transcription factors, which regulate the BR-dependent gene expression and form a complicated regulatory system. This molecular network of interdependencies allows a balance in homeostasis of various phytohormones to be maintained. Moreover, the components of the BR signalosome interact with factors regulating plant reactions to environmental cues and stress conditions. This intricate network of interactions enables a rapid adaptation of plant metabolism to constantly changing environmental conditions.
Collapse
Affiliation(s)
- Damian Gruszka
- Department of Genetics, Faculty of Biology and Environment Protection, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland.
| |
Collapse
|