1
|
Matías J, Rodríguez MJ, Carrillo-Vico A, Casals J, Fondevilla S, Haros CM, Pedroche J, Aparicio N, Fernández-García N, Aguiló-Aguayo I, Soler-Rivas C, Caballero PA, Morte A, Rico D, Reguera M. From 'Farm to Fork': Exploring the Potential of Nutrient-Rich and Stress-Resilient Emergent Crops for Sustainable and Healthy Food in the Mediterranean Region in the Face of Climate Change Challenges. PLANTS (BASEL, SWITZERLAND) 2024; 13:1914. [PMID: 39065441 PMCID: PMC11281201 DOI: 10.3390/plants13141914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/08/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
In the dynamic landscape of agriculture and food science, incorporating emergent crops appears as a pioneering solution for diversifying agriculture, unlocking possibilities for sustainable cultivation and nutritional bolstering food security, and creating economic prospects amid evolving environmental and market conditions with positive impacts on human health. This review explores the potential of utilizing emergent crops in Mediterranean environments under current climate scenarios, emphasizing the manifold benefits of agricultural and food system diversification and assessing the impact of environmental factors on their quality and consumer health. Through a deep exploration of the resilience, nutritional value, and health impacts of neglected and underutilized species (NUS) such as quinoa, amaranth, chia, moringa, buckwheat, millet, teff, hemp, or desert truffles, their capacity to thrive in the changing Mediterranean climate is highlighted, offering novel opportunities for agriculture and functional food development. By analysing how promoting agricultural diversification can enhance food system adaptability to evolving environmental conditions, fostering sustainability and resilience, we discuss recent findings that underscore the main benefits and limitations of these crops from agricultural, food science, and health perspectives, all crucial for responsible and sustainable adoption. Thus, by using a sustainable and holistic approach, this revision analyses how the integration of NUS crops into Mediterranean agrifood systems can enhance agriculture resilience and food quality addressing environmental, nutritional, biomedical, economic, and cultural dimensions, thereby mitigating the risks associated with monoculture practices and bolstering local economies and livelihoods under new climate scenarios.
Collapse
Affiliation(s)
- Javier Matías
- Agrarian Research Institute “La Orden-Valdesequera” of Extremadura (CICYTEX), 06187 Guadajira (Badajoz), Spain;
| | - María José Rodríguez
- Technological Institute of Food and Agriculture of Extremadura (INTAEX-CICYTEX), Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain;
| | - Antonio Carrillo-Vico
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain;
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain
| | - Joan Casals
- Fundació Miquel Agustí/HorPTA, Department of Agri-Food Engineering and Biotechnology, Universitat Politècnica de Catalunya (UPC)-BarcelonaTech, 08860 Castelldefels, Spain;
| | - Sara Fondevilla
- Institute for Sustainable Agriculture, Consejo Superior de Investigaciones Científicas, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain;
| | - Claudia Mónika Haros
- Cereal Group, Institute of Agrochemistry and Food Technology (IATA-CSIC), Av. Agustín Escardino 7, Parque Científico, 46980 Valencia, Spain;
| | - Justo Pedroche
- Group of Plant Proteins, Instituto de la Grasa, CSIC. Ctra. de Utrera Km. 1, 41013 Seville, Spain;
| | - Nieves Aparicio
- Agro-Technological Institute of Castilla y León (ITACyL), Ctra. Burgos Km. 119, 47071 Valladolid, Spain;
| | - Nieves Fernández-García
- Department of Abiotic Stress and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CSIC), Campus Universitario de Espinardo, 30100 Murcia, Spain;
| | - Ingrid Aguiló-Aguayo
- Postharvest Programme, Institute of Agrifood Research and Technology (IRTA), Parc Agrobiotech Lleida, Parc de Gardeny, Edifici Fruitcentre, 25003 Lleida, Spain;
| | - Cristina Soler-Rivas
- Departamento de Producción y Caracterización de Nuevos Alimentos, Institute of Food Science Research-CIAL (UAM+CSIC), Campus de Cantoblanco, Universidad Autónoma de Madrid, C/Nicolas Cabrera 9, 28049 Madrid, Spain;
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Pedro A. Caballero
- Food Technology, Department of Agriculture and Forestry Engineering, Universidad de Valladolid, 34004 Palencia, Spain;
| | - Asunción Morte
- Departamento Biología Vegetal, Facultad de Biología, Campus Universitario de Espinardo, Universidad de Murcia, 30100 Murcia, Spain;
| | - Daniel Rico
- Department of Medicine, Dermatology and Toxicology, Universidad de Valladolid, Av. Ramón y Cajal, 7, 47005 Valladolid, Spain;
| | - María Reguera
- Departamento de Biología, Campus de Cantoblanco, Universidad Autónoma de Madrid, C/Darwin 2, 28049 Madrid, Spain
| |
Collapse
|
2
|
Alemu MD, Barak V, Shenhar I, Batat D, Saranga Y. Dynamic physiological response of tef to contrasting water availabilities. FRONTIERS IN PLANT SCIENCE 2024; 15:1406173. [PMID: 39045591 PMCID: PMC11264344 DOI: 10.3389/fpls.2024.1406173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/13/2024] [Indexed: 07/25/2024]
Abstract
Global climate change is leading to increased frequency of extreme climatic events, higher temperatures and water scarcity. Tef (Eragrostis tef (Zucc.) Trotter) is an underutilized C4 cereal crop that harbors a rich gene pool for stress resilience and nutritional quality. Despite gaining increasing attention as an "opportunity" crop, physiological responses and adaptive mechanisms of tef to drought stress have not been sufficiently investigated. This study was aimed to characterize the dynamic physiological responses of tef to drought. Six selected tef genotypes were subjected to high-throughput whole-plant functional phenotyping to assess multiple physiological responses to contrasting water regimes. Drought stress led to a substantial reduction in total, shoot and root dry weights, by 59%, 62% and 44%, respectively (averaged across genotypes), and an increase of 50% in the root-to-shoot ratio, relative to control treatment. Drought treatment induced also significant reductions in stomatal conductance, transpiration, osmotic potential and water-use efficiency, increased chlorophyll content and delayed heading. Tef genotypes exhibited diverse water-use strategies under drought: water-conserving (isohydric) or non-conserving (anisohydric), or an intermediate strategy, as well as variation in drought-recovery rate. Genotype RTC-290b exhibited outstanding multifaceted drought-adaptive performance, including high water-use efficiency coupled with high productivity under drought and control treatments, high chlorophyll and transpiration under drought, and faster drought recovery rate. This study provides a first insight into the dynamic functional physiological responses of tef to water deficiency and the variation between genotypes in drought-adaptive strategies. These results may serve as a baseline for further studies and for the development of drought-resistant tef varieties.
Collapse
Affiliation(s)
- Muluken Demelie Alemu
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- Crop Research, Ethiopian Institute of Agricultural Research (EIAR), Addis Ababa, Ethiopia
| | - Vered Barak
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Itamar Shenhar
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Dor Batat
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yehoshua Saranga
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
3
|
Ramírez Gonzales LY, Cannarozzi G, Jäggi L, Assefa K, Chanyalew S, Dell'Acqua M, Tadele Z. The role of omics in improving the orphan crop tef. Trends Genet 2024; 40:449-461. [PMID: 38599921 DOI: 10.1016/j.tig.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
Tef or teff [Eragrostis tef (Zucc.) Trotter] is a cereal crop indigenous to the Horn of Africa, where it is a staple food for a large population. The popularity of tef arises from its resilience to environmental stresses and its nutritional value. For many years, tef has been considered an orphan crop, but recent research initiatives from across the globe are helping to unravel its undisclosed potential. Advanced omics tools and techniques have been directed toward the exploration of tef's diversity with the aim of increasing its productivity. In this review, we report on the most recent advances in tef omics that brought the crop into the spotlight of international research.
Collapse
Affiliation(s)
| | - Gina Cannarozzi
- University of Bern, Institute of Plant Sciences, Altenbergrain 21, 3013 Bern, Switzerland
| | - Lea Jäggi
- University of Bern, Institute of Plant Sciences, Altenbergrain 21, 3013 Bern, Switzerland
| | - Kebebew Assefa
- Ethiopian Institute of Agricultural Research, Debre Zeit Agricultural Research Center, PO Box 32, Debre Zeit, Ethiopia
| | - Solomon Chanyalew
- Ethiopian Institute of Agricultural Research, Debre Zeit Agricultural Research Center, PO Box 32, Debre Zeit, Ethiopia
| | | | - Zerihun Tadele
- University of Bern, Institute of Plant Sciences, Altenbergrain 21, 3013 Bern, Switzerland.
| |
Collapse
|
4
|
Tekle MG, Alemayehu G, Bitew Y. Yield, lodging, and water use efficiency of Tef [Eragrostis tef (zucc) Trotter] in response to carbonized rice husk application under variable moisture condition. PLoS One 2024; 19:e0298416. [PMID: 38452036 PMCID: PMC10919715 DOI: 10.1371/journal.pone.0298416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 01/24/2024] [Indexed: 03/09/2024] Open
Abstract
Terminal drought and lodging are among the major yield-limiting factors for tef cultivation in the highly weathered soils of the Ethiopian highlands. Therefore, a study was conducted to assess the yield and lodging responses of tef to varying moisture depletion levels (MDL) and the application of carbonized rice husk (CRH). A two-year 4×4 factorial experiment with 20, 35, 55, and 75% MDL and 0, 291, 582, and 873 kg ha-1 of CRH was laid out in a split-plot design, with each treatment replicated four times. The pooled mean ANOVA showed leaf area index (LAI) and lodging index (LI) were not significantly influenced by the main and interaction effects of MDL and CRH (p > 0.05); however, individual year ANOVA showed that both LI and LAI were influenced by the interaction of MDL and CRH (p<0.05) in 2021 and 2022, respectively. The lowest LI (19.7%) was obtained from the application of 873 kg CRH ha-1, followed by 20.6% from 582 kg CRH ha-1 in 2022. A 20.7% LI reduction was recorded in 2022 compared to 2021. Tef plant height and number of tillers per plant were significantly affected by MDL at p<0.05 and p<0.01, respectively, but not by CRH and its interaction with MDL. The effect of MDL was significant on tef HI (p<0.01) but not on traits including grain yield, straw yield, and water use efficiency. In conclusion, the pooled mean analysis result showed that, though there was no significant difference in yield, tef irrigated at 55% MDL provided a maximum HI of 33.8%, which was 6.21% more than the control, and increased the level of lodging resistance with a LI of 31.9%, which was next to 75% MDL with 582 kg ha-1 CRH. The authors suggested that the research should further be verified across locations for wide application.
Collapse
Affiliation(s)
- Mekonnen Gebru Tekle
- College of Agriculture and Natural Resource Management, Wolkite University, Horticulture, Wolkite, Gurage, Ethiopia
- Department of Plant Sciences, College of Agriculture and Environmental Science, Bahir Dar University, Bahir Dar, Ethiopia
| | - Getachew Alemayehu
- Department of Plant Sciences, College of Agriculture and Environmental Science, Bahir Dar University, Bahir Dar, Ethiopia
| | - Yayeh Bitew
- Department of Plant Sciences, College of Agriculture and Environmental Science, Bahir Dar University, Bahir Dar, Ethiopia
| |
Collapse
|
5
|
Haddadi BS, Fang R, Girija A, Kattupalli D, Widdowson E, Beckmann M, Yadav R, Mur LAJ. Metabolomics targets tissue-specific responses in alleviating the negative effects of salinity in tef (Eragrostis tef) during germination. PLANTA 2023; 258:67. [PMID: 37597049 PMCID: PMC10439848 DOI: 10.1007/s00425-023-04224-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 08/06/2023] [Indexed: 08/21/2023]
Abstract
MAIN CONCLUSION Salinity induced metabolite responses resulted in differential accumulation of flavonoids and antioxidant metabolites in shoots and roots suggesting improved antioxidant capacity in providing salt-adaptive phenotype of tef seedling. Tef [(Eragrostis tef) (Zucc.) Trotter] is an important 'cash crop' of Ethiopia grown mainly for human food, and development of elite tef cultivars with better performance is vital to Ethiopian farmers and breeders. Soil salinity is one of the key constraints that affects tef yield in the Ethiopian lowlands and Rift valley where cultivation of tef is limited. Being a minor crop, the responses of tef towards salinity is unknown. Salinity involves physiological and metabolite reprogramming that can have major impact on germination and seedling establishment. Here we evaluate the in vitro effect of NaCl on tef germination and associate this with metabolomic approaches to suggest salt tolerance mechanisms. In this study, 19 tef varieties were screened for NaCl tolerance and were investigated using untargeted metabolomics. Screened tef varieties showed differential germination rates with NaCl treatment varying from < 20 to 100%. Viable seedlings exposed to NaCl exhibited purple-red pigment accumulation in the roots except for Beten and Tullu nasy varieties. Metabolite comparisons between shoots and roots showed significant differences and, in particular, roots of salt tolerant tef varieties accumulated flavonoid derivatives as well as sugars and cell wall associated metabolites. These metabolic changes were correlated with patterns of antioxidant capacities and total flavonoid content in shoots and roots and suggested a mitigating response by tef to salinity. Our study highlights the role of flavonoid accumulation following salt stress on tef seedlings and further these findings could be used as targets for selective tef breeding.
Collapse
Affiliation(s)
| | - Rui Fang
- Department of Life Sciences (DLS), Aberystwyth University, Wales, SY23 3DA, UK
| | - Aiswarya Girija
- Department of Life Sciences (DLS), Aberystwyth University, Wales, SY23 3DA, UK
- Institute of Biological Rural Environmental Sciences (IBERS), Aberystwyth University, Wales, SY23 3EE, UK
| | - Divya Kattupalli
- Department of Life Sciences (DLS), Aberystwyth University, Wales, SY23 3DA, UK
| | - Emma Widdowson
- Department of Life Sciences (DLS), Aberystwyth University, Wales, SY23 3DA, UK
| | - Manfred Beckmann
- Department of Life Sciences (DLS), Aberystwyth University, Wales, SY23 3DA, UK
| | - Rattan Yadav
- Institute of Biological Rural Environmental Sciences (IBERS), Aberystwyth University, Wales, SY23 3EE, UK
| | - Luis A J Mur
- Department of Life Sciences (DLS), Aberystwyth University, Wales, SY23 3DA, UK.
| |
Collapse
|
6
|
Großkinsky DK, Faure JD, Gibon Y, Haslam RP, Usadel B, Zanetti F, Jonak C. The potential of integrative phenomics to harness underutilized crops for improving stress resilience. FRONTIERS IN PLANT SCIENCE 2023; 14:1216337. [PMID: 37409292 PMCID: PMC10318926 DOI: 10.3389/fpls.2023.1216337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/08/2023] [Indexed: 07/07/2023]
Affiliation(s)
- Dominik K. Großkinsky
- AIT Austrian Institute of Technology, Center for Health and Bioresources, Bioresources Unit, Tulln a. d. Donau, Austria
| | - Jean-Denis Faure
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin, Versailles, France
| | - Yves Gibon
- INRAE, Univ. Bordeaux, UMR BFP, Villenave d’Ornon, France
- Bordeaux Metabolome, INRAE, Univ. Bordeaux, Villenave d’Ornon, France
| | | | - Björn Usadel
- IBG-4 Bioinformatics, CEPLAS, Forschungszentrum, Jülich, Germany
- Biological Data Science, Heinrich Heine University, Universitätsstrasse 1, Düsseldorf, Germany
| | - Federica Zanetti
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, Bologna, Italy
| | - Claudia Jonak
- AIT Austrian Institute of Technology, Center for Health and Bioresources, Bioresources Unit, Tulln a. d. Donau, Austria
| |
Collapse
|
7
|
Večeřová K, Oravec M, Puranik S, Findurová H, Veselá B, Opoku E, Ofori-Amanfo KK, Klem K, Urban O, Sahu PP. Single and interactive effects of variables associated with climate change on wheat metabolome. FRONTIERS IN PLANT SCIENCE 2022; 13:1002561. [PMID: 36299781 PMCID: PMC9589161 DOI: 10.3389/fpls.2022.1002561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/08/2022] [Indexed: 05/27/2023]
Abstract
One of the key challenges linked with future food and nutritional security is to evaluate the interactive effect of climate variables on plants' growth, fitness, and yield parameters. These interactions may lead to unique shifts in the morphological, physiological, gene expression, or metabolite accumulation patterns, leading to an adaptation response that is specific to future climate scenarios. To understand such changes, we exposed spring wheat to 7 regimes (3 single and 4 combined climate treatments) composed of elevated temperature, the enhanced concentration of CO2, and progressive drought stress corresponding to the predicted climate of the year 2100. The physiological and metabolic responses were then compared with the current climate represented by the year 2020. We found that the elevated CO2 (eC) mitigated some of the effects of elevated temperature (eT) on physiological performance and metabolism. The metabolite profiling of leaves revealed 44 key metabolites, including saccharides, amino acids, and phenolics, accumulating contrastingly under individual regimes. These metabolites belong to the central metabolic pathways that are essential for cellular energy, production of biosynthetic pathways precursors, and oxidative balance. The interaction of eC alleviated the negative effect of eT possibly by maintaining the rate of carbon fixation and accumulation of key metabolites and intermediates linked with the Krebs cycle and synthesis of phenolics. Our study for the first time revealed the influence of a specific climate factor on the accumulation of metabolic compounds in wheat. The current work could assist in the understanding and development of climate resilient wheat by utilizing the identified metabolites as breeding targets for food and nutritional security.
Collapse
Affiliation(s)
- Kristýna Večeřová
- Laboratory of Ecological Plant Physiology, Global Change Research Institute of the Czech Academy of Sciences, Brno, Czechia
| | - Michal Oravec
- Laboratory of Ecological Plant Physiology, Global Change Research Institute of the Czech Academy of Sciences, Brno, Czechia
| | - Swati Puranik
- Laboratory of Ecological Plant Physiology, Global Change Research Institute of the Czech Academy of Sciences, Brno, Czechia
| | - Hana Findurová
- Laboratory of Ecological Plant Physiology, Global Change Research Institute of the Czech Academy of Sciences, Brno, Czechia
- Department of Agrosystems and Bioclimatology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Barbora Veselá
- Laboratory of Ecological Plant Physiology, Global Change Research Institute of the Czech Academy of Sciences, Brno, Czechia
| | - Emmanuel Opoku
- Laboratory of Ecological Plant Physiology, Global Change Research Institute of the Czech Academy of Sciences, Brno, Czechia
- Department of Agrosystems and Bioclimatology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Kojo Kwakye Ofori-Amanfo
- Laboratory of Ecological Plant Physiology, Global Change Research Institute of the Czech Academy of Sciences, Brno, Czechia
- Department of Forest Ecology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czechia
| | - Karel Klem
- Laboratory of Ecological Plant Physiology, Global Change Research Institute of the Czech Academy of Sciences, Brno, Czechia
| | - Otmar Urban
- Laboratory of Ecological Plant Physiology, Global Change Research Institute of the Czech Academy of Sciences, Brno, Czechia
| | - Pranav Pankaj Sahu
- Laboratory of Ecological Plant Physiology, Global Change Research Institute of the Czech Academy of Sciences, Brno, Czechia
| |
Collapse
|
8
|
Singh AK, Gupta KJ, Singla-Pareek SL, Foyer CH, Pareek A. Raising crops for dry and saline lands: Challenges and the way forward. PHYSIOLOGIA PLANTARUM 2022; 174:e13730. [PMID: 35762125 DOI: 10.1111/ppl.13730] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Anil Kumar Singh
- ICAR-National Institute for Plant Biotechnology, LBS Centre, New Delhi, Delhi, India
| | | | - Sneh L Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, Delhi, India
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
- National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, Punjab, India
| |
Collapse
|