1
|
Reveglia P, Blanco M, Cobos MJ, Labuschagne M, Joy M, Rubiales D. Metabolic profiling of pea (Pisum sativum) cultivars in changing environments: Implications for nutritional quality in animal feed. Food Chem 2025; 462:140972. [PMID: 39208720 DOI: 10.1016/j.foodchem.2024.140972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Field pea seeds have long been recognized as valuable feed ingredients for animal diets, due to their high-quality protein and starch digestibility. However, the chemical composition of pea cultivars can vary across different growing locations, consequently impacting their nutrient profiles. This study employs untargeted metabolomics in conjunction with the quantification of fatty acids and amino acids to explore the influence of three different growing locations in Spain (namely Andalusia, Aragon and Asturias), on the nutritional characteristics of seeds of various pea cultivars. Significant interactions between cultivar and environment were observed, with 121 metabolites distinguishing pea profiles. Lipids, lipid-like molecules, phenylpropanoids, polyketides, carbohydrates, and amino acids were the most affected metabolites. Fatty acid profiles varied across locations, with higher C16:0, C18:0, and 18:1 n-9 concentration in Aragón, while C18:2 n-6 predominated in Asturias and C18:3 n-3 in Andalusia. Amino acid content was also location-dependent, with higher levels in Asturias. These findings underscore the impact of environmental factors on pea metabolite profiles and emphasize the importance of selecting pea cultivars based on specific locations and animal requirements. Enhanced collaboration between research and industry is crucial for optimizing pea cultivation for animal feed production.
Collapse
Affiliation(s)
| | - Mireia Blanco
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Instituto Agroalimentario de Aragón - IA2 (CITA-Universidad de Zaragoza), Zaragoza 50059, Spain
| | - Maria Josè Cobos
- Institute for Sustainable Agriculture, CSIC, Córdoba, 14004, Spain
| | - Maryke Labuschagne
- Department of Plant Sciences (Plant Breeding), University of the Free State, Bloemfontein, South Africa
| | - Margalida Joy
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Instituto Agroalimentario de Aragón - IA2 (CITA-Universidad de Zaragoza), Zaragoza 50059, Spain
| | - Diego Rubiales
- Institute for Sustainable Agriculture, CSIC, Córdoba, 14004, Spain.
| |
Collapse
|
2
|
Sonowal K, Gandass N, Kamble NU, Mehta K, Pandey AK, Salvi P. A seed-specific DNA-binding with One Finger transcription factor, RPBF, positively regulates galactinol synthase to maintain seed vigour in rice. PLANT & CELL PHYSIOLOGY 2024; 65:2066-2079. [PMID: 39492760 DOI: 10.1093/pcp/pcae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/12/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
Seed vigour and longevity are intricate yet indispensable physiological traits for agricultural crops, as they play a crucial role in facilitating the successful emergence of seedlings and exert a substantial influence on crop productivity. Transcriptional regulation plays an important role in seed development, maturation, and desiccation tolerance, which are important attributes for seed vigour and longevity. Here, we have investigated the regulatory role of the seed-specific DNA-binding with One Finger (DOF) transcription factor and the rice prolamin box binding factor (RPBF) in seed vigour. RPBF modulates the transcription of galactinol synthase (GolS) and improves seed vigour. The promoter region of GolS-encoding genes from different species was enriched with DOF-binding sites, and the expression levels of both RPBF; OsGolS were found to enhance during seed development. Furthermore, direct interaction of RPBF with the OsGolS promoter has been demonstrated through multiple approaches: yeast one-hybrid assays, in planta promoter-GUS assays, dual luciferase assay, and in silico molecular docking. To assess functionality, Agrobacterium-mediated genetic transformation of rice was performed to generate the RNAi lines with reduced RPBF expression. In these RNAi lines, a reduction in both galactinol and raffinose content was observed. Since galactinol and raffinose are known contributors to seed vigour, the T2-transgenic lines were assessed for vigour and viability. For this, RNAi seeds were subjected to accelerated ageing by exposing them to high relative humidity and temperature, followed by scoring the germination and viability potential. Tetrazolium and seed germination assay revealed that the RNAi seeds were more sensitive to ageing compared to their wild-type and vector control counterparts. Collectively, this is the first report demonstrating that the DOF transcription factor RPBF controls the seed vigour through transcriptional regulation of GolS.
Collapse
Affiliation(s)
- Kaberi Sonowal
- Department of Agriculture Biotechnology, National Agri-Food Biotechnology Institute, SAS Nagar 140306, India
- Regional Centre for Biotechnology, Faridabad 121001, India
| | - Nishu Gandass
- Department of Agriculture Biotechnology, National Agri-Food Biotechnology Institute, SAS Nagar 140306, India
| | - Nitin Uttam Kamble
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, Delhi 110067, India
| | - Kritika Mehta
- Department of Agriculture Biotechnology, National Agri-Food Biotechnology Institute, SAS Nagar 140306, India
- Regional Centre for Biotechnology, Faridabad 121001, India
| | - Ajay Kumar Pandey
- Department of Agriculture Biotechnology, National Agri-Food Biotechnology Institute, SAS Nagar 140306, India
| | - Prafull Salvi
- Department of Agriculture Biotechnology, National Agri-Food Biotechnology Institute, SAS Nagar 140306, India
| |
Collapse
|
3
|
Hu Y, Wang J, Luo W, Tang J, Tuo Y, Liao N, Zhuang D, Yang K, Lin J, Zhang Y, Wu L. Study on metabolic variation reveals metabolites important for flavor development and antioxidant property of Hainan Dayezhong black tea. Food Res Int 2024; 196:115112. [PMID: 39614518 DOI: 10.1016/j.foodres.2024.115112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/22/2024] [Accepted: 09/19/2024] [Indexed: 12/01/2024]
Abstract
To illustrate the development of chemical properties and characteristic flavor of Hainan Dayezhong black tea, the tea shoots under various manufacturing process were sampled and applied to targeted/widely-targeted metabolomic, transcriptomic, chemometric, and electronic sensory determinations. Totally, 2419 metabolites were identified in this study, of which 20 metabolites were selected as the biomarkers, mainly including amino acids, lipids, and pyrimidine derivatives. The metabolomic-transcriptomic integrated analysis indicated carbon fixation, flavonoid biosynthesis and amino acid metabolism were the major metabolic pathways over manufacturing process of Hainan Dayezhong black tea. The targeted metabolomic detection indicated the accumulations of free amino acids and reduction of total catechins, flavonol glycosides collectively contributed to the development of black tea taste; additionally, the antioxidative properties were decreasing along the production process. These results suggest that the tradeoff between bioactivity components and antioxidative capacity contribute to the characteristic flavor of Hainan Dayezhong black tea.
Collapse
Affiliation(s)
- Yunfei Hu
- Anxi College of Tea Science (College of Digital Economy), Fujian Agriculture and Forestry University, 788 East Second Ring Road, Anxi 362300, PR China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, PR China
| | - Jialin Wang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, PR China
| | - Wenyuan Luo
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, PR China
| | - Jun Tang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, PR China
| | - Yanming Tuo
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, PR China
| | - Ningkai Liao
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, PR China
| | - Dawen Zhuang
- Hainan Zhenwuxiang Tea Industry Co., Ltd., 1 Shuimanxiang Road, Wuzhishan 572200, PR China
| | - Kehang Yang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, PR China
| | - Jinke Lin
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, PR China
| | - Yue Zhang
- Anxi College of Tea Science (College of Digital Economy), Fujian Agriculture and Forestry University, 788 East Second Ring Road, Anxi 362300, PR China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, PR China
| | - Liangyu Wu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, PR China.
| |
Collapse
|
4
|
Chen Y, Miller AJ, Qiu B, Huang Y, Zhang K, Fan G, Liu X. The role of sugar transporters in the battle for carbon between plants and pathogens. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2844-2858. [PMID: 38879813 PMCID: PMC11536462 DOI: 10.1111/pbi.14408] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 05/03/2024] [Accepted: 05/27/2024] [Indexed: 11/05/2024]
Abstract
In photosynthetic cells, plants convert carbon dioxide to sugars that can be moved between cellular compartments by transporters before being subsequently metabolized to support plant growth and development. Most pathogens cannot synthesize sugars directly but have evolved mechanisms to obtain plant-derived sugars as C resource for successful infection and colonization. The availability of sugars to pathogens can determine resistance or susceptibility. Here, we summarize current progress on the roles of sugar transporters in plant-pathogen interactions. We highlight how transporters are manipulated antagonistically by both host and pathogens in competing for sugars. We examine the potential application of this target in resistance breeding and discuss opportunities and challenges for the future.
Collapse
Affiliation(s)
- Yi Chen
- Biochemistry & Metabolism DepartmentJohn Innes CentreNorwichUK
| | | | - Bowen Qiu
- Jiangxi Provincial Key Laboratory of Ex Situ Plant Conservation and Utilization Lushan Botanical GardenChinese Academy of ScienceJiujiangJiangxiChina
| | - Yao Huang
- School of Life ScienceNanChang UniversityNanchangJiangxiChina
| | - Kai Zhang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of OceanographyMinistry of Natural ResourcesXiamenChina
| | - Gaili Fan
- Xiamen Greening Administration CentreXiamenChina
| | - Xiaokun Liu
- Jiangxi Provincial Key Laboratory of Ex Situ Plant Conservation and Utilization Lushan Botanical GardenChinese Academy of ScienceJiujiangJiangxiChina
| |
Collapse
|
5
|
Ma G, Zuo Z, Xie L, Han J. Genome-wide identification and characterization of the sucrose invertase gene family in Hemerocallis citrina. PeerJ 2024; 12:e17999. [PMID: 39221283 PMCID: PMC11366234 DOI: 10.7717/peerj.17999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Background Sucrose invertase is an important catalytic enzyme that is widely distributed in plants and can irreversibly hydrolyze sucrose into fructose and glucose. Daylily is an important perennial flower worldwide and a traditional vegetable in East Asia. Previous studies have suggested that sucrose invertase is involved in the aging of daylily flowers. However, knowledge about the number, physicochemical properties, and expression patterns of daylily sucrose invertases is still lacking. Identifying the daylily sucrose invertase family genes in the genome is highly important for understanding phylogenetic evolution and determining the genetic function of sucrose invertase. Methods To obtain basic knowledge about the number, classification, sequence composition, and physicochemical properties of sucrose invertases in daylily, bioinformatics software was used to analyze the genome of Hemerocallis citrina (H. citrina), and the basic properties of sucrose invertase genes and proteins were obtained. Then, combined with transcriptome data from flower organs at different developmental stages, the expression patterns of each gene were clarified. Finally, the reliability of the transcriptome data was verified by quantitative real-time polymerase chain reaction (PCR). Results Through software analysis, 35 sucrose invertases were identified from the H. citrina genome and named HcINV1-HcINV35; these enzymes belong to three subfamilies: cell wall invertases, vacuolar invertases, and chloroplast invertases. The amino acid composition, motif types, promoter composition, gene structure, protein physicochemical properties, gene chromosomal localization, and evolutionary adaptability of daylily invertases were determined; these results provided a comprehensive understanding of daylily invertases. The transcriptome expression profile combined with fluorescence quantitative reverse transcription-polymerase chain reaction (RT‒PCR) analysis suggested that almost all daylily invertase genes were expressed in flower organs, but even genes belonging to the same subfamily did not exhibit the same expression pattern at different developmental stages, suggesting that there may be redundancy or dissimilation in the function of daylily sucrose invertases.
Collapse
Affiliation(s)
- Guangying Ma
- Zhejiang Institute of Landscape Plants and Flowers, Hangzhou, Zhejiang, China
| | - Ziwei Zuo
- Zhejiang Institute of Landscape Plants and Flowers, Hangzhou, Zhejiang, China
| | - Lupeng Xie
- Zhejiang Institute of Landscape Plants and Flowers, Hangzhou, Zhejiang, China
| | - Jiao Han
- Zhejiang Institute of Landscape Plants and Flowers, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Li J, He C, Liu S, Guo Y, Zhang Y, Zhang L, Zhou X, Xu D, Luo X, Liu H, Yang X, Wang Y, Shi J, Yang B, Wang J, Wang P, Deng X, Sun C. Research progress and application strategies of sugar transport mechanisms in rice. FRONTIERS IN PLANT SCIENCE 2024; 15:1454615. [PMID: 39233915 PMCID: PMC11371564 DOI: 10.3389/fpls.2024.1454615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024]
Abstract
In plants, carbohydrates are central products of photosynthesis. Rice is a staple that contributes to the daily calorie intake for over half of the world's population. Hence, the primary objective of rice cultivation is to maximize carbohydrate production. The "source-sink" theory is proposed as a valuable principle for guiding crop breeding. However, the "flow" research lag, especially in sugar transport, has hindered high-yield rice breeding progress. This review concentrates on the genetic and molecular foundations of sugar transport and its regulation, enhancing the fundamental understanding of sugar transport processes in plants. We illustrate that the apoplastic pathway is predominant over the symplastic pathway during phloem loading in rice. Sugar transport proteins, such as SUTs and SWEETs, are essential carriers for sugar transportation in the apoplastic pathway. Additionally, we have summarized a regulatory pathway for sugar transport genes in rice, highlighting the roles of transcription factors (OsDOF11, OsNF-YB1, OsNF-YC12, OsbZIP72, Nhd1), OsRRM (RNA Recognition Motif containing protein), and GFD1 (Grain Filling Duration 1). Recognizing that the research shortfall in this area stems from a lack of advanced research methods, we discuss cutting-edge analytical techniques such as Mass Spectrometry Imaging and single-cell RNA sequencing, which could provide profound insights into the dynamics of sugar distribution and the associated regulatory mechanisms. In summary, this comprehensive review serves as a valuable guide, directing researchers toward a deep understanding and future study of the intricate mechanisms governing sugar transport.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Changcai He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Shihang Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuting Guo
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuxiu Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Lanjing Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xu Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Dongyu Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xu Luo
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hongying Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaorong Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yang Wang
- College of Agricultural Science, Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Liangshan, China
| | - Jun Shi
- Mianyang Academy of Agricultural Sciences, Crop Characteristic Resources Creation and Utilization Key Laboratory of Sichuan Province, Mianyang, China
| | - Bin Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jing Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Pingrong Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaojian Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Changhui Sun
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
7
|
Zou W, Yu Q, Ma Y, Sun G, Feng X, Ge L. Pivotal role of heterotrimeric G protein in the crosstalk between sugar signaling and abiotic stress response in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108567. [PMID: 38554538 DOI: 10.1016/j.plaphy.2024.108567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/12/2024] [Accepted: 03/25/2024] [Indexed: 04/01/2024]
Abstract
Heterotrimeric G-proteins are key modulators of multiple signaling and developmental pathways in plants, in which they act as molecular switches to engage in transmitting various stimuli signals from outside into the cells. Substantial studies have identified G proteins as essential components of the organismal response to abiotic stress, leading to adaptation and survival in plants. Meanwhile, sugars are also well acknowledged key players in stress perception, signaling, and gene expression regulation. Connections between the two significant signaling pathways in stress response are of interest to a general audience in plant biology. In this article, advances unraveling a pivotal role of G proteins in the process of sugar signals outside the cells being translated into the operation of autophagy in cells during stress are reviewed. In addition, we have presented recent findings on G proteins regulating the response to drought, salt, alkali, cold, heat and other abiotic stresses. Perspectives on G-protein research are also provided in the end. Since G protein signaling regulates many agronomic traits, elucidation of detailed mechanism of the related pathways would provide useful insights for the breeding of abiotic stress resistant and high-yield crops.
Collapse
Affiliation(s)
- Wenjiao Zou
- Collaborative Innovation Center for Ecological Protection and High Quality Development of Characteristic Traditional Chinese Medicine in the Yellow River Basin, Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Qian Yu
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yu Ma
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Guoning Sun
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xue Feng
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lei Ge
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China; Academician Workstation of Agricultural High-tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, Shandong, 257300, China.
| |
Collapse
|
8
|
Zhu Y, Tian Y, Han S, Wang J, Liu Y, Yin J. Structure, evolution, and roles of SWEET proteins in growth and stress responses in plants. Int J Biol Macromol 2024; 263:130441. [PMID: 38417760 DOI: 10.1016/j.ijbiomac.2024.130441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/23/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
Abstract
Carbohydrates are exported by the SWEET family of transporters, which is a novel class of carriers that can transport sugars across cell membranes and facilitate sugar's long-distance transport from source to sink organs in plants. SWEETs play crucial roles in a wide range of physiologically important processes by regulating apoplastic and symplastic sugar concentrations. These processes include host-pathogen interactions, abiotic stress responses, and plant growth and development. In the present review, we (i) describe the structure and organization of SWEETs in the cell membrane, (ii) discuss the roles of SWEETs in sugar loading and unloading processes, (iii) identify the distinct functions of SWEETs in regulating plant growth and development including flower, fruit, and seed development, (iv) shed light on the importance of SWEETs in modulating abiotic stress resistance, and (v) describe the role of SWEET genes during plant-pathogen interaction. Finally, several perspectives regarding future investigations for improving the understanding of sugar-mediated plant defenses are proposed.
Collapse
Affiliation(s)
- Yongxing Zhu
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Agriculture, Yangtze University, Jingzhou 434000, Hubei, China; Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434000, Hubei, China.
| | - Ye Tian
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434000, Hubei, China
| | - Shuo Han
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Agriculture, Yangtze University, Jingzhou 434000, Hubei, China.
| | - Jie Wang
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434000, Hubei, China.
| | - Yiqing Liu
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434000, Hubei, China
| | - Junliang Yin
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Agriculture, Yangtze University, Jingzhou 434000, Hubei, China.
| |
Collapse
|
9
|
Wu Y, Di T, Wu Z, Peng J, Wang J, Zhang K, He M, Li N, Hao X, Fang W, Wang X, Wang L. CsLHY positively regulates cold tolerance by activating CsSWEET17 in tea plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108341. [PMID: 38266557 DOI: 10.1016/j.plaphy.2024.108341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/26/2024]
Abstract
Low temperature is one of the most important environmental factors limiting tea plants' geographic distribution and severely affects spring tea's yield and quality. Circadian components contribute to plant responses to low temperatures; however, comparatively little is known about these components in tea plants. In this study, we identified a core clock component the LATE ELONGATED HYPOCOTYL, CsLHY, which is mainly expressed in tea plants' mature leaves, flowers, and roots. Notably, CsLHY maintained its circadian rhythmicity of expression in summer, but was disrupted in winter and held a high expression level. Meanwhile, we found that CsLHY expression rhythm was not affected by different photoperiods but was quickly broken by cold, and the low temperature induced and kept CsLHY expression at a relatively high level. Yeast one-hybrid and dual-luciferase assays confirmed that CsLHY can bind to the promoter of Sugars Will Eventually be Exported Transporters 17 (CsSWEET17) and function as a transcriptional activator. Furthermore, suppression of CsLHY expression in tea leaves not only reduced CsSWEET17 expression but also impaired the freezing tolerance of leaves compared to the control. Our results demonstrate that CsLHY plays a positive role in the low-temperature response of tea plants by regulating CsSWEET17 when considered together.
Collapse
Affiliation(s)
- Yedie Wu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Taimei Di
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Zhijing Wu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Peng
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jie Wang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Kexin Zhang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Mingming He
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Nana Li
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Xinyuan Hao
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Wanping Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinchao Wang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Lu Wang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| |
Collapse
|
10
|
Kaur H, Ranjan R, Singh P, Salvi P. Editorial: Genomic and biotechnological interventions for the concurrent improvement of stress resilience and seed-associated traits in crops. FRONTIERS IN PLANT SCIENCE 2024; 14:1359918. [PMID: 38259914 PMCID: PMC10801716 DOI: 10.3389/fpls.2023.1359918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024]
Affiliation(s)
- Harmeet Kaur
- National Institute for Plant Biotechnology, Indian Council of Agricultural Research (ICAR), New Delhi, India
| | - Rajeev Ranjan
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| | - Pallavi Singh
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Prafull Salvi
- Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute (NABI), Punjab, India
| |
Collapse
|
11
|
Qin H, Yin W, Luo C, Liu L. The Identification, Characterization, and Functional Analysis of the Sugar Transporter Gene Family of the Rice False Smut Pathogen, Villosiclava virens. Int J Mol Sci 2024; 25:600. [PMID: 38203770 PMCID: PMC10779207 DOI: 10.3390/ijms25010600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
False smut, caused by Villosiclava virens, is becoming increasingly serious in modern rice production systems, leading to yield losses and quality declines. Successful infection requires efficient acquisition of sucrose, abundant in rice panicles, as well as other sugars. Sugar transporters (STPs) may play an important role in this process. STPs belong to a major facilitator superfamily, which consists of large multigenic families necessary to partition sugars between fungal pathogens and their hosts. This study identified and characterized the STP family of V. viren, and further analyzed their gene functions to uncover their roles in interactions with rice. Through genome-wide and systematic bioinformatics analyses, 35 STPs were identified from V.virens and named from VvSTP1 to VvSTP35. Transmembrane domains, gene structures, and conserved motifs of VvSTPs have been identified and characterized through the bioinformatic analysis. In addition, a phylogenetic analysis revealed relationship between VvSTPs and STPs from the other three reference fungi. According to a qRT-PCR and RNA-sequencing analysis, VvSTP expression responded differently to different sole carbon sources and H2O2 treatments, and changed during the pathogenic process, suggesting that these proteins are involved in interactions with rice and potentially functional in pathogenesis. In total, 12 representative VvSTPs were knocked out through genetic recombination in order to analyze their roles in pathogenicity of V. virens. The knock-out mutants of VvSTPs showed little difference in mycelia growth and conidiation, indicating a single gene in this family cannot influence vegetative growth of V. virens. It is clear, however, that these mutants result in a change in infection efficiency in a different way, indicating that VvSTPs play an important role in the pathogenicity of virens. This study is expected to contribute to a better understanding of how host-derived sugars contribute to V. virens pathogenicity.
Collapse
Affiliation(s)
- Huimin Qin
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China;
| | - Weixiao Yin
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Chaoxi Luo
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Lianmeng Liu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China;
| |
Collapse
|
12
|
Li C, Lin J, Hu Q, Sun Y, Wu L. An integrated metabolomic and transcriptomic analysis reveals the dynamic changes of key metabolites and flavor formation over Tieguanyin oolong tea production. Food Chem X 2023; 20:100952. [PMID: 37920364 PMCID: PMC10618703 DOI: 10.1016/j.fochx.2023.100952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/04/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023] Open
Abstract
To interpret the formation characteristic flavor during oolong tea manufacturing process, the dynamic changes of key flavor components in samples from various processing steps of Tieguanyin oolong tea production were investigated using widely-targeted metabolomic and the transcriptomic approaches. As a result, a total of 1078 metabolites were determined, of which 62 compounds were identified as biomarkers significantly changed over the manufacturing process. Quantitative determination of the total 50,343 transcripts showed 7480 of them were co-expressed different genes. Glutamic acid served as a critical metabolism hub and a signaling molecule for diverse stress responses. Additionally, the targeted quantification results showed that the contents of catechins and xanthine alkaloids in dried tea were dramatically decreased by 20.19% and 7.15% respectively than those in fresh leaves, which potentially contributed to the alleviation of astringent or bitter palates, promoting the characteristic mellow and rich flavor of Tieguanyin oolong tea.
Collapse
Affiliation(s)
- Chenxue Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, People’s Republic of China
| | - Jiaqi Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, People’s Republic of China
| | - Qingcai Hu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, People’s Republic of China
| | - Yun Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, People’s Republic of China
| | - Liangyu Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, People’s Republic of China
| |
Collapse
|
13
|
Zhou C, Wu S, Li C, Quan W, Wang A. Response Mechanisms of Woody Plants to High-Temperature Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:3643. [PMID: 37896106 PMCID: PMC10610489 DOI: 10.3390/plants12203643] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023]
Abstract
High-temperature stress is the main environmental stress that restricts the growth and development of woody plants, and the growth and development of woody plants are affected by high-temperature stress. The influence of high temperature on woody plants varies with the degree and duration of the high temperature and the species of woody plants. Woody plants have the mechanism of adapting to high temperature, and the mechanism for activating tolerance in woody plants mainly counteracts the biochemical and physiological changes induced by stress by regulating osmotic adjustment substances, antioxidant enzyme activities and transcription control factors. Under high-temperature stress, woody plants ability to perceive high-temperature stimuli and initiate the appropriate physiological, biochemical and genomic changes is the key to determining the survival of woody plants. The gene expression induced by high-temperature stress also greatly improves tolerance. Changes in the morphological structure, physiology, biochemistry and genomics of woody plants are usually used as indicators of high-temperature tolerance. In this paper, the effects of high-temperature stress on seed germination, plant morphology and anatomical structure characteristics, physiological and biochemical indicators, genomics and other aspects of woody plants are reviewed, which provides a reference for the study of the heat-tolerance mechanism of woody plants.
Collapse
Affiliation(s)
- Chao Zhou
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550001, China; (C.Z.); (C.L.)
| | - Shengjiang Wu
- Guizhou Academy of Tobacco Science, Guiyang 550081, China;
| | - Chaochan Li
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550001, China; (C.Z.); (C.L.)
| | - Wenxuan Quan
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550001, China; (C.Z.); (C.L.)
| | - Anping Wang
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550001, China; (C.Z.); (C.L.)
| |
Collapse
|
14
|
Sarkar B, Bandyopadhyay P, Das A, Pal S, Hasanuzzaman M, Adak MK. Abscisic acid priming confers salt tolerance in maize seedlings by modulating osmotic adjustment, bond energies, ROS homeostasis, and organic acid metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107980. [PMID: 37634334 DOI: 10.1016/j.plaphy.2023.107980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/05/2023] [Accepted: 08/18/2023] [Indexed: 08/29/2023]
Abstract
This study aimed at investigating the influence of exogenous abscisic acid (ABA) on salt homeostasis under 100 mM NaCl stress in maize (Zea mays L. cv. Kaveri 50) through 3 and 5 days of exposure. The ratio of Na+ to K+, hydrogen peroxide (H2O2) and superoxide (O2•‒) accumulation, electrolyte leakage were the major determinants for salt sensitivity. Pretreatment with ABA [ABA (+)] had altered the salt sensitivity of plants maximally through 5 days of treatment. Plants controlled well for endogenous ABA level (92% increase) and bond energy minimization of cell wall residues to support salt tolerance proportionately to ABA (+). Salt stress was mitigated through maintenance of relative water content (RWC) (16%), glycine betaine (GB) (26%), proline (28%) and proline biosynthesis enzyme (ΔP5CS) (26%) under the application of ABA (+). Minimization of lipid peroxides (6% decrease), carbonyl content (9% decrease), acid, alkaline phosphatase activities were more tolerated under 100 mM salinity at 5 days duration. Malate metabolism for salt tolerance was dependent on the activity of the malic enzyme, malate dehydrogenase through transcript abundance in real-time manner as a function of ABA (+). Establishment of oxidative stress through days under salinity recorded by NADPH-oxidase activity (39% increase) following ROS generation as detected in tissue specific level. The ABA (+) significantly altered redox homeostasis through ratio of AsA to DHA (21% increase), GSH to GSSG (12% increase) by dehydroascorbate reductase and glutathione reductase respectively, and other enzymes like guaiacol peroxidase, catalase, glutathione reductase activities. The ABA in priming was substantially explained in stress metabolism as biomarker for salinity stress with reference to maize.
Collapse
Affiliation(s)
- Bipul Sarkar
- Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani, 741235, India
| | - Pratim Bandyopadhyay
- Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani, 741235, India
| | - Abir Das
- Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani, 741235, India
| | - Sayan Pal
- Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani, 741235, India
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207, Bangladesh; Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Malay Kumar Adak
- Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani, 741235, India.
| |
Collapse
|
15
|
Koyamatsu D, Otsubo M, Ohira T, Sato MP, Suzuki-Masuko H, Shiota T, Takenaka Takano K, Ozeki M, Otsuka K, Ogura Y, Hayashi T, Watanabe M, Inaba T, Ito-Inaba Y. Molecular characterization of SrSTP14, a sugar transporter from thermogenic skunk cabbage, and its possible role in developing pollen. PHYSIOLOGIA PLANTARUM 2023; 175:e13957. [PMID: 37338180 DOI: 10.1111/ppl.13957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/21/2023]
Abstract
In floral thermogenesis, sugars play an important role not only as energy providers but also as growth and development facilitators. Yet, the mechanisms underlying sugar translocation and transport in thermogenic plants remain to be studied. Asian skunk cabbage (Symplocarpus renifolius) is a species that can produce durable and intense heat in its reproductive organ, the spadix. Significant morphological and developmental changes in the stamen are well-characterized in this plant. In this study, we focused on the sugar transporters (STPs), SrSTP1 and SrSTP14, whose genes were identified by RNA-seq as the upregulated STPs during thermogenesis. Real-time PCR confirmed that mRNA expression of both STP genes was increased from the pre-thermogenic to the thermogenic stage in the spadix, where it is predominantly expressed in the stamen. SrSTP1 and SrSTP14 complemented the growth defects of a hexose transporter-deficient yeast strain, EBY4000, on media containing 0.02, 0.2, and 2% (w/v) glucose and galactose. Using a recently developed transient expression system in skunk cabbage leaf protoplasts, we revealed that SrSTP1 and SrSTP14-GFP fusion proteins were mainly localized to the plasma membrane. To dig further into the functional analysis of SrSTPs, tissue-specific localization of SrSTPs was investigated by in situ hybridization. Using probes for SrSTP14, mRNA expression was observed in the microspores within the developing anther at the thermogenic female stage. These results indicate that SrSTP1 and SrSTP14 transport hexoses (e.g., glucose and galactose) at the plasma membrane and suggest that SrSTP14 may play a role in pollen development through the uptake of hexoses into pollen precursor cells.
Collapse
Affiliation(s)
- Daiki Koyamatsu
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Miyabi Otsubo
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Tomonori Ohira
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Mitsuhiko P Sato
- Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Japan
| | | | - Takuya Shiota
- Organization for Promotion of Tenure Track, University of Miyazaki, Miyazaki, Japan
- Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan
| | - Kohei Takenaka Takano
- Natural Environment Division, Nagano Environmental Conservation Research Institute, Nagano, Japan
| | - Masaaki Ozeki
- Natural Environment Division, Nagano Environmental Conservation Research Institute, Nagano, Japan
| | - Koichi Otsuka
- Natural Environment Division, Nagano Environmental Conservation Research Institute, Nagano, Japan
| | - Yoshitoshi Ogura
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, Fukuoka, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masao Watanabe
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Takehito Inaba
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Yasuko Ito-Inaba
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
16
|
Pazhamala LT, Giri J. Plant phosphate status influences root biotic interactions. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2829-2844. [PMID: 36516418 DOI: 10.1093/jxb/erac491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/09/2022] [Indexed: 06/06/2023]
Abstract
Phosphorus (P) deficiency stress in combination with biotic stress(es) severely impacts crop yield. Plant responses to P deficiency overlapping with that of other stresses exhibit a high degree of complexity involving different signaling pathways. On the one hand, plants engage with rhizosphere microbiome/arbuscular mycorrhizal fungi for improved phosphate (Pi) acquisition and plant stress response upon Pi deficiency; on the other hand, this association is gets disturbed under Pi sufficiency. This nutrient-dependent response is highly regulated by the phosphate starvation response (PSR) mediated by the master regulator, PHR1, and its homolog, PHL. It is interesting to note that Pi status (deficiency/sufficiency) has a varying response (positive/negative) to different biotic encounters (beneficial microbes/opportunistic pathogens/insect herbivory) through a coupled PSR-PHR1 immune system. This also involves crosstalk among multiple players including transcription factors, defense hormones, miRNAs, and Pi transporters, among others influencing the plant-biotic-phosphate interactions. We provide a comprehensive view of these key players involved in maintaining a delicate balance between Pi homeostasis and plant immunity. Finally, we propose strategies to utilize this information to improve crop resilience to Pi deficiency in combination with biotic stresses.
Collapse
Affiliation(s)
- Lekha T Pazhamala
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Jitender Giri
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| |
Collapse
|
17
|
Li Y, Xi K, Liu X, Han S, Han X, Li G, Yang L, Ma D, Fang Z, Gong S, Yin J, Zhu Y. Silica nanoparticles promote wheat growth by mediating hormones and sugar metabolism. J Nanobiotechnology 2023; 21:2. [PMID: 36593514 PMCID: PMC9808955 DOI: 10.1186/s12951-022-01753-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/21/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Silica nanoparticles (SiNPs) have been demonstrated to have beneficial effects on plant growth and development, especially under biotic and abiotic stresses. However, the mechanisms of SiNPs-mediated plant growth strengthening are still unclear, especially under field condition. In this study, we evaluated the effect of SiNPs on the growth and sugar and hormone metabolisms of wheat in the field. RESULTS SiNPs increased tillers and elongated internodes by 66.7% and 27.4%, respectively, resulting in a larger biomass. SiNPs can increase the net photosynthetic rate by increasing total chlorophyll contents. We speculated that SiNPs can regulate the growth of leaves and stems, partly by regulating the metabolisms of plant hormones and soluble sugar. Specifically, SiNPs can increase auxin (IAA) and fructose contents, which can promote wheat growth directly or indirectly. Furthermore, SiNPs increased the expression levels of key pathway genes related to soluble sugars (SPS, SUS, and α-glucosidase), chlorophyll (CHLH, CAO, and POR), IAA (TIR1), and abscisic acid (ABA) (PYR/PYL, PP2C, SnRK2, and ABF), whereas the expression levels of genes related to CTKs (IPT) was decreased after SiNPs treatment. CONCLUSIONS This study shows that SiNPs can promote wheat growth and provides a theoretical foundation for the application of SiNPs in field conditions.
Collapse
Affiliation(s)
- Yiting Li
- grid.410654.20000 0000 8880 6009MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction By Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025 Hubei China
| | - Keyong Xi
- grid.410654.20000 0000 8880 6009MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction By Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025 Hubei China
| | - Xi Liu
- grid.410654.20000 0000 8880 6009MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction By Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025 Hubei China
| | - Shuo Han
- grid.410654.20000 0000 8880 6009MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction By Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025 Hubei China
| | - Xiaowen Han
- grid.410654.20000 0000 8880 6009MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction By Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025 Hubei China
| | - Gang Li
- grid.410654.20000 0000 8880 6009MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction By Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025 Hubei China
| | - Lijun Yang
- grid.410632.20000 0004 1758 5180Key Laboratory of Integrated Pest Management of Crops in Central China, Ministry of Agriculture/Hubei Key Laboratory of Crop Diseases, Institute of Plant Protection and Soil Science, Insect Pests and Weeds Control, Hubei Academy of Agricultural Sciences, Wuhan, 430064 Hubei China
| | - Dongfang Ma
- grid.410654.20000 0000 8880 6009MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction By Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025 Hubei China
| | - Zhengwu Fang
- grid.410654.20000 0000 8880 6009MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction By Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025 Hubei China
| | - Shuangjun Gong
- grid.410632.20000 0004 1758 5180Key Laboratory of Integrated Pest Management of Crops in Central China, Ministry of Agriculture/Hubei Key Laboratory of Crop Diseases, Institute of Plant Protection and Soil Science, Insect Pests and Weeds Control, Hubei Academy of Agricultural Sciences, Wuhan, 430064 Hubei China
| | - Junliang Yin
- grid.410654.20000 0000 8880 6009MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction By Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025 Hubei China
| | - Yongxing Zhu
- grid.410654.20000 0000 8880 6009MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction By Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025 Hubei China
| |
Collapse
|
18
|
Chemical Composition, Antioxidant and Antimicrobial Effects of Essential Oils Extracted from Two New Ocimum basilicum L. Varieties. DIVERSITY 2022. [DOI: 10.3390/d14121048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Recent agricultural research aims to identify novel applications for plant extracts as efficient defenses against weeds, insects, or phytopathogenic agents. The main goal of the present study was to evaluate two new varieties of basil (Ocimum basilicum L., fam. Lamiaceae), Yellow basil, “Aromat de Buzau” variety and Red-violet basil, “Serafim” variety. The basil varieties were studied under different aspects regarding biochemical characterization using GC-MS, antioxidant activity evaluated under three methods (DPPH, ABTS, FRAP), and antimicrobial properties (for three G-bacteria: Perctobacterium carotovorum, Pseudomonas marginalis, Pseudomonas syringae and three phytopathogenic fungi: Rhizoctonia solani, Fusarium oxysporum, Botrytis cinerea). The results showed that linalool (39.28%; 55.51%), estragole (31.48%; 9.78%), and eugenol (5.42%; 7.63%) are the main compounds identified in the extracts, validating the high antioxidant activity of the studied essential oils and floral waters. When applied in high concentrations, essential oils have shown a potential bactericidal effect on P. carotovorum as well as a potential fungicidal effect on R. solani and B. cinerea.
Collapse
|
19
|
Salvi P, Varshney V, Majee M. Raffinose family oligosaccharides (RFOs): role in seed vigor and longevity. Biosci Rep 2022; 42:BSR20220198. [PMID: 36149314 PMCID: PMC9547172 DOI: 10.1042/bsr20220198] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Seed vigor and longevity are important agronomic attributes, as they are essentially associated with crop yield and thus the global economy. Seed longevity is a measure of seed viability and the most essential property in gene bank management since it affects regeneration of seed recycling. Reduced seed life or storability is a serious issue in seed storage since germplasm conservation and agricultural enhancement initiatives rely on it. The irreversible and ongoing process of seed deterioration comprises a complex gene regulatory network and altered metabolism that results in membrane damage, DNA integrity loss, mitochondrial dysregulation, protein damage, and disrupted antioxidative machinery. Carbohydrates and/or sugars, primarily raffinose family oligosaccharides (RFOs), have emerged as feasible components for boosting or increasing seed vigor and longevity in recent years. RFOs are known to perform diverse functions in plants, including abiotic and biotic stress tolerance, besides being involved in regulating seed germination, desiccation tolerance, vigor, and longevity. We emphasized and analyzed the potential impact of RFOs on seed vigor and longevity in this review. Here, we comprehensively reviewed the molecular mechanisms involved in seed longevity, RFO metabolism, and how RFO content is critical and linked with seed vigor and longevity. Further molecular basis, biotechnological approaches, and CRISPR/Cas applications have been discussed briefly for the improvement of seed attributes and ultimately crop production. Likewise, we suggest advancements, challenges, and future possibilities in this area.
Collapse
Affiliation(s)
- Prafull Salvi
- National Agri-Food Biotechnology Institute, Punjab 140308, India
| | - Vishal Varshney
- Govt. Shaheed Gend Singh College, Charama, Chhattisgarh 494337, India
| | - Manoj Majee
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
20
|
Improved Understanding of Sugar Transport in Various Plants. Int J Mol Sci 2022; 23:ijms231810260. [PMID: 36142167 PMCID: PMC9499003 DOI: 10.3390/ijms231810260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 11/16/2022] Open
Abstract
A few recent reviews have addressed progress and perspectives in the field of sugar transport in plants rather comprehensively [...]
Collapse
|
21
|
Salvi P, Mahawar H, Agarrwal R, Kajal, Gautam V, Deshmukh R. Advancement in the molecular perspective of plant-endophytic interaction to mitigate drought stress in plants. Front Microbiol 2022; 13:981355. [PMID: 36118190 PMCID: PMC9478035 DOI: 10.3389/fmicb.2022.981355] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/15/2022] [Indexed: 12/03/2022] Open
Abstract
Change in global climate has started to show its effect in the form of extremes of temperatures and water scarcity which is bound to impact adversely the global food security in near future. In the current review we discuss the impact of drought on plants and highlight the ability of endophytes, microbes that inhabit the plants asymptomatically, to confer stress tolerance to their host. For this we first describe the symbiotic association between plant and the endophytes and then focus on the molecular and physiological strategies/mechanisms adopted by these endophytes to confer stress tolerance. These include root alteration, osmotic adjustment, ROS scavenging, detoxification, production of phytohormones, and promoting plant growth under adverse conditions. The review further elaborates on how omics-based techniques have advanced our understanding of molecular basis of endophyte mediated drought tolerance of host plant. Detailed analysis of whole genome sequences of endophytes followed by comparative genomics facilitates in identification of genes involved in endophyte-host interaction while functional genomics further unveils the microbial targets that can be exploited for enhancing the stress tolerance of the host. Thus, an amalgamation of endophytes with other sustainable agricultural practices seems to be an appeasing approach to produce climate-resilient crops.
Collapse
|
22
|
Nägele T, Gibon Y, Le Hir R. Plant sugar metabolism, transport and signalling in challenging environments. PHYSIOLOGIA PLANTARUM 2022; 174:e13768. [PMID: 36281839 DOI: 10.1111/ppl.13768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Thomas Nägele
- LMU Munich, Faculty of Biology, Plant Evolutionary Cell Biology, Planegg, Germany
| | - Yves Gibon
- Université Bordeaux, INRAE, UMR 1332 Biologie du Fruit et Pathologie, Centre INRAE Nouvelle-Aquitaine Bordeaux, Villenave d'Ornon, France
| | - Rozenn Le Hir
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| |
Collapse
|
23
|
Gandass N, Salvi P. Intrinsically disordered protein, DNA binding with one finger transcription factor ( OsDOF27) implicates thermotolerance in yeast and rice. FRONTIERS IN PLANT SCIENCE 2022; 13:956299. [PMID: 35968137 PMCID: PMC9372624 DOI: 10.3389/fpls.2022.956299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Intrinsically disorder regions or proteins (IDRs or IDPs) constitute a large subset of the eukaryotic proteome, which challenges the protein structure-function paradigm. These IDPs lack a stable tertiary structure, yet they play a crucial role in the diverse biological process of plants. This study represents the intrinsically disordered nature of a plant-specific DNA binding with one finger transcription factor (DOF-TF). Here, we have investigated the role of OsDOF27 and characterized it as an intrinsically disordered protein. Furthermore, the molecular role of OsDOF27 in thermal stress tolerance has been elucidated. The qRT-PCR analysis revealed that OsDOF27 was significantly upregulated under different abiotic stress treatments in rice, particularly under heat stress. The stress-responsive transcript induction of OsDOF27 was further correlated with enriched abiotic stress-related cis-regulatory elements present in its promoter region. The in vivo functional analysis of the potential role of OsDOF27 in thermotolerance was further studied in yeast and in planta. Ectopic expression of OsDOF27 in yeast implicates thermotolerance response. Furthermore, the rice transgenic lines with overexpressing OsDOF27 revealed a positive role in mitigating heat stress tolerance. Collectively, our results evidently show the intrinsically disorderedness in OsDOF27 and its role in thermal stress response in rice.
Collapse
|
24
|
He X, Long F, Li Y, Xu Y, Hu L, Yao T, Huang Y, Hu D, Yang Y, Fei Y. Comparative Transcriptome Analysis Revealing the Potential Mechanism of Low-Temperature Stress in Machilus microcarpa. FRONTIERS IN PLANT SCIENCE 2022; 13:900870. [PMID: 35937341 PMCID: PMC9348548 DOI: 10.3389/fpls.2022.900870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/02/2022] [Indexed: 05/26/2023]
Abstract
Machilus microcarpa is a rare national tree species in China and possesses important ornamental and ecological value. M. microcarpa can be planted in low-temperature areas, depending on whether its seedlings can withstand the harm. To face this problem, the annual seedlings of M. microcarpa were subjected to five temperature treatments, and eight physiological indicators were measured. Furthermore, comparative transcriptome analysis was performed between M. microcarpa leaves treated at 25°C and -2.8°C. A total of 9,385 differentially expressed genes (DEGs) were involved in low-temperature stress in M. microcarpa. An upregulated (cobA) and five downregulated (HEM, CHLM, CRD, CLH, and PORA) genes associated with the porphyrin and chlorophyll metabolism pathway may reduce chlorophyll synthesis under low-temperature stress. Upregulation of six DEGs (two GAPDHs, PFK, PGAM, PDC, and PK) involved in the glycolysis/gluconeogenesis pathway provided energy for M. microcarpa under adverse cold conditions. Thirteen upregulated and seven downregulated genes related to antioxidant enzymes were also observed under low-temperature stress. Candidate transcription factors (TFs) played key roles in signal transduction under low-temperature stress in M. microcarpa, and quantitative real-time PCR (qRT-PCR) analysis validated the RNA-seq data. The results provide valuable information for further studies on the cold response mechanisms for low-temperature stress in M. microcarpa.
Collapse
|