1
|
He J, Liu Y, Xu H, Wei X, Chen M. Insights into the variations in microbial community structure during the development of periodontitis and its pathogenesis. Clin Oral Investig 2024; 28:675. [PMID: 39617812 DOI: 10.1007/s00784-024-06074-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024]
Abstract
OBJECTIVE To characterize the subgingival microbiota in subjects with stage I/II periodontitis (moderate periodontitis, MP), stage III/IV periodontitis (severe periodontitis, SP), and periodontal health (PH) at the same probing depth (PD) (shallow ≤ 3 mm, moderate 4-6 mm, or deep ≥ 7 mm), and to investigate the changes associated with probing depth progression. MATERIALS AND METHODS 100 subgingival plaque samples were collected from 50 subjects (16 MP, 17 SP and 17 PH), forming six groups: PHS (PH, shallow), MPS (MP, shallow), MPM (MP, moderate), SPS (SP, shallow), SPM (SP, moderate), and SPD (SP, deep). Samples were analyzed using high-throughput sequencing. RESULT The subgingival microbiome showed significant differences associated with both PD and periodontitis stage (p < 0.05). With increasing PD, alpha diversity initially increased and then decreased. Pathogenic genera like Fusobacterium, Filifactor, and Porphyromonas increased, while health-associated genera like Streptococcus and Haemophilus decreased. At shallow sites, the PHS, MPS, and SPS groups showed similar community structure. At moderate and deep sites, the SPM and SPD groups exhibited significant differences in community structure compared to the MPM group, with the SPM and SPD groups showing decreased abundances of Actinomyces and increased abundances of Treponema. The microbial co-networks in the SPD and SPM groups exhibited greater complexity and connectivity and were more resilient to random microbial or node removal. CONCLUSIONS The subgingival microbiome shows strong associations with PD and periodontitis stage. CLINICAL RELEVANCE Once periodontitis progresses to stage III/IV, reconstructing a healthy subgingival microbiome may be challenging, emphasizing the importance of early prevention.
Collapse
Affiliation(s)
- Junlin He
- Department of Periodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Yefei Liu
- Department of Endodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Hongzhen Xu
- Department of Prosthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Xiaolin Wei
- Department of Endodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China.
| | - Meihua Chen
- Department of Periodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Silva EJNL, Pinto KP, Versiani MA, Sassone LM. Dental Pathophysiology of Odontogenic Sinusitis: Endodontic Infections. Otolaryngol Clin North Am 2024; 57:941-955. [PMID: 39089983 DOI: 10.1016/j.otc.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Bacterial odontogenic sinusitis (ODS) arises from maxillary dental issues or oral procedures, and affects at least the maxillary sinuses, with or without other paranasal sinus involvement. It has been historically underreported, in contrast to more recent findings attributing 25-40% of chronic maxillary sinusitis to dental causes. Endodontic infections represent one of the most common causes of ODS. Endodontic factors like root canal infection and microbial proximity to sinus cavities play pivotal roles. Host immunological responses further shape disease severity and progression. This article aims to explore the complexity of endodontic infections that cause ODS, elucidating anatomical, microbial, and immunological aspects.
Collapse
Affiliation(s)
- Emmanuel João Nogueira Leal Silva
- Department of Integrated Clinical Procedures, School of Dentistry, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil; Department of Endodontics, Grande Rio University (UNIGRANRIO), Rio de Janeiro, Brazil.
| | - Karem Paula Pinto
- Department of Integrated Clinical Procedures, School of Dentistry, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| | | | - Luciana Moura Sassone
- Department of Integrated Clinical Procedures, School of Dentistry, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Dini C, Borges MHR, Malheiros SS, Piazza RD, van den Beucken JJJP, de Avila ED, Souza JGS, Barão VAR. Progress in Designing Therapeutic Antimicrobial Hydrogels Targeting Implant-associated Infections: Paving the Way for a Sustainable Platform Applied to Biomedical Devices. Adv Healthc Mater 2024:e2402926. [PMID: 39440583 DOI: 10.1002/adhm.202402926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/19/2024] [Indexed: 10/25/2024]
Abstract
Implantable biomedical devices have found widespread use in restoring lost functions or structures within the human body, but they face a significant challenge from microbial-related infections, which often lead to implant failure. In this context, antimicrobial hydrogels emerge as a promising strategy for treating implant-associated infections owing to their tunable physicochemical properties. However, the literature lacks a comprehensive analysis of antimicrobial hydrogels, encompassing their development, mechanisms, and effect on implant-associated infections, mainly in light of existing in vitro, in vivo, and clinical evidence. Thus, this review addresses the strategies employed by existing studies to tailor hydrogel properties to meet the specific needs of each application. Furthermore, this comprehensive review critically appraises the development of antimicrobial hydrogels, with a particular focus on solving infections related to metallic orthopedic or dental implants. Then, preclinical and clinical studies centering on providing quantitative microbiological results associated with the application of antimicrobial hydrogels are systematically summarized. Overall, antimicrobial hydrogels benefit from the tunable properties of polymers and hold promise as an effective strategy for the local treatment of implant-associated infections. However, future clinical investigations, grounded on robust evidence from in vitro and preclinical studies, are required to explore and validate new antimicrobial hydrogels for clinical use.
Collapse
Affiliation(s)
- Caroline Dini
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo, 13414-903, Brazil
| | - Maria Helena Rossy Borges
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo, 13414-903, Brazil
| | - Samuel Santana Malheiros
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo, 13414-903, Brazil
| | - Rodolfo Debone Piazza
- Physical Chemistry Department, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo, 14800-900, Brazil
| | | | - Erica Dorigatti de Avila
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araçatuba, São Paulo State University (UNESP), Araçatuba, São Paulo, 16015-050, Brazil
| | - João Gabriel S Souza
- Dental Research Division, Guarulhos University (UNG), Guarulhos, São Paulo, 07023-070, Brazil
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo, 13414-903, Brazil
| |
Collapse
|
4
|
Yakar N, Yilmaz B, Emingil G, Chen T, Ozdemir G, Kantarci A. Subgingival microbial profiles in pre- and postmenopausal women: Associations with serum estradiol levels. J Periodontol 2024. [PMID: 39003582 DOI: 10.1002/jper.24-0267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/08/2024] [Accepted: 06/14/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Subgingival dental plaque is an ecosystem playing a key role in supporting both oral health and systemic health. Menopause-related changes have the potential to disrupt its balance, which is crucial to postmenopausal well-being. Our study explored how circulating estradiol levels correlate with subgingival microbial composition using checkerboard DNA-DNA hybridization in premenopausal and postmenopausal women. We also demonstrated that combining this method with 16S ribosomal RNA (rRNA) sequencing insights remains valuable for examining subgingival ecology. METHODS We assessed 40 bacterial species in 77 premenopausal and 81 postmenopausal women using checkerboard DNA-DNA hybridization and measured serum estradiol with enzyme-linked immunosorbent assay (ELISA). Women were categorized by subgingival dysbiosis severity using a modified Subgingival Microbial Dysbiosis Index (mSMDI). Six women from each normobiotic and dysbiotic subgroup across premenopausal and postmenopausal women underwent 16S rRNA sequencing analysis. RESULTS DNA checkerboard analysis revealed that most observed variability in individual bacterial proportions is associated with periodontitis. Two species, Leptotrichia buccalis and Streptococcus constellatus, exhibited differences related to estradiol levels within the premenopausal group (p = 0.055 and p = 0.009, respectively). 16S rRNA sequencing confirmed the mSMDI's validity in categorizing normobiotic and dysbiotic states. Menopausal status was not associated with a dysbiotic shift in the subgingival microbiome despite significantly more attachment loss in postmenopausal compared to premenopausal women. CONCLUSIONS Our results indicate that decreased estradiol levels or increased attachment loss during menopause are not associated with changes in species abundance or dysbiotic shifts in women. The mSMDI may be a useful tool for classifying subgingival ecology based on its normobiotic or dysbiotic inclination.
Collapse
Affiliation(s)
- Nil Yakar
- The ADA Forsyth Institute, Cambridge, Massachusetts, USA
- Faculty of Science, Department of Biology, Basic and Industrial Microbiology Section, Ege University, Izmir, Turkey
| | - Busra Yilmaz
- Faculty of Dentistry, Department of Periodontology, Ege University, Izmir, Turkey
| | - Gulnur Emingil
- Faculty of Dentistry, Department of Periodontology, Ege University, Izmir, Turkey
| | - Tsute Chen
- The ADA Forsyth Institute, Cambridge, Massachusetts, USA
| | - Guven Ozdemir
- Faculty of Science, Department of Biology, Basic and Industrial Microbiology Section, Ege University, Izmir, Turkey
| | - Alpdogan Kantarci
- The ADA Forsyth Institute, Cambridge, Massachusetts, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Alhulaefi SS, Watson AW, Ramsay SE, Jakubovics NS, Matu J, Griffiths A, Kimble R, Siervo M, Brandt K, Shannon OM. Effects of dietary nitrate supplementation on oral health and associated markers of systemic health: a systematic review. Crit Rev Food Sci Nutr 2024:1-16. [PMID: 38733290 DOI: 10.1080/10408398.2024.2351168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
Poor oral health can impact an individual's ability to eat and has been associated with an increased risk of non-communicable diseases. While the benefits of nitrate consumption on oral health were first proposed more than 20 years ago, no systematic review has been published examining effects of dietary nitrate on oral health. This systematic review investigated the effects of dietary nitrate on markers of oral health in vivo in randomized controlled trials (RCTs). Five databases (PubMed, The Cochrane Library, CINAHL, MEDLINE, and SPORTDiscus) were searched from inception until March 2023. Nine articles reporting data on 284 participants were included. Dietary nitrate was provided via beetroot juice in most studies. The duration of the interventions ranged from one day to six weeks. Dietary nitrate supplementation increased the relative abundance of several individual bacterial genera including Neisseria and Rothia. Dietary nitrate supplementation increased salivary pH and decreased salivary acidification following consumption of a sugar-sweetened beverage. Furthermore, dietary nitrate supplementation resulted in a decrease in the gingival inflammation index. The results of this systematic review suggest that dietary nitrate could represent a potential nutritional strategy to positively modify oral health by impacting the oral microbiome, altering salivary pH, and minimizing gingival inflammation.
Collapse
Affiliation(s)
- Shatha S Alhulaefi
- Human Nutrition & Exercise Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Nutrition, Taif University, Taif, Saudi Arabia
| | - Anthony W Watson
- Human Nutrition & Exercise Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Sheena E Ramsay
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Nick S Jakubovics
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Jamie Matu
- School of Health, Leeds Beckett University, Leeds, UK
| | | | - Rachel Kimble
- Division of Sport, Exercise and Health, Health and Life Sciences, University of the West of Scotland, Glasgow, UK
| | - Mario Siervo
- School of Population Health, Curtin University, Perth, WA, Australia
| | - Kirsten Brandt
- Human Nutrition & Exercise Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Oliver M Shannon
- Human Nutrition & Exercise Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
6
|
Shaikh HFM, Oswal PU, Kugaji MS, Katti SS, Bhat KG, Kandaswamy E, Joshi VM. Association of F. alocis and D. pneumosintes with Periodontitis Disease Severity and Red Complex Bacteria. Dent J (Basel) 2024; 12:105. [PMID: 38668017 PMCID: PMC11048763 DOI: 10.3390/dj12040105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/21/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Oral biofilms are considered the principal etiological agent in the development of periodontitis. Novel species that may contribute to periodontitis and dysbiosis have been identified recently. The study aims to evaluate the presence of F. alocis and D. pneumosintes in healthy and diseased patients and their association with clinical parameters and with red complex bacteria. The study included 60 subjects, with 30 patients each in the healthy and periodontitis groups. The clinical parameters were noted, and samples were subjected to DNA extraction followed by a polymerase chain reaction. Statistical analysis was performed using the Graph Pad Prism software. Results: F. alocis and D. pneumosintes were detected at a significantly higher percentage in the periodontitis group compared to the healthy group (p < 0.05). D. pneumosintes was significantly associated with T. forsythia in the periodontitis group (p < 0.05). Both of these organisms were present in sites with higher clinical attachment loss (p < 0.05). This study demonstrated that both F. alocis and D. pneumosintes were detected at a significantly higher percentage in periodontitis subjects and were detected more frequently in sites with a greater clinical attachment loss. It was also evident that both F. alocis and D. pneumosintes can be present independently of other putative periodontal pathogens.
Collapse
Affiliation(s)
- Hawaabi F. M. Shaikh
- Department of Periodontology, Maratha Mandal’s Nathajirao G. Halgekar Institute of Dental Sciences & Research Centre, Belagavi 590019, India; (H.F.M.S.); (P.U.O.); (S.S.K.)
| | - Pratima U. Oswal
- Department of Periodontology, Maratha Mandal’s Nathajirao G. Halgekar Institute of Dental Sciences & Research Centre, Belagavi 590019, India; (H.F.M.S.); (P.U.O.); (S.S.K.)
| | - Manohar Suresh Kugaji
- Centre for Advanced Medical Research, BLDE Deemed to be University, Vijayapura 586103, India
| | - Sandeep S. Katti
- Department of Periodontology, Maratha Mandal’s Nathajirao G. Halgekar Institute of Dental Sciences & Research Centre, Belagavi 590019, India; (H.F.M.S.); (P.U.O.); (S.S.K.)
| | | | - Eswar Kandaswamy
- Department of Periodontics, School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, LA 70119, USA;
| | - Vinayak M. Joshi
- Department of Periodontics, School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, LA 70119, USA;
| |
Collapse
|
7
|
Rosier BT, Johnston W, Carda-Diéguez M, Simpson A, Cabello-Yeves E, Piela K, Reilly R, Artacho A, Easton C, Burleigh M, Culshaw S, Mira A. Nitrate reduction capacity of the oral microbiota is impaired in periodontitis: potential implications for systemic nitric oxide availability. Int J Oral Sci 2024; 16:1. [PMID: 38177101 PMCID: PMC10767001 DOI: 10.1038/s41368-023-00266-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/13/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024] Open
Abstract
The reduction of nitrate to nitrite by the oral microbiota has been proposed to be important for oral health and results in nitric oxide formation that can improve cardiometabolic conditions. Studies of bacterial composition in subgingival plaque suggest that nitrate-reducing bacteria are associated with periodontal health, but the impact of periodontitis on nitrate-reducing capacity (NRC) and, therefore, nitric oxide availability has not been evaluated. The current study aimed to evaluate how periodontitis affects the NRC of the oral microbiota. First, 16S rRNA sequencing data from five different countries were analyzed, revealing that nitrate-reducing bacteria were significantly lower in subgingival plaque of periodontitis patients compared with healthy individuals (P < 0.05 in all five datasets with n = 20-82 samples per dataset). Secondly, subgingival plaque, saliva, and plasma samples were obtained from 42 periodontitis patients before and after periodontal treatment. The oral NRC was determined in vitro by incubating saliva with 8 mmol/L nitrate (a concentration found in saliva after nitrate-rich vegetable intake) and compared with the NRC of 15 healthy individuals. Salivary NRC was found to be diminished in periodontal patients before treatment (P < 0.05) but recovered to healthy levels 90 days post-treatment. Additionally, the subgingival levels of nitrate-reducing bacteria increased after treatment and correlated negatively with periodontitis-associated bacteria (P < 0.01). No significant effect of periodontal treatment on the baseline saliva and plasma nitrate and nitrite levels was found, indicating that differences in the NRC may only be revealed after nitrate intake. Our results suggest that an impaired NRC in periodontitis could limit dietary nitrate-derived nitric oxide levels, and the effect on systemic health should be explored in future studies.
Collapse
Affiliation(s)
- Bob T Rosier
- Department of Genomics and Health, FISABIO Foundation, Center for Advanced Research in Public Health, Valencia, Spain
| | - William Johnston
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
- Oral Sciences, University of Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Miguel Carda-Diéguez
- Department of Genomics and Health, FISABIO Foundation, Center for Advanced Research in Public Health, Valencia, Spain
| | - Annabel Simpson
- Sport and Physical Activity Research Institute, University of the West of Scotland, Blantyre, Scotland
| | - Elena Cabello-Yeves
- Department of Genomics and Health, FISABIO Foundation, Center for Advanced Research in Public Health, Valencia, Spain
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), Valencia, Spain
| | - Krystyna Piela
- Oral Sciences, University of Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Robert Reilly
- Oral Sciences, University of Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Alejandro Artacho
- Department of Genomics and Health, FISABIO Foundation, Center for Advanced Research in Public Health, Valencia, Spain
| | - Chris Easton
- Sport and Physical Activity Research Institute, University of the West of Scotland, Blantyre, Scotland
| | - Mia Burleigh
- Sport and Physical Activity Research Institute, University of the West of Scotland, Blantyre, Scotland
| | - Shauna Culshaw
- Oral Sciences, University of Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Alex Mira
- Department of Genomics and Health, FISABIO Foundation, Center for Advanced Research in Public Health, Valencia, Spain.
- CIBER Center for Epidemiology and Public Health, Madrid, Spain.
| |
Collapse
|
8
|
Pisano M. Oral Dysbiosis and Systemic Diseases: A Two-Way Relationship? MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1933. [PMID: 38003984 PMCID: PMC10672768 DOI: 10.3390/medicina59111933] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 10/19/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023]
Abstract
The human body consists of its own cells, but also of microorganisms that are found both inside and outside the human body [...].
Collapse
Affiliation(s)
- Massimo Pisano
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84084 Salerno, Italy
| |
Collapse
|
9
|
Nelson-Filho P, Perdiza M, Ribeiro YJS, Saraiva MDCP, Neuppmann Feres MF, Feres M, Delgado RZR, Silva RAB, Silva LAB. Assessment of microbial contamination in removable orthodontic appliances with and without the use of antimicrobial agents by checkerboard DNA-DNA hybridization analysis. Am J Orthod Dentofacial Orthop 2023; 164:593-601. [PMID: 37306639 DOI: 10.1016/j.ajodo.2023.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 06/13/2023]
Abstract
INTRODUCTION This clinical, crossover, double-blind trial evaluated the microbial contamination of removable orthodontic appliances used by children and the efficacy of 0.12% chlorhexidine gluconate spray use for disinfection. METHODS Twenty children aged 7-11 years were instructed to wear removable orthodontic appliances for 1 week. They were instructed to use a placebo solution (control) or 0.12% chlorhexidine gluconate (experimental) to clean the appliances on days 4 and 7 after installation. After this period, the microbial contamination on the surfaces of the appliance was analyzed using checkerboard DNA-DNA hybridization for 40 bacterial species. Data were analyzed by Fisher exact, t, and Wilcoxon tests (α = 0.05). RESULTS Removable orthodontic appliances were heavily contaminated by the target microorganisms. Streptococcus sanguinis, Streptococcus oralis, Streptococcus gordonii, and Eikenella corrodens were found in 100% of the appliances. Among cariogenic microorganisms, Streptococcus mutans and Streptococcus sobrinus were more abundant than Lactobacillus acidophilus and Lactobacillus casei. Red complex pathogens were more abundant than orange complex species. Purple complex bacteria were the most prevalent among bacterial complexes not associated with specific pathologies, detected in 34% of the samples. After the use of chlorhexidine, the number of cariogenic microorganisms (S. mutans, S. sobrinus, and L. casei) decreased significantly (P <0.05), and the numbers of periodontal pathogenic species from the orange and red complex also decreased significantly (P <0.05). There was no reduction for Treponema socranskii. CONCLUSIONS Removable orthodontic appliances were densely contaminated by several bacterial species. Twice-a-week application of chlorhexidine spray effectively reduced cariogenic and orange and red complex periodontal pathogens.
Collapse
Affiliation(s)
- Paulo Nelson-Filho
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Marcela Perdiza
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Yuri Jivago Silva Ribeiro
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Murilo Fernando Neuppmann Feres
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Magda Feres
- Department of Periodontology, Division of Dentistry Research, University of Guarulhos, Guarulhos, São Paulo, Brazil
| | - Renata Zoraida Rizental Delgado
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Raquel Assed Bezerra Silva
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Lea Assed Bezerra Silva
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
10
|
Duarte PM, Felix E, Santos VR, Figueiredo LC, da Silva HDP, Mendes JAV, Feres M, Miranda TS. Patients with type 2 diabetes and severe periodontitis harbor a less pathogenic subgingival biofilm than normoglycemic individuals with severe periodontitis. J Periodontol 2023; 94:1210-1219. [PMID: 37133975 DOI: 10.1002/jper.22-0657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND Whether, and to what extent, diabetes mellitus (DM) can affect the subgingival biofilm composition remains controversial. Thus, the aim of this study was to compare the composition of the subgingival microbiota of non-diabetic and type 2 diabetic patients with periodontitis using 40 "biomarker bacterial species." METHODS Biofilm samples of shallow (probing depth [PD] and clinical attachment level [CAL] ≤3 mm without bleeding) and deep sites (PD and CAL ≥5 mm with bleeding) of patients with or without type 2 DM were evaluated for levels/proportions of 40 bacterial species by checkerboard DNA-DNA hybridization. RESULTS A total of 828 subgingival biofilm samples from 207 patients with periodontitis (118 normoglycemic and 89 with type 2 DM) were analyzed. The levels of most of the bacterial species evaluated were reduced in the diabetic compared with the normoglycemic group, both in shallow and in deep sites. The shallow and deep sites of patients with type 2 DM presented higher proportions of Actinomyces species, purple and green complexes, and lower proportions of red complex pathogens than those of normoglycemic patients (P < 0.05). CONCLUSIONS Patients with type 2 DM have a less dysbiotic subgingival microbial profile than normoglycemic patients, including lower levels/proportions of pathogens and higher levels/proportions of host-compatible species. Thus, type 2 diabetic patients seem to require less remarkable changes in biofilm composition than non-diabetic patients to develop the same pattern of periodontitis.
Collapse
Affiliation(s)
- Poliana M Duarte
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Florida, USA
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| | - Edcarlos Felix
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| | - Vanessa R Santos
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| | - Luciene C Figueiredo
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| | - Hélio D P da Silva
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| | - Juliana A V Mendes
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| | - Magda Feres
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| | - Tamires S Miranda
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
- Department of Periodontology, College of Dentistry, São Judas Tadeu University, São Paulo, SP, Brazil
| |
Collapse
|
11
|
Arredondo A, Àlvarez G, Isabal S, Teughels W, Laleman I, Contreras MJ, Isbej L, Huapaya E, Mendoza G, Mor C, Nart J, Blanc V, León R. Comparative 16S rRNA gene sequencing study of subgingival microbiota of healthy subjects and patients with periodontitis from four different countries. J Clin Periodontol 2023; 50:1176-1187. [PMID: 37246304 DOI: 10.1111/jcpe.13827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 03/15/2023] [Accepted: 05/02/2023] [Indexed: 05/30/2023]
Abstract
AIM To investigate the differences between the subgingival microbiota of healthy subjects (HS) and periodontitis patients (PP) from four different countries through a metagenomic approach. MATERIALS AND METHODS Subgingival samples were obtained from subjects from four different countries. Microbial composition was analysed through high-throughput sequencing of the V3-V4 region of the 16S rRNA gene. The country of origin, diagnosis and clinical and demographic variables of the subjects were used to analyse the microbial profiles. RESULTS In total, 506 subgingival samples were analysed: 196 from HS and 310 from patients with periodontitis. Differences in richness, diversity and microbial composition were observed when comparing samples pertaining to different countries of origin and different subject diagnoses. Clinical variables, such as bleeding on probing, did not significantly affect the bacterial composition of the samples. A highly conserved core of microbiota associated with periodontitis was detected, while the microbiota associated with periodontally HS was much more diverse. CONCLUSIONS Periodontal diagnosis of the subjects was the main variable explaining the composition of the microbiota in the subgingival niche. Nevertheless, the country of origin also had a significant impact on the microbiota and is therefore an important factor to consider when describing subgingival bacterial communities.
Collapse
Affiliation(s)
- A Arredondo
- Department of Microbiology, DENTAID Research Center, Barcelona, Spain
| | - G Àlvarez
- Department of Microbiology, DENTAID Research Center, Barcelona, Spain
| | - S Isabal
- Department of Microbiology, DENTAID Research Center, Barcelona, Spain
| | - W Teughels
- Department of Oral Health Sciences, KU Leuven and Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - I Laleman
- Department of Oral Health Sciences, KU Leuven and Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - M J Contreras
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - L Isbej
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Pharmacology and Toxicology Programme, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - E Huapaya
- Department of Periodontology, School of Dentistry, Universidad Científica del Sur, Lima, Peru
| | - G Mendoza
- Department of Periodontology, School of Dentistry, Universidad Científica del Sur, Lima, Peru
- Department of Periodontics, University of Pennsylvania, School of dental Medicine, Philadelphia, Pennsylvania, USA
| | - C Mor
- Department of Periodontology, Universitat Internacional de Catalunya, Barcelona, Spain
| | - J Nart
- Department of Periodontology, Universitat Internacional de Catalunya, Barcelona, Spain
| | - V Blanc
- Department of Microbiology, DENTAID Research Center, Barcelona, Spain
| | - R León
- Department of Microbiology, DENTAID Research Center, Barcelona, Spain
| |
Collapse
|
12
|
Mazurel D, Carda-Diéguez M, Langenburg T, Žiemytė M, Johnston W, Martínez CP, Albalat F, Llena C, Al-Hebshi N, Culshaw S, Mira A, Rosier BT. Nitrate and a nitrate-reducing Rothia aeria strain as potential prebiotic or synbiotic treatments for periodontitis. NPJ Biofilms Microbiomes 2023; 9:40. [PMID: 37330520 PMCID: PMC10276839 DOI: 10.1038/s41522-023-00406-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/05/2023] [Indexed: 06/19/2023] Open
Abstract
A few studies indicate that nitrate can reduce dysbiosis from a periodontitis point of view. However, these experiments were performed on samples from healthy individuals, and it is unknown if nitrate will be effective in periodontal patients, where the presence of nitrate-reducing bacteria is clearly reduced. The aim of this study was to test the effect of nitrate and a nitrate-reducing R. aeria (Ra9) on subgingival biofilms of patients with periodontitis. For this, subgingival plaque was incubated with 5 mM nitrate for 7 h (n = 20) or 50 mM nitrate for 12 h (n = 10), achieving a ~50% of nitrate reduction in each case. Additionally, Ra9 was combined with 5 mM nitrate (n = 11), increasing the nitrate reduced and nitrite produced (both p < 0.05). The addition of nitrate to periodontitis communities decreased biofilm mass (50 mM > 5 mM, both p < 0.05). Five millimolar nitrate, 50 mM nitrate and 5 mM nitrate + Ra9 led to 3, 28 and 20 significant changes in species abundance, respectively, which were mostly decreases in periodontitis-associated species. These changes led to a respective 15%, 63% (both p < 0.05) and 6% (not significant) decrease in the dysbiosis index. Using a 10-species biofilm model, decreases in periodontitis-associated species in the presence of nitrate were confirmed by qPCR (all p < 0.05). In conclusion, nitrate metabolism can reduce dysbiosis and biofilm growth of periodontitis communities. Five millimolar nitrate (which can be found in saliva after vegetable intake) was sufficient, while increasing this concentration to 50 mM (which could be achieved by topical applications such as a periodontal gel) increased the positive effects. Ra9 increased the nitrate metabolism of periodontitis communities and should be tested in vivo.
Collapse
Affiliation(s)
- Danuta Mazurel
- Genomics & Health Department, FISABIO Institute, Valencia, Spain
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, Netherlands
| | | | | | - Miglė Žiemytė
- Genomics & Health Department, FISABIO Institute, Valencia, Spain
| | - William Johnston
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| | | | | | - Carmen Llena
- Department of Stomatology, University of Valencia, Valencia, Spain
| | - Nezar Al-Hebshi
- Oral Microbiome Research Laboratory, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
| | - Shauna Culshaw
- Oral Sciences, Glasgow Dental Hospital and School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Alex Mira
- Genomics & Health Department, FISABIO Institute, Valencia, Spain.
| | - Bob T Rosier
- Genomics & Health Department, FISABIO Institute, Valencia, Spain.
| |
Collapse
|
13
|
Tanaka CJ, Rodrigues JA, Pingueiro JMS, Macedo TT, Feres M, Shibli JA, Bueno-Silva B. Antibacterial Activity of a Bioactive Tooth-Coating Material Containing Surface Pre-Reacted Glass in a Complex Multispecies Subgingival Biofilm. Pharmaceutics 2023; 15:1727. [PMID: 37376175 DOI: 10.3390/pharmaceutics15061727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Bioactive materials were developed with the ability to release fluoride and provide some antimicrobial potential, to be widely used in dentistry today. However, few scientific studies have evaluated the antimicrobial activity of bioactive surface pre-reacted glass (S-PRG) coatings (PRG Barrier Coat, Shofu, Kyoto, Japan) on periodontopathogenic biofilms. This study evaluated the antibacterial activity of S-PRG fillers on the microbial profile of multispecies subgingival biofilms. A Calgary Biofilm Device (CBD) was used to grow a 33-species biofilm related to periodontitis for 7 days. The S-PRG coating was applied on CBD pins from the test group and photo-activated (PRG Barrier Coat, Shofu), while the control group received no coating. Seven days after treatment, the total bacterial counts, metabolic activity, and microbial profile of the biofilms were observed using a colorimetric assay and DNA-DNA hybridization. Statistical analyses were applied; namely, the Mann-Whitney, Kruskal-Wallis, and Dunn's post hoc tests. The bacterial activity of the test group was reduced by 25.7% compared with that of the control group. A statistically significant reduction was observed for the counts of 15 species: A. naeslundii, A. odontolyticus, V. parvula, C. ochracea, C. sputigena, E. corrodens, C. gracilis, F. nucleatum polymorphum, F. nucleatum vincentii, F. periodonticum, P. intermedia, P. gingivalis, G. morbillorum, S. anginosus, and S. noxia (p ≤ 0.05). The bioactive coating containing S-PRG modified the composition of the subgingival biofilm in vitro, thereby decreasing colonization by pathogens.
Collapse
Affiliation(s)
- Caio Junji Tanaka
- School of Dentistry, Mogi das Cruzes University, Mogi das Cruzes 08780-911, Sao Paulo, Brazil
- Dental Research Division, Department of Periodontology and Restorative Dentistry, Guarulhos University UNIVERITAS/UNG, Guarulhos 07011-010, Sao Paulo, Brazil
- School of Dentistry, Sao Judas Tadeu University, Sao Paulo 05503-001, Sao Paulo, Brazil
| | - José Augusto Rodrigues
- Dental Research Division, Department of Periodontology and Restorative Dentistry, Guarulhos University UNIVERITAS/UNG, Guarulhos 07011-010, Sao Paulo, Brazil
- School of Dentistry, Sao Judas Tadeu University, Sao Paulo 05503-001, Sao Paulo, Brazil
| | - João Marcos Spessoto Pingueiro
- Dental Research Division, Department of Periodontology and Restorative Dentistry, Guarulhos University UNIVERITAS/UNG, Guarulhos 07011-010, Sao Paulo, Brazil
| | - Tatiane Tiemi Macedo
- Dental Research Division, Department of Periodontology and Restorative Dentistry, Guarulhos University UNIVERITAS/UNG, Guarulhos 07011-010, Sao Paulo, Brazil
| | - Magda Feres
- Dental Research Division, Department of Periodontology and Restorative Dentistry, Guarulhos University UNIVERITAS/UNG, Guarulhos 07011-010, Sao Paulo, Brazil
- Department of Oral Medicine, Infection, and Immunity, Division of Periodontology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Jamil Awad Shibli
- Dental Research Division, Department of Periodontology and Restorative Dentistry, Guarulhos University UNIVERITAS/UNG, Guarulhos 07011-010, Sao Paulo, Brazil
| | - Bruno Bueno-Silva
- Dental Research Division, Department of Periodontology and Restorative Dentistry, Guarulhos University UNIVERITAS/UNG, Guarulhos 07011-010, Sao Paulo, Brazil
- Department of Biosciences, Piracicaba Dental School, University of Campinas-UNICAMP, Piracicaba 13414-903, Sao Paulo, Brazil
| |
Collapse
|
14
|
Veras EL, Castro dos Santos N, Souza JGS, Figueiredo LC, Retamal-Valdes B, Barão VAR, Shibli J, Bertolini M, Faveri M, Teles F, Duarte P, Feres M. Newly identified pathogens in periodontitis: evidence from an association and an elimination study. J Oral Microbiol 2023; 15:2213111. [PMID: 37261036 PMCID: PMC10228317 DOI: 10.1080/20002297.2023.2213111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 06/02/2023] Open
Abstract
We assessed the level of evidence for the presence of new periodontal pathogens by (i) comparing the occurrence of non-classical periodontal taxa between healthy vs. periodontitis patients (Association study); (ii) assessing the modifications in the prevalence and levels of these species after treatments (Elimination study). In the Association study, we compared the prevalence and levels of 39 novel bacterial species between periodontally healthy and periodontitis patients. In the Elimination study, we analyzed samples from periodontitis patients assigned to receive scaling and root planing alone or with metronidazole+ amoxicillin TID/ 14 days. Levels of 79 bacterial species (39 novel and 40 classic) were assessed at baseline, 3 and 12 months post-therapy. All samples were analyzed using Checkerboard DNA-DNA hybridization. Out of the 39 novel species evaluated, eight were categorized as having strong and four as having moderate association with periodontitis. Our findings suggest strong evidence supporting Lancefieldella rimae, Cronobacter sakazakii, Pluralibacter gergoviae, Enterococcus faecalis, Eubacterium limosum, Filifactor alocis, Haemophilus influenzae, and Staphylococcus warneri, and moderate evidence supporting Escherichia coli, Fusobacterium necrophorum, Spiroplasma ixodetis, and Staphylococcus aureus as periodontal pathogens. These findings contribute to a better understanding of the etiology of periodontitis and may guide future diagnostic and interventional studies.
Collapse
Affiliation(s)
- Eduardo Lobão Veras
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| | - Nídia Castro dos Santos
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
- The Forsyth Institute, Cambridge, MA, USA
| | - João Gabriel S. Souza
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
- Department of Dental Research, Dental Science School (Faculdade de Ciências Odontológicas - FCO), Montes Claros, Brazil
| | - Luciene C. Figueiredo
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| | - Belen Retamal-Valdes
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| | - Valentim A. R. Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Brazil
| | - Jamil Shibli
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| | - Martinna Bertolini
- Department of Periodontics and Preventive Dentistry, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marcelo Faveri
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| | - Flavia Teles
- Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Poliana Duarte
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| | - Magda Feres
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| |
Collapse
|
15
|
Herrera BS, Henz SL, Dua S, Martin L, Teles RP, Patel M, Teles FRF. Pursuing new periodontal pathogens with an improved RNA-oligonucleotide quantification technique (ROQT). Arch Oral Biol 2023; 152:105721. [PMID: 37196563 DOI: 10.1016/j.archoralbio.2023.105721] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/22/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023]
Abstract
OBJECTIVE The aim of this study was to optimize the sensitivity, specificity and cost-effectiveness of the RNA-Oligonucleotide Quantification Technique (ROQT) in order to identify periodontal pathogens that remain unrecognized or uncultured in the oral microbiome. DESIGN Total nucleic acids (TNA) were extracted from subgingival biofilm samples using an automated process. RNA, DNA and Locked Nucleic Acid (LNA) digoxigenin-labeled oligonucleotide probes targeting 5 cultivated/named species and 16 uncultivated or unnamed bacterial taxa were synthesized. Probe specificity was determined by targeting 96 oral bacterial species; sensitivity was assessed using serial dilutions of reference bacterial strains. Different stringency temperatures were compared and new standards were tested. The tested conditions were evaluated analyzing samples from periodontally healthy individuals, and patients with moderate or severe periodontitis. RESULTS The automated extraction method at 63⁰C along with LNA-oligunucleotides probes, and use of reverse RNA sequences for standards yielded stronger signals without cross-reactions. In the pilot clinical study, the most commonly detected uncultivated/unrecognized species were Selenomonas sp. HMT 134, Prevotella sp. HMT 306, Desulfobulbus sp. HMT 041, Synergistetes sp. HMT 360 and Bacteroidetes HMT 274. In the cultivated segment of the microbiota, the most abundant taxa were T. forsythia HMT 613 and Fretibacterium fastidiosum (formerly Synergistetes) HMT 363. CONCLUSIONS In general, samples from severe patients had the greatest levels of organisms. Classic (T. forsythia, P. gingivalis) and newly proposed (F. alocis and Desulfobulbus sp. HMT 041) pathogens were present in greater amounts in samples from severe periodontitis sites, followed by moderate periodontitis sites.
Collapse
Affiliation(s)
- Bruno S Herrera
- Department of Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sandra L Henz
- Department of Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Preventive and Social Dentistry, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Shawn Dua
- Department of Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lynn Martin
- Department of Basic and Translational Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, USA
| | - Ricardo P Teles
- Department of Periodontics, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, USA
| | - Michele Patel
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA, USA.
| | - Flavia R F Teles
- Department of Basic and Translational Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, USA
| |
Collapse
|
16
|
Afacan B, Ilhan HA, Köse T, Emingil G. Gingival crevicular fluid galectin-3 and interleukin-1 beta levels in stage 3 periodontitis with grade B and C. Clin Oral Investig 2023:10.1007/s00784-023-04991-7. [PMID: 37017753 DOI: 10.1007/s00784-023-04991-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 03/28/2023] [Indexed: 04/06/2023]
Abstract
OBJECTIVES This study aims to evaluate GCF Galectin-3 and Interleukin-1 beta (IL-β) levels in different grades (B and C) of stage 3 periodontitis, concurrently, and also to investigate their discriminative efficiencies in periodontal diseases. MATERIALS AND METHODS A total of 80 systemically healthy and non-smoker individuals, 20 stage 3 grade C (S3GC) periodontitis 20 stage 3 grade B (S3GB) periodontitis, 20 gingivitis, and 20 periodontally healthy were enrolled. Clinical periodontal parameters were recorded and GCF Galectin-3 and IL-1β total amounts were measured by ELISA. Receiver operating characteristics curve was used for estimating the area under the curve (AUC). RESULTS Galectin-3 and IL-1β were detected in all participants. Both periodontitis groups had significantly higher GCF Galectin-3 total amounts than periodontally healthy controls (p <0.05). S3GC periodontitis group had also significantly higher GCF Galectin-3 levels than gingivitis group (p <0.05). GCF IL-1β levels in periodontitis groups were higher than gingivitis and periodontally healthy groups (p <0.05). Galectin-3 exhibited an AUC value of 0.89 with 95% sensitivity to discriminate S3GC periodontitis from periodontal health, an AUC value of 0.87 with 80% sensitivity to discriminate S3GC periodontitis versus gingivitis, while an AUC value of 0.85 with 95% sensitivity to discriminate S3GB periodontitis from healthy controls. CONCLUSIONS GCF Galectin-3 levels are involved in the pathogenesis of periodontal diseases. Galectin-3 showed excellent diagnostic performances to discriminate S3GB and S3GC periodontitis from periodontal health and gingivitis. CLINICAL RELEVANCE The present findings suggest that GCF Galectin-3 levels may be useful in the diagnosis of the periodontal diseases.
Collapse
Affiliation(s)
- Beral Afacan
- Department of Periodontology, School of Dentistry, Adnan Menderes University, Aydın, Turkey.
| | - Harika Atmaca Ilhan
- Department of Biology, Section of Molecular Biology, School of Science, Celal Bayar University, Manisa, Turkey
| | - Timur Köse
- Department of Biostatistics and Medical Informatics, School of Medicine, Ege University, İzmir, Turkey
| | - Gülnur Emingil
- Department of Periodontology, School of Dentistry, Ege University, İzmir, Turkey
| |
Collapse
|
17
|
Portes J, Bullón B, Gallardo I, Fernandez-Riejos P, Quiles JL, Giampieri F, Bullón P. Prevalence of undiagnosed diabetes and prediabetes related to periodontitis and its risk factors in elderly individuals. J Dent 2023; 132:104480. [PMID: 36948381 DOI: 10.1016/j.jdent.2023.104480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 03/24/2023] Open
Abstract
OBJECTIVE The prevalence of undiagnosed diabetes was estimated to increase with age and can reach 3.5%. The purpose of the study was to evaluate the prevalence of undiagnosed diabetes and prediabetes in the elderly patients who attended a dental clinic and to find common risk factors. METHODS Male patients, older than 50 years, attended their first dental visit to the School of Dentistry for a period of two years, and it was proposed to evaluate undiagnosed type 2 diabetes mellitus. Periodontal, biochemical, microbiological examinations, nutritional profile, and physical activity were performed. RESULTS A total of 106 patients were examined, 6 (5.6%) had diabetes, and 37 (34.9%) had prediabetes without prior diagnosis. The severity of periodontitis was greater in patients with diabetes. Most of the patients were overweight and had increased systolic blood pressure. Patients with prediabetes and periodontitis had a low adherence to the Mediterranean diet. Tannerella forsythia was present in more patients with periodontitis, and the prevalence of Aggregatibacter actinomycetemcomitans is practically absent in groups with periodontitis, except for the group with diabetes. CONCLUSIONS In the population studied, the prevalence of patients without a diagnosis of diabetes and prediabetes was very high and underestimated. The increased severity of periodontitis in patients with diabetes and in conjunction with the high level of cortisol seen in patients with periodontitis, especially those with diabetes, emphasize the dysregulation of the immunoinflammatory system. CLINICAL SIGNIFICANCE It is essential to add all this data to our dental practice to cover patient health with a broader landscape.
Collapse
Affiliation(s)
- Juliana Portes
- Department of Periodontology, Dental School, University of Seville, C/Avicena, s/n, 41009 Seville, Spain; Dental School, Veiga de Almeida University, Rua Ibituruna, 108, 20271-020, Maracanã, Rio de Janeiro, Brazil
| | - Beatriz Bullón
- Department of Periodontology, Dental School, University of Seville, C/Avicena, s/n, 41009 Seville, Spain
| | - Isabel Gallardo
- Department of Periodontology, Dental School, University of Seville, C/Avicena, s/n, 41009 Seville, Spain
| | | | - Jose Luis Quiles
- Department of Physiology, Institute of Nutrition and Food Technology 'José Mataix', Center for Biomedical Research, Universidad de Granada, 18071 Armilla, Spain
| | - Francesca Giampieri
- Resarch Group on Food, Nutritional Biochemistry and Health. Univeridad Europea del Atlantico.39011 Santander, Spain
| | - Pedro Bullón
- Department of Periodontology, Dental School, University of Seville, C/Avicena, s/n, 41009 Seville, Spain.
| |
Collapse
|
18
|
Bostanci N, Belibasakis GN. Precision periodontal care: from omics discoveries to chairside diagnostics. Clin Oral Investig 2023; 27:971-978. [PMID: 36723713 PMCID: PMC9985578 DOI: 10.1007/s00784-023-04878-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/22/2023] [Indexed: 02/02/2023]
Abstract
The interface of molecular science and technology is guiding the transformation of personalized to precision healthcare. The application of proteomics, genomics, transcriptomics, and metabolomics is shaping the suitability of biomarkers for disease. Prior validation of such biomarkers in large and diverse patient cohorts helps verify their clinical usability. Incorporation of molecular discoveries into routine clinical practice relies on the development of customized assays and devices that enable the rapid delivery of analytical data to the clinician, while the patient is still in session. The present perspective review addresses this topic under the prism of precision periodontal care. Selected promising research attempts to innovate technological platforms for oral diagnostics are brought forward. Focus is placed on (a) the suitability of saliva as a conveniently sampled biological specimen for assessing periodontal health, (b) proteomics as a high-throughput approach for periodontal disease biomarker identification, and (c) chairside molecular diagnostic assays as a technological funnel for transitioning from the laboratory benchtop to the clinical point-of-care.
Collapse
Affiliation(s)
- Nagihan Bostanci
- Section of Oral Health and Periodontology, Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Alfred Nobels alle 8, 141 52, Huddinge, Stockholm, Sweden.
| | - Georgios N Belibasakis
- Section of Oral Health and Periodontology, Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Alfred Nobels alle 8, 141 52, Huddinge, Stockholm, Sweden.
| |
Collapse
|
19
|
Àlvarez G, Arredondo A, Isabal S, Teughels W, Laleman I, Contreras MJ, Isbej L, Huapaya E, Mendoza G, Mor C, Nart J, Blanc V, León R. Association of nine pathobionts with periodontitis in four South American and European countries. J Oral Microbiol 2023; 15:2188630. [PMID: 36950255 PMCID: PMC10026778 DOI: 10.1080/20002297.2023.2188630] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023] Open
Abstract
Aim Our aim was to compare the prevalence and load of nine pathobionts in subgingival samples of healthy individuals and periodontitis patients from four different countries. Methods Five hundred and seven subgingival biofilm samples were collected from healthy subjects and periodontitis patients in Belgium, Chile, Peru and Spain. The prevalence and load of Eubacterium brachy, Filifactor alocis, Fretibacterium fastidiosum, Porphyromonas endodontalis, Porphyromonas gingivalis, Selenomonas sputigena, Treponema denticola, Tannerella forsythia and Treponema socranskii were measured by quantitative PCR. Results The association with periodontitis of all species, except for T. socranskii, was confirmed in all countries but Peru, where only P. endodontalis, P. gingivalis and T. denticola were found to be significantly associated. Moreover, most species showed higher loads at greater CAL and PPD, but not where there was BOP. Through Principal Component Analysis, samples showed clearly different distributions by diagnosis, despite observing a smaller separation in Peruvian samples. Conclusions Unlike prevalence, relative load was found to be a reliable variable to discriminate the association of the species with periodontitis. Based on this, F. alocis, P. endodontalis, P. gingivalis, T. denticola and T. forsythia may be biomarkers of disease in Belgium, Chile and Spain, due to their significantly higher abundance in periodontitis patients.
Collapse
Affiliation(s)
- Gerard Àlvarez
- Department of Microbiology, DENTAID Research Center, Cerdanyola del Vallès, Spain
| | - Alexandre Arredondo
- Department of Microbiology, DENTAID Research Center, Cerdanyola del Vallès, Spain
| | - Sergio Isabal
- Department of Microbiology, DENTAID Research Center, Cerdanyola del Vallès, Spain
| | - Wim Teughels
- Department of Oral Health Sciences, KU Leuven, Belgium & Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - Isabelle Laleman
- Department of Oral Health Sciences, KU Leuven, Belgium & Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - María José Contreras
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Lorena Isbej
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Pharmacology and Toxicology Programme, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Enrique Huapaya
- Department of Periodontology, School of Dentistry, Universidad Científica del Sur, Lima, Peru
| | - Gerardo Mendoza
- Department of Periodontology, School of Dentistry, Universidad Científica del Sur, Lima, Peru
- Department of Periodontics, University of Pennsylvania, School of dental Medicine, Philadelphia, Pennsylvania, USA
| | - Carolina Mor
- Department of Periodontology, Universitat Internacional de Catalunya, Barcelona, Spain
| | - José Nart
- Department of Periodontology, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Vanessa Blanc
- Department of Microbiology, DENTAID Research Center, Cerdanyola del Vallès, Spain
| | - Rubén León
- Department of Microbiology, DENTAID Research Center, Cerdanyola del Vallès, Spain
- CONTACT Rubén León Department of Microbiology, DENTAID Research Center, Ronda Can Fatjó no. 10, 08290, Cerdanyola del Vallès, Spain
| |
Collapse
|
20
|
Àlvarez G, Soler-Ollé A, Isabal S, León R, Blanc V. Bacterial decontamination of toothbrushes by immersion in a mouthwash containing 0.05% chlorhexidine and 0.05% cetylpyridinium chloride: A randomized controlled trial. Int J Dent Hyg 2022; 21:357-364. [PMID: 36524318 DOI: 10.1111/idh.12652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 09/24/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Toothbrushes are colonized by microorganisms, implying a risk of infection. That risk can be reduced by decreasing the microbial contamination of the filaments. Therefore, this study aimed to determine the antiseptic efficacy of a 0.05% chlorhexidine + 0.05% cetylpyridinium chloride mouthwash on toothbrushes. METHODS A total of twelve toothbrushes used three times/day for 14 days by orally and systemically healthy people were randomly split into two groups, and their heads were immersed for 2 h in PBS (control) or Perio·Aid Active Control (treatment). The microorganisms were recovered, and their number was calculated by culture, quantitative PCR, and viability PCR. Statistical differences were first assessed with a two-way mixed ANOVA and subsequently with Student's t-test. RESULTS The results showed no statistical differences in the total number of cells for the treatment (mean ± CI95% of 7.27 ± 1.09 log10 bacteria/ml) and the control (7.62 ± 0.64 log10 bacteria/ml) groups, but a significantly lower number of live cells in the treatment group (4.58 ± 0.61 log10 viable bacteria/ml and 2.15 ± 1.42 log10 cfu/ml) than in the control group (6.49 ± 1.39 log10 viable bacteria/ml and 5.04 ± 0.93 log10 cfu/ml). CONCLUSIONS Based on our findings, sanitization of toothbrushes with this mouthwash reduces the number of live microorganisms adhered to the filaments. Such decrease of the bacterial load could include bacteria from the oral cavity, from the environment, and from nearby toothbrushes since the quantification was not limited to any bacterial taxon.
Collapse
Affiliation(s)
- Gerard Àlvarez
- Department of Microbiology, DENTAID Research Center, Cerdanyola del Vallès, Spain
| | - Agnès Soler-Ollé
- Department of Microbiology, DENTAID Research Center, Cerdanyola del Vallès, Spain
| | - Sergio Isabal
- Department of Microbiology, DENTAID Research Center, Cerdanyola del Vallès, Spain
| | - Rubén León
- Department of Microbiology, DENTAID Research Center, Cerdanyola del Vallès, Spain
| | - Vanessa Blanc
- Department of Microbiology, DENTAID Research Center, Cerdanyola del Vallès, Spain
| |
Collapse
|
21
|
Bertolini M, Costa RC, Barão VAR, Cunha Villar C, Retamal-Valdes B, Feres M, Silva Souza JG. Oral Microorganisms and Biofilms: New Insights to Defeat the Main Etiologic Factor of Oral Diseases. Microorganisms 2022; 10:microorganisms10122413. [PMID: 36557666 PMCID: PMC9781395 DOI: 10.3390/microorganisms10122413] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 07/19/2022] [Indexed: 12/12/2022] Open
Abstract
The oral cavity presents a highly diverse community of microorganisms due to the unique environmental conditions for microbial adhesion and growth [...].
Collapse
Affiliation(s)
- Martinna Bertolini
- Department of Periodontics and Preventive Dentistry, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15106, USA
- Correspondence:
| | - Raphael Cavalcante Costa
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba 13083-970, SP, Brazil
| | - Valentim Adelino Ricardo Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba 13083-970, SP, Brazil
| | - Cristina Cunha Villar
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-010, SP, Brazil
| | | | - Magda Feres
- Dental Research Division, Guarulhos University, Guarulhos 05508-010, SP, Brazil
- Center for Clinical and Translational Research, Forsyth Institute, Boston, MA 02142, USA
| | - João Gabriel Silva Souza
- Dental Research Division, Guarulhos University, Guarulhos 05508-010, SP, Brazil
- Dental Science School (Faculdade de Ciências Odontológicas—FCO), Montes Claros 39401-303, MG, Brazil
- Oncovida Cancer Research Center, Montes Claros 39400-111, MG, Brazil
| |
Collapse
|
22
|
Gaba FI, González RC, Martïnez RG. The Role of Oral Fusobacterium nucleatum in Female Breast Cancer: A Systematic Review and Meta-Analysis. Int J Dent 2022; 2022:1876275. [PMID: 36466367 PMCID: PMC9711985 DOI: 10.1155/2022/1876275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/17/2022] [Accepted: 11/01/2022] [Indexed: 02/06/2024] Open
Abstract
INTRODUCTION Breast cancer is the world's most prevalent malignancy, with an increasing incidence and a predisposition for postpubertal females from all cultural and ethnic backgrounds. More recently, oral Fusobacterium nucleatum species have been observed in cancerous human breast tissue, drawing attention to the role of microbes in cancer pathogenesis. OBJECTIVES Investigating oral Fusobacterium nucleatum species as potential biomarkers for female-specific breast cancer. METHODS A systematic search in The Central Register of Controlled Trials, EMBASE, EBSCO, NCBI, and MEDLINE databases was undertaken from the 1st January, 1983-31st March, 2022. Articles included were in English and based on women between the ages of 18-96 years with confirmed gingivitis/periodontal disease and breast cancer diagnoses from registered specialists. Authors extracted data independently, and a meta-analysis of risk estimations measuring associations between oral Fusobacterium nucleatum species and female-specific breast cancer was elucidated via calculated relative risks and 95% confidence intervals. RESULTS AXIS tool analysis revealed 78.70% of articles with a positive correlation between oral Fusobacterium nucleatum and female-specific breast cancer. The risk of breast cancer development increased with significant levels of oral Fusobacterium nucleatum due to gingivitis/periodontitis (relative risk = 1.78, 95% confidence interval = 1.63-1.91). Low-moderate statistical heterogeneity was found (I 2 = 41.39%; P = 0.02), and the importance of periodontal status on breast cancer pathogenesis was determined (relative risk = 1.24, 95% confidence interval = 1.01-1.30). CONCLUSIONS Oral Fusobacterium nucleatum species are a risk factor for breast cancer development, thus elevating their biomarker potentiality.
Collapse
Affiliation(s)
- Fariah I. Gaba
- Mondzorg Scheveningen, Renbaanstraat 75, 2586 EZ, The Hague, Netherlands
| | - Raquel Carcelén González
- Faculty of Health and Science, CEU Cardenal Herrera University, Carrer Lluís Vives 1, 46115 Alfara del Patriarca, Valencia, Spain
| | - Raquel González Martïnez
- CIMEV Institute in Spain, Periodontics and Oral Surgery at the Faculty of Health and Science, CEU Cardenal Herrera University, Carrer Lluís Vives 1, 46115 Alfara del Patriarca, Valencia, Spain
| |
Collapse
|
23
|
Faveri M, Retamal-Valdes B, Mestnik MJ, de Figueiredo LC, Barão VAR, Souza JGS, Duarte PM, Feres M. Microbiological effects of amoxicillin plus metronidazole in the treatment of young patients with Stages III and IV periodontitis: A secondary analysis from a 1-year double-blinded placebo-controlled randomized clinical trial. J Periodontol 2022; 94:498-508. [PMID: 35869939 DOI: 10.1002/jper.21-0171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND Despite the body of evidence supporting the clinical benefits of metronidazole (MTZ) and amoxicillin (AMX) in the treatment of young patients with periodontitis, the microbiological outcomes of this antibiotic protocol have been less explored. This study evaluated the microbiological effects of adjunctive MTZ+AMX in the treatment of young patients with periodontitis. METHODS Subjects with periodontitis Stages III or IV and ≤30 years old were randomly allocated to receive scaling and root planing (SRP) with placebo (n = 15) or with MTZ (400 mg) and AMX (500 mg) three times a day for 14 days (n = 15). Nine subgingival biofilm samples per subject (three samples from each probing depth (PD) category: ≤3, 4-6, and ≥7 mm) were collected at baseline and 3-, 6-, and 12-months post-treatment and individually analyzed for 40 bacterial species by checkerboard DNA-DNA hybridization. RESULTS Thirty subjects (15/group) with mean ages 27.6 ± 3.5 (control) and 26.8 ± 3.9 (test) were included. At 12 months post-therapy, the antibiotic group harbored lower proportions of red complex (1.3%) than the placebo group (12.5%) (p < 0.05). SRP + MTZ+AMX was more effective than mechanical treatment in reducing levels/proportions of several pathogens and increasing proportions of Actinomyces species (p < 0.05). Levels/proportions of Aggregatibacter actinomycetemcomitans were only reduced in the antibiotic group (p < 0.05). This group also exhibited greater reduction in the number of sites with PD ≥5 mm and higher percentage of subjects reaching the clinical end point for treatment (≤4 sites with PD ≥5 mm) than the control group (p < 0.05). CONCLUSION SRP+MTZ+AMX allowed for establishing a long-term healthier subgingival biofilm community and periodontal clinical condition, than SRP only.
Collapse
Affiliation(s)
- Marcelo Faveri
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, São Paulo, Brazil
| | - Belen Retamal-Valdes
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, São Paulo, Brazil
| | - Maria Josefa Mestnik
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, São Paulo, Brazil
| | | | - Valentim Adelino Ricardo Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Brazil
| | - João Gabriel Silva Souza
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, São Paulo, Brazil.,Dental Science School (Faculdade de Ciências Odontológicas-FCO), Montes, Claros, Brazil
| | - Poliana Mendes Duarte
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, São Paulo, Brazil.,Department of Periodontology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Magda Feres
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, São Paulo, Brazil.,The Forsyth Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
24
|
Sirisereephap K, Maekawa T, Tamura H, Hiyoshi T, Domon H, Isono T, Terao Y, Maeda T, Tabeta K. Osteoimmunology in Periodontitis: Local Proteins and Compounds to Alleviate Periodontitis. Int J Mol Sci 2022; 23:5540. [PMID: 35628348 PMCID: PMC9146968 DOI: 10.3390/ijms23105540] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 01/25/2023] Open
Abstract
Periodontitis is one of the most common oral diseases resulting in gingival inflammation and tooth loss. Growing evidence indicates that it results from dysbiosis of the oral microbiome, which interferes with the host immune system, leading to bone destruction. Immune cells activate periodontal ligament cells to express the receptor activator of nuclear factor kappa-B (NF-κB) ligand (RANKL) and promote osteoclast activity. Osteocytes have active roles in periodontitis progression in the bone matrix. Local proteins are involved in bone regeneration through functional immunological plasticity. Here, we discuss the current knowledge of cellular and molecular mechanisms in periodontitis, the roles of local proteins, and promising synthetic compounds generating a periodontal regeneration effect. It is anticipated that this may lead to a better perception of periodontitis pathophysiology.
Collapse
Affiliation(s)
- Kridtapat Sirisereephap
- Division of Periodontology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (K.S.); (H.T.); (K.T.)
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (T.H.); (T.M.)
- Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tomoki Maekawa
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (T.H.); (T.M.)
| | - Hikaru Tamura
- Division of Periodontology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (K.S.); (H.T.); (K.T.)
| | - Takumi Hiyoshi
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (T.H.); (T.M.)
| | - Hisanori Domon
- Division of Microbiology and Infectious Disease, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (H.D.); (T.I.); (Y.T.)
| | - Toshihito Isono
- Division of Microbiology and Infectious Disease, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (H.D.); (T.I.); (Y.T.)
| | - Yutaka Terao
- Division of Microbiology and Infectious Disease, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (H.D.); (T.I.); (Y.T.)
| | - Takeyasu Maeda
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (T.H.); (T.M.)
| | - Koichi Tabeta
- Division of Periodontology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (K.S.); (H.T.); (K.T.)
| |
Collapse
|
25
|
Jung W, Jang S. Oral Microbiome Research on Oral Lichen Planus: Current Findings and Perspectives. BIOLOGY 2022; 11:biology11050723. [PMID: 35625451 PMCID: PMC9138428 DOI: 10.3390/biology11050723] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 12/12/2022]
Abstract
Simple Summary Oral lichen planus is a disease of the oral mucosa, which frequently affects women aged 40 years or older. Though the T cell-mediated immune response is involved in the development of oral lichen planus, attempts to identify a microorganism that causes the disease have been unsuccessful. Recent studies on the development of oral lichen planus are focusing on the role of the oral microbiome, which includes oral microbiota and their products, and the host environment. The role of the human microbiome in various diseases has been identified and regulating the microbiome is becoming important in personalized medicine. In this review, we summarized current findings on the role of the oral microbiome in the development of oral lichen planus. The homeostasis of the oral microbiome is disrupted in patients, and functional analysis of oral microbiota and oral mucosa implies that pathways involved in defense against bacterial infection and in the inflammatory response are activated in the oral lichen planus-associated oral microbiome. Though the lack of studies to date makes it difficult to conclude, further studies on the oral microbiome associated with the disease will enable a holistic understanding of the role of the oral microbiome in the development of oral lichen planus and developing a personalized therapy for the disease. Abstract Oral lichen planus (OLP) is a chronic inflammatory disease of the oral mucosa with an unknown etiology. The role of oral microbes in the development of OLP has gained researchers’ interest. In this review, we summarized the findings of studies focused on the relationship between OLP and oral microbiome, which includes the composition of oral microbiota, molecules produced by oral microbiota or the host, and the oral environment of the host. According to the studies, the oral microbial community in OLP patients undergoes dysbiosis, and the microbial dysbiosis in OLP patients is more prominent in the buccal mucosa than in the saliva. However, no same microorganisms have been suggested to be associated with OLP in multiple investigations, implying that the functional aspects of the oral microbiota are more important in OLP development than the composition of the oral microbiota. According to studies on host factors that make up the oral environment, signal pathways involved in cellular processes, such as keratinization, inflammation, and T cell responses are triggered in OLP. Studies on the functional aspects of the oral microbiota, as well as interactions between the host and the oral microbiota, are still lacking, and more research is required.
Collapse
Affiliation(s)
- Won Jung
- Department of Oral Medicine, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju-si 54907, Korea;
- Research Institute of Clinical Medicine, Jeonbuk National University, Jeonju-si 54907, Korea
- Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju-si 54907, Korea
| | - Sungil Jang
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju-si 54907, Korea
- Correspondence: ; Tel.: +82-63-270-4027
| |
Collapse
|
26
|
Chen G, Sun Q, Cai Q, Zhou H. Outer Membrane Vesicles From Fusobacterium nucleatum Switch M0-Like Macrophages Toward the M1 Phenotype to Destroy Periodontal Tissues in Mice. Front Microbiol 2022; 13:815638. [PMID: 35391731 PMCID: PMC8981991 DOI: 10.3389/fmicb.2022.815638] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
Periodontitis is a chronic inflammatory oral disease that affects nearly 50% of all adults. Fusobacterium nucleatum (F. nucleatum) is known to be involved in the formation and development of periodontitis. Outer membrane vesicles (OMVs) harboring toxic bacterial components are continuously released during F. nucleatum growth and regulate the extent of the inflammatory response by controlling the functions of immune and non-immune cells in tissues. Macrophages are important immune cells in periodontal tissue that resist pathogen invasion and play an important role in the pathophysiological process of periodontitis. However, the role of the interaction between F. nucleatum OMVs and macrophages in the occurrence and development of periodontitis has not been studied. The purpose of this study was to clarify the effect of F. nucleatum OMVs on the polarization of macrophages and the roles of this specific polarization and F. nucleatum OMVs in the pathophysiology of periodontitis. The periodontitis model was established by inducing ligation in C57BL/6 mice as previously described. Micro-CT, RT-qPCR, hematoxylin-eosin (H&E) and tartrate acid phosphatase (TRAP) staining assays were performed to analyze the periodontal tissue, alveolar bone loss, number of osteoclasts and expression of inflammatory factors in gingival tissue. The changes in the state and cytokine secretion of bone marrow-derived macrophages (BMDMs) stimulated by F. nucleatum OMVs were observed in vivo by confocal microscopy, flow cytometry, Western blot and ELISA. Mouse gingival fibroblasts (MGFs) were isolated and then cocultured with macrophages. The effects of F. nucleatum OMVs on the proliferation and apoptosis of MGFs were analyzed by flow cytometry and lactate dehydrogenase (LDH) assays. The periodontitis symptoms of mice in the F. nucleatum OMVs + ligation group were more serious than those of mice in the simple ligation group, with more osteoclasts and more inflammatory factors (IL-1β, IL-6, and TNF-α) being observed in their gingival tissues. M0 macrophages transformed into M1 macrophages after the stimulation of BMDMs with F. nucleatum OMVs, and the M1 macrophages then released more inflammatory cytokines. Analysis of the coculture model showed that the MGF apoptosis and LDH release in the inflammatory environment were increased by F. nucleatum OMV treatment. In conclusion, F. nucleatum OMVs were shown to aggravate periodontitis, alveolar bone loss and the number of osteoclasts in an animal model of periodontitis. F. nucleatum OMVs promoted the polarization of macrophages toward the proinflammatory M1 phenotype, and the inflammatory environment further aggravated the toxicity of F. nucleatum OMVs on MGFs. These results suggest that M1 macrophages and F. nucleatum OMVs play roles in the occurrence and development of periodontitis.
Collapse
Affiliation(s)
- Gang Chen
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, China
| | - Qiang Sun
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - QiaoLing Cai
- Department of Stomatology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - HongWei Zhou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| |
Collapse
|
27
|
Rosier BT, Takahashi N, Zaura E, Krom BP, MartÍnez-Espinosa RM, van Breda SGJ, Marsh PD, Mira A. The Importance of Nitrate Reduction for Oral Health. J Dent Res 2022; 101:887-897. [PMID: 35196931 DOI: 10.1177/00220345221080982] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Salivary glands concentrate plasma nitrate into saliva, leading to high nitrate concentrations that can reach the millimolar range after a nitrate-rich vegetable meal. Whereas human cells cannot reduce nitrate to nitrite effectively, certain oral bacteria can. This leads to an increase in systemic nitrite that can improve conditions such as hypertension and diabetes through nitric oxide availability. Apart from systemic benefits, it has been proposed that microbial nitrate reduction can also promote oral health. In this review, we discuss evidence associating dietary nitrate with oral health. Oral bacteria can reduce nitrite to nitric oxide, a free radical with antimicrobial properties capable of inhibiting sensitive species such as anaerobes involved in periodontal diseases. Nitrate has also been shown to increase resilience against salivary acidification in vivo and in vitro, thus preventing caries development. One potential mechanism is proton consumption during denitrification and/or bacterial reduction of nitrite to ammonium. Additionally, lactic acid (organic acid involved in oral acidification) and hydrogen sulfide (volatile compound involved in halitosis) can act as electron donors for these processes. The nitrate-reducing bacteria Rothia and Neisseria are consistently found at higher levels in individuals free of oral disease (vs. individuals with caries, periodontitis, and/or halitosis) and increase when nitrate is consumed in clinical studies. Preliminary in vitro and clinical evidence show that bacteria normally associated with disease, such as Veillonella (caries) and Prevotella (periodontal diseases and halitosis), decrease in the presence of nitrate. We propose nitrate as an ecologic factor stimulating eubiosis (i.e., an increase in health-associated species and functions). Finally, we discuss the preventive and therapeutic potential, as well as safety issues, related to the use of nitrate. In vivo evidence is limited; therefore, robust clinical studies are required to confirm the potential benefits of nitrate reduction on oral health.
Collapse
Affiliation(s)
- B T Rosier
- Department of Health and Genomics, FISABIO Foundation, Valencia, Spain
| | - N Takahashi
- Department of Ecological Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - E Zaura
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - B P Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - R M MartÍnez-Espinosa
- Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Alicante, Spain
| | - S G J van Breda
- Department of Toxicogenomics, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - P D Marsh
- Department of Oral Biology, School of Dentistry, University of Leeds, Leeds, UK
| | - A Mira
- Department of Health and Genomics, FISABIO Foundation, Valencia, Spain.,CIBER Institute of Epidemiology and Public Health, Madrid, Spain
| |
Collapse
|
28
|
Wirth R, Pap B, Maróti G, Vályi P, Komlósi L, Barta N, Strang O, Minárovits J, Kovács KL. Toward Personalized Oral Diagnosis: Distinct Microbiome Clusters in Periodontitis Biofilms. Front Cell Infect Microbiol 2022; 11:747814. [PMID: 35004342 PMCID: PMC8727345 DOI: 10.3389/fcimb.2021.747814] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/29/2021] [Indexed: 12/21/2022] Open
Abstract
Periodontitis is caused by pathogenic subgingival microbial biofilm development and dysbiotic interactions between host and hosted microbes. A thorough characterization of the subgingival biofilms by deep amplicon sequencing of 121 individual periodontitis pockets of nine patients and whole metagenomic analysis of the saliva microbial community of the same subjects were carried out. Two biofilm sampling methods yielded similar microbial compositions. Taxonomic mapping of all biofilms revealed three distinct microbial clusters. Two clinical diagnostic parameters, probing pocket depth (PPD) and clinical attachment level (CAL), correlated with the cluster mapping. The dysbiotic microbiomes were less diverse than the apparently healthy ones of the same subjects. The most abundant periodontal pathogens were also present in the saliva, although in different representations. The single abundant species Tannerella forsythia was found in the diseased pockets in about 16–17-fold in excess relative to the clinically healthy sulcus, making it suitable as an indicator of periodontitis biofilms. The discrete microbial communities indicate strong selection by the host immune system and allow the design of targeted antibiotic treatment selective against the main periodontal pathogen(s) in the individual patients.
Collapse
Affiliation(s)
- Roland Wirth
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Bernadett Pap
- Biological Research Center, Institute of Plant Biology, Szeged, Hungary
| | - Gergely Maróti
- Biological Research Center, Institute of Plant Biology, Szeged, Hungary
| | - Péter Vályi
- Department of Periodontology, University of Szeged, Szeged, Hungary
| | - Laura Komlósi
- Department of Oral Surgery, University of Szeged, Szeged, Hungary
| | - Nikolett Barta
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Orsolya Strang
- Department of Biotechnology, University of Szeged, Szeged, Hungary.,Department of Oral Biology and Experimental Dental Research, University of Szeged, Szeged, Hungary
| | - János Minárovits
- Department of Oral Biology and Experimental Dental Research, University of Szeged, Szeged, Hungary
| | - Kornél L Kovács
- Department of Biotechnology, University of Szeged, Szeged, Hungary.,Department of Oral Biology and Experimental Dental Research, University of Szeged, Szeged, Hungary
| |
Collapse
|
29
|
Marchesan J, Moss K, Morelli T, Teles F, Divaris K, Styner M, Ribeiro A, Webster-Cyriaque J, Beck J. Distinct Microbial Signatures between Periodontal Profile Classes. J Dent Res 2021; 100:1405-1413. [PMID: 33906500 PMCID: PMC8529299 DOI: 10.1177/00220345211009767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Precise classification of periodontal disease has been the objective of concerted efforts and has led to the introduction of new consensus-based and data-driven classifications. The purpose of this study was to characterize the microbiological signatures of a latent class analysis (LCA)-derived periodontal stratification system, the Periodontal Profile Class (PPC) taxonomy. We used demographic, microbial (subgingival biofilm composition), and immunological data (serum IgG antibody levels, obtained with checkerboard immunoblotting technique) for 1,450 adult participants of the Dental Atherosclerosis Risk in Communities (ARIC) study, with already generated PPC classifications. Analyses relied on t tests and generalized linear models with Bonferroni correction. Men and African Americans had higher systemic antibody levels against most microorganisms compared to women and Caucasians (P < 0.05). Healthy individuals (PPC-I) had low levels of biofilm bacteria and serum IgG levels against most periodontal pathogens (P < 0.05). Subjects with mild to moderate disease (PPC-II to PPC-III) showed mild/moderate colonization of multiple biofilm pathogens. Individuals with severe disease (PPC-IV) had moderate/high levels of biofilm pathogens and antibody levels for orange/red complexes. High gingival index individuals (PPC-V) showed moderate/high levels of biofilm Campylobacter rectus and Aggregatibacter actinomycetemcomitans. Biofilm composition in individuals with reduced periodontium (PPC-VI) was similar to health but showed moderate to high antibody responses. Those with severe tooth loss (PPC-VII) had significantly high levels of multiple biofilm pathogens, while the systemic antibody response to these microorganisms was comparable to health. The results support a biologic basis for elevated risk for periodontal disease in men and African Americans. Periodontally healthy individuals showed a low biofilm pathogen and low systemic antibody burden. In the presence of PPC disease, a microbial-host imbalance characterized by higher microbial biofilm colonization and/or systemic IgG responses was identified. These results support the notion that subgroups identified by the PPC system present distinct microbial profiles and may be useful in designing future precise biological treatment interventions.
Collapse
Affiliation(s)
- J.T. Marchesan
- Division of Comprehensive Oral Health, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - K. Moss
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - T. Morelli
- Division of Comprehensive Oral Health, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - F.R. Teles
- Department of Basic and Translational Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, USA
| | - K. Divaris
- Division of Pediatric and Public Health, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - M. Styner
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - A.A. Ribeiro
- Division of Diagnostic Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - J. Webster-Cyriaque
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - J. Beck
- Division of Comprehensive Oral Health, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
30
|
Huang Y, Zhao X, Cui L, Huang S. Metagenomic and Metatranscriptomic Insight Into Oral Biofilms in Periodontitis and Related Systemic Diseases. Front Microbiol 2021; 12:728585. [PMID: 34721325 PMCID: PMC8548771 DOI: 10.3389/fmicb.2021.728585] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/21/2021] [Indexed: 01/03/2023] Open
Abstract
The oral microbiome is one of the most complex microbial communities in the human body and is closely related to oral and systemic health. Dental plaque biofilms are the primary etiologic factor of periodontitis, which is a common chronic oral infectious disease. The interdependencies that exist among the resident microbiota constituents in dental biofilms and the interaction between pathogenic microorganisms and the host lead to the occurrence and progression of periodontitis. Therefore, accurately and comprehensively detecting periodontal organisms and dissecting their corresponding functional activity characteristics are crucial for revealing periodontitis pathogenesis. With the development of metagenomics and metatranscriptomics, the composition and structure of microbial communities as well as the overall functional characteristics of the flora can be fully profiled and revealed. In this review, we will critically examine the currently available metagenomic and metatranscriptomic evidence to bridge the gap between microbial dysbiosis and periodontitis and related systemic diseases.
Collapse
Affiliation(s)
- Yi Huang
- Stomatological Hospital, Southern Medical University and Guangdong Provincial Stomatological Hospital, Guangzhou, China
| | - Xinyuan Zhao
- Stomatological Hospital, Southern Medical University and Guangdong Provincial Stomatological Hospital, Guangzhou, China
| | - Li Cui
- Stomatological Hospital, Southern Medical University and Guangdong Provincial Stomatological Hospital, Guangzhou, China
- School of Dentistry and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, United States
| | - Shaohong Huang
- Stomatological Hospital, Southern Medical University and Guangdong Provincial Stomatological Hospital, Guangzhou, China
| |
Collapse
|
31
|
Is There a Link between COVID-19 Infection, Periodontal Disease and Acute Myocardial Infarction? Life (Basel) 2021; 11:life11101050. [PMID: 34685421 PMCID: PMC8538734 DOI: 10.3390/life11101050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/22/2021] [Accepted: 10/04/2021] [Indexed: 01/08/2023] Open
Abstract
Both periodontal disease and atherosclerosis are chronic disorders with an inflammatory substrate that leads to alteration of the host's immune response. In PD, inflammation is responsible for bone tissue destruction, while in atherosclerosis, it leads to atheromatous plaque formation. These modifications result from the action of pro-inflammatory cytokines that are secreted both locally at gingival or coronary sites, and systemically. Recently, it was observed that in patients with PD or with cardiovascular disease, COVID-19 infection is prone to be more severe. While the association between PD, inflammation and cardiovascular disease is well-known, the impact of COVID-19-related inflammation on the systemic complications of these conditions has not been established yet. The purpose of this review is to bring light upon the latest advances in understanding the link between periodontal-cardiovascular diseases and COVID-19 infection.
Collapse
|
32
|
Johnston W, Rosier BT, Artacho A, Paterson M, Piela K, Delaney C, Brown JL, Ramage G, Mira A, Culshaw S. Mechanical biofilm disruption causes microbial and immunological shifts in periodontitis patients. Sci Rep 2021; 11:9796. [PMID: 33963212 PMCID: PMC8105330 DOI: 10.1038/s41598-021-89002-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/05/2021] [Indexed: 12/17/2022] Open
Abstract
Periodontitis is characterized by subgingival biofilm dysbiosis, inflammation and tissue destruction. Current treatment involves mechanical biofilm disruption known as non-surgical periodontal therapy (NSPT). This study sought to characterise the impact of treatment on microbial diversity and overall community, and the parallel impact on host inflammation in the oral cavity. Fourty-two periodontitis patients were included in this study, with periodontal clinical parameters, subgingival plaque and saliva samples collected at baseline and 90 days after treatment. Salivary cytokines were quantified, and subgingival plaque was analysed using 16S rRNA sequencing. After treatment, there were marked health-associated alterations in microbial composition and diversity, including differential abundance of 42 genera and 61 species. These changes were accompanied by substantial clinical improvement (pockets ≥ 5 mm, 27.50% to 9.00%, p < 0.001) and a decrease in salivary IL-1β (p < 0.001)-a putative marker of periodontal inflammation. Despite significant reductions in disease associated anaerobes, several genera (Fusobacterium, Prevotella, Tanenerella, Treponema) remained present and formed a distinct subnetwork associated with residual disease. Collectively, this study shows that current periodontal treatment results in partial restoration of a healthy microbial ecosystem, but features of biofilm dysbiosis and host inflammation remain in some patients, which were surprisingly independent of clinical response.
Collapse
Affiliation(s)
- W Johnston
- Oral Sciences, Glasgow Dental Hospital and School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - B T Rosier
- The Foundation for the Promotion of Health and Biomedical Research (FISABIO), Avda. de Catalunya, 21, 46020, Valencia, Spain
| | - A Artacho
- The Foundation for the Promotion of Health and Biomedical Research (FISABIO), Avda. de Catalunya, 21, 46020, Valencia, Spain
| | - M Paterson
- Oral Sciences, Glasgow Dental Hospital and School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - K Piela
- Oral Sciences, Glasgow Dental Hospital and School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
- Division of Dentistry, Medical University of Lodz, Lodz, Poland
| | - C Delaney
- Oral Sciences, Glasgow Dental Hospital and School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - J L Brown
- Oral Sciences, Glasgow Dental Hospital and School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - G Ramage
- Oral Sciences, Glasgow Dental Hospital and School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - A Mira
- The Foundation for the Promotion of Health and Biomedical Research (FISABIO), Avda. de Catalunya, 21, 46020, Valencia, Spain
- Centre for Epidemiology and Public Health, Monforte de Lemos, 5, ES-28029, Madrid, Spain
| | - S Culshaw
- Oral Sciences, Glasgow Dental Hospital and School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK.
| |
Collapse
|
33
|
Abstract
Periodontal microbiology has historically been based on an "us against them" paradigm, one that focuses mainly on identifying microbes and viruses that cause disease. However, such a bottom-up approach limits our appreciation of the incredible diversity of this ecosystem and the essential ways in which microbial interactions contribute to health and homeostasis of the subgingival niche. Microbiomics-the science of collectively characterizing and quantifying molecules responsible for the structure, function, and dynamics of a microbial community-has enabled us to study these communities in their natural habitat, thereby revolutionizing our knowledge of host-associated microbes and reconceptualizing our definition of "human." When this systems-biology approach is combined with ecologic principles, it explicates the complex relationship that exist between microbiota and between them and us, the human. In this volume of Periodontology 2000, a group of 12 female scientists take the lead in investigating how metagenomics, genomics, metatranscriptomics, proteomics, metaproteomics, and metabolomics have achieved the following: (a) widened our view of the periodontal microbiome; (b) expanded our understanding of the evolution of the human oral microbiome; (c) shone a light on not just bacteria, but also other prokaryotic and eukaryotic members of the community; (d) elucidated the effects of anthropogenic behavior and systemic diseases on shaping these communities; and (e) influenced traditional patterns of periodontal therapeutics.
Collapse
Affiliation(s)
- Purnima S Kumar
- Periodontology, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|