1
|
Lindner E, Desantis A, Cheng FPH, Gail A. Violation of identity-specific action-effect prediction increases pupil size and attenuates auditory event-related potentials at P2 latencies when action-effects are behaviorally relevant. Neuroimage 2024; 297:120717. [PMID: 38971482 DOI: 10.1016/j.neuroimage.2024.120717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/20/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024] Open
Abstract
Self-initiated sensory action effects are widely assumed to lead to less intense perception and reduced neural responses compared to externally triggered stimuli (sensory attenuation). However, it is unclear if sensory attenuation occurs in all cases of action-effect prediction. Specifically, when predicted action-effects are relevant to determine follow-up actions attenuation could be detrimental. We quantified auditory event-related potentials (ERP) in electroencephalography (EEG) when human participants created two-sound sequences by pressing two keys on a keyboard associated with different pitch, giving rise to identity-specific action-effect prediction after the first keypress. The first sound corresponded to (congruent) or violated (incongruent) the predicted pitch and was either relevant for the selection of the second keypress to correctly complete the sequence (Relevance) or irrelevant (Control Movement), or there was only one keypress and sound (Baseline). We found a diminished P2-timed ERP component in incongruent compared to congruent trials when the sound was relevant for the subsequent action. This effect of action-effect prediction was due to an ERP reduction for incongruent relevant sounds compared to incongruent irrelevant sounds at P2 latencies and correlated negatively with modulations of pupil dilation. Contrary to our expectation, we did not observe an N1 modulation by congruency in any condition. Attenuation of the N1 component seems absent for predicted identity-specific auditory action effects, while P2-timed ERPs as well as pupil size are sensitive to predictability, at least when action effects are relevant for the selection of the next action. Incongruent relevant stimuli thereby take a special place and seem to be subject to attentional modulations and error processing.
Collapse
Affiliation(s)
- Elisabeth Lindner
- Cognitive Neuroscience Laboratory, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Germany; Faculty of Biology and Psychology, Georg-August University, Wilhelm-Weber-Str. 2, 37073 Göttingen, Germany.
| | - Andrea Desantis
- The French Aerospace Lab ONERA, Département Traitement de l'Information et Systèmes, BA 701 13661 Salon Cedex AIR, 13661 Salon-de-Provence, France; Institut de Neurosciences de la Timone (UMR 7289), CNRS, Aix-Marseille Université, Faculté de Médecine, 27, boulevard Jean Moulin, F-13005 Marseille, France; INCC - Integrative Neuroscience & Cognition Center UMR 8002, CNRS, Université de Paris, 45 Rue des Saint-Pères, F-75006 Paris, France
| | - Felicia Pei-Hsin Cheng
- Cognitive Neuroscience Laboratory, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Germany
| | - Alexander Gail
- Cognitive Neuroscience Laboratory, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Germany; Faculty of Biology and Psychology, Georg-August University, Wilhelm-Weber-Str. 2, 37073 Göttingen, Germany
| |
Collapse
|
2
|
Pontiggia A, Fabries P, Beauchamps V, Quiquempoix M, Nespoulous O, Jacques C, Guillard M, Van Beers P, Ayounts H, Koulmann N, Gomez-Merino D, Chennaoui M, Sauvet F. Combined Effects of Moderate Hypoxia and Sleep Restriction on Mental Workload. Clocks Sleep 2024; 6:338-358. [PMID: 39189191 PMCID: PMC11348049 DOI: 10.3390/clockssleep6030024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 08/28/2024] Open
Abstract
Aircraft pilots face a high mental workload (MW) under environmental constraints induced by high altitude and sometimes sleep restriction (SR). Our aim was to assess the combined effects of hypoxia and sleep restriction on cognitive and physiological responses to different MW levels using the Multi-Attribute Test Battery (MATB)-II with an additional auditory Oddball-like task. Seventeen healthy subjects were subjected in random order to three 12-min periods of increased MW level (low, medium, and high): sleep restriction (SR, <3 h of total sleep time (TST)) vs. habitual sleep (HS, >6 h TST), hypoxia (HY, 2 h, FIO2 = 13.6%, ~3500 m vs. normoxia, NO, FIO2 = 21%). Following each MW level, participants completed the NASA-TLX subjective MW scale. Increasing MW decreases performance on the MATB-II Tracking task (p = 0.001, MW difficulty main effect) and increases NASA-TLX (p = 0.001). In the combined HY/SR condition, MATB-II performance was lower, and the NASA-TLX score was higher compared with the NO/HS condition, while no effect of hypoxia alone was observed. In the accuracy of the auditory task, there is a significant interaction between hypoxia and MW difficulty (F(2-176) = 3.14, p = 0.04), with lower values at high MW under hypoxic conditions. Breathing rate, pupil size, and amplitude of pupil dilation response (PDR) to auditory stimuli are associated with increased MW. These parameters are the best predictors of increased MW, independently of physiological constraints. Adding ECG, SpO2, or electrodermal conductance does not improve model performance. In conclusion, hypoxia and sleep restriction have an additive effect on MW. Physiological and electrophysiological responses must be taken into account when designing a MW predictive model and cross-validation.
Collapse
Affiliation(s)
- Anaïs Pontiggia
- Armed Forces Biomedical Research Institute (IRBA), 91220 Brétigny-sur-Orge, France; (A.P.); (H.A.)
- URP 7330 VIFASOM, Université Paris Cité, 75004 Paris, France
| | - Pierre Fabries
- Armed Forces Biomedical Research Institute (IRBA), 91220 Brétigny-sur-Orge, France; (A.P.); (H.A.)
- École du Val-de-Grâce (EVDG), 75005 Paris, France
| | - Vincent Beauchamps
- Armed Forces Biomedical Research Institute (IRBA), 91220 Brétigny-sur-Orge, France; (A.P.); (H.A.)
- URP 7330 VIFASOM, Université Paris Cité, 75004 Paris, France
- École du Val-de-Grâce (EVDG), 75005 Paris, France
| | - Michael Quiquempoix
- Armed Forces Biomedical Research Institute (IRBA), 91220 Brétigny-sur-Orge, France; (A.P.); (H.A.)
- URP 7330 VIFASOM, Université Paris Cité, 75004 Paris, France
| | - Olivier Nespoulous
- Armed Forces Biomedical Research Institute (IRBA), 91220 Brétigny-sur-Orge, France; (A.P.); (H.A.)
| | - Clémentine Jacques
- URP 7330 VIFASOM, Université Paris Cité, 75004 Paris, France
- Laboratoire Theresis, THALES SIX GTS, 91190 Palaiseau, France
| | - Mathias Guillard
- Armed Forces Biomedical Research Institute (IRBA), 91220 Brétigny-sur-Orge, France; (A.P.); (H.A.)
- URP 7330 VIFASOM, Université Paris Cité, 75004 Paris, France
| | - Pascal Van Beers
- Armed Forces Biomedical Research Institute (IRBA), 91220 Brétigny-sur-Orge, France; (A.P.); (H.A.)
- URP 7330 VIFASOM, Université Paris Cité, 75004 Paris, France
| | - Haïk Ayounts
- Armed Forces Biomedical Research Institute (IRBA), 91220 Brétigny-sur-Orge, France; (A.P.); (H.A.)
- URP 7330 VIFASOM, Université Paris Cité, 75004 Paris, France
| | | | - Danielle Gomez-Merino
- Armed Forces Biomedical Research Institute (IRBA), 91220 Brétigny-sur-Orge, France; (A.P.); (H.A.)
- URP 7330 VIFASOM, Université Paris Cité, 75004 Paris, France
| | - Mounir Chennaoui
- Armed Forces Biomedical Research Institute (IRBA), 91220 Brétigny-sur-Orge, France; (A.P.); (H.A.)
- URP 7330 VIFASOM, Université Paris Cité, 75004 Paris, France
| | - Fabien Sauvet
- Armed Forces Biomedical Research Institute (IRBA), 91220 Brétigny-sur-Orge, France; (A.P.); (H.A.)
- URP 7330 VIFASOM, Université Paris Cité, 75004 Paris, France
- École du Val-de-Grâce (EVDG), 75005 Paris, France
| |
Collapse
|
3
|
Wang R, Wang X, Platt ML, Sheng F. Decomposing loss aversion from a single neural signal. iScience 2024; 27:110153. [PMID: 39006480 PMCID: PMC11245989 DOI: 10.1016/j.isci.2024.110153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 04/19/2024] [Accepted: 05/28/2024] [Indexed: 07/16/2024] Open
Abstract
People often display stronger aversion to losses than appetite for equivalent gains, a widespread phenomenon known as loss aversion. The prevailing theory attributes loss aversion to a valuation bias that amplifies losses relative to gains. An alternative account attributes loss aversion to a response bias that avoids choices that might result in loss. By modeling the temporal dynamics of scalp electrical activity during decisions to accept or reject gambles within a sequential sampling framework, we decomposed valuation bias and response bias from a single event-related neural signal, the P3. Specifically, we found valuation bias manifested as larger sensitivity of P3 to losses than gains, which was localizable to reward-related brain regions. By contrast, response bias manifested as larger P3 preceding gamble acceptance than rejection and was localizable to motor cortex. Our study reveals the dissociable neural biomarkers of response bias and valuation bias underpinning loss-averse decisions.
Collapse
Affiliation(s)
- Ruining Wang
- School of Management, Zhejiang University, Hangzhou, Zhejiang 310058, China
- State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou, Zhejiang 310058, China
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Neuromanagement Laboratory, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiaoyi Wang
- School of Management, Zhejiang University, Hangzhou, Zhejiang 310058, China
- State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou, Zhejiang 310058, China
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Neuromanagement Laboratory, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Michael L Platt
- Wharton Neuroscience Initiative, the Wharton School, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Marketing Department, the Wharton School, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Feng Sheng
- School of Management, Zhejiang University, Hangzhou, Zhejiang 310058, China
- State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou, Zhejiang 310058, China
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Neuromanagement Laboratory, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Wharton Neuroscience Initiative, the Wharton School, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Endemann R, Kamp SM. Examining the role of stimulus complexity in item and associative memory. Mem Cognit 2024:10.3758/s13421-024-01590-z. [PMID: 39026017 DOI: 10.3758/s13421-024-01590-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 07/20/2024]
Abstract
Episodic memory comprises memory for individual information units (item memory) and for the connections among them (associative memory). In two experiments using an object pair learning task, we examined the effect of visual stimulus complexity on memory encoding and retrieval mechanisms and on item and associative memory performance. Subjects encoded pairs of black monochrome object images (low complexity, LC condition) or color photographs of objects (high complexity, HC condition) via interactive imagery, and subsequently item and associative recognition were tested. In Experiment 1, event-related potentials (ERPs) revealed an enhanced frontal N2 during encoding and an enhanced late posterior negativity (LPN) during item recognition in the HC condition, suggesting that memory traces containing visually more complex objects elicited a stronger effort in reconstructing the past episode. Item memory was consistently superior in the HC compared to the LC condition. Associative memory was either statistically unaffected by complexity (Experiment 1) or improved (Experiment 2) in the HC condition, speaking against a tradeoff between resources allocated to item versus associative memory, and hence contradicting results of some prior studies. In Experiment 2, in both young and older adults, both item and associative memory benefitted from stimulus complexity, such that the magnitude of the age-related associative deficit was not influenced by stimulus complexity. Together, these results suggest that if familiar objects are presented in a form that exhibits a higher visual complexity, which may support semantic processing, complexity can benefit both item and associative memory. Stimulus properties that enhance item memory can scaffold associative memory in this situation.
Collapse
Affiliation(s)
- Ricarda Endemann
- Department of Neurocognitive Psychology, Trier University, Johanniterufer 15, 54290, Trier, Germany.
| | - Siri-Maria Kamp
- Department of Neurocognitive Psychology, Trier University, Johanniterufer 15, 54290, Trier, Germany
| |
Collapse
|
5
|
Contier F, Wartenburger I, Weymar M, Rabovsky M. Are the P600 and P3 ERP components linked to the task-evoked pupillary response as a correlate of norepinephrine activity? Psychophysiology 2024; 61:e14565. [PMID: 38469647 DOI: 10.1111/psyp.14565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/13/2024]
Abstract
During language comprehension, anomalies and ambiguities in the input typically elicit the P600 event-related potential component. Although traditionally interpreted as a specific signal of combinatorial operations in sentence processing, the component has alternatively been proposed to be a variant of the oddball-sensitive, domain-general P3 component. In particular, both components might reflect phasic norepinephrine release from the locus coeruleus (LC/NE) to motivationally significant stimuli. In this preregistered study, we tested this hypothesis by relating both components to the task-evoked pupillary response, a putative biomarker of LC/NE activity. 36 participants completed a sentence comprehension task (containing 25% morphosyntactic violations) and a non-linguistic oddball task (containing 20% oddballs), while the EEG and pupil size were co-registered. Our results showed that the task-evoked pupillary response and the ERP amplitudes of both components were similarly affected by both experimental tasks. In the oddball task, there was also a temporally specific relationship between the P3 and the pupillary response beyond the shared oddball effect, thereby further linking the P3 to NE. Because this link was less reliable in the linguistic context, we did not find conclusive evidence for or against a relationship between the P600 and the pupillary response. Still, our findings further stimulate the debate on whether language-related ERPs are indeed specific to linguistic processes or shared across cognitive domains. However, further research is required to verify a potential link between the two ERP positivities and the LC/NE system as the common neural generator.
Collapse
Affiliation(s)
- Friederike Contier
- Cognitive Sciences, Department of Psychology, University of Potsdam, Potsdam, Germany
| | - Isabell Wartenburger
- Cognitive Sciences, Department of Linguistics, University of Potsdam, Potsdam, Germany
| | - Mathias Weymar
- Cognitive Sciences, Department of Psychology, University of Potsdam, Potsdam, Germany
| | - Milena Rabovsky
- Cognitive Sciences, Department of Psychology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
6
|
Nematova S, Zinszer B, Morlet T, Morini G, Petitto LA, Jasińska KK. Impact of ASL Exposure on Spoken Phonemic Discrimination in Adult CI Users: A Functional Near-Infrared Spectroscopy Study. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2024; 5:553-588. [PMID: 38939730 PMCID: PMC11210937 DOI: 10.1162/nol_a_00143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 03/11/2024] [Indexed: 06/29/2024]
Abstract
We examined the impact of exposure to a signed language (American Sign Language, or ASL) at different ages on the neural systems that support spoken language phonemic discrimination in deaf individuals with cochlear implants (CIs). Deaf CI users (N = 18, age = 18-24 yrs) who were exposed to a signed language at different ages and hearing individuals (N = 18, age = 18-21 yrs) completed a phonemic discrimination task in a spoken native (English) and non-native (Hindi) language while undergoing functional near-infrared spectroscopy neuroimaging. Behaviorally, deaf CI users who received a CI early versus later in life showed better English phonemic discrimination, albeit phonemic discrimination was poor relative to hearing individuals. Importantly, the age of exposure to ASL was not related to phonemic discrimination. Neurally, early-life language exposure, irrespective of modality, was associated with greater neural activation of left-hemisphere language areas critically involved in phonological processing during the phonemic discrimination task in deaf CI users. In particular, early exposure to ASL was associated with increased activation in the left hemisphere's classic language regions for native versus non-native language phonemic contrasts for deaf CI users who received a CI later in life. For deaf CI users who received a CI early in life, the age of exposure to ASL was not related to neural activation during phonemic discrimination. Together, the findings suggest that early signed language exposure does not negatively impact spoken language processing in deaf CI users, but may instead potentially offset the negative effects of language deprivation that deaf children without any signed language exposure experience prior to implantation. This empirical evidence aligns with and lends support to recent perspectives regarding the impact of ASL exposure in the context of CI usage.
Collapse
Affiliation(s)
- Shakhlo Nematova
- Department of Linguistics and Cognitive Science, University of Delaware, Newark, DE, USA
| | - Benjamin Zinszer
- Department of Psychology, Swarthmore College, Swarthmore, PA, USA
| | - Thierry Morlet
- Nemours Children’s Hospital, Delaware, Wilmington, DE, USA
| | - Giovanna Morini
- Department of Communication Sciences and Disorders, University of Delaware, Newark, DE, USA
| | - Laura-Ann Petitto
- Brain and Language Center for Neuroimaging, Gallaudet University, Washington, DC, USA
| | - Kaja K. Jasińska
- Department of Applied Psychology and Human Development, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Menicucci D, Animali S, Malloggi E, Gemignani A, Bonanni E, Fornai F, Giorgi FS, Binda P. Correlated P300b and phasic pupil-dilation responses to motivationally significant stimuli. Psychophysiology 2024; 61:e14550. [PMID: 38433453 DOI: 10.1111/psyp.14550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 03/05/2024]
Abstract
Motivationally significant events like oddball stimuli elicit both a characteristic event-related potential (ERPs) known as P300 and a set of autonomic responses including a phasic pupil dilation. Although co-occurring, P300 and pupil-dilation responses to oddball events have been repeatedly found to be uncorrelated, suggesting separate origins. We re-examined their relationship in the context of a three-stimulus version of the auditory oddball task, independently manipulating the frequency (rare vs. repeated) and motivational significance (relevance for the participant's task) of the stimuli. We used independent component analysis to derive a P300b component from EEG traces and linear modeling to separate a stimulus-related pupil-dilation response from a potentially confounding action-related response. These steps revealed that, once the complexity of ERP and pupil-dilation responses to oddball targets is accounted for, the amplitude of phasic pupil dilations and P300b are tightly and positively correlated (across participants: r = .69 p = .002), supporting their coordinated generation.
Collapse
Affiliation(s)
- Danilo Menicucci
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Silvia Animali
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Eleonora Malloggi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Angelo Gemignani
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Enrica Bonanni
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Filippo Sean Giorgi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Paola Binda
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
8
|
Chang YH, Chen HJ, Barquero C, Tsai HJ, Liang WK, Hsu CH, Muggleton NG, Wang CA. Linking tonic and phasic pupil responses to P300 amplitude in an emotional face-word Stroop task. Psychophysiology 2024; 61:e14479. [PMID: 37920144 DOI: 10.1111/psyp.14479] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/04/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023]
Abstract
The locus coeruleus-norepinephrine (LC-NE) system, which regulates arousal levels, is important for cognitive control, including emotional conflict resolution. Additionally, the LC-NE system is implicated in P300 generation. If the P300 is mediated by the LC-NE system, and considering the established correlations between LC activity and pupil dilation, P300 amplitude should correlate with task-evoked (phasic) pupil dilation on a trial-by-trial basis. However, prior studies, predominantly utilizing oddball-type paradigms, have not demonstrated correlations between concurrently recorded task-evoked pupil dilation and P300 responses. Using a recently developed emotional face-word Stroop task that links pupil dilation to the LC-NE system, here, we examined both intra- and inter-individual correlations between task-evoked pupil dilation and P300 amplitude. We found that lower accuracy, slower reaction times, and larger task-evoked pupil dilation were obtained in the incongruent compared to the congruent condition. Furthermore, we observed intra-individual correlations between task-evoked pupil dilation and P300 amplitude, with larger pupil dilation correlating with a greater P300 amplitude. In contrast, pupil dilation did not exhibit consistent correlations with N450 and N170 amplitudes. Baseline (tonic) pupil size also showed correlations with P300 and N170 amplitudes, with smaller pupil size corresponding to larger amplitude. Moreover, inter-individual differences in task-evoked pupil dilation between the congruent and incongruent conditions correlated with differences in reaction time and P300 amplitude, though these effects only approached significance. To summarize, our study provides evidence for a connection between task-evoked pupil dilation and P300 amplitude at the single-trial level, suggesting the involvement of the LC-NE system in P300 generation.
Collapse
Affiliation(s)
- Yi-Hsuan Chang
- Institute of Cognitive Neuroscience, National Central University, Taoyuan City, Taiwan
| | - He-Jun Chen
- Eye-Tracking Laboratory, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Cesar Barquero
- Institute of Cognitive Neuroscience, National Central University, Taoyuan City, Taiwan
- Eye-Tracking Laboratory, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Physical Activity and Sport Science, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Hsu Jung Tsai
- Eye-Tracking Laboratory, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
- Department of Anesthesiology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Wei-Kuang Liang
- Institute of Cognitive Neuroscience, National Central University, Taoyuan City, Taiwan
- Cognitive Intelligence and Precision Healthcare Center, National Central University, Taoyuan City, Taiwan
| | - Chun-Hsien Hsu
- Institute of Cognitive Neuroscience, National Central University, Taoyuan City, Taiwan
| | - Neil G Muggleton
- Institute of Cognitive Neuroscience, National Central University, Taoyuan City, Taiwan
- Cognitive Intelligence and Precision Healthcare Center, National Central University, Taoyuan City, Taiwan
| | - Chin-An Wang
- Eye-Tracking Laboratory, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
- Department of Anesthesiology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| |
Collapse
|
9
|
Kim M, Lee YJ, Hwang J, Woo SI, Hahn SW. Impulsivity in Major Depressive Disorder Patients with Suicidal Ideation: Event-related Potentials in a GoNogo Task. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2023; 21:787-797. [PMID: 37859452 PMCID: PMC10591160 DOI: 10.9758/cpn.23.1064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 10/21/2023]
Abstract
Objective : Suicidal ideation is one of the strongest predictors of suicide, and its relevance to impulsivity in depressed patients has been accumulated. Furthermore, high impulsivity patients show the attenuation of the Nogo amplitude in the GoNogo event-related potential (ERP). The purpose of the current study is to determine the correlation of Nogo ERP to the suicidal ideation depending on the condition of its presence or absence in major depressive disorder (MDD) patients. Methods : A total 162 participants (104 patients with suicidal ideation, 31 patients without suicidal ideation, and 27 healthy controls) were recruited, and performed GoNogo tasks during the electroencephalogram measurement. Depression, anxiety, suicidal ideation and impulsivity were assessed by self-rating scales. The clinical measures, behavioral data and Nogo ERP were compared among groups. Results : The MDD with suicidal ideation (SI) group showed significantly decreased Nogo P3 amplitudes compared to MDD without SI (Fz and Cz electrodes) and control group (all electrodes). The MDD with SI group also had significantly low accuracy of both Go and Nogo trails, compared to the MDD without group. The Nogo P3 amplitudes showed the negative relation to the scores of impulsivity, depression, anxiety and SI. Conclusion : Our results concluded that the Nogo P3 ERP amplitude was decreased in MDD patients with SI compared to MDD patients without SI and controls. These findings suggest that the decreased Nogo P3 amplitude is the one of the candidate biomarker for impulsivity in MDD patients to evaluating SI.
Collapse
Affiliation(s)
- Minjae Kim
- Department of Psychiatry, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Korea
| | - Yeon Jung Lee
- Department of Psychiatry, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Korea
| | - Jaeuk Hwang
- Department of Psychiatry, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Korea
| | - Sung-il Woo
- Department of Psychiatry, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Korea
| | - Sang-Woo Hahn
- Department of Psychiatry, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Korea
| |
Collapse
|
10
|
Chiossi JSC, Patou F, Ng EHN, Faulkner KF, Lyxell B. Phonological discrimination and contrast detection in pupillometry. Front Psychol 2023; 14:1232262. [PMID: 38023001 PMCID: PMC10646334 DOI: 10.3389/fpsyg.2023.1232262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction The perception of phonemes is guided by both low-level acoustic cues and high-level linguistic context. However, differentiating between these two types of processing can be challenging. In this study, we explore the utility of pupillometry as a tool to investigate both low- and high-level processing of phonological stimuli, with a particular focus on its ability to capture novelty detection and cognitive processing during speech perception. Methods Pupillometric traces were recorded from a sample of 22 Danish-speaking adults, with self-reported normal hearing, while performing two phonological-contrast perception tasks: a nonword discrimination task, which included minimal-pair combinations specific to the Danish language, and a nonword detection task involving the detection of phonologically modified words within sentences. The study explored the perception of contrasts in both unprocessed speech and degraded speech input, processed with a vocoder. Results No difference in peak pupil dilation was observed when the contrast occurred between two isolated nonwords in the nonword discrimination task. For unprocessed speech, higher peak pupil dilations were measured when phonologically modified words were detected within a sentence compared to sentences without the nonwords. For vocoded speech, higher peak pupil dilation was observed for sentence stimuli, but not for the isolated nonwords, although performance decreased similarly for both tasks. Conclusion Our findings demonstrate the complexity of pupil dynamics in the presence of acoustic and phonological manipulation. Pupil responses seemed to reflect higher-level cognitive and lexical processing related to phonological perception rather than low-level perception of acoustic cues. However, the incorporation of multiple talkers in the stimuli, coupled with the relatively low task complexity, may have affected the pupil dilation.
Collapse
Affiliation(s)
- Julia S. C. Chiossi
- Oticon A/S, Smørum, Denmark
- Department of Special Needs Education, University of Oslo, Oslo, Norway
| | | | - Elaine Hoi Ning Ng
- Oticon A/S, Smørum, Denmark
- Department of Behavioural Sciences and Learning, Linnaeus Centre HEAD, Swedish Institute for Disability Research, Linköping University, Linköping, Sweden
| | | | - Björn Lyxell
- Department of Special Needs Education, University of Oslo, Oslo, Norway
| |
Collapse
|
11
|
Mecklinger A, Kamp SM. Observing memory encoding while it unfolds: Functional interpretation and current debates regarding ERP subsequent memory effects. Neurosci Biobehav Rev 2023; 153:105347. [PMID: 37543177 DOI: 10.1016/j.neubiorev.2023.105347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/10/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
Our ability to remember the past depends on neural processes set in train in the moment an event is experienced. These processes can be studied by segregating brain activity according to whether an event is later remembered or forgotten. The present review integrates a large number of studies examining this differential brain activity, labeled subsequent memory effect (SME), with the ERP technique, into a functional organization and discusses routes for further research. Based on the reviewed literature, we suggest that memory encoding is implemented by multiple processes, typically reflected in three functionally different subcomponents of the ERP SME elicited by study stimuli, which presumably interact with preparatory SME activity preceding the to be encoded event. We argue that ERPs are a valuable method in the SME paradigm because they have a sufficiently high temporal resolution to disclose the subcomponents of encoding-related brain activity. Implications of the proposed functional organization for future studies using the SME procedure in basic and applied settings will be discussed.
Collapse
Affiliation(s)
- Axel Mecklinger
- Experimental Neuropsychology Unit, Saarland University, Campus A 2-4, 66123 Saarbrücken, Germany.
| | - Siri-Maria Kamp
- Neurocognitive Psychology Unit, Universität Trier, Johanniterufer 15, 54290 Trier, Germany
| |
Collapse
|
12
|
Strzelczyk D, Kelly SP, Langer N. Neurophysiological markers of successful learning in healthy aging. GeroScience 2023; 45:2873-2896. [PMID: 37171560 PMCID: PMC10643715 DOI: 10.1007/s11357-023-00811-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/26/2023] [Indexed: 05/13/2023] Open
Abstract
The capacity to learn and memorize is a key determinant for the quality of life but is known to decline to varying degrees with age. However, neural correlates of memory formation and the critical features that determine the extent to which aging affects learning are still not well understood. By employing a visual sequence learning task, we were able to track the behavioral and neurophysiological markers of gradual learning over several repetitions, which is not possible in traditional approaches that utilize a remember vs. forgotten comparison. On a neurophysiological level, we focused on two learning-related centro-parietal event-related potential (ERP) components: the expectancy-driven P300 and memory-related broader positivity (BP). Our results revealed that although both age groups showed significant learning progress, young individuals learned faster and remembered more stimuli than older participants. Successful learning was directly linked to a decrease of P300 and BP amplitudes. However, young participants showed larger P300 amplitudes with a sharper decrease during the learning, even after correcting for an observed age-related longer P300 latency and increased P300 peak variability. Additionally, the P300 amplitude predicted learning success in both age groups and showed good test-retest reliability. On the other hand, the memory formation processes, reflected by the BP amplitude, revealed a similar level of engagement in both age groups. However, this engagement did not translate into the same learning progress in the older participants. We suggest that the slower and more variable timing of the stimulus identification process reflected in the P300 means that despite the older participants engaging the memory formation process, there is less time for it to translate the categorical stimulus location information into a solidified memory trace. The results highlight the important role of the P300 and BP as a neurophysiological marker of learning and may enable the development of preventive measures for cognitive decline.
Collapse
Affiliation(s)
- Dawid Strzelczyk
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Andreasstrasse 15, CH-8050, Zurich, Switzerland.
- University Research Priority Program (URPP) Dynamics of Healthy Aging, Zurich, Switzerland.
- Neuroscience Center Zurich (ZNZ), Zurich, Switzerland.
| | - Simon P Kelly
- School of Electrical and Electronic Engineering and UCD Centre for Biomedical Engineering, University College Dublin, Dublin, Ireland
| | - Nicolas Langer
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Andreasstrasse 15, CH-8050, Zurich, Switzerland
- University Research Priority Program (URPP) Dynamics of Healthy Aging, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), Zurich, Switzerland
| |
Collapse
|
13
|
Kamp SM, Buntić N, Amtmann J, Scharpf A, Schönen A, Wagner L, Schulz A. Reduced concentration performance and heartbeat-evoked potential in individuals with a history of a SARS-CoV-2 infection. Neurosci Lett 2023; 814:137466. [PMID: 37652352 DOI: 10.1016/j.neulet.2023.137466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/20/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
The goal of characterizing long-term psychological and neural consequences of a SARS-CoV-2 infection has recently gained importance. Here, we examined the effect of a prior SARS-CoV-2 infection on neural markers of exteroceptive (P300) and interoceptive (heartbeat-evoked potential; HEP) signal processing, as well as on neuropsychological tests of attention, inhibition and episodic memory, in 23 adults with a self-reported history of SARS-CoV-2 infection versus 23 healthy controls. We found that the group with a prior infection showed decreased HEP (but not P300) amplitudes, as well as reduced attention/concentration performance. These results suggest that SARS-CoV-2 may damage neural structures of cardiac interoception, thereby potentially contributing to cognitive and psychological long-term deficits. Modulations of interoceptive processing after a SARS-CoV-2 infection are thus a promising target for future research.
Collapse
|
14
|
Forester G, Kamp SM. Pre-associative item encoding influences associative memory: Behavioral and ERP evidence. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023; 23:1059-1075. [PMID: 37169996 PMCID: PMC11536394 DOI: 10.3758/s13415-023-01102-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/15/2023] [Indexed: 05/13/2023]
Abstract
It is unknown whether the manner with which an item is encoded in isolation, immediately before it is encoded into an inter-inter association, influences associative memory. We therefore presented the items of to-be-encoded associative pairings sequentially and manipulated how each first item of a pair was encoded (before associative encoding could begin). Furthermore, we recorded ERPs during memory encoding to investigate the neurocognitive processes that might relate pre-associative item encoding to subsequent associative memory performance. Behaviorally, we found that pre-associative item elaboration (vs. no elaboration) led to a memory tradeoff-enhanced item memory relative to impaired associative memory. This tradeoff likely reflected that item elaboration reduced cognitive resources for ensuing associative encoding, indexed by a reduced P300 and frontal slow wave at the time of associative encoding. However, frontal slow wave subsequent memory effects measured during pre-associative item encoding revealed that, for a given item, greater semantic elaboration was related to better item and associative memory while greater visual elaboration was related to better item and worse associative memory. Thus, there are likely two opposing ways in which pre-associative item encoding can influence associative memory: (1) by depleting encoding resources to impair associative memory and (2) by scaffolding inter-item associations to enhance associative memory. When item encoding occurs immediately before associative encoding, it appears that the temporary depletion of encoding resources is more important in determining later memory performance. Future research should compare the independent effects of resource depletion and encoding strategy during pre-associative item encoding.
Collapse
Affiliation(s)
- Glen Forester
- Sanford Center for Biobehavioral Research, 120 Eighth Street South, Fargo, ND, 58102, USA.
| | | |
Collapse
|
15
|
Devos H, Gustafson KM, Liao K, Ahmadnezhad P, Kuhlmann E, Estes BJ, Martin LE, Mahnken JD, Brooks WM, Burns JM. Effect of Cognitive Reserve on Physiological Measures of Cognitive Workload in Older Adults with Cognitive Impairments. J Alzheimers Dis 2023; 92:141-151. [PMID: 36710677 PMCID: PMC10023364 DOI: 10.3233/jad-220890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Cognitive reserve may protect against cognitive decline. OBJECTIVE This cross-sectional study investigated the association between cognitive reserve and physiological measures of cognitive workload in older adults with cognitive impairment. METHODS 29 older adults with cognitive impairment (age: 75±6, 11 (38%) women, MoCA: 20±7) and 19 with normal cognition (age: 74±6; 11 (58%) women; MoCA: 28±2) completed a working memory test of increasing task demand (0-, 1-, 2-back). Cognitive workload was indexed using amplitude and latency of the P3 event-related potential (ERP) at electrode sites Fz, Cz, and Pz, and changes in pupillary size, converted to an index of cognitive activity (ICA). The Cognitive Reserve Index questionnaire (CRIq) evaluated Education, Work Activity, and Leisure Time as a proxy of cognitive reserve. Linear mixed models evaluated the main effects of cognitive status, CRIq, and the interaction effect of CRIq by cognitive status on ERP and ICA. RESULTS The interaction effect of CRIq total score by cognitive status on P3 ERP and ICA was not significant. However, higher CRIq total scores were associated with lower ICA (p = 0.03). The interaction effects of CRIq subscores showed that Work Activity affected P3 amplitude (p = 0.03) and ICA (p = 0.03) differently between older adults with and without cognitive impairments. Similarly, Education affected ICA (p = 0.02) differently between the two groups. No associations were observed between CRIq and P3 latency. CONCLUSION Specific components of cognitive reserve affect cognitive workload and neural efficiency differently in older adults with and without cognitive impairments.
Collapse
Affiliation(s)
- Hannes Devos
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS, USA.,University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Kathleen M Gustafson
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA.,Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ke Liao
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Pedram Ahmadnezhad
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS, USA
| | - Emily Kuhlmann
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS, USA
| | - Bradley J Estes
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS, USA
| | - Laura E Martin
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, USA.,Department of Population Health, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jonathan D Mahnken
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, USA.,Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS, USA
| | - William M Brooks
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, USA.,Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA.,Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jeffrey M Burns
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, USA.,Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
16
|
On the role of item encoding mechanisms in associative memory in young and older adults: A mass univariate ERP study. Neurobiol Learn Mem 2022; 189:107588. [DOI: 10.1016/j.nlm.2022.107588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 01/06/2022] [Accepted: 01/29/2022] [Indexed: 11/22/2022]
|
17
|
D'Agostini M, Burger AM, Villca Ponce G, Claes S, von Leupoldt A, Van Diest I. No evidence for a modulating effect of continuous transcutaneous auricular vagus nerve stimulation on markers of noradrenergic activity. Psychophysiology 2022; 59:e13984. [PMID: 34990045 DOI: 10.1111/psyp.13984] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 01/22/2023]
Abstract
Although transcutaneous auricular vagus nerve stimulation (taVNS) is thought to increase central noradrenergic activity, findings supporting such mechanism are scarce and inconsistent. This study aimed to investigate whether taVNS modulates indirect markers of phasic and tonic noradrenergic activity. Sixty-six healthy participants performed a novelty auditory oddball task twice on separate days: once while receiving taVNS (left cymba concha), once during sham (left earlobe) stimulation. To maximize potential effects, the stimulation was delivered continuously (frequency: 25 Hz; width: 250 μs) at an intensity individually calibrated to the maximal level below pain threshold. The stimulation was administered 10 min before the oddball task and maintained throughout the session. Event-related pupil dilation (ERPD) to target stimuli and pre-stimulus baseline pupil size were assessed during the oddball task as markers of phasic and tonic noradrenergic activity, respectively. Prior to and at the end of stimulation, tonic pupil size at rest, cortisol, and salivary alpha-amylase were assessed as markers of tonic noradrenergic activity. Finally, we explored the effect of taVNS on cardiac vagal activity, respiratory rate, and salivary flow rate. Results showed a greater ERPD to both target and novelty compared to standard stimuli in the oddball task. In contrast to our hypotheses, taVNS did not impact any of the tested markers. Our findings strongly suggest that continuous stimulation of the cymba concha with the tested stimulation parameters is ineffective to increase noradrenergic activity via a vagal pathway.
Collapse
Affiliation(s)
| | | | | | - Stephan Claes
- The Mind Body Research Group, Department of Neuroscience, KU Leuven, Leuven, Belgium
| | | | - Ilse Van Diest
- Research Group Health Psychology, KU Leuven, Leuven, Belgium
| |
Collapse
|
18
|
The confounding effects of eye blinking on pupillometry, and their remedy. PLoS One 2021; 16:e0261463. [PMID: 34919586 PMCID: PMC8683032 DOI: 10.1371/journal.pone.0261463] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 12/02/2021] [Indexed: 11/20/2022] Open
Abstract
Pupillometry, thanks to its strong relationship with cognitive factors and recent advancements in measuring techniques, has become popular among cognitive or neural scientists as a tool for studying the physiological processes involved in mental or neural processes. Despite this growing popularity of pupillometry, the methodological understanding of pupillometry is limited, especially regarding potential factors that may threaten pupillary measurements' validity. Eye blinking can be a factor because it frequently occurs in a manner dependent on many cognitive components and induces a pulse-like pupillary change consisting of constriction and dilation with substantive magnitude and length. We set out to characterize the basic properties of this "blink-locked pupillary response (BPR)," including the shape and magnitude of BPR and their variability across subjects and blinks, as the first step of studying the confounding nature of eye blinking. Then, we demonstrated how the dependency of eye blinking on cognitive factors could confound, via BPR, the pupillary responses that are supposed to reflect the cognitive states of interest. By building a statistical model of how the confounding effects of eye blinking occur, we proposed a probabilistic-inference algorithm of de-confounding raw pupillary measurements and showed that the proposed algorithm selectively removed BPR and enhanced the statistical power of pupillometry experiments. Our findings call for attention to the presence and confounding nature of BPR in pupillometry. The algorithm we developed here can be used as an effective remedy for the confounding effects of BPR on pupillometry.
Collapse
|
19
|
Lim SJ, Carter YD, Njoroge JM, Shinn-Cunningham BG, Perrachione TK. Talker discontinuity disrupts attention to speech: Evidence from EEG and pupillometry. BRAIN AND LANGUAGE 2021; 221:104996. [PMID: 34358924 PMCID: PMC8515637 DOI: 10.1016/j.bandl.2021.104996] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 05/13/2023]
Abstract
Speech is processed less efficiently from discontinuous, mixed talkers than one consistent talker, but little is known about the neural mechanisms for processing talker variability. Here, we measured psychophysiological responses to talker variability using electroencephalography (EEG) and pupillometry while listeners performed a delayed recall of digit span task. Listeners heard and recalled seven-digit sequences with both talker (single- vs. mixed-talker digits) and temporal (0- vs. 500-ms inter-digit intervals) discontinuities. Talker discontinuity reduced serial recall accuracy. Both talker and temporal discontinuities elicited P3a-like neural evoked response, while rapid processing of mixed-talkers' speech led to increased phasic pupil dilation. Furthermore, mixed-talkers' speech produced less alpha oscillatory power during working memory maintenance, but not during speech encoding. Overall, these results are consistent with an auditory attention and streaming framework in which talker discontinuity leads to involuntary, stimulus-driven attentional reorientation to novel speech sources, resulting in the processing interference classically associated with talker variability.
Collapse
Affiliation(s)
- Sung-Joo Lim
- Department of Speech, Language, and Hearing Sciences, Boston University, United States.
| | - Yaminah D Carter
- Department of Speech, Language, and Hearing Sciences, Boston University, United States
| | - J Michelle Njoroge
- Department of Speech, Language, and Hearing Sciences, Boston University, United States
| | | | - Tyler K Perrachione
- Department of Speech, Language, and Hearing Sciences, Boston University, United States.
| |
Collapse
|
20
|
Nakakoga S, Shimizu K, Muramatsu J, Kitagawa T, Nakauchi S, Minami T. Pupillary response reflects attentional modulation to sound after emotional arousal. Sci Rep 2021; 11:17264. [PMID: 34446768 PMCID: PMC8390645 DOI: 10.1038/s41598-021-96643-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 08/06/2021] [Indexed: 11/09/2022] Open
Abstract
There have been various studies on the effects of emotional visual processing on subsequent non-emotional auditory stimuli. A previous study with EEG has shown that responses to deviant sounds presented after presenting negative pictures collected more attentional resources than those for neutral pictures. To investigate such a compelling between emotional and cognitive processing, this study aimed to examined pupillary responses to an auditory stimulus after a positive, negative, or neutral emotional state was elicited by an emotional image. An emotional image was followed by a beep sound that was either repetitive or unexpected, and the pupillary dilation was measured. As a result, we found that the early component of the pupillary response to the beep sound was larger for negative and positive emotional states than the neutral emotional state, whereas the late component was larger for the positive emotional state than the negative and neutral emotional states. In addition, the peak latency of the pupillary response was earlier for negative than neutral or positive images. Further, to compensate for the disadvantage of low-temporal resolution of the pupillary data, the pupillary responses were deconvoluted and used in the analysis. The deconvolution analysis of pupillary responses confirmed that the responses to beep sound were more likely to be modulated by the emotional state rather than being influenced by the short presentation interval between the images and sounds. These findings suggested that pupil size index modulations in the compelling situation between emotional and cognitive processing.
Collapse
Affiliation(s)
- Satoshi Nakakoga
- Department of Computer Science and Engineering, Toyohashi University of Technology, 1-1, Hibarigaoka Tempaku, Toyohashi, Aichi, 441-8580, Japan
| | - Kengo Shimizu
- Department of Computer Science and Engineering, Toyohashi University of Technology, 1-1, Hibarigaoka Tempaku, Toyohashi, Aichi, 441-8580, Japan
| | - Junya Muramatsu
- System & Electronics Engineering Dept. II, TOYOTA Central R&D Labs., Inc., 41-1, Yokomichi, Nagakute, Aichi, 480-1192, Japan
| | - Takashi Kitagawa
- R&D and Engineering Management Div., TOYOTA MOTOR CORPORATION, 1, Toyota-cho, Toyota, Aichi, 471-8502, Japan
| | - Shigeki Nakauchi
- Department of Computer Science and Engineering, Toyohashi University of Technology, 1-1, Hibarigaoka Tempaku, Toyohashi, Aichi, 441-8580, Japan
| | - Tetsuto Minami
- Department of Computer Science and Engineering, Toyohashi University of Technology, 1-1, Hibarigaoka Tempaku, Toyohashi, Aichi, 441-8580, Japan.
- Electronics-Inspired Interdisciplinary Research Institute, Toyohashi University of Technology, 1-1, Hibarigaoka Tempaku, Toyohashi, Aichi, 441-8580, Japan.
| |
Collapse
|
21
|
de Gee JW, Correa CMC, Weaver M, Donner TH, van Gaal S. Pupil Dilation and the Slow Wave ERP Reflect Surprise about Choice Outcome Resulting from Intrinsic Variability in Decision Confidence. Cereb Cortex 2021; 31:3565-3578. [PMID: 33822917 PMCID: PMC8196307 DOI: 10.1093/cercor/bhab032] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 12/01/2022] Open
Abstract
Central to human and animal cognition is the ability to learn from feedback in order to optimize future rewards. Such a learning signal might be encoded and broadcasted by the brain's arousal systems, including the noradrenergic locus coeruleus. Pupil responses and the positive slow wave component of event-related potentials reflect rapid changes in the arousal level of the brain. Here, we ask whether and how these variables may reflect surprise: the mismatch between one's expectation about being correct and the outcome of a decision, when expectations fluctuate due to internal factors (e.g., engagement). We show that during an elementary decision task in the face of uncertainty both physiological markers of phasic arousal reflect surprise. We further show that pupil responses and slow wave event-related potential are unrelated to each other and that prediction error computations depend on feedback awareness. These results further advance our understanding of the role of central arousal systems in decision-making under uncertainty.
Collapse
Affiliation(s)
- Jan Willem de Gee
- Department of Psychology, Amsterdam Brain & Cognition (ABC), University of Amsterdam, Nieuwe Achtergracht 129-B, 1018WS, Amsterdam, the Netherlands
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Building N43, Martinistraße 52, 20246, Hamburg, Germany
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund St, Houston, TX 77030, USA
| | - Camile M C Correa
- Department of Psychology, Amsterdam Brain & Cognition (ABC), University of Amsterdam, Nieuwe Achtergracht 129-B, 1018WS, Amsterdam, the Netherlands
- Centre of Functionally Integrative Neuroscience, Aarhus University, 44 Nørrebrogade Building 1A, 8000 Aarhus, Denmark
| | - Matthew Weaver
- Department of Psychology, Amsterdam Brain & Cognition (ABC), University of Amsterdam, Nieuwe Achtergracht 129-B, 1018WS, Amsterdam, the Netherlands
| | - Tobias H Donner
- Department of Psychology, Amsterdam Brain & Cognition (ABC), University of Amsterdam, Nieuwe Achtergracht 129-B, 1018WS, Amsterdam, the Netherlands
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Building N43, Martinistraße 52, 20246, Hamburg, Germany
| | - Simon van Gaal
- Department of Psychology, Amsterdam Brain & Cognition (ABC), University of Amsterdam, Nieuwe Achtergracht 129-B, 1018WS, Amsterdam, the Netherlands
| |
Collapse
|
22
|
Tramonti Fantozzi MP, Artoni F, Di Galante M, Briscese L, De Cicco V, Bruschini L, d'Ascanio P, Manzoni D, Faraguna U, Carboncini MC. Effect of the Trigeminal Nerve Stimulation on Auditory Event-Related Potentials. Cereb Cortex Commun 2021; 2:tgab012. [PMID: 34296158 PMCID: PMC8153017 DOI: 10.1093/texcom/tgab012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 11/25/2022] Open
Abstract
Trigeminal sensorimotor activity stimulates arousal and cognitive performance, likely through activation of the locus coeruleus (LC). In this study we investigated, in normal subjects, the effects of bilateral trigeminal nerve stimulation (TNS) on the LC-dependent P300 wave, elicited by an acoustic oddball paradigm. Pupil size, a proxy of LC activity, and electroencephalographic power changes were also investigated. Before TNS/sham-TNS, pupil size did not correlate with P300 amplitude across subjects. After TNS but not sham-TNS, a positive correlation emerged between P300 amplitude and pupil size within frontal and median cortical regions. TNS also reduced P300 amplitude in several cortical areas. In both groups, before and after TNS/sham-TNS, subjects correctly indicated all the target stimuli. We propose that TNS activates LC, increasing the cortical norepinephrine release and the dependence of the P300 upon basal LC activity. Enhancing the signal-to-noise ratio of cortical neurons, norepinephrine may improve the sensory processing, allowing the subject to reach the best discriminative performance with a lower level of neural activation (i.e., a lower P300 amplitude). The study suggests that TNS could be used for improving cognitive performance in patients affected by cognitive disorders or arousal dysfunctions.
Collapse
Affiliation(s)
- Maria Paola Tramonti Fantozzi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa 56123, Italy
| | - Fiorenzo Artoni
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics, Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Genève 1202, Switzerland
| | | | - Lucia Briscese
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa 56123, Italy
| | - Vincenzo De Cicco
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa 56123, Italy
| | - Luca Bruschini
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa 56123, Italy
| | - Paola d'Ascanio
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa 56123, Italy
| | - Diego Manzoni
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa 56123, Italy
| | - Ugo Faraguna
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa 56123, Italy
| | - Maria Chiara Carboncini
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa 56123, Italy
| |
Collapse
|
23
|
LoTemplio S, Silcox J, Federmeier KD, Payne BR. Inter- and intra-individual coupling between pupillary, electrophysiological, and behavioral responses in a visual oddball task. Psychophysiology 2020; 58:e13758. [PMID: 33347634 DOI: 10.1111/psyp.13758] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/12/2020] [Accepted: 11/30/2020] [Indexed: 01/29/2023]
Abstract
Although the P3b component of the event-related brain potential is one of the most widely studied components, its underlying generators are not currently well understood. Recent theories have suggested that the P3b is triggered by phasic activation of the locus-coeruleus norepinephrine (LC-NE) system, an important control center implicated in facilitating optimal task-relevant behavior. Previous research has reported strong correlations between pupil dilation and LC activity, suggesting that pupil diameter is a useful indicator for ongoing LC-NE activity. Given the strong relationship between LC activity and pupil dilation, if the P3b is driven by phasic LC activity, there should be a robust trial-to-trial relationship with the phasic pupillary dilation response (PDR). However, previous work examining relationships between concurrently recorded pupillary and P3b responses has not supported this. One possibility is that the relationship between the measures might be carried primarily by either inter-individual (i.e., between-participant) or intra-individual (i.e., within-participant) contributions to coupling, and prior work has not systematically delineated these relationships. Doing so in the current study, we do not find evidence for either inter-individual or intra-individual relationships between the PDR and P3b responses. However, baseline pupil dilation did predict the P3b. Interestingly, both the PDR and P3b independently predicted inter-individual and intra-individual variability in decision response time. Implications for the LC-P3b hypothesis are discussed.
Collapse
Affiliation(s)
- Sara LoTemplio
- Department of Psychology, University of Utah, Salt Lake City, UT, USA
| | - Jack Silcox
- Department of Psychology, University of Utah, Salt Lake City, UT, USA
| | - Kara D Federmeier
- Department of Psychology, Program in Neuroscience, and Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, IL, USA
| | - Brennan R Payne
- Department of Psychology, University of Utah, Salt Lake City, UT, USA.,Interdepartmental Neuroscience Program, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
24
|
Pupil dilation during orienting of attention and conscious detection of visual targets in patients with left spatial neglect. Cortex 2020; 134:265-277. [PMID: 33310541 DOI: 10.1016/j.cortex.2020.10.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 08/27/2020] [Accepted: 10/25/2020] [Indexed: 12/18/2022]
Abstract
Right Brain-Damaged patients (RBD) with left spatial neglect (N+), are characterised by deficits in orienting and re-orienting attention to stimuli in the contralesional left side of space. In a recent ERPs study with visual stimuli (Lasaponara et al., 2018) we have pointed out that the pathological attentional bias of N+ is matched with exaggerated novelty reaction and contextual updating of targets in the right ipsilesional space and reduced novelty reaction and contextual updating of targets in the left contralesional space. To characterise further the attentional performance of N+, here we measured Pupil Dilation (PDil), which is a reliable marker of noradrenergic-locus coeruleus activity and response to unexpected events/rewards. Compared to Neutral and Valid targets, N+ patients displayed a pathological reduction of PDil in response to infrequent Invalid targets in the left side of space, while in Healthy Controls (HC) and RBD without neglect (N-) the same targets enhanced PDil with respect to Neutral and frequent Valid targets. Invalid targets in the right side of space enhanced PDil in all experimental groups. Interestingly, both N- and N+ showed a consistent number of target omissions both in the left and right side of space. With respect to seen targets, N- showed reduced PDil in response to unseen targets both in the left and right side of space. In contrast, N+ had reduced PDil in response to unseen targets in the left side of space though not in the right side, where seen and unseen targets evoked comparable levels of PDil. These results disclose, for the first time, the PDil correlates of spatial attention in left spatial neglect and suggest that the pathological attentional bias suffered by N+ might enhance the autonomic responses reflected in PDil to unseen ipsilesional stimuli. This enhancement can contribute to biasing contextual updating and predictive coding of stimuli in the ipsilesional space, thus worsening the pathological attentional bias of N+.
Collapse
|
25
|
Kamp SM. Neurocognitive mechanisms of guided item and associative encoding in young and older adults. Brain Cogn 2020; 145:105626. [DOI: 10.1016/j.bandc.2020.105626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/21/2020] [Accepted: 09/02/2020] [Indexed: 10/23/2022]
|
26
|
Lin L, Wang C, Mo J, Liu Y, Liu T, Jiang Y, Bai X, Wu X. Differences in Behavioral Inhibitory Control in Response to Angry and Happy Emotions Among College Students With and Without Suicidal Ideation: An ERP Study. Front Psychol 2020; 11:2191. [PMID: 32982887 PMCID: PMC7490336 DOI: 10.3389/fpsyg.2020.02191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022] Open
Abstract
Suicidal ideation is one of the strongest predictors of suicide. A large number of studies have illustrated the important effect of impulsivity on suicidal ideation, and behavioral inhibitory control (BIC) is a specific manifestation of impulsivity. The goal of the present study is to evaluate the difference in BIC in response to happy and angry emotions between individuals with or without suicidal ideation to reveal the underlying mechanism of the effect of impulsivity on suicidal ideation when accounting for the effect of emotion. Combining the ERP technique and the two-choice oddball paradigm, a total of 70 college students were recruited to participate in this study. The Beck Scale for Suicidal Ideation–Chinese Version was used to identify whether the participants had suicidal ideation. There were 30 participants in the risky-suicidal ideation (SI) group and 19 participants in the non-suicidal ideation (NSI) group. The results showed that the reaction time of the SI group was longer than that of the NSI group for happy emotions. At the electrophysiological level, the P3 amplitude of the NSI group was larger than that of the SI group regardless of the electrode sites and valence, and the P3 component elicited by angry faces was larger than those elicited by happy faces in the SI group. These findings suggest that individuals without suicidal ideation have better BIC, and the SI group has more difficulty controlling their responses to happy emotions than their responses to angry emotions.
Collapse
Affiliation(s)
- Lin Lin
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China.,Faculty of Psychology, Tianjin Normal University, Tianjin, China.,Center of Collaborative Innovation for Assessment and Promotion of Mental Health, Tianjin, China
| | - Chenxu Wang
- Faculty of Psychology, Tianjin Normal University, Tianjin, China
| | - Juanchan Mo
- Faculty of Psychology, Tianjin Normal University, Tianjin, China
| | - Yu Liu
- Faculty of Psychology, Tianjin Normal University, Tianjin, China
| | - Ting Liu
- Faculty of Psychology, Tianjin Normal University, Tianjin, China
| | - Yunpeng Jiang
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China.,Faculty of Psychology, Tianjin Normal University, Tianjin, China.,Center of Collaborative Innovation for Assessment and Promotion of Mental Health, Tianjin, China
| | - Xuejun Bai
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China.,Faculty of Psychology, Tianjin Normal University, Tianjin, China.,Center of Collaborative Innovation for Assessment and Promotion of Mental Health, Tianjin, China
| | - Xia Wu
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China.,Faculty of Psychology, Tianjin Normal University, Tianjin, China.,Center of Collaborative Innovation for Assessment and Promotion of Mental Health, Tianjin, China
| |
Collapse
|
27
|
Aggius-Vella E, Gori M, Animali S, Campus C, Binda P. Non-spatial skills differ in the front and rear peri-personal space. Neuropsychologia 2020; 147:107619. [PMID: 32898519 DOI: 10.1016/j.neuropsychologia.2020.107619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/25/2020] [Accepted: 09/02/2020] [Indexed: 11/26/2022]
Abstract
In measuring behavioural and pupillary responses to auditory oddball stimuli delivered in the front and rear peri-personal space, we find that pupils dilate in response to rare stimuli, both target and distracters. Dilation in response to targets is stronger than the response to distracters, implying a task relevance effect on pupil responses. Crucially, pupil dilation in response to targets is also selectively modulated by the location of sound sources: stronger in the front than in the rear peri-personal space, in spite of matching behavioural performance. This supports the concept that even non-spatial skills, such as the ability to alert in response to behaviourally relevant events, are differentially engaged across subregions of the peri-personal space.
Collapse
Affiliation(s)
- Elena Aggius-Vella
- Unit for Visually Impaired People (U-VIP), Center for Human Technologies, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy; Institute for Mind, Brain and Technology, Ivcher School of Psychology, Inter-Disciplinary Center (IDC), Herzeliya, Israel
| | - Monica Gori
- Unit for Visually Impaired People (U-VIP), Center for Human Technologies, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Silvia Animali
- University of Pisa, Dept. of Translational Research and New Technologies in Medicine and Surgery, Italy; University of Pisa, Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Italy
| | - Claudio Campus
- Unit for Visually Impaired People (U-VIP), Center for Human Technologies, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Paola Binda
- University of Pisa, Dept. of Translational Research and New Technologies in Medicine and Surgery, Italy.
| |
Collapse
|
28
|
Joshi S, Gold JI. Pupil Size as a Window on Neural Substrates of Cognition. Trends Cogn Sci 2020; 24:466-480. [PMID: 32331857 PMCID: PMC7271902 DOI: 10.1016/j.tics.2020.03.005] [Citation(s) in RCA: 278] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 10/24/2022]
Abstract
Cognitively driven pupil modulations reflect certain underlying brain functions. What do these reflections tell us? Here, we review findings that have identified key roles for three neural systems: cortical modulation of the pretectal olivary nucleus (PON), which controls the pupillary light reflex; the superior colliculus (SC), which mediates orienting responses, including pupil changes to salient stimuli; and the locus coeruleus (LC)-norepinephrine (NE) neuromodulatory system, which mediates relationships between pupil-linked arousal and cognition. We discuss how these findings can inform the interpretation of pupil measurements in terms of activation of these neural systems. We also highlight caveats, open questions, and key directions for future experiments for improving these interpretations in terms of the underlying neural dynamics throughout the brain.
Collapse
Affiliation(s)
- Siddhartha Joshi
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Joshua I Gold
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
29
|
Pupil dilation reflects English /l//r/ discrimination ability for Japanese learners of English: a pilot study. Sci Rep 2020; 10:8052. [PMID: 32415182 PMCID: PMC7229180 DOI: 10.1038/s41598-020-65020-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 04/19/2020] [Indexed: 12/02/2022] Open
Abstract
The importance of the English language has been increasing as various fields have become more globalized. When Japanese people try to acquire foreign language such as English, learners find it difficult to perceive speech-sounds such as the phonemes /l/ and /r/ that are absent in their native language (e.g., “light”/lάit/ and “right”/rάit/). Recent studies report that a unique sound that deviates from a repetitive background sound induces pupillary dilation response (PDR) regardless of whether attention is directed to the sound or not. In this study, we investigated whether deviation in higher-order processing such as language processing induces PDR, and the possibility of determining implicit subjective English proficiency. A behavioural auditory distinguishing ability test was performed prior to the main experiment to quantitatively evaluate participants’ ability to distinguish English words. Then, by conducting an oddball paradigm-employing stimulus including the phonemes /l/ and /r/ with simultaneous pupil diameter recording, a significant dilation was evoked by /l/-/r/ speech sounds presented as deviant stimuli. Moreover, a strong correlation between the PDR amplitude and participants’ ability to distinguish English words was found; that is, individuals with higher ability to distinguish such words displayed a prominent PDR. Also, the PDR difference between the two groups classified by discrimination ability suggests that PDR might be sensitive to higher-order characteristics involved in language processing, which is independent from the aspects of physical sound and cognitive load.
Collapse
|
30
|
Kamp S. Preceding stimulus sequence effects on the oddball‐P300 in young and healthy older adults. Psychophysiology 2020; 57:e13593. [DOI: 10.1111/psyp.13593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 02/18/2020] [Accepted: 04/06/2020] [Indexed: 11/26/2022]
|
31
|
Mather M, Huang R, Clewett D, Nielsen SE, Velasco R, Tu K, Han S, Kennedy BL. Isometric exercise facilitates attention to salient events in women via the noradrenergic system. Neuroimage 2020; 210:116560. [PMID: 31978545 PMCID: PMC7061882 DOI: 10.1016/j.neuroimage.2020.116560] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 12/19/2019] [Accepted: 01/14/2020] [Indexed: 12/21/2022] Open
Abstract
The locus coeruleus (LC) regulates attention via the release of norepinephrine (NE), with levels of tonic LC activity constraining the intensity of phasic LC responses. In the current fMRI study, we used isometric handgrip to modulate tonic LC-NE activity in older women and in young women with different hormone statuses during the time period immediately after the handgrip. During this post-handgrip time, an oddball detection task was used to probe how changes in tonic arousal influenced functional coordination between the LC and a right frontoparietal network that supports attentional selectivity. As expected, the frontoparietal network responded more to infrequent target and novel sounds than to frequent sounds. Across participants, greater LC-frontoparietal functional connectivity, pupil dilation, and faster oddball detection were all positively associated with LC MRI structural contrast from a neuromelanin-sensitive scan. Thus, LC structure was related to LC functional dynamics and attentional performance during the oddball task. We also found that handgrip influenced pupil and attentional processing during a subsequent oddball task. Handgrip decreased subsequent tonic pupil size, increased phasic pupil responses to oddball sounds, speeded oddball detection speed, and increased frontoparietal network activation, suggesting that inducing strong LC activity benefits attentional performance in the next few minutes, potentially due to reduced tonic LC activity. In addition, older women showed a similar benefit of handgrip on frontoparietal network activation as younger women, despite showing lower frontoparietal network activation overall. Together these findings suggest that a simple exercise may improve selective attention in healthy aging, at least for several minutes afterwards.
Collapse
Affiliation(s)
- Mara Mather
- University of Southern California, Leonard Davis School of Gerontology, USA.
| | - Ringo Huang
- University of Southern California, Leonard Davis School of Gerontology, USA
| | - David Clewett
- University of California, Los Angeles, Department of Psychology, USA
| | - Shawn E Nielsen
- University of Southern California, Leonard Davis School of Gerontology, USA
| | - Ricardo Velasco
- University of Southern California, Leonard Davis School of Gerontology, USA
| | - Kristie Tu
- University of Southern California, Leonard Davis School of Gerontology, USA
| | - Sophia Han
- University of Southern California, Leonard Davis School of Gerontology, USA
| | - Briana L Kennedy
- University of Southern California, Leonard Davis School of Gerontology, USA
| |
Collapse
|
32
|
Bonmassar C, Widmann A, Wetzel N. The impact of novelty and emotion on attention-related neuronal and pupil responses in children. Dev Cogn Neurosci 2020; 42:100766. [PMID: 32452459 PMCID: PMC7068055 DOI: 10.1016/j.dcn.2020.100766] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/13/2019] [Accepted: 02/01/2020] [Indexed: 11/21/2022] Open
Abstract
Focusing on relevant and ignoring irrelevant information is essential for many learning processes. The present study investigated attention-related brain activity and pupil dilation responses, evoked by task-irrelevant emotional novel sounds. In the framework of current theories about the relation between attention and the locus coeruleus-norepinephrine (LC-NE) system, we simultaneously registered event-related potentials (ERPs) in the EEG and changes in pupil diameter (PDR). Unexpected emotional negative and neutral environmental novel sounds were presented within a sequence of repeated standard sounds to 7-10-year-old children and to adults, while participants focused on a visual task. Novel sounds evoked distinctive ERP components, reflecting attention processes and a biphasic PDR in both age groups. Amplitudes of the novel-minus-standard ERPs were increased in children compared to adults, indicating immature neuronal basis of auditory attention in middle childhood. Emotional versus neutral novel sounds evoked increased responses in the ERPs and in the PDR in both age groups. This demonstrates the increased impact of emotional sounds on attention mechanisms and indicates an advanced level of emotional information processing in children. The similar pattern of novel-related PDR and ERPs is conforming to recent theories, emphasizing the role of the LC-NE system in attention processes adding a developmental perspective.
Collapse
Affiliation(s)
| | - Andreas Widmann
- Leibniz Institute for Neurobiology, Magdeburg, Germany; Institute of Psychology, Leipzig University, Leipzig, Germany
| | - Nicole Wetzel
- Leibniz Institute for Neurobiology, Magdeburg, Germany; University of Applied Sciences Magdeburg-Stendal, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
33
|
Mückschel M, Ziemssen T, Beste C. Properties of lower level processing modulate the actions of the norepinephrine system during response inhibition. Biol Psychol 2020; 152:107862. [PMID: 32032625 DOI: 10.1016/j.biopsycho.2020.107862] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 12/29/2019] [Accepted: 02/03/2020] [Indexed: 02/06/2023]
Abstract
We ask whether actions of the norepinephrine (NE) system during response inhibition are affected by properties of lower level sensory stimulus processing. We used a somato-sensory Go/Nogo task and combined ERP recordings with pupil diameter recordings as an index of NE system activity. The Go/Nogo task was designed to achieve processing of tactile stimuli predominantly over primary somatosensory (SI) and secondary somatosensory (SII) areas. The data show that response inhibition was better when stimuli were processed via SII, compared to SI areas. This was reflected by variations in the Nogo-N2/P3 associated with anterior cingulate structures. Correlations with the pupil diameter data, indicting modulations of the NE system during inhibitory control processes, were only evident when SI sensory areas were involved. These dissociable modulatory effects were associated with activations in the superior frontal gyrus. Actions of the NE system during response inhibition are modulated by properties of lower level processing.
Collapse
Affiliation(s)
- Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; MS Centre Dresden, Centre of Clinical Neuroscience, Department of Neurology, Faculty of Medicine, TU Dresden, Germany
| | - Tjalf Ziemssen
- MS Centre Dresden, Centre of Clinical Neuroscience, Department of Neurology, Faculty of Medicine, TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany.
| |
Collapse
|
34
|
Chandregowda A, Arbel Y, Donchin E. Seeking neurophysiological manifestations of speech production: An ERP study. Int J Psychophysiol 2019; 147:137-146. [PMID: 31756406 DOI: 10.1016/j.ijpsycho.2019.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 06/05/2019] [Accepted: 10/28/2019] [Indexed: 10/25/2022]
Abstract
The aim of this study was to examine the neurophysiological correlates of speech production by elucidating pertinent ERP components. Such examination can pave way for investigations on typical and atypical speech neuromotor control. Participants completed a speech task by saying a specific word (speaking condition) or withholding the verbal response (non-speaking condition) based on the color of a frame placed around a fixation cross that were displayed on a computer screen. They also completed a simple hand motor task by pressing a button with the right or left index finger based on the color of a frame. The hand motor task was administered to verify that neural activity specific to motor preparation was detectable. Two ERP components emerged from the multichannel principal component analysis (PCA) as distinguishing between the speaking and no speaking conditions: a posterior negative component, and a left lateralized positive component. The morphology of the posterior negative component, as well as the correlation between its magnitude and mean response time suggest that this component is closely associated with speech motor control. The left-lateralized component was interpreted as reflecting a process possibly mediated by the speech dominant left hemisphere.
Collapse
Affiliation(s)
- Adithya Chandregowda
- Department of Communication Sciences and Disorders, University of South Florida, United States of America; Department of Neurology (Speech Pathology), Mayo Clinic, Rochester, MN, United States of America.
| | - Yael Arbel
- Department of Communication Sciences and Disorders, Massachusetts General Hospital Institute of Health Professions, United States of America
| | - Emanuel Donchin
- Department of Psychology, University of South Florida, United States of America
| |
Collapse
|
35
|
Beukema S. The Pupillary Response to the Unknown: Novelty Versus Familiarity. Iperception 2019; 10:2041669519874817. [PMID: 31523417 PMCID: PMC6732862 DOI: 10.1177/2041669519874817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/12/2019] [Indexed: 11/15/2022] Open
Abstract
Object recognition is a type of perception that enables observers to recognize familiar shapes and categorize them into real-world identities. In this preregistered study, we aimed to determine whether pupil size changes occur during the perception and recognition of identifiable objects. We compared pupil size changes for familiar objects, nonobjects, and random noise. Nonobjects and noise produced greater pupil dilation than familiar objects. Contrary to previous evidence showing greater pupil dilation to stimuli with more perceptual and affective content, these results indicate a greater pupil dilation to stimuli that are unidentifiable. This is consistent with the relative salience of novelty compared to familiarity at the physiological level driving the pupil response.
Collapse
Affiliation(s)
- Steve Beukema
- McGill Vision Research, Department of
Ophthalmology, Montreal General Hospital, Montreal, Quebec, Canada
| |
Collapse
|
36
|
Reiss S, Klackl J, Proulx T, Jonas E. Strength of socio-political attitudes moderates electrophysiological responses to perceptual anomalies. PLoS One 2019; 14:e0220732. [PMID: 31381605 PMCID: PMC6681971 DOI: 10.1371/journal.pone.0220732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/22/2019] [Indexed: 11/19/2022] Open
Abstract
People with strong (vs. moderate) political attitudes have been shown to exhibit less phasic reactivity to perceptual anomalies, presumably to prevent their committed meaning systems from being challenged by novel experiences. Several researchers have proposed that (but not tested whether) firmly committed individuals also engage in more attentional suppression of anomalies, likely mediated by prestimulus alpha power. We expected participants with strong (vs. moderate) political attitudes to display increased pre-stimulus alpha power when processing perceptual anomalies. We recorded electrophysiological activity during the presentation of normal cards (control group) or both normal and anomalous playing cards (experimental group; total N = 191). In line with our predictions, the presence of anomalous playing cards in the stimulus set increased prestimulus alpha power only among individuals with strong but not moderate political attitudes. As potential markers of phasic reactivity, we also analyzed the late positive potential (LPP) and earlier components of the event-related potential, namely P1, N1, and P300. The moderating effect of extreme attitudes on ERP amplitudes remained inconclusive. Altogether, our findings support the idea that ideological conviction is related to increased tonic responses to perceptual anomalies.
Collapse
Affiliation(s)
- Stefan Reiss
- Dept. of Psychology, University of Salzburg, Salzburg, Austria
| | - Johannes Klackl
- Dept. of Psychology, University of Salzburg, Salzburg, Austria
| | - Travis Proulx
- School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Eva Jonas
- Dept. of Psychology, University of Salzburg, Salzburg, Austria
| |
Collapse
|
37
|
Swallow KM, Jiang YV, Riley EB. Target detection increases pupil diameter and enhances memory for background scenes during multi-tasking. Sci Rep 2019; 9:5255. [PMID: 30918293 PMCID: PMC6437181 DOI: 10.1038/s41598-019-41658-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 03/14/2019] [Indexed: 12/19/2022] Open
Abstract
Attending to targets in a detection task can facilitate memory for concurrently presented information, a phenomenon known as the attentional boost effect. One account of the attentional boost suggests that it reflects the temporal selection of behaviorally relevant moments, broadly facilitating the processing of information encountered at these times. Because pupil diameter increases when orienting to behaviorally relevant events and is positively correlated with increases in gain and activity in the locus coeruleus (a purported neurophysiological mechanism for temporal selection), we tested whether the attentional boost effect is accompanied by an increase in pupil diameter. Participants memorized a series of individually presented scenes. Whenever a scene appeared, a high or low pitched tone was played, and participants counted (and later reported) the number of tones in the pre-specified, target pitch. Target detection enhanced later memory for concurrently presented scenes. It was accompanied by a larger pupil response than was distractor rejection, and this effect was more pronounced for subsequently remembered rather than forgotten scenes. Thus, conditions that produce the attentional boost effect may also elicit phasic changes in neural gain and locus coeruleus activity.
Collapse
Affiliation(s)
- Khena M Swallow
- Department of Psychology, Cornell University, Ithaca, NY, USA.
| | - Yuhong V Jiang
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Elizabeth B Riley
- Department of Human Development, Cornell University, Ithaca, NY, USA
| |
Collapse
|
38
|
Abstract
It has long been known from animal literature that the locus coeruleus (LC), the source region of noradrenergic neurons in the brain, is sensitive to unexpected, novel, and other salient events. In humans, however, direct assessment of LC activity has proven to be challenging due to its small size and difficult localization, which is why noradrenergic activity has often been assessed using more indirect measures such as electroencephalography (EEG) and pupil recordings. Here, we combined high-resolution functional magnetic resonance imaging (fMRI) with a special anatomical sequence to assess neural activity in the LC in response to different types of salient stimuli in an oddball paradigm (novel neutral oddballs, novel emotional oddballs, and familiar target oddballs). We found a significant linear increase of LC activity from standard trials, over familiar target oddballs, to novel neutral and novel emotional oddballs. Importantly, when breaking down this linear trend, only novel oddball stimuli led to robust activity increases as compared to standard trials, with no statistical difference between neutral and emotional ones. This pattern suggests that activity modulations in the LC in the present study were mainly driven by stimulus novelty, rather than by emotional saliency, task relevance, or contextual novelty alone. Moreover, the absence of significant activity modulations in response to target oddballs (which were reported in a recent study) suggests that the LC represents relative rather than absolute saliency of a stimulus in its respective context.
Collapse
|
39
|
Pertermann M, Mückschel M, Adelhöfer N, Ziemssen T, Beste C. On the interrelation of 1/ f neural noise and norepinephrine system activity during motor response inhibition. J Neurophysiol 2019; 121:1633-1643. [PMID: 30811254 DOI: 10.1152/jn.00701.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Several lines of evidence suggest that there is a close interrelation between the degree of noise in neural circuits and the activity of the norepinephrine (NE) system, yet the precise nexus between these aspects is far from being understood during human information processing and cognitive control in particular. We examine this nexus during response inhibition in n = 47 healthy participants. Using high-density EEG recordings, we estimate neural noise by calculating "1/f noise" of those data and integrate these EEG parameters with pupil diameter data as an established indirect index of NE system activity. We show that neural noise is reduced when cognitive control processes to inhibit a prepotent/automated response are exerted. These neural noise variations were confined to the theta frequency band, which has also been shown to play a central role during response inhibition and cognitive control. There were strong positive correlations between the 1/f neural noise parameter and the pupil diameter data within the first 250 ms after the Nogo stimulus presentation at centro-parietal electrode sites. No such correlations were evident during automated responding on Go trials. Source localization analyses using standardized low-resolution brain electromagnetic tomography show that inferior parietal areas are activated in this time period in Nogo trials. The data suggest an interrelation of NE system activity and neural noise within early stages of information processing associated with inferior parietal areas when cognitive control processes are required. The data provide the first direct evidence for the nexus between NE system activity and the modulation of neural noise during inhibitory control in humans. NEW & NOTEWORTHY This is the first study showing that there is a nexus between norepinephrine system activity and the modulation of neural noise or scale-free neural activity during inhibitory control in humans. It does so by integrating pupil diameter data with analysis of EEG neural noise.
Collapse
Affiliation(s)
- Maik Pertermann
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden , Germany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden , Germany.,MS Centre Dresden, Centre of Clinical Neuroscience, Department of Neurology, Faculty of Medicine, TU Dresden, Dresden , Germany
| | - Nico Adelhöfer
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden , Germany
| | - Tjalf Ziemssen
- MS Centre Dresden, Centre of Clinical Neuroscience, Department of Neurology, Faculty of Medicine, TU Dresden, Dresden , Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden , Germany.,Faculty of Psychology, School of Science, TU Dresden, Dresden , Germany
| |
Collapse
|
40
|
Adelhöfer N, Mückschel M, Teufert B, Ziemssen T, Beste C. Anodal tDCS affects neuromodulatory effects of the norepinephrine system on superior frontal theta activity during response inhibition. Brain Struct Funct 2019; 224:1291-1300. [PMID: 30701308 DOI: 10.1007/s00429-019-01839-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/21/2019] [Indexed: 12/27/2022]
Abstract
Medial and superior frontal theta oscillations are important for response inhibition. The norepinephrine (NE) system has been shown to modulate these oscillations possibly via gain control mechanisms, which depend on the modulation of neuron membrane potentials. Because the latter are also modulated by tDCS, the interrelation of tDCS and NE effects on superior frontal theta band activity needs investigation. We test the hypothesis that anodal tDCS affects modulatory effects of the NE system on theta band activity during inhibitory control in superior frontal regions. Using EEG beamforming, theta band activity in the superior frontal gyrus (SFG) was integrated (correlated) with the pupil diameter data as an indirect index of NE activity. In a within-subject design, healthy participants completed a response inhibition task in two sessions in which they received 2 mA anodal tDCS over the vertex, or sham stimulation. There were no behavioral effects of anodal tDCS. Yet, tDCS affected correlations between SFG theta band activity time course and the pupil diameter time course. Correlations were evident after sham stimulation (r = .701; p < .004), but absent after anodal tDCS. The observed power of this dissociation was above 95%. The data suggest that anodal tDCS may eliminate neuromodulatory effects, likely of the NE system, on theta band activity during response inhibition in a structure of the response inhibition network. The NE system and tDCS seem to target similar mechanisms important for cognitive control in the prefrontal cortex. The results provide a hint why tDCS often fails to induce overt behavioral effects and shows that neurobiological systems, which may exert similar effects as tDCS on neural processes should closely be monitored in tDCS experiments.
Collapse
Affiliation(s)
- Nico Adelhöfer
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.,Department of Neurology, Faculty of Medicine, MS Centre Dresden, TU Dresden, Dresden, Germany
| | - Benjamin Teufert
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Tjalf Ziemssen
- Department of Neurology, Faculty of Medicine, MS Centre Dresden, TU Dresden, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
| |
Collapse
|
41
|
Kamp SM, Endemann R, Domes G, Mecklinger A. Effects of acute psychosocial stress on the neural correlates of episodic encoding: Item versus associative memory. Neurobiol Learn Mem 2019; 157:128-138. [DOI: 10.1016/j.nlm.2018.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/23/2018] [Accepted: 12/12/2018] [Indexed: 12/21/2022]
|
42
|
Hershaw JN, Ettenhofer ML. Insights into cognitive pupillometry: Evaluation of the utility of pupillary metrics for assessing cognitive load in normative and clinical samples. Int J Psychophysiol 2018; 134:62-78. [DOI: 10.1016/j.ijpsycho.2018.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/10/2018] [Accepted: 10/15/2018] [Indexed: 02/08/2023]
|
43
|
Masson R, Bidet-Caulet A. Fronto-central P3a to distracting sounds: An index of their arousing properties. Neuroimage 2018; 185:164-180. [PMID: 30336252 DOI: 10.1016/j.neuroimage.2018.10.041] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/25/2018] [Accepted: 10/13/2018] [Indexed: 11/17/2022] Open
Abstract
The P3a observed after novel events is an event-related potential comprising an early fronto-central phase and a late fronto-parietal phase. It has classically been considered to reflect the attention processing of distracting stimuli. However, novel sounds can lead to behavioral facilitation as much as behavioral distraction. This illustrates the duality of the orienting response which includes both an attentional and an arousal component. Using a paradigm with visual or auditory targets to detect and irrelevant unexpected distracting sounds to ignore, we showed that the facilitation effect by distracting sounds is independent of the target modality and endures more than 1500 ms. These results confirm that the behavioral facilitation observed after distracting sounds is related to an increase in unspecific phasic arousal on top of the attentional capture. Moreover, the amplitude of the early phase of the P3a to distracting sounds positively correlated with subjective arousal ratings, contrary to other event-related potentials. We propose that the fronto-central early phase of the P3a would index the arousing properties of distracting sounds and would be linked to the arousal component of the orienting response. Finally, we discuss the relevance of the P3a as a marker of distraction.
Collapse
Affiliation(s)
- Rémy Masson
- Brain Dynamics and Cognition Team, Lyon Neuroscience Research Center (CRNL), INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, F-69000, Lyon, France.
| | - Aurélie Bidet-Caulet
- Brain Dynamics and Cognition Team, Lyon Neuroscience Research Center (CRNL), INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, F-69000, Lyon, France
| |
Collapse
|
44
|
Ribeiro MJ, Castelo-Branco M. Age-related differences in event-related potentials and pupillary responses in cued reaction time tasks. Neurobiol Aging 2018; 73:177-189. [PMID: 30366291 DOI: 10.1016/j.neurobiolaging.2018.09.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 09/18/2018] [Accepted: 09/22/2018] [Indexed: 10/28/2022]
Abstract
Deficits in the noradrenergic system are associated with age-related cognitive decline, yet how healthy aging influences the functional properties of this arousal system is still poorly understood. We addressed this question in humans using pupillometry, a well-established indicator of activity levels in the locus coeruleus (LC), the main noradrenergic center in the brain. We recorded the pupillogram and the electroencephalogram of 36 young and 39 older adults, while they were engaged in cued reaction time tasks known to elicit LC responses in monkeys. Event-related potentials (ERPs) revealed significant group differences. Older adults showed higher cortical activation during preparatory processes reflected in enhanced cue-evoked frontocentral ERPs and reduced parietal ERPs at the time of the motor response. In contrast, the amplitude of the task-related pupillary responses did not show a significant group effect. Our findings suggest that aging-related changes in cortical processing during motor preparation and execution, as documented by electroencephalogram, are not accompanied by changes in the amplitude of activation of the LC, as documented by pupillography.
Collapse
Affiliation(s)
- Maria J Ribeiro
- CIBIT, Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal; CNC.IBILI, University of Coimbra, Coimbra, Portugal; Visual Neuroscience Laboratory, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| | - Miguel Castelo-Branco
- CIBIT, Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal; CNC.IBILI, University of Coimbra, Coimbra, Portugal; Visual Neuroscience Laboratory, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
45
|
Emotion lies in the eye of the listener: Emotional arousal to novel sounds is reflected in the sympathetic contribution to the pupil dilation response and the P3. Biol Psychol 2018; 133:10-17. [PMID: 29378283 DOI: 10.1016/j.biopsycho.2018.01.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 01/19/2018] [Accepted: 01/21/2018] [Indexed: 02/01/2023]
Abstract
Novel sounds in the auditory oddball paradigm elicit a biphasic dilation of the pupil (PDR) and P3a as well as novelty P3 event-related potentials (ERPs). The biphasic PDR has been hypothesized to reflect the relaxation of the iris sphincter muscle due to parasympathetic inhibition and the constriction of the iris dilator muscle due to sympathetic activation. We measured the PDR and the P3 to neutral and to emotionally arousing negative novels in dark and moderate lighting conditions. By means of principal component analysis (PCA) of the PDR data we extracted two components: the early one was absent in darkness and, thus, presumably reflects parasympathetic inhibition, whereas the late component occurred in darkness and light and presumably reflects sympathetic activation. Importantly, only this sympathetic late component was enhanced for emotionally arousing (as compared to neutral) sounds supporting the hypothesis that emotional arousal specifically activates the sympathetic nervous system. In the ERPs we observed P3a and novelty P3 in response to novel sounds. Both components were enhanced for emotionally arousing (as compared to neutral) novels. Our results demonstrate that sympathetic and parasympathetic contributions to the PDR can be separated and link emotional arousal to sympathetic nervous system activation.
Collapse
|
46
|
Bast N, Poustka L, Freitag CM. The locus coeruleus-norepinephrine system as pacemaker of attention - a developmental mechanism of derailed attentional function in autism spectrum disorder. Eur J Neurosci 2018; 47:115-125. [DOI: 10.1111/ejn.13795] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 12/04/2017] [Accepted: 12/07/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Nico Bast
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy; University Hospital; Goethe University Frankfurt am Main; Deutschordenstraße 50 60528 Frankfurt am Main Germany
- Department of Child and Adolescent Psychiatry and Psychotherapy; Medical Faculty Mannheim; Central Institute of Mental Health; Heidelberg University; Heidelberg Germany
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy; Medical Faculty Mannheim; Central Institute of Mental Health; Heidelberg University; Heidelberg Germany
- Department of Child and Adolescent Psychiatry/Psychotherapy; University Medical Center Göttingen; Medical University of Göttingen; Göttingen Germany
| | - Christine M. Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy; University Hospital; Goethe University Frankfurt am Main; Deutschordenstraße 50 60528 Frankfurt am Main Germany
| |
Collapse
|
47
|
Angulo-Chavira AQ, García O, Arias-Trejo N. Pupil response and attention skills in Down syndrome. RESEARCH IN DEVELOPMENTAL DISABILITIES 2017; 70:40-49. [PMID: 28888155 DOI: 10.1016/j.ridd.2017.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 06/07/2023]
Abstract
Down syndrome (DS) is characterized by attentional problems. Little is known about the neural correlates of attention problems in DS due to difficulties in evaluation. Pupil dilation, associated with an increase in cognitive load and locus coeruleus-noradrenaline system activity in humans, is a neurophysiological measurement that may help to characterize such problems. The aim of this research was to investigate the link between a phasic pupil dilation response and target detection in people with DS, as compared with a control group with typical development (TD) matched by mental age. Participants performed an "oddball" task by means of an eye-tracker and a series of neuropsychological tests. Although the DS and control group demonstrated similar attentional skills and behavioral performance, the participants with DS showed greater pupil dilation. This result suggests that people with DS expend extra cognitive effort to achieve performance similar to those with TD. This finding is discussed in light of the attentional process in DS and the reliability of pupil dilation measurement in the study of attention and other cognitive processes in DS.
Collapse
Affiliation(s)
| | - Octavio García
- Laboratorio de Neurobiología del Síndrome de Down, Facultad de Psicología, Universidad Nacional Autónoma de México, Mexico
| | - Natalia Arias-Trejo
- Laboratorio de Psicolingüística, Facultad de Psicología, Universidad Nacional Autónoma de México, Mexico.
| |
Collapse
|
48
|
Dippel G, Mückschel M, Ziemssen T, Beste C. Demands on response inhibition processes determine modulations of theta band activity in superior frontal areas and correlations with pupillometry – Implications for the norepinephrine system during inhibitory control. Neuroimage 2017. [DOI: 10.1016/j.neuroimage.2017.06.037] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
49
|
Brocher A, Graf T. Decision-related factors in pupil old/new effects: Attention, response execution, and false memory. Neuropsychologia 2017. [PMID: 28624522 DOI: 10.1016/j.neuropsychologia.2017.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In this study, we investigate the effects of decision-related factors on recognition memory in pupil old/new paradigms. In Experiment 1, we used an old/new paradigm with words and pseudowords and participants made lexical decisions during recognition rather than old/new decisions. Importantly, participants were instructed to focus on the nonword-likeness of presented items, not their word-likeness. We obtained no old/new effects. In Experiment 2, participants discriminated old from new words and old from new pseudowords during recognition, and they did so as quickly as possible. We found old/new effects for both words and pseudowords. In Experiment 3, we used materials and an old/new design known to elicit a large number of incorrect responses. For false alarms ("old" response for new word), we found larger pupils than for correctly classified new items, starting at the point at which response execution was allowed (2750ms post stimulus onset). In contrast, pupil size for misses ("new" response for old word) was statistically indistinguishable from pupil size in correct rejections. Taken together, our data suggest that pupil old/new effects result more from the intentional use of memory than from its automatic use.
Collapse
Affiliation(s)
- Andreas Brocher
- Department of German Literature and Linguistics I, University of Cologne, Germany.
| | - Tim Graf
- Department of German Literature and Linguistics I, University of Cologne, Germany
| |
Collapse
|
50
|
Eckstein MK, Guerra-Carrillo B, Miller Singley AT, Bunge SA. Beyond eye gaze: What else can eyetracking reveal about cognition and cognitive development? Dev Cogn Neurosci 2017; 25:69-91. [PMID: 27908561 PMCID: PMC6987826 DOI: 10.1016/j.dcn.2016.11.001] [Citation(s) in RCA: 261] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/26/2016] [Accepted: 11/07/2016] [Indexed: 01/11/2023] Open
Abstract
This review provides an introduction to two eyetracking measures that can be used to study cognitive development and plasticity: pupil dilation and spontaneous blink rate. We begin by outlining the rich history of gaze analysis, which can reveal the current focus of attention as well as cognitive strategies. We then turn to the two lesser-utilized ocular measures. Pupil dilation is modulated by the brain's locus coeruleus-norepinephrine system, which controls physiological arousal and attention, and has been used as a measure of subjective task difficulty, mental effort, and neural gain. Spontaneous eyeblink rate correlates with levels of dopamine in the central nervous system, and can reveal processes underlying learning and goal-directed behavior. Taken together, gaze, pupil dilation, and blink rate are three non-invasive and complementary measures of cognition with high temporal resolution and well-understood neural foundations. Here we review the neural foundations of pupil dilation and blink rate, provide examples of their usage, describe analytic methods and methodological considerations, and discuss their potential for research on learning, cognitive development, and plasticity.
Collapse
Affiliation(s)
- Maria K Eckstein
- Department of Psychology, University of California at Berkeley, United States
| | | | | | - Silvia A Bunge
- Department of Psychology, University of California at Berkeley, United States; Helen Wills Neuroscience Institute, University of California at Berkeley, United States.
| |
Collapse
|