1
|
Wen Z, Hammoud MZ, Siegel CE, Laska EM, Abu-Amara D, Etkin A, Milad MR, Marmar CR. Neuroimaging-based variability in subtyping biomarkers for psychiatric heterogeneity. Mol Psychiatry 2024:10.1038/s41380-024-02807-y. [PMID: 39511450 DOI: 10.1038/s41380-024-02807-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 11/15/2024]
Abstract
Neuroimaging-based subtyping is increasingly used to explain heterogeneity in psychiatric disorders. However, the clinical utility of these subtyping efforts remains unclear, and replication has been challenging. Here we examined how the choice of neuroimaging measures influences the derivation of neuro-subtypes and the consequences for clinical delineation. On a clinically heterogeneous dataset (total n = 566) that included controls (n = 268) and cases (n = 298) of psychiatric conditions, including individuals diagnosed with post-traumatic stress disorder (PTSD), traumatic brain injury (TBI), and comorbidity of both (PTSD&TBI), we identified neuro-subtypes among the cases using either structural, resting-state, or task-based measures. The neuro-subtypes for each modality had high internal validity but did not significantly differ in their clinical and cognitive profiles. We further show that the choice of neuroimaging measures for subtyping substantially impacts the identification of neuro-subtypes, leading to low concordance across subtyping solutions. Similar variability in neuro-subtyping was found in an independent dataset (n = 1642) comprised of major depression disorder (MDD, n = 848) and controls (n = 794). Our results suggest that the highly anticipated relationships between neuro-subtypes and clinical features may be difficult to discover.
Collapse
Affiliation(s)
- Zhenfu Wen
- Department of Psychiatry, Grossman School of Medicine, New York University, New York, NY, USA
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Science Center at Houston, Houston, TX, USA
| | - Mira Z Hammoud
- Department of Psychiatry, Grossman School of Medicine, New York University, New York, NY, USA
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Science Center at Houston, Houston, TX, USA
| | - Carole E Siegel
- Department of Psychiatry, Grossman School of Medicine, New York University, New York, NY, USA
| | - Eugene M Laska
- Department of Psychiatry, Grossman School of Medicine, New York University, New York, NY, USA
| | - Duna Abu-Amara
- Department of Psychiatry, Grossman School of Medicine, New York University, New York, NY, USA
| | - Amit Etkin
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Alto Neuroscience, Mountain View, CA, USA
| | - Mohammed R Milad
- Department of Psychiatry, Grossman School of Medicine, New York University, New York, NY, USA.
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Science Center at Houston, Houston, TX, USA.
| | - Charles R Marmar
- Department of Psychiatry, Grossman School of Medicine, New York University, New York, NY, USA.
- Neuroscience Institute, New York University, New York, NY, USA.
| |
Collapse
|
2
|
Otten J, Dan S, Rostin L, Profetto AE, Lardenoije R, Klengel T. Spatial transcriptomics reveals modulation of transcriptional networks across brain regions after auditory threat conditioning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614979. [PMID: 39386587 PMCID: PMC11463379 DOI: 10.1101/2024.09.25.614979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Prior research has demonstrated genome-wide transcriptional changes related to fear and anxiety across species, often focusing on individual brain regions or cell types. However, the extent of gene expression differences across brain regions and how these changes interact at the level of transcriptional connectivity remains unclear. To address this, we performed spatial transcriptomics RNAseq analyses in an auditory threat conditioning paradigm in mice. We generated a spatial transcriptomic atlas of a coronal mouse brain section covering cortical and subcortical regions, corresponding to histologically defined regions. Our finding revealed widespread transcriptional responses across all brain regions examined, particularly in the medial and lateral habenula, and the choroid plexus. Network analyses highlighted altered transcriptional connectivity between cortical and subcortical regions, emphasizing the role of steroidogenic factor 1. These results provide new insights into the transcriptional networks involved in auditory threat conditioning, enhancing our understanding of molecular and neural mechanisms underlying fear and anxiety disorders.
Collapse
|
3
|
Shahzad MN, Ali H. Deep learning based diagnosis of PTSD using 3D-CNN and resting-state fMRI data. Psychiatry Res Neuroimaging 2024; 343:111845. [PMID: 38908302 DOI: 10.1016/j.pscychresns.2024.111845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/26/2024] [Accepted: 06/11/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND The incidence rate of Posttraumatic stress disorder (PTSD) is currently increasing due to wars, terrorism, and pandemic disease situations. Therefore, accurate detection of PTSD is crucial for the treatment of the patients, for this purpose, the present study aims to classify individuals with PTSD versus healthy control. METHODS The resting-state functional MRI (rs-fMRI) scans of 19 PTSD and 24 healthy control male subjects have been used to identify the activation pattern in most affected brain regions using group-level independent component analysis (ICA) and t-test. To classify PTSD-affected subjects from healthy control six machine learning techniques including random forest, Naive Bayes, support vector machine, decision tree, K-nearest neighbor, linear discriminant analysis, and deep learning three-dimensional 3D-CNN have been performed on the data and compared. RESULTS The rs-fMRI scans of the most commonly investigated 11 regions of trauma-exposed and healthy brains are analyzed to observe their level of activation. Amygdala and insula regions are determined as the most activated regions from the regions-of-interest in the brain of PTSD subjects. In addition, machine learning techniques have been applied to the components extracted from ICA but the models provided low classification accuracy. The ICA components are also fed into the 3D-CNN model, which is trained with a 5-fold cross-validation method. The 3D-CNN model demonstrated high accuracies, such as 98.12%, 98.25 %, and 98.00 % on average with training, validation, and testing datasets, respectively. CONCLUSION The findings indicate that 3D-CNN is a surpassing method than the other six considered techniques and it helps to recognize PTSD patients accurately.
Collapse
Affiliation(s)
| | - Haider Ali
- Department of Statistics, University of Gujrat, Gujrat, Pakistan
| |
Collapse
|
4
|
Scalabrini A, Cavicchioli M, Benedetti F, Mucci C, Northoff G. The nested hierarchical model of self and its non-relational vs relational posttraumatic manifestation: an fMRI meta-analysis of emotional processing. Mol Psychiatry 2024; 29:2859-2872. [PMID: 38514803 DOI: 10.1038/s41380-024-02520-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024]
Abstract
Different kinds of traumatic experiences like natural catastrophes vs. relational traumatic experiences (e.g., sex/physical abuse, interpersonal partner violence) are involved in the development of the self and PTSD psychopathological manifestations. Looking at a neuroscience approach, it has been proposed a nested hierarchical model of self, which identifies three neural-mental networks: (i) interoceptive; (ii) exteroceptive; (iii) mental. However, it is still unclear how the self and its related brain networks might be affected by non-relational vs relational traumatic experiences. Departing from this background, the current study aims at conducting a meta-analytic review of task-dependent fMRI studies (i.e., emotional processing task) among patients with PTSD due to non-relational (PTSD-NR) and relational (PTSD-R) traumatic experiences using two approaches: (i) a Bayesian network meta-analysis for a region-of-interest-based approach; (ii) a coordinated-based meta-analysis. Our findings suggested that the PTSD-NR mainly recruited areas ascribed to the mental self to process emotional stimuli. Whereas, the PTSD-R mainly activated regions associated with the intero-exteroceptive self. Accordingly, the PTSD-R compared to the PTSD-NR might not reach a higher symbolic capacity to process stimuli with an emotional valence. These results are also clinically relevant in support of the development of differential treatment approaches for non-relational vs. relational PTSD.
Collapse
Affiliation(s)
- Andrea Scalabrini
- Department of Human and Social Sciences, University of Bergamo, P.le S. Agostino, 2, Bergamo, 24129, Italy.
| | - Marco Cavicchioli
- University Vita- Salute San Raffaele, Milan, Via Olgettina, 58, Milan, 20132, Italy.
| | - Francesco Benedetti
- University Vita- Salute San Raffaele, Milan, Via Olgettina, 58, Milan, 20132, Italy
- Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Stamira d'Ancona, 20, 20127, Milan, Italy
| | - Clara Mucci
- Department of Human and Social Sciences, University of Bergamo, P.le S. Agostino, 2, Bergamo, 24129, Italy
| | - Georg Northoff
- The Royal's Institute of Mental Health Research & University of Ottawa. Brain and Mind Research Institute, Centre for Neural Dynamics, Faculty of Medicine, University of Ottawa, Ottawa, 145 Carling Avenue, Rm. 6435, Ottawa, ON, K1Z 7K412, Canada
| |
Collapse
|
5
|
Huang M, Tao X, Bao J, Wang J, Gong X, Luo L, Pan S, Yang R, Gui Y, Zhou H, Xia Y, Yang Y, Sun B, Liu W, Shu X. GADD45B in the ventral hippocampal CA1 modulates aversive memory acquisition and spatial cognition. Life Sci 2024; 346:122618. [PMID: 38614306 DOI: 10.1016/j.lfs.2024.122618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 04/15/2024]
Abstract
AIMS This study was designed to investigate the role of growth arrest and DNA damage-inducible β (GADD45B) in modulating fear memory acquisition and elucidate its underlying mechanisms. MAIN METHODS Adeno-associated virus (AAV) that knockdown or overexpression GADD45B were injected into ventral hippocampal CA1 (vCA1) by stereotactic, and verified by fluorescence and Western blot. The contextual fear conditioning paradigm was employed to examine the involvement of GADD45B in modulating aversive memory acquisition. The Y-maze and novel location recognition (NLR) tests were used to examine non-aversive cognition. The synaptic plasticity and electrophysiological properties of neurons were measured by slice patch clamp. KEY FINDINGS Knockdown of GADD45B in the vCA1 significantly enhanced fear memory acquisition, accompanied by an upregulation of long-term potentiation (LTP) expression and intrinsic excitability of vCA1 pyramidal neurons (PNs). Conversely, overexpression of GADD45B produced the opposite effects. Notably, silencing the activity of vCA1 neurons abolished the impact of GADD45B knockdown on fear memory development. Moreover, mice with vCA1 GADD45B overexpression exhibited impaired spatial cognition, whereas mice with GADD45B knockdown did not display such impairment. SIGNIFICANCE These results provided compelling evidence for the crucial involvement of GADD45B in the formation of aversive memory and spatial cognition.
Collapse
Affiliation(s)
- Mengbing Huang
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Xiaoqing Tao
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Jian Bao
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Ji Wang
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Xiaokang Gong
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Laijie Luo
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Sijie Pan
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Rong Yang
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Yuran Gui
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - HongYan Zhou
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Yiyuan Xia
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Youhua Yang
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Binlian Sun
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Wei Liu
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China.
| | - Xiji Shu
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China.
| |
Collapse
|
6
|
Kobelt M, Waldhauser GT, Rupietta A, Heinen R, Rau EMB, Kessler H, Axmacher N. The memory trace of an intrusive trauma-analog episode. Curr Biol 2024; 34:1657-1669.e5. [PMID: 38537637 DOI: 10.1016/j.cub.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/05/2023] [Accepted: 03/06/2024] [Indexed: 04/25/2024]
Abstract
Intrusive memories are a core symptom of posttraumatic stress disorder. Compared with memories of everyday events, they are characterized by several seemingly contradictory features: intrusive memories contain distinct sensory and emotional details of the traumatic event and can be triggered by various perceptually similar cues, but they are poorly integrated into conceptual memory. Here, we conduct exploratory whole-brain analyses to investigate the neural representations of trauma-analog experiences and how they are reactivated during memory intrusions. We show that trauma-analog movies induce excessive processing and generalized representations in sensory areas but decreased blood-oxygen-level-dependent (BOLD) responses and highly distinct representations in conceptual/semantic areas. Intrusive memories activate generalized representations in sensory areas and reactivate memory traces specific to trauma-analog events in the anterior cingulate cortex. These findings provide the first evidence of how traumatic events could distort memory representations in the human brain, which may form the basis for future confirmatory research on the neural representations of traumatic experiences.
Collapse
Affiliation(s)
- M Kobelt
- Department of Neuropsychology, Ruhr-Universität Bochum, Bochum 44801, North Rhine-Westphalia, Germany.
| | - G T Waldhauser
- Department of Neuropsychology, Ruhr-Universität Bochum, Bochum 44801, North Rhine-Westphalia, Germany.
| | - A Rupietta
- Department of Clinical Psychology and Psychotherapy, Ruhr-Universität Bochum, Bochum 44787, North Rhine-Westphalia, Germany
| | - R Heinen
- Department of Neuropsychology, Ruhr-Universität Bochum, Bochum 44801, North Rhine-Westphalia, Germany
| | - E M B Rau
- Department of Neuropsychology, Ruhr-Universität Bochum, Bochum 44801, North Rhine-Westphalia, Germany
| | - H Kessler
- Department of Psychosomatic Medicine and Psychotherapy, Campus Fulda, Universität Marburg, Marburg 35032, Hessen, Germany; Department of Psychosomatic Medicine and Psychotherapy, LWL University Hospital, Ruhr-Universität Bochum, Bochum 44791, North Rhine-Westphalia, Germany
| | - N Axmacher
- Department of Neuropsychology, Ruhr-Universität Bochum, Bochum 44801, North Rhine-Westphalia, Germany.
| |
Collapse
|
7
|
El-Kadi RA, AbdelKader NF, Zaki HF, Kamel AS. Influence of β-catenin signaling on neurogenesis in neuropsychiatric disorders: Anxiety and depression. Drug Dev Res 2024; 85:e22157. [PMID: 38349261 DOI: 10.1002/ddr.22157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/28/2023] [Accepted: 01/21/2024] [Indexed: 02/15/2024]
Abstract
It has been proven that stress, mainly in the early years of life, can lead to anxiety and mood problems. Current treatments for psychiatric disorders are not enough, and some of them show intolerable side effects, emphasizing the urgent need for new treatment targets. Hence, a better understanding of the different brain networks, which are involved in the response to anxiety and depression, may evoke treatments with more specific targets. One of these targets is β-catenin that regulates brain circuits. β-Catenin has a dual response toward stress, which may influence coping or vulnerability to stress response. Indeed, β-catenin signaling involves several processes such as inflammation-directed brain repair, inflammation-induced brain damage, and neurogenesis. Interestingly, β-catenin reduction is accompanied by low neurogenesis, which leads to anxiety and depression. However, in another state, this reduction activates a compensatory mechanism that enhances neurogenesis to protect against depression but may precipitate anxiety. Thus, understanding the molecular mechanism of β-catenin could enhance our knowledge about anxiety and depression's pathophysiology, potentially improving clinical results by targeting it. Herein, the different states of β-catenin were discussed, shedding light on possible drugs that showed action on psychiatric disorders through β-catenin.
Collapse
Affiliation(s)
| | - Noha F AbdelKader
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hala F Zaki
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed S Kamel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
8
|
Perl O, Duek O, Kulkarni KR, Gordon C, Krystal JH, Levy I, Harpaz-Rotem I, Schiller D. Neural patterns differentiate traumatic from sad autobiographical memories in PTSD. Nat Neurosci 2023; 26:2226-2236. [PMID: 38036701 DOI: 10.1038/s41593-023-01483-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/05/2023] [Indexed: 12/02/2023]
Abstract
For people with post-traumatic stress disorder (PTSD), recall of traumatic memories often displays as intrusions that differ profoundly from processing of 'regular' negative memories. These mnemonic features fueled theories speculating a unique cognitive state linked with traumatic memories. Yet, to date, little empirical evidence supports this view. Here we examined neural activity of patients with PTSD who were listening to narratives depicting their own memories. An intersubject representational similarity analysis of cross-subject semantic content and neural patterns revealed a differentiation in hippocampal representation by narrative type: semantically similar, sad autobiographical memories elicited similar neural representations across participants. By contrast, within the same individuals, semantically similar trauma memories were not represented similarly. Furthermore, we were able to decode memory type from hippocampal multivoxel patterns. Finally, individual symptom severity modulated semantic representation of the traumatic narratives in the posterior cingulate cortex. Taken together, these findings suggest that traumatic memories are an alternative cognitive entity that deviates from memory per se.
Collapse
Affiliation(s)
- Ofer Perl
- Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Or Duek
- Department of Epidemiology, Biostatistics and Community Health Sciences, School of Public Health, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- The National Center for PTSD, VA CT Healthcare System, West Haven, CT, USA
| | - Kaustubh R Kulkarni
- Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charles Gordon
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- The National Center for PTSD, VA CT Healthcare System, West Haven, CT, USA
| | - John H Krystal
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- The National Center for PTSD, VA CT Healthcare System, West Haven, CT, USA
| | - Ifat Levy
- Departments of Comparative Medicine and Neuroscience, Yale University, New Haven, CT, USA
- Department of Psychology and the Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - Ilan Harpaz-Rotem
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
- The National Center for PTSD, VA CT Healthcare System, West Haven, CT, USA.
- Department of Psychology and the Wu Tsai Institute, Yale University, New Haven, CT, USA.
| | - Daniela Schiller
- Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
9
|
Pan N, Qin K, Yu Y, Long Y, Zhang X, He M, Suo X, Zhang S, Sweeney JA, Wang S, Gong Q. Pre-COVID brain functional connectome features prospectively predict emergence of distress symptoms after onset of the COVID-19 pandemic. Psychol Med 2023; 53:5155-5166. [PMID: 36046918 PMCID: PMC9433719 DOI: 10.1017/s0033291722002173] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/16/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Persistent psychological distress associated with the coronavirus disease 2019 (COVID-19) pandemic has been well documented. This study aimed to identify pre-COVID brain functional connectome that predicts pandemic-related distress symptoms among young adults. METHODS Baseline neuroimaging studies and assessment of general distress using the Depression, Anxiety and Stress Scale were performed with 100 healthy individuals prior to wide recognition of the health risks associated with the emergence of COVID-19. They were recontacted for the Impact of Event Scale-Revised and the Posttraumatic Stress Disorder Checklist in the period of community-level outbreaks, and for follow-up distress evaluation again 1 year later. We employed the network-based statistic approach to identify connectome that predicted the increase of distress based on 136-region-parcellation with assigned network membership. Predictive performance of connectome features and causal relations were examined by cross-validation and mediation analyses. RESULTS The connectome features that predicted emergence of distress after COVID contained 70 neural connections. Most within-network connections were located in the default mode network (DMN), and affective network-DMN and dorsal attention network-DMN links largely constituted between-network pairs. The hippocampus emerged as the most critical hub region. Predictive models of the connectome remained robust in cross-validation. Mediation analyses demonstrated that COVID-related posttraumatic stress partially explained the correlation of connectome to the development of general distress. CONCLUSIONS Brain functional connectome may fingerprint individuals with vulnerability to psychological distress associated with the COVID pandemic. Individuals with brain neuromarkers may benefit from the corresponding interventions to reduce the risk or severity of distress related to fear of COVID-related challenges.
Collapse
Affiliation(s)
- Nanfang Pan
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Kun Qin
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio, USA
| | - Yifan Yu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Yajing Long
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Xun Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Min He
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Xueling Suo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Shufang Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - John A. Sweeney
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio, USA
| | - Song Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, 361000, China
| |
Collapse
|
10
|
Joshi SA, Aupperle RL, Khalsa SS. Interoception in Fear Learning and Posttraumatic Stress Disorder. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2023; 21:266-277. [PMID: 37404967 PMCID: PMC10316209 DOI: 10.1176/appi.focus.20230007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Posttraumatic stress disorder (PTSD) is a psychiatric condition characterized by sustained symptoms, including reexperiencing, hyperarousal, avoidance, and mood alterations, following exposure to a traumatic event. Although symptom presentations in PTSD are heterogeneous and incompletely understood, they likely involve interactions between neural circuits involved in memory and fear learning and multiple body systems involved in threat processing. PTSD differs from other psychiatric conditions in that it is a temporally specific disorder, triggered by a traumatic event that elicits heightened physiological arousal, and fear. Fear conditioning and fear extinction learning have been studied extensively in relation to PTSD, because of their central role in the development and maintenance of threat-related associations. Interoception, the process by which organisms sense, interpret, and integrate their internal body signals, may contribute to disrupted fear learning and to the varied symptom presentations of PTSD in humans. In this review, the authors discuss how interoceptive signals may serve as unconditioned responses to trauma that subsequently serve as conditioned stimuli, trigger avoidance and higher-order conditioning of other stimuli associated with these interoceptive signals, and constitute an important aspect of the fear learning context, thus influencing the specificity versus generalization of fear acquisition, consolidation, and extinction. The authors conclude by identifying avenues for future research to enhance understanding of PTSD and the role of interoceptive signals in fear learning and in the development, maintenance, and treatment of PTSD.
Collapse
Affiliation(s)
- Sonalee A Joshi
- Laureate Institute for Brain Research, Tulsa, Oklahoma (all authors); Department of Psychology, University of Michigan, Ann Arbor (Joshi); Oxley College of Health Sciences, School of Community Medicine, University of Tulsa, Tulsa (Aupperle, Khalsa)
| | - Robin L Aupperle
- Laureate Institute for Brain Research, Tulsa, Oklahoma (all authors); Department of Psychology, University of Michigan, Ann Arbor (Joshi); Oxley College of Health Sciences, School of Community Medicine, University of Tulsa, Tulsa (Aupperle, Khalsa)
| | - Sahib S Khalsa
- Laureate Institute for Brain Research, Tulsa, Oklahoma (all authors); Department of Psychology, University of Michigan, Ann Arbor (Joshi); Oxley College of Health Sciences, School of Community Medicine, University of Tulsa, Tulsa (Aupperle, Khalsa)
| |
Collapse
|
11
|
Chaposhloo M, Nicholson AA, Becker S, McKinnon MC, Lanius R, Shaw SB. Altered Resting-State functional connectivity in the anterior and posterior hippocampus in Post-traumatic stress disorder: The central role of the anterior hippocampus. Neuroimage Clin 2023; 38:103417. [PMID: 37148709 PMCID: PMC10193024 DOI: 10.1016/j.nicl.2023.103417] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 04/11/2023] [Accepted: 04/22/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND Post-traumatic stress disorder can be viewed as a memory disorder, with trauma-related flashbacks being a core symptom. Given the central role of the hippocampus in autobiographical memory, surprisingly, there is mixed evidence concerning altered hippocampal functional connectivity in PTSD. We shed light on this discrepancy by considering the distinct roles of the anterior versus posterior hippocampus and examine how this distinction may map onto whole-brain resting-state functional connectivity patterns among those with and without PTSD. METHODS We first assessed whole-brain between-group differences in the functional connectivity profiles of the anterior and posterior hippocampus within a publicly available data set of resting-state fMRI data from 31 male Vietnam war veterans diagnosed with PTSD (mean age = 67.6 years, sd = 2.3) and 29 age-matched combat-exposed male controls (age = 69.1 years, sd = 3.5). Next, the connectivity patterns of each subject within the PTSD group were correlated with their PTSD symptom scores. Finally, the between-group differences in whole-brain functional connectivity profiles discovered for the anterior and posterior hippocampal seeds were used to prescribe post-hoc ROIs, which were then used to perform ROI-to-ROI functional connectivity and graph-theoretic analyses. RESULTS The PTSD group showed increased functional connectivity of the anterior hippocampus with affective brain regions (anterior/posterior insula, orbitofrontal cortex, temporal pole) and decreased functional connectivity of the anterior/posterior hippocampus with regions involved in processing bodily self-consciousness (supramarginal gyrus). Notably, decreased anterior hippocampus connectivity with the posterior cingulate cortex/precuneus was associated with increased PTSD symptom severity. The left anterior hippocampus also emerged as a central locus of abnormal functional connectivity, with graph-theoretic measures suggestive of a more central hub-like role for this region in those with PTSD compared to trauma-exposed controls. CONCLUSIONS Our results highlight that the anterior hippocampus plays a critical role in the neurocircuitry underlying PTSD and underscore the importance of the differential roles of hippocampal sub-regions in serving as biomarkers of PTSD. Future studies should investigate whether the differential patterns of functional connectivity stemming from hippocampal sub-regions is observed in PTSD populations other than older war veterans.
Collapse
Affiliation(s)
- Mohammad Chaposhloo
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Andrew A Nicholson
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada; Atlas Institute for Veterans and Families, Institute of Mental Health Research, University of Ottawa, Royal Ottawa Hospital, Ottawa, Ontario, Canada; School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Suzanna Becker
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada; Vector Institute for Artificial Intelligence, Toronto, Ontario, Canada
| | - Margaret C McKinnon
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada; Homewood Research Institute, Guelph, Ontario, Canada; Mood Disorders Program, St. Joseph's Healthcare, Hamilton, Ontario, Canada
| | - Ruth Lanius
- Department of Psychiatry, Western University, London, Ontario, Canada; Department of Neuroscience, Western University, London, Ontario, Canada; Imaging Division, Lawson Health Research Institute, London, Ontario, Canada
| | - Saurabh Bhaskar Shaw
- Vector Institute for Artificial Intelligence, Toronto, Ontario, Canada; Homewood Research Institute, Guelph, Ontario, Canada; Department of Psychiatry, Western University, London, Ontario, Canada.
| |
Collapse
|
12
|
Carcone D, Gardhouse K, Goghari VM, Lee ACH, Ruocco AC. The transdiagnostic relationship of cumulative lifetime stress with memory, the hippocampus, and personality psychopathology. J Psychiatr Res 2022; 155:483-492. [PMID: 36183602 DOI: 10.1016/j.jpsychires.2022.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/19/2022] [Accepted: 09/12/2022] [Indexed: 10/31/2022]
Abstract
Stress has a detrimental impact on memory, the hippocampus, and psychological health. Psychopathology research on stress has centered mainly on psychiatric diagnoses rather than symptom dimensions, and less attention has been given to the neurobiological factors through which stress might be translated into psychopathology. The present work investigates the transdiagnostic relationship of cumulative stress with episodic memory and the hippocampus (both structure and function) and explores the extent to which stress mediates the relationship between personality psychopathology and hippocampal size and activation. Cumulative lifetime stress was assessed in a sample of females recruited to vary in stress exposure and severity of personality psychopathology. Fifty-six participants completed subjective and objective tests of episodic memory, a T2-weighted high-resolution magnetic resonance imaging (MRI) scan of the medial-temporal lobe, and functional MRI (fMRI) scanning during a learning and recognition memory task. Higher cumulative stress was significantly related to memory complaints (but not episodic memory performance), lower bilateral hippocampal volume, and greater encoding-related hippocampal activation during the presentation of novel stimuli. Furthermore, cumulative stress significantly mediated the relationship between personality psychopathology and both hippocampal volume and activation, whereas alternative mediation models were not supported. The findings suggest that structural and functional activation differences in the hippocampus observed in case-control studies of psychiatric diagnoses may share cumulative stress as a common factor, which may mediate broadly reported relationships between psychopathology and hippocampal structure and function.
Collapse
Affiliation(s)
- Dean Carcone
- Department of Psychological Clinical Science, University of Toronto, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada.
| | - Katherine Gardhouse
- Department of Psychological Clinical Science, University of Toronto, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada; Centre for Addiction and Mental Health (CAMH), 60 White Squirrel Way, Toronto, Ontario, M6J 1H4, Canada
| | - Vina M Goghari
- Department of Psychological Clinical Science, University of Toronto, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada; Department of Psychology, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| | - Andy C H Lee
- Department of Psychological Clinical Science, University of Toronto, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada; Department of Psychology, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada; Rotman Research Institute, Baycrest Hospital, 3560 Bathurst St, Toronto, ON, M6A 2E1, Canada
| | - Anthony C Ruocco
- Department of Psychological Clinical Science, University of Toronto, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada; Department of Psychology, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| |
Collapse
|
13
|
Kéri S. Trauma and Remembering: From Neuronal Circuits to Molecules. Life (Basel) 2022; 12:1707. [PMID: 36362862 PMCID: PMC9699199 DOI: 10.3390/life12111707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 08/10/2023] Open
Abstract
Individuals with posttraumatic stress disorder (PTSD) experience intrusions of vivid traumatic memories, heightened arousal, and display avoidance behavior. Disorders in identity, emotion regulation, and interpersonal relationships are also common. The cornerstone of PTSD is altered learning, memory, and remembering, regulated by a complex neuronal and molecular network. We propose that the essential feature of successful treatment is the modification of engrams in their unstable state during retrieval. During psychedelic psychotherapy, engrams may show a pronounced instability, which enhances modification. In this narrative review, we outline the clinical characteristics of PTSD, its multifaceted neuroanatomy, and the molecular pathways that regulate memory destabilization and reconsolidation. We propose that psychedelics, acting by serotonin-glutamate interactions, destabilize trauma-related engrams and open the door to change them during psychotherapy.
Collapse
Affiliation(s)
- Szabolcs Kéri
- Department of Cognitive Science, Budapest University of Technology and Economics, 1111 Budapest, Hungary; ; Tel.: +36-1463-1273
- National Institute of Mental Health, Neurology, and Neurosurgery, 1145 Budapest, Hungary
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| |
Collapse
|
14
|
Tyler RE, Besheer J, Joffe ME. Advances in translating mGlu 2 and mGlu 3 receptor selective allosteric modulators as breakthrough treatments for affective disorders and alcohol use disorder. Pharmacol Biochem Behav 2022; 219:173450. [PMID: 35988792 PMCID: PMC10405528 DOI: 10.1016/j.pbb.2022.173450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/26/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022]
Abstract
Metabotropic glutamate (mGlu) receptors are promising targets for the treatment of affective disorders and alcohol use disorder (AUD). Nonspecific ligands for Group II (mGlu2 and mGlu3) mGlu receptors have demonstrated consistent therapeutic potential for affective disorders in preclinical models. Disentangling the specific roles of mGlu2 versus mGlu3 receptors in these effects has persisted as a major challenge, in part due to pharmacological limitations. However, the recent development of highly specific allosteric modulators for both mGlu2 and mGlu3 receptors have enabled straightforward and rigorous investigations into the specific function of each receptor. Here, we review recent experiments using these compounds that have demonstrated both similar and distinct receptor functions in behavioral, molecular, and electrophysiological measures associated with basal function and preclinical models of affective disorders. Studies using these selective drugs have demonstrated that mGlu2 is the predominant receptor subclass involved in presynaptic neurotransmitter release in prefrontal cortex. By contrast, the activation of postsynaptic mGlu3 receptors induces a cascade of cellular changes that results in AMPA receptor internalization, producing long-term depression and diminishing excitatory drive. Acute stress decreases the mGlu3 receptor function and dynamically alters transcript expression for both mGlu2 (Grm2) and mGlu3 (Grm3) receptors in brain areas involved in reward and stress. Accordingly, both mGlu2 and mGlu3 negative allosteric modulators show acute antidepressant-like effects and potential prophylactic effects against acute and traumatic stressors. The wide array of effects displayed by these new allosteric modulators of mGlu2 and mGlu3 receptors suggest that these drugs may act through improving endophenotypes of symptoms observed across several neuropsychiatric disorders. Therefore, recently developed allosteric modulators selective for mGlu2 or mGlu3 receptors show promise as potential therapeutics for affective disorders and AUD.
Collapse
Affiliation(s)
- Ryan E Tyler
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Neuroscience Curriculum, University of North Carolina at Chapel Hill, USA; Department of Psychiatry, University of North Carolina at Chapel Hill, USA
| | - Joyce Besheer
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Neuroscience Curriculum, University of North Carolina at Chapel Hill, USA; Department of Psychiatry, University of North Carolina at Chapel Hill, USA
| | - Max E Joffe
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15219, USA; Translational Neuroscience Program, University of Pittsburgh, USA.
| |
Collapse
|
15
|
McCoy AM, Prevot TD, Mian MY, Cook JM, Frazer A, Sibille EL, Carreno FR, Lodge DJ. Positive Allosteric Modulation of α5-GABAA Receptors Reverses Stress-Induced Alterations in Dopamine System Function and Prepulse Inhibition of Startle. Int J Neuropsychopharmacol 2022; 25:688-698. [PMID: 35732272 PMCID: PMC9380714 DOI: 10.1093/ijnp/pyac035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/24/2022] [Accepted: 06/21/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Up to 64% of patients diagnosed with posttraumatic stress disorder (PTSD) experience psychosis, likely attributable to aberrant dopamine neuron activity. We have previously demonstrated that positive allosteric modulators of α5-GABAARs can selectively decrease hippocampal activity and reverse psychosis-like physiological and behavioral alterations in a rodent model used to study schizophrenia; however, whether this approach translates to a PTSD model remains to be elucidated. METHODS We utilized a 2-day inescapable foot shock (IS) procedure to induce stress-related pathophysiology in male Sprague-Dawley rats. We evaluated the effects of intra-ventral hippocampus (vHipp) administration GL-II-73, an α5-GABAAR, or viral overexpression of the α5 subunit, using in vivo electrophysiology and behavioral measures in control and IS-treated rats. RESULTS IS significantly increased ventral tegmental area dopamine neuron population activity, or the number of dopamine neurons firing spontaneously (n = 6; P = .016), consistent with observation in multiple rodent models used to study psychosis. IS also induced deficits in sensorimotor gating, as measured by reduced prepulse inhibition of startle (n = 12; P = .039). Interestingly, intra-vHipp administration of GL-II-73 completely reversed IS-induced increases in dopamine neuron population activity (n = 6; P = .024) and deficits in prepulse inhibition (n = 8; P = .025), whereas viral overexpression of the α5 subunit in the vHipp was not effective. CONCLUSIONS Our results demonstrate that pharmacological intervention augmenting α5-GABAAR function, but not α5 overexpression in itself, can reverse stress-induced deficits related to PTSD in a rodent model, providing a potential site of therapeutic intervention to treat comorbid psychosis in PTSD.
Collapse
Affiliation(s)
- Alexandra M McCoy
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, San Antonio, Texas, USA
- South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, Texas, USA
| | - Thomas D Prevot
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Md Yenus Mian
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - James M Cook
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Alan Frazer
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, San Antonio, Texas, USA
- South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, Texas, USA
| | - Etienne L Sibille
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Flavia R Carreno
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, San Antonio, Texas, USA
- South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, Texas, USA
| | - Daniel J Lodge
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, San Antonio, Texas, USA
- South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, Texas, USA
| |
Collapse
|
16
|
Rosen JB, Schulkin J. Hyperexcitability: From Normal Fear to Pathological Anxiety and Trauma. Front Syst Neurosci 2022; 16:727054. [PMID: 35993088 PMCID: PMC9387392 DOI: 10.3389/fnsys.2022.727054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
Hyperexcitability in fear circuits is suggested to be important for development of pathological anxiety and trauma from adaptive mechanisms of fear. Hyperexcitability is proposed to be due to acquired sensitization in fear circuits that progressively becomes more severe over time causing changing symptoms in early and late pathology. We use the metaphor and mechanisms of kindling to examine gains and losses in function of one excitatory and one inhibitory neuropeptide, corticotrophin releasing factor and somatostatin, respectively, to explore this sensitization hypothesis. We suggest amygdala kindling induced hyperexcitability, hyper-inhibition and loss of inhibition provide clues to mechanisms for hyperexcitability and progressive changes in function initiated by stress and trauma.
Collapse
Affiliation(s)
- Jeffrey B. Rosen
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
- *Correspondence: Jeffrey B. Rosen,
| | - Jay Schulkin
- School of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
17
|
McIntosh R, Lobo JD, Carvalho N, Ironson G. Learning to forget: Hippocampal-amygdala connectivity partially mediates the effect of sexual trauma severity on verbal recall in older women undiagnosed with posttraumatic stress disorder. J Trauma Stress 2022; 35:631-643. [PMID: 35156236 PMCID: PMC11021133 DOI: 10.1002/jts.22778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 11/08/2022]
Abstract
Verbal learning deficits are common among sexually traumatized women who have not been formally diagnosed with posttraumatic stress disorder (PTSD). Aberrant resting-state functional connectivity (rsFC) of the amygdala and hippocampus are implicated in PTSD and verbal memory impairment. We tested rsFC between bilateral dentate gyrus (DG) and both centromedial (CM) and basolateral (BL) nuclei of the amygdala as statistical mediators for the effect of sexual trauma-related symptom severity on delayed verbal recall performance in 63 older women (age: 60-85 years) undiagnosed with PTSD. Participant data were drawn from the NKI-Rockland Study. Individuals completed a 10-min resting-state scan, Rey Auditory Verbal Learning Test (RAVLT), and the Sexual Abuse Trauma Index (SATI) from the Trauma Symptom Checklist. Z-scores indicating rsFC of DG with BL and CM amygdala seeds were evaluated in two separate mediation models. Higher SATI scores were associated with lower RAVLT after controlling for age, β = -.23, 95% CI [.48, .03], p = .039. This effect was negated upon adding a negative path from SATI to rsFC of left DG and right CM, β = -.29, 95% CI [-.52, -.02], p = .022, and a positive path from that seed pair to RAVLT List A recall, β = .28, 95% CI [.03, 0.48], p = .015. Chi-square fit indices supported partial mediation by this seed pair, p = .762. In the absence of PTSD sexual trauma symptoms partially relate to verbal learning deficits as a function of aberrant rsFC between left hippocampus DG and right amygdala CM nuclei.
Collapse
Affiliation(s)
- Roger McIntosh
- Department of Psychology, University of Miami, Coral Gables, Florida, USA
| | - Judith D Lobo
- Department of Psychology, University of Miami, Coral Gables, Florida, USA
| | - Nicole Carvalho
- Department of Psychology, University of Miami, Coral Gables, Florida, USA
| | - Gail Ironson
- Department of Psychology, University of Miami, Coral Gables, Florida, USA
| |
Collapse
|
18
|
Fitzgerald JM, Webb EK, Weis CN, Huggins AA, Bennett KP, Miskovich TA, Krukowski JL, deRoon-Cassini TA, Larson CL. Hippocampal Resting-State Functional Connectivity Forecasts Individual Posttraumatic Stress Disorder Symptoms: A Data-Driven Approach. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:139-149. [PMID: 34478884 PMCID: PMC8825698 DOI: 10.1016/j.bpsc.2021.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/18/2021] [Accepted: 08/22/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Posttraumatic stress disorder (PTSD) is a debilitating disorder, and there is no current accurate prediction of who develops it after trauma. Neurobiologically, individuals with chronic PTSD exhibit aberrant resting-state functional connectivity (rsFC) between the hippocampus and other brain regions (e.g., amygdala, prefrontal cortex, posterior cingulate), and these aberrations correlate with severity of illness. Previous small-scale research (n < 25) has also shown that hippocampal rsFC measured acutely after trauma is predictive of future severity using a region-of-interest-based approach. While this is a promising biomarker, to date, no study has used a data-driven approach to test whole-brain hippocampal FC patterns in forecasting the development of PTSD symptoms. METHODS A total of 98 adults at risk of PTSD were recruited from the emergency department after traumatic injury and completed resting-state functional magnetic resonance imaging (8 min) within 1 month; 6 months later, they completed the Clinician-Administered PTSD Scale for DSM-5 for assessment of PTSD symptom severity. Whole-brain rsFC values with bilateral hippocampi were extracted (using CONN) and used in a machine learning kernel ridge regression analysis (PRoNTo); a k-folds (k = 10) and 70/30 testing versus training split approach were used for cross-validation (1000 iterations to bootstrap confidence intervals for significance values). RESULTS Acute hippocampal rsFC significantly predicted Clinician-Administered PTSD Scale for DSM-5 scores at 6 months (r = 0.30, p = .006; mean squared error = 120.58, p = .006; R2 = 0.09, p = .025). In post hoc analyses, hippocampal rsFC remained significant after controlling for demographics, PTSD symptoms at baseline, and depression, anxiety, and stress severity at 6 months (B = 0.59, SE = 0.20, p = .003). CONCLUSIONS Findings suggest that functional connectivity of the hippocampus across the brain acutely after traumatic injury is associated with prospective PTSD symptom severity.
Collapse
Affiliation(s)
| | - Elisabeth Kate Webb
- University of Wisconsin-Milwaukee, Department of Psychology, Milwaukee, WI, USA
| | - Carissa N. Weis
- University of Wisconsin-Milwaukee, Department of Psychology, Milwaukee, WI, USA
| | - Ashley A. Huggins
- Medical University of South Carolina, Department of Psychiatry, Charleston, SC, USA
| | | | | | | | - Terri A. deRoon-Cassini
- Medical College of Wisconsin, Department of Surgery, Division of Trauma & Acute Care Surgery, Milwaukee, WI, USA
| | - Christine L. Larson
- University of Wisconsin-Milwaukee, Department of Psychology, Milwaukee, WI, USA
| |
Collapse
|
19
|
Sussman TJ, Posner J, Jackowski AP, Correa A, Hoffmann EV, Porto de Oliveira Peruzzi F, Grecco FR, Nitzsche SH, Mesquita ME, Foester BU, Benatti di Cillo F, Mello MF, Coelho Milani AC. The relationship between recent PTSD secondary to sexual assault, hippocampal volume and resting state functional connectivity in adolescent girls. Neurobiol Stress 2022; 17:100441. [PMID: 35257017 PMCID: PMC8897602 DOI: 10.1016/j.ynstr.2022.100441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/09/2022] [Accepted: 02/22/2022] [Indexed: 11/19/2022] Open
Abstract
Objective Improved understanding of the time course of neural changes associated with adolescent PTSD would elucidate the development of the disorder and could inform approaches to treatment. We compared hippocampal volumes and resting state functional connectivity (RSFC) in adolescent girls with post-traumatic stress disorder (PTSD) secondary to sexual assault, within six months of onset and age- and gender-matched, non-trauma exposed healthy controls (HCs) in São Paulo, Brazil. We also examined the relationship between pre- and post-treatment PTSD symptoms and RSFC. Method We collected brain structure, RSFC, and PTSD symptoms in 30 adolescents with PTSD (mean age: 15.7 ± 1.04 years) and 21 HCs (mean age: 16.2 ± 1.21 years) at baseline. We collected repeated measures in 21 participants with PTSD following treatment; 9 participants dropped out. Hippocampal volume and RSFC from hippocampal and default mode network (DMN) seeds were compared between participants with PTSD and HCs. We examined associations between within-subject changes in RSFC and PTSD symptoms following treatment. Results No hippocampal volumetric differences between groups were found. Compared to HCs, adolescents with recent PTSD had reduced RSFC between hippocampus and the lateral parietal node of the DMN, encompassing the angular gyrus, peak coordinates: −38, −54, 16; 116 voxels; peak F1,47 = 31.76; FDR corrected p = 0.038. Improvements in PTSD symptoms were associated with increased RSFC between hippocampus and part of the lateral parietal node of the DMN, peak coordinates: −38, −84, 38; 316 voxels; peak F1,47 = 40.28; FDR corrected p < 0.001. Conclusion Adolescents with recent PTSD had reduced hippocampal-DMN RSFC, while no group differences in hippocampal volume were found, suggesting that hippocampal function, but not structure, is altered early in the course of PSTD. Following treatment, hippocampal-DMN RSFC increased with symptom improvement and may indicate an important neural mechanism related to successful PTSD treatment.
Collapse
Affiliation(s)
- Tamara J. Sussman
- Department of Psychiatry, Columbia University and New York State Psychiatric Institute, 1051 Riverside Dr., New York, NY, 10032, USA
- Corresponding author. 1051 Riverside Drive, New York, NY, 10032, USA.
| | - Jonathan Posner
- Department of Psychiatry, Columbia University and New York State Psychiatric Institute, 1051 Riverside Dr., New York, NY, 10032, USA
| | - Andrea Parolin Jackowski
- Departamento de Psiquiatria, Universidade Federal de São Paulo, R Rua Major Maragliano, 241, Vila Clementino, São Paulo, SP, 04017030, Brazil
| | - Adriana Correa
- Departamento de Psiquiatria, Universidade Federal de São Paulo, R Rua Major Maragliano, 241, Vila Clementino, São Paulo, SP, 04017030, Brazil
| | - Elis Viviane Hoffmann
- Departamento de Psiquiatria, Universidade Federal de São Paulo, R Rua Major Maragliano, 241, Vila Clementino, São Paulo, SP, 04017030, Brazil
| | - Fernanda Porto de Oliveira Peruzzi
- Departamento de Psiquiatria, Universidade Federal de São Paulo, R Rua Major Maragliano, 241, Vila Clementino, São Paulo, SP, 04017030, Brazil
| | - Fernando Rodrigues Grecco
- Departamento de Psiquiatria, Universidade Federal de São Paulo, R Rua Major Maragliano, 241, Vila Clementino, São Paulo, SP, 04017030, Brazil
| | - Samara Hipolito Nitzsche
- Departamento de Psiquiatria, Universidade Federal de São Paulo, R Rua Major Maragliano, 241, Vila Clementino, São Paulo, SP, 04017030, Brazil
| | - Maria Eugenia Mesquita
- Departamento de Psiquiatria, Universidade Federal de São Paulo, R Rua Major Maragliano, 241, Vila Clementino, São Paulo, SP, 04017030, Brazil
| | - Bernd Uwe Foester
- Departamento de Psiquiatria, Universidade Federal de São Paulo, R Rua Major Maragliano, 241, Vila Clementino, São Paulo, SP, 04017030, Brazil
| | - Felipe Benatti di Cillo
- Departamento de Psiquiatria, Universidade Federal de São Paulo, R Rua Major Maragliano, 241, Vila Clementino, São Paulo, SP, 04017030, Brazil
| | - Marcelo Feijo Mello
- Departamento de Psiquiatria, Universidade Federal de São Paulo, R Rua Major Maragliano, 241, Vila Clementino, São Paulo, SP, 04017030, Brazil
| | - Ana Carolina Coelho Milani
- Departamento de Psiquiatria, Universidade Federal de São Paulo, R Rua Major Maragliano, 241, Vila Clementino, São Paulo, SP, 04017030, Brazil
| |
Collapse
|
20
|
Saba T, Rehman A, Shahzad MN, Latif R, Bahaj SA, Alyami J. Machine learning for post-traumatic stress disorder identification utilizing resting-state functional magnetic resonance imaging. Microsc Res Tech 2022; 85:2083-2094. [PMID: 35088496 DOI: 10.1002/jemt.24065] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 12/14/2021] [Accepted: 01/01/2022] [Indexed: 01/13/2023]
Abstract
Early detection of post-traumatic stress disorder (PTSD) is essential for proper treatment of the patients to recover from this disorder. The aligned purpose of this study was to investigate the performance deviations in regions of interest (ROI) of PTSD than the healthy brain regions, to assess interregional functional connectivity and applications of machine learning techniques to identify PTSD and healthy control using resting-state functional magnetic resonance imaging (rs-fMRI). The rs-fMRI data of 10 ROI was extracted from 14 approved PTSD subjects and 14 healthy controls. The rs-fMRI data of the selected ROI were used in ANOVA to measure performance level and Pearson's correlation to investigate the interregional functional connectivity in PTSD brains. In machine learning approaches, the logistic regression, K-nearest neighbor (KNN), support vector machine (SVM) with linear, radial basis function, and polynomial kernels were used to classify the PTSD and control subjects. The performance level in brain regions of PTSD deviated as compared to the regions in the healthy brain. In addition, significant positive or negative functional connectivity was observed among ROI in PTSD brains. The rs-fMRI data have been distributed in training, validation, and testing group for maturity, implementation of machine learning techniques. The KNN and SVM with radial basis function kernel were outperformed for classification among other methods with high accuracies (96.6%, 94.8%, 98.5%) and (93.7%, 95.2%, 99.2%) to train, validate, and test datasets, respectively. The study's findings may provide a guideline to observe performance and functional connectivity of the brain regions in PTSD and to discriminate PTSD subject using only the suggested algorithms.
Collapse
Affiliation(s)
- Tanzila Saba
- Artificial Intelligence & Data Analytics Lab (AIDA), CCIS, Prince Sultan University, Riyadh, 11586, Saudi Arabia
| | - Amjad Rehman
- Artificial Intelligence & Data Analytics Lab (AIDA), CCIS, Prince Sultan University, Riyadh, 11586, Saudi Arabia
| | | | - Rabia Latif
- Artificial Intelligence & Data Analytics Lab (AIDA), CCIS, Prince Sultan University, Riyadh, 11586, Saudi Arabia
| | - Saeed Ali Bahaj
- MIS Department College of Business Administration, Prince Sattam bin Abdulaziz University, Alkharj, 11942, Saudi Arabia
| | - Jaber Alyami
- Department of Diagnostic Radiology, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.,Imaging Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
21
|
Han L, Xu Y, Shi Y. Molecular Mechanism of the ATF6α/S1P/S2P Signaling Pathway in Hippocampal Neuronal Apoptosis in SPS Rats. J Mol Neurosci 2021; 71:2487-2499. [PMID: 33738762 DOI: 10.1007/s12031-021-01823-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/25/2021] [Indexed: 11/30/2022]
Abstract
Apoptosis of hippocampal neurons is one of the mechanisms of hippocampal atrophy in posttraumatic stress disorder (PTSD), and it is also an important cause of memory impairment in PTSD patients. Endoplasmic reticulum stress (ERS) mediated by activated transcription factor 6α (ATF6α)/site 1 protease (S1P)/S2P is involved in cell apoptosis, but it is not clear whether it is involved in hippocampal neuron apoptosis caused by PTSD. A PTSD rat model was constructed by the single prolonged stress (SPS) method. The study was divided into three parts. Experiment 1 included the control group, SPS 1 d group, SPS 7 d group, and SPS 14 d group. Experiment 2 included the control group, SPS 7 d group, SPS 7 d + AEBSF group, and control + AEBSF group. (4-(2-Aminoethyl)benzenesulfonyl fluoride hydrochloride (AEBSF) is an ATF6α pathway inhibitor). Experiment 3 included the control group, SPS 4 d group, SPS 4 d + AEBSF group, and control + AEBSF group. The protein and mRNA expression levels of ATF6α, glucose-regulated protein (GRP78), S1P, S2P, C/EBP homologous protein (CHOP), and caspase-12 in the hippocampus of PTSD rats were detected by immunohistochemistry, Western blotting and qRT-PCR. Apoptosis of hippocampal neurons was detected by TUNEL staining. In experiment 1, the protein and mRNA expression of ATF6α and GRP78 increased gradually in the SPS 1 d group and the SPS 7 d group but decreased in the SPS 14 d group (P < 0.01). In experiment 2, compared with that in the control group, the protein and mRNA expression of ATF6α, GRP78, S1P, S2P, CHOP, and caspase-12 and the apoptosis rate were significantly increased in the SPS 7 d group (P < 0.01). However, the protein and mRNA expression of ATF6α, GRP78, S1P, S2P, CHOP, and caspase-12 and the apoptosis rate were significantly decreased after AEBSF pretreatment (P < 0.01). In experiment 3, compared with that in the control group, the protein and mRNA expression of ATF6α, GRP78, S1P, S2P, CHOP, and caspase-12 and the apoptosis rate were increased in the SPS 14 d group (P < 0.05). However, the protein and mRNA expression of ATF6α, GRP78, S1P, S2P, CHOP, and caspase-12 and the apoptosis rate were decreased after AEBSF pretreatment (P < 0.05). SPS induced apoptosis of hippocampal neurons by activating ERS mediated by ATF6α, suggesting that ERS-induced apoptosis is involved in the occurrence of PTSD.
Collapse
Affiliation(s)
- Liang Han
- PTSD Laboratory, Department of Histology and Embryology, School of Basic Medicine, China Medical University, Shenyang, China
- Department of Thoracic Surgery, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yanhao Xu
- PTSD Laboratory, Department of Histology and Embryology, School of Basic Medicine, China Medical University, Shenyang, China
| | - Yuxiu Shi
- PTSD Laboratory, Department of Histology and Embryology, School of Basic Medicine, China Medical University, Shenyang, China.
| |
Collapse
|
22
|
Karunakaran KB, Amemori S, Balakrishnan N, Ganapathiraju MK, Amemori KI. Generalized and social anxiety disorder interactomes show distinctive overlaps with striosome and matrix interactomes. Sci Rep 2021; 11:18392. [PMID: 34526518 PMCID: PMC8443595 DOI: 10.1038/s41598-021-97418-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/25/2021] [Indexed: 02/08/2023] Open
Abstract
Mechanisms underlying anxiety disorders remain elusive despite the discovery of several associated genes. We constructed the protein-protein interaction networks (interactomes) of six anxiety disorders and noted enrichment for striatal expression among common genes in the interactomes. Five of these interactomes shared distinctive overlaps with the interactomes of genes that were differentially expressed in two striatal compartments (striosomes and matrix). Generalized anxiety disorder and social anxiety disorder interactomes showed exclusive and statistically significant overlaps with the striosome and matrix interactomes, respectively. Systematic gene expression analysis with the anxiety disorder interactomes constrained to contain only those genes that were shared with striatal compartment interactomes revealed a bifurcation among the disorders, which was influenced by the anterior cingulate cortex, nucleus accumbens, amygdala and hippocampus, and the dopaminergic signaling pathway. Our results indicate that the functionally distinct striatal pathways constituted by the striosome and the matrix may influence the etiological differentiation of various anxiety disorders.
Collapse
Affiliation(s)
- Kalyani B Karunakaran
- Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore, India
| | - Satoko Amemori
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
| | - N Balakrishnan
- Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore, India
| | - Madhavi K Ganapathiraju
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, USA.
- Intelligent Systems Program, School of Computing and Information, University of Pittsburgh, Pittsburgh, USA.
| | - Ken-Ichi Amemori
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan.
| |
Collapse
|
23
|
Weis CN, Webb EK, Huggins AA, Kallenbach M, Miskovich TA, Fitzgerald JM, Bennett KP, Krukowski JL, deRoon-Cassini TA, Larson CL. Stability of hippocampal subfield volumes after trauma and relationship to development of PTSD symptoms. Neuroimage 2021; 236:118076. [PMID: 33878374 PMCID: PMC8284190 DOI: 10.1016/j.neuroimage.2021.118076] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/01/2021] [Accepted: 04/08/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The hippocampus plays a central role in post-traumatic stress disorder (PTSD) pathogenesis, and the majority of neuroimaging research on PTSD has studied the hippocampus in its entirety. Although extensive literature demonstrates changes in hippocampal volume are associated with PTSD, fewer studies have probed the relationship between symptoms and the hippocampus' functionally and structurally distinct subfields. We utilized data from a longitudinal study examining post-trauma outcomes to determine whether hippocampal subfield volumes change post-trauma and whether specific subfields are significantly associated with, or prospectively related to, PTSD symptom severity. As a secondary aim, we leveraged our unique study design sample to also investigate reliability of hippocampal subfield volumes using both cross-sectional and longitudinal pipelines available in FreeSurfer v6.0. METHODS Two-hundred and fifteen traumatically injured individuals were recruited from an urban Emergency Department. Two-weeks post-injury, participants underwent two consecutive days of neuroimaging (time 1: T1, and time 2: T2) with magnetic resonance imaging (MRI) and completed self-report assessments. Six-months later (time 3: T3), participants underwent an additional scan and were administered a structured interview assessing PTSD symptoms. First, we calculated reliability of hippocampal measurements at T1 and T2 (automatically segmented with FreeSurfer v6.0). We then examined the prospective (T1 subfields) and cross-sectional (T3 subfields) relationship between volumes and PTSD. Finally, we tested whether change in subfield volumes between T1 and T3 explained PTSD symptom variability. RESULTS After controlling for sex, age, and total brain volume, none of the subfield volumes (T1) were prospectively related to T3 PTSD symptoms nor were subfield volumes (T3) associated with current PTSD symptoms (T3). Tl - T2 reliability of all hippocampal subfields ranged from good to excellent (intraclass correlation coefficient (ICC) values > 0.83), with poorer reliability in the hippocampal fissure. CONCLUSION Our study was a novel examination of the prospective relationship between hippocampal subfield volumes in relation to PTSD in a large trauma-exposed urban sample. There was no significant relationship between subfield volumes and PTSD symptoms, however, we confirmed FreeSurfer v6.0 hippocampal subfield segmentation is reliable when applied to a traumatically-injured sample, using both cross-sectional and longitudinal analysis pipelines. Although hippocampal subfield volumes may be an important marker of individual variability in PTSD, findings are likely conditional on the timing of the measurements (e.g. acute or chronic post-trauma periods) and analysis strategy (e.g. cross-sectional or prospective).
Collapse
Affiliation(s)
- C N Weis
- University of Wisconsin Milwaukee, Psychology, Department of Psychology, 334 Garland Hall, 2441 E. Hartford Ave, Milwaukee, WI 53211, United States.
| | - E K Webb
- University of Wisconsin Milwaukee, Psychology, Department of Psychology, 334 Garland Hall, 2441 E. Hartford Ave, Milwaukee, WI 53211, United States
| | - A A Huggins
- University of Wisconsin Milwaukee, Psychology, Department of Psychology, 334 Garland Hall, 2441 E. Hartford Ave, Milwaukee, WI 53211, United States
| | - M Kallenbach
- University of Wisconsin Milwaukee, Psychology, Department of Psychology, 334 Garland Hall, 2441 E. Hartford Ave, Milwaukee, WI 53211, United States
| | - T A Miskovich
- University of Wisconsin Milwaukee, Psychology, Department of Psychology, 334 Garland Hall, 2441 E. Hartford Ave, Milwaukee, WI 53211, United States
| | - J M Fitzgerald
- University of Wisconsin Milwaukee, Psychology, Department of Psychology, 334 Garland Hall, 2441 E. Hartford Ave, Milwaukee, WI 53211, United States
| | - K P Bennett
- University of Wisconsin Milwaukee, Psychology, Department of Psychology, 334 Garland Hall, 2441 E. Hartford Ave, Milwaukee, WI 53211, United States
| | - J L Krukowski
- University of Wisconsin Milwaukee, Psychology, Department of Psychology, 334 Garland Hall, 2441 E. Hartford Ave, Milwaukee, WI 53211, United States
| | - T A deRoon-Cassini
- University of Wisconsin Milwaukee, Psychology, Department of Psychology, 334 Garland Hall, 2441 E. Hartford Ave, Milwaukee, WI 53211, United States
| | - C L Larson
- University of Wisconsin Milwaukee, Psychology, Department of Psychology, 334 Garland Hall, 2441 E. Hartford Ave, Milwaukee, WI 53211, United States
| |
Collapse
|
24
|
Elman I, Upadhyay J, Lowen S, Karunakaran K, Albanese M, Borsook D. Mechanisms Underlying Unconscious Processing and Their Alterations in Post-traumatic Stress Disorder: Neuroimaging of Zero Monetary Outcomes Contextually Framed as "No Losses" vs. "No Gains". Front Neurosci 2020; 14:604867. [PMID: 33390889 PMCID: PMC7772193 DOI: 10.3389/fnins.2020.604867] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/24/2020] [Indexed: 11/26/2022] Open
Abstract
Although unconscious processing is a key element of mental operation, its neural correlates have not been established. Also, clinical observations suggest that unconscious processing may be involved in the pathophysiology of post-traumatic stress disorder (PTSD), but the neurobiological mechanisms underlying such impairments remain unknown. The purpose of the present study was to examine putative mechanisms underlying unconscious processing by healthy participants and to determine whether these mechanisms may be altered in PTSD patients. Twenty patients with PTSD and 27 healthy individuals were administered a validated wheel of fortune-type gambling task during functional magnetic resonance imaging (fMRI). Unconscious processing was elicited using unconscious contextual framing of the zero monetary outcomes as "no loss," "no gain" or as "neutral." Brief passive visual processing of the "no loss" vs. "no gain" contrast by healthy participants yielded bilateral frontal-, temporal- and insular cortices and striatal activations. Between-group comparison revealed smaller activity in the left anterior prefrontal-, left dorsolateral prefrontal-, right temporal- and right insular cortices and in bilateral striatum in PTSD patients with the left dorsolateral prefrontal cortex activity been more pronounced in those with greater PTSD severity. These observations implicate frontal-, temporal-, and insular cortices along with the striatum in the putative mechanisms underlying unconscious processing of the monetary outcomes. Additionally, our results support the hypothesis that PTSD is associated with primary cortical and subcortical alterations involved in the above processes and that these alterations may be related to some aspects of PTSD symptomatology.
Collapse
Affiliation(s)
- Igor Elman
- Center for Pain and the Brain, Department of Anesthesiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- Cambridge Health Alliance, Harvard Medical School, Cambridge, MA, United States
| | - Jaymin Upadhyay
- Center for Pain and the Brain, Department of Anesthesiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, United States
| | | | - Keerthana Karunakaran
- Center for Pain and the Brain, Department of Anesthesiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Mark Albanese
- Cambridge Health Alliance, Harvard Medical School, Cambridge, MA, United States
| | - David Borsook
- Center for Pain and the Brain, Department of Anesthesiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, United States
| |
Collapse
|
25
|
Rockstroh BS, McTeague LM. Psychophysiological approaches to understanding the impact of trauma exposure. Psychophysiology 2020; 57:e13497. [PMID: 31833088 DOI: 10.1111/psyp.13497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 12/14/2022]
Affiliation(s)
| | - Lisa M McTeague
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
26
|
Effects of ∆ 9-tetrahydrocannabinol on aversive memories and anxiety: a review from human studies. BMC Psychiatry 2020; 20:420. [PMID: 32842985 PMCID: PMC7448997 DOI: 10.1186/s12888-020-02813-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/05/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Posttraumatic stress disorder (PTSD) may stem from the formation of aberrant and enduring aversive memories. Some PTSD patients have recreationally used Cannabis, probably aiming at relieving their symptomatology. However, it is still largely unknown whether and how Cannabis or its psychotomimetic compound Δ9-tetrahydrocannabinol (THC) attenuates the aversive/traumatic memory outcomes. Here, we seek to review and discuss the effects of THC on aversive memory extinction and anxiety in healthy humans and PTSD patients. METHODS Medline, PubMed, Cochrane Library, and Central Register for Controlled Trials databases were searched to identify peer-reviewed published studies and randomized controlled trials in humans published in English between 1974 and July 2020, including those using only THC and THC combined with cannabidiol (CBD). The effect size of the experimental intervention under investigation was calculated. RESULTS At low doses, THC can enhance the extinction rate and reduce anxiety responses. Both effects involve the activation of cannabinoid type-1 receptors in discrete components of the corticolimbic circuitry, which could couterbalance the low "endocannabinoid tonus" reported in PTSD patients. The advantage of associating CBD with THC to attenuate anxiety while minimizing the potential psychotic or anxiogenic effect produced by high doses of THC has been reported. The effects of THC either alone or combined with CBD on aversive memory reconsolidation, however, are still unknown. CONCLUSIONS Current evidence from healthy humans and PTSD patients supports the THC value to suppress anxiety and aversive memory expression without producing significant adverse effects if used in low doses or when associated with CBD. Future studies are guaranteed to address open questions related to their dose ratios, administration routes, pharmacokinetic interactions, sex-dependent differences, and prolonged efficacy.
Collapse
|
27
|
Jung WH, Kim NH. Hippocampal Functional Connectivity Mediates the Impact of Acceptance on Posttraumatic Stress Symptom Severity. Front Psychiatry 2020; 11:753. [PMID: 32848930 PMCID: PMC7406826 DOI: 10.3389/fpsyt.2020.00753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 07/16/2020] [Indexed: 11/13/2022] Open
Abstract
Investigation in posttraumatic stress disorder (PTSD) shows a negative association between patients' degrees of acceptance (the willingness to face unwanted private experiences while pursuing one's values and goals) and those of clinical symptom severity, suggesting that experiential acceptance is a protective factor of symptoms or an early indicator of resilience after trauma. However, neural mechanisms involved in the relationship between these two variables have yet to be elucidated. Thus, we here investigate whether there are neural mechanisms mediating such relationship using whole-brain voxel-level mediation analysis with seed-based resting-state functional connectivity (RSFC) maps generated by hippocampal subregion seeds in accident survivors (n = 33). We found that the correlation between patients' acceptance and symptom severity was mediated by the RSFC strength between left hippocampal body and left lateral occipital cortex adjacent to superior parietal cortex, the areas related to flashbacks. Our result provides novel evidence that hippocampal RSFC mediates the effect of experiential acceptance on posttraumatic stress symptom severity. If further refined and validated, the finding may aid to the identification of biomarkers to intervention and prevention programs for patients with PTSD.
Collapse
Affiliation(s)
- Wi Hoon Jung
- Department of Psychology, Daegu University, Gyeongsan, South Korea
| | - Nam Hee Kim
- Maumtodac Psychiatric Clinic, Ansan, South Korea.,Suwon Smile Center for Criminal Victims, Suwon, South Korea
| |
Collapse
|
28
|
Hammoud MZ, Foa EB, Milad MR. Oestradiol, threat conditioning and extinction, post-traumatic stress disorder, and prolonged exposure therapy: A common link. J Neuroendocrinol 2020; 32:e12800. [PMID: 31595559 DOI: 10.1111/jne.12800] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/12/2019] [Accepted: 10/02/2019] [Indexed: 12/24/2022]
Abstract
The accumulating evidence regarding the impact of estradiol on learning and memory synergized studies to examine its influence on enhancing animal's ability to quell fear and anxiety. In this review, we first provide a foundational platform regarding the impact of oestradiol on cellular mechanisms of learning and memory and we review recent advances from rodent and human data showing that oestrogen enhances extinction learning across species. We then propose clinical application to these data. We discuss the potential role of oestradiol variance on the aetiology, maintenance and treatment for post-traumatic stress disorder. Specifically, we argue that the use of oestradiol as an adjunct to prolonged exposure (PE) therapy for PTSD may provide a new treatment approach for enhancing the efficacy of PE in women with PTSD. This could advance our understanding of the mechanisms of PTSD and help tailor sex-specific treatments for this disorder.
Collapse
Affiliation(s)
- Mira Z Hammoud
- Department of Psychiatry, New York University Medical Center, New York, NY, USA
| | - Edna B Foa
- Department of Psychiatry, Center for the Treatment and Study of Anxiety, University of Pennsylvania, Philadelphia, PA, USA
| | - Mohammed R Milad
- Department of Psychiatry, New York University Medical Center, New York, NY, USA
| |
Collapse
|
29
|
Dossi G, Delvecchio G, Prunas C, Soares JC, Brambilla P. Neural Bases of Cognitive Impairments in Post-Traumatic Stress Disorders: A Mini-Review of Functional Magnetic Resonance Imaging Findings. Front Psychiatry 2020; 11:176. [PMID: 32256405 PMCID: PMC7090214 DOI: 10.3389/fpsyt.2020.00176] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 02/24/2020] [Indexed: 01/16/2023] Open
Abstract
INTRODUCTION Post-Traumatic Stress Disorder (PTSD) is often associated with impairments in emotional and cognitive domains. Contrarily to the emotional sphere, neural basis underpinnings to cognitive impairments are still not well known. METHODS We performed a bibliographic search on PUBMED of all the studies investigating the cognitive impairments in PTSD individuals. We considered only studies that applied cognitive tasks using a functional Magnetic Resonance Imaging technique. The inclusion criteria were met by nine studies. RESULTS Overall, PTSD individuals reported significant impairments in the dorsolateral prefrontal cortex, anterior cingulate cortex, inferior frontal gyrus, insula, inferior temporal cortex, supplement motor area, and Default Mode Network (DMN). Moreover, abnormal activity was reported in subcortical structures (e.g. hippocampus, amygdala, thalamus) and in the cerebellum. LIMITATIONS Cognitive functioning was assessed using different cognitive tasks. Potential confounding factors such as age, sex, symptoms intensity, and comorbidities might have influenced the results. CONCLUSION So far, the evidence reported that PTSD is characterized by cognitive impairments in several domains, such as attention, memory and autonomic arousal, which may be due to selective dysfunctions in brain regions that are part of cortical networks, the limbic system and DMN. However, further studies are needed in order to better assess the role of cognitive impairments in PTSD and to develop more targeted therapeutic approaches.
Collapse
Affiliation(s)
- Gabriele Dossi
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Giuseppe Delvecchio
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Cecilia Prunas
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Jair C Soares
- Department of Psychiatry and Behavioural Sciences, UT Houston Medical School, Houston, TX, United States
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
30
|
Fazel M, Stratford HJ, Rowsell E, Chan C, Griffiths H, Robjant K. Five Applications of Narrative Exposure Therapy for Children and Adolescents Presenting With Post-Traumatic Stress Disorders. Front Psychiatry 2020; 11:19. [PMID: 32140112 PMCID: PMC7043101 DOI: 10.3389/fpsyt.2020.00019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 01/09/2020] [Indexed: 12/21/2022] Open
Abstract
Narrative exposure therapy (NET) is an individual therapeutic approach that has an emerging evidence base for children. It was initially trialed with refugee and asylum seeking populations, in low, middle and high-income settings, utilizing either lay or professional therapists. The results of treatment trials for PTSD in refugee children with NET (or the child "KIDNET" adaptation) demonstrates how this is an effective intervention, is scalable and culturally dexterous. This paper describes, in five cases from clinical practice settings, the applicability of NET into broader, routine practice. The cases outlined describe the use of NET with adolescents with: autism spectrum disorders, psychotic symptoms, and intellectual disabilities; histories of forced abduction into child soldiering; complex physical health problems needing multiple interventions; and victims of childhood sexual abuse. The cases are discussed with regards to how the NET lifeline facilitated engagement in treatment, practical adaptations for those with intellectual disabilities and how NET, with its relatively short training for health professionals, can be modified to different contexts and presentations. The importance of improving access to care is discussed to ensure that young people are supported with their most complex and disruptive memories.
Collapse
Affiliation(s)
- Mina Fazel
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, United Kingdom.,Children's Psychological Medicine, Oxford Children's Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Hannah J Stratford
- Highfield Adolescent Unit, Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, United Kingdom
| | - Eleanor Rowsell
- The Sue Nicholls Centre, Oxford Health NHS Foundation Trust, Aylesbury, United Kingdom
| | - Carmen Chan
- Horizon (Supporting Young People and Families Affected by Sexual Harm), Oxford Health NHS Foundation Trust, Oxford, United Kingdom
| | - Helen Griffiths
- Children's Psychological Medicine, Oxford Children's Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | | |
Collapse
|
31
|
Stout DM, Glenn DE, Acheson DT, Simmons AN, Risbrough VB. Characterizing the neural circuitry associated with configural threat learning. Brain Res 2019; 1719:225-234. [PMID: 31173725 DOI: 10.1016/j.brainres.2019.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/23/2019] [Accepted: 06/03/2019] [Indexed: 11/15/2022]
Abstract
Contextual threat learning is often associated with two processes: elemental and configural learning. Few studies have examined configural learning where subjects form a representation of the threat-related context as a gestalt whole from the individual features in the environment. The goal of the current study was to compare and contrast neural circuitry recruited by variation in demands placed on configural threat encoding. Subjects (N = 25) completed a configural threat learning task, where we manipulated the amount of configural encoding required to learn the threat association (low demand: changes to a discrete element of the context; and high demand: rearrangement of elements). US expectancy ratings, skin conductance responses (SCR), and functional magnetic resonance imaging (fMRI) were collected. Subjects successfully learned the configural threat association as measured by US expectancy ratings, SCR, and BOLD activity. Hippocampal and amygdala region of interest analyses indicated differential configural threat learning and predicted SCR measures of learning. Furthermore, whole brain analyses identified four circuits that were impacted by the amount of differential configural encoding required, but none correlated with SCR. These results set the stage for a more detailed understanding of how configural threat learning is instantiated in the brain-an important mechanism associated with PTSD and other fear-related disorders.
Collapse
Affiliation(s)
- Daniel M Stout
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA 92161, USA; Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA.
| | - Daniel E Glenn
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Dean T Acheson
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA 92161, USA; Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
| | - Alan N Simmons
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA 92161, USA; Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
| | - Victoria B Risbrough
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA 92161, USA; Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
| |
Collapse
|