1
|
Dmytriiev K, Stickland MK, Weatherald J. Cardiopulmonary Exercise Testing in Pulmonary Hypertension. Heart Fail Clin 2025; 21:51-61. [PMID: 39550080 DOI: 10.1016/j.hfc.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2024]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive pulmonary vascular disease that has a high impact on patients' quality of life, morbidity and mortality. PAH is characterized by extensive pulmonary vascular remodeling that results in an increase in pulmonary vascular resistance and right ventricular afterload, and can lead to right heart failure. Patients with PAH exhibit inefficient ventilation, high dead space ventilation, dynamic hyperinflation, and ventricular-arterial uncoupling, which can contribute to high dyspnea and low exercise tolerance. Cardiopulmonary exercise testing can help to diagnose PAH, define prognosis and treatment response in PAH, as well as discriminate between different pulmonary vascular diseases.
Collapse
Affiliation(s)
- Kostiantyn Dmytriiev
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta, 3-110 Clinical Sciences Building, 11302 83 Avenue Northwest, Edmonton, Alberta T6G 2G3, Canada
| | - Michael K Stickland
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta, 3-110 Clinical Sciences Building, 11302 83 Avenue Northwest, Edmonton, Alberta T6G 2G3, Canada; G.F. MacDonald Centre for Lung Health, Covenant Health, 11111 Jasper Avenue, Edmonton, AB T5K 0L4, Canada
| | - Jason Weatherald
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta, 3-110 Clinical Sciences Building, 11302 83 Avenue Northwest, Edmonton, Alberta T6G 2G3, Canada.
| |
Collapse
|
2
|
Freire TC, Ferreira MS, De Angelis K, Paula-Ribeiro M. Respiratory, cardiovascular and musculoskeletal mechanisms involved in the pathophysiology of pulmonary hypertension: An updated systematic review of preclinical and clinical studies. Heart Lung 2024; 68:81-91. [PMID: 38941771 DOI: 10.1016/j.hrtlng.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/22/2024] [Accepted: 06/04/2024] [Indexed: 06/30/2024]
Abstract
BACKGROUND Progressive exercise intolerance is a hallmark of pulmonary hypertension (pH), severely impacting patients' independence and quality of life (QoL). Accumulating evidence over the last decade shows that combined abnormalities in peripheral reflexes and target organs contribute to disease progression and exercise intolerance. OBJECTIVE The aim of this study was to review the literature of the last decade on the contribution of the cardiovascular, respiratory, and musculoskeletal systems to pathophysiology and exercise intolerance in pH. METHODS A systematic literature search was conducted using specific terms in PubMed, SciELO, and the Cochrane Library databases for original pre-clinical or clinical studies published between 2013 and 2023. Studies followed randomized controlled/non-randomized controlled and pre-post designs. RESULTS The systematic review identified 25 articles reporting functional or structural changes in the respiratory, cardiovascular, and musculoskeletal systems in pH. Moreover, altered biomarkers in these systems, lower cardiac baroreflex, and heightened peripheral chemoreflex activity seemed to contribute to functional changes associated with poor prognosis and exercise intolerance in pH. Potential therapeutic strategies acutely explored involved manipulating the baroreflex and peripheral chemoreflex, improving cardiovascular autonomic control via cardiac vagal control, and targeting specific pathways such as GPER1, GDF-15, miR-126, and the JMJD1C gene. CONCLUSION Information published in the last 10 years advances the notion that pH pathophysiology involves functional and structural changes in the respiratory, cardiovascular, and musculoskeletal systems and their integration with peripheral reflexes. These findings suggest potential therapeutic targets, yet unexplored in clinical trials, that could assist in improving exercise tolerance and QoL in patients with pH.
Collapse
Affiliation(s)
- Thaís C Freire
- Translational Physiology Laboratory, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil; Department of Physiology, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Marília S Ferreira
- Translational Physiology Laboratory, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil; Department of Physiology, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Kátia De Angelis
- Translational Physiology Laboratory, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil; Department of Physiology, Federal University of Sao Paulo, Sao Paulo, Brazil
| | | |
Collapse
|
3
|
Li M, McKeon BA, Gu S, Prasad RR, Zhang H, Kumar S, Riddle S, Irwin DC, Stenmark KR. Honokiol and Nicotinamide Adenine Dinucleotide Improve Exercise Endurance in Pulmonary Hypertensive Rats Through Increasing SIRT3 Function in Skeletal Muscle. Int J Mol Sci 2024; 25:11600. [PMID: 39519152 PMCID: PMC11545838 DOI: 10.3390/ijms252111600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/22/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Pulmonary hypertension (PH) significantly impairs exercise capacity and the quality of life in patients, which is influenced by dysfunctions in multiple organ systems, including the right ventricle, lungs, and skeletal muscles. Recent research has identified metabolic reprogramming and mitochondrial dysfunction as contributing factors to reduced exercise tolerance in PH patients. In this study, we investigated the therapeutic potential of enhancing mitochondrial function through the activation of the mitochondrial deacetylase SIRT3, using SIRT3 activator Honokiol combined with the SIRT3 co-factor nicotinamide adenine dinucleotide (NAD), in a Sugen/Hypoxia-induced PH rat model. Our results show that Sugen/Hypoxia-induced PH significantly impairs RV, lung, and skeletal muscle function, leading to reduced exercise capacity. Treatment with Honokiol and NAD notably improved exercise endurance, primarily by restoring SIRT3 levels in skeletal muscles, reducing proteolysis and atrophy in the gastrocnemius, and enhancing mitochondrial complex I levels in the soleus. These effects were independent of changes in cardiopulmonary hemodynamics. We concluded that targeting skeletal muscle dysfunction may be a promising approach to improving exercise capacity and overall quality of life in PH patients.
Collapse
Affiliation(s)
- Min Li
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | | - Kurt R. Stenmark
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
4
|
Li HT, Yuan P, Jiang R, Zhao QH, Sun YY, Zhang J, Gong SG, Li JL, Qiu HL, Wu WH, Luo CJ, Xu J, Wang L, Liu JM. Sleep-disordered breathing and nocturnal hypoxemia in chronic thromboembolic pulmonary disease. Intern Med J 2024; 54:1292-1301. [PMID: 38563467 DOI: 10.1111/imj.16359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 02/25/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND AND AIMS Sleep-disordered breathing (SDB) and nocturnal hypoxemia were known to be present in patients with chronic thromboembolic pulmonary hypertension (CTEPH), but the difference between SDB and nocturnal hypoxemia in patients who have chronic thromboembolic pulmonary disease (CTEPD) with or without pulmonary hypertension (PH) at rest remains unknown. METHODS Patients who had CTEPH (n = 80) or CTEPD without PH (n = 40) and who had undergone sleep studies from July 2020 to October 2022 at Shanghai Pulmonary Hospital were enrolled. Nocturnal mean SpO2 (Mean SpO2) <90% was defined as nocturnal hypoxemia, and the percentage of time with a saturation below 90% (T90%) exceeding 10% was used to evaluate the severity of nocturnal hypoxemia. Logistic and linear regression analyses were performed to investigate the difference and potential predictor of SDB or nocturnal hypoxemia between CTEPH and CTEPD without PH. RESULTS SDB was similarly prevalent in CTEPH and CTEPD without PH (P = 0.104), both characterised by obstructive sleep apnoea (OSA). Twenty-two patients with CTEPH were diagnosed with nocturnal hypoxemia, whereas only three were diagnosed with CTEPD without PH (P = 0.021). T90% was positively associated with mean pulmonary arterial pressure (mPAP) and pulmonary vascular resistance in patients with CTEPH and CTEPD without PH (P < 0.001); T90% was also negatively related to cardiac output in these patients. Single-breath carbon monoxide diffusing capacity, sex and mPAP were all correlated with nocturnal hypoxemia in CTEPH and CTEPD without PH (all P < 0.05). CONCLUSION Nocturnal hypoxemia was worse in CTEPD with PH; T90%, but not SDB, was independently correlated with the hemodynamics in CTEPD with or without PH.
Collapse
Affiliation(s)
- Hui-Ting Li
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ping Yuan
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Rong Jiang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qin-Hua Zhao
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuan-Yuan Sun
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jian Zhang
- Department of Respiratory and Critical Care Medicine, the 416 Hospital of Nuclear Industry/the Second Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Su-Gang Gong
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jin-Ling Li
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hong-Ling Qiu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wen-Hui Wu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ci-Jun Luo
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiang Xu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lan Wang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jin-Ming Liu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
5
|
Todesco A, Grynblat J, Akoumia KKF, Bonnet D, Mendes‐Ferreira P, Morisset S, Chemla D, Levy M, Méot M, Malekzadeh‐Milani S, Tielemans B, Decante B, Vastel‐Amzallag C, Habert P, Ghigna M, Humbert M, Montani D, Boulate D, Perros F. Pulmonary Hypertension Induced by Right Pulmonary Artery Occlusion: Hemodynamic Consequences of Bmpr2 Mutation. J Am Heart Assoc 2024; 13:e034621. [PMID: 38979789 PMCID: PMC11292755 DOI: 10.1161/jaha.124.034621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/28/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND The primary genetic risk factor for heritable pulmonary arterial hypertension is the presence of monoallelic mutations in the BMPR2 gene. The incomplete penetrance of BMPR2 mutations implies that additional triggers are necessary for pulmonary arterial hypertension occurrence. Pulmonary artery stenosis directly raises pulmonary artery pressure, and the redirection of blood flow to unobstructed arteries leads to endothelial dysfunction and vascular remodeling. We hypothesized that right pulmonary artery occlusion (RPAO) triggers pulmonary hypertension (PH) in rats with Bmpr2 mutations. METHODS AND RESULTS Male and female rats with a 71 bp monoallelic deletion in exon 1 of Bmpr2 and their wild-type siblings underwent acute and chronic RPAO. They were subjected to full high-fidelity hemodynamic characterization. We also examined how chronic RPAO can mimic the pulmonary gene expression pattern associated with installed PH in unobstructed territories. RPAO induced precapillary PH in male and female rats, both acutely and chronically. Bmpr2 mutant and male rats manifested more severe PH compared with their counterparts. Although wild-type rats adapted to RPAO, Bmpr2 mutant rats experienced heightened mortality. RPAO induced a decline in cardiac contractility index, particularly pronounced in male Bmpr2 rats. Chronic RPAO resulted in elevated pulmonary IL-6 (interleukin-6) expression and decreased Gdf2 expression (corrected P value<0.05 and log2 fold change>1). In this context, male rats expressed higher pulmonary levels of endothelin-1 and IL-6 than females. CONCLUSIONS Our novel 2-hit rat model presents a promising avenue to explore the adaptation of the right ventricle and pulmonary vasculature to PH, shedding light on pertinent sex- and gene-related effects.
Collapse
MESH Headings
- Animals
- Bone Morphogenetic Protein Receptors, Type II/genetics
- Bone Morphogenetic Protein Receptors, Type II/metabolism
- Female
- Male
- Pulmonary Artery/physiopathology
- Pulmonary Artery/metabolism
- Hemodynamics
- Disease Models, Animal
- Mutation
- Hypertension, Pulmonary/physiopathology
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/metabolism
- Rats
- Rats, Sprague-Dawley
- Vascular Remodeling/genetics
- Pulmonary Arterial Hypertension/physiopathology
- Pulmonary Arterial Hypertension/genetics
- Pulmonary Arterial Hypertension/metabolism
- Pulmonary Arterial Hypertension/etiology
- Stenosis, Pulmonary Artery/genetics
- Stenosis, Pulmonary Artery/physiopathology
- Stenosis, Pulmonary Artery/metabolism
- Arterial Pressure
- Myocardial Contraction/physiology
Collapse
Affiliation(s)
- Alban Todesco
- Department of Thoracic Surgery, Diseases of the Esophagus and Lung Transplantation, North HospitalAix Marseille University, Assistance Publique‐Hôpitaux de MarseilleMarseilleFrance
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel TherapiesLe Plessis RobinsonFrance
| | - Julien Grynblat
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel TherapiesLe Plessis RobinsonFrance
- M3C‐Necker, Hôpital Necker‐Enfants maladesAP‐HP Université de Paris Cité, Cardiologie Congénitale et PédiatriqueParisFrance
- Faculty of Medicine Le Kremlin‐BicêtreUniversité Paris‐SaclayBures‐sur‐YvetteFrance
| | - Kouamé Kan Firmin Akoumia
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel TherapiesLe Plessis RobinsonFrance
| | - Damien Bonnet
- M3C‐Necker, Hôpital Necker‐Enfants maladesAP‐HP Université de Paris Cité, Cardiologie Congénitale et PédiatriqueParisFrance
| | - Pedro Mendes‐Ferreira
- Cardiovascular R&D Centre, UnIC@RISE, Department of Surgery and PhysiologyFaculty of Medicine of the University of PortoPortoPortugal
- Paris‐Porto Pulmonary Hypertension Collaborative Laboratory (3PH), UMR_S 999, INSERMUniversité Paris‐SaclayParisFrance
| | | | - Denis Chemla
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel TherapiesLe Plessis RobinsonFrance
| | - Marilyne Levy
- M3C‐Necker, Hôpital Necker‐Enfants maladesAP‐HP Université de Paris Cité, Cardiologie Congénitale et PédiatriqueParisFrance
| | - Mathilde Méot
- M3C‐Necker, Hôpital Necker‐Enfants maladesAP‐HP Université de Paris Cité, Cardiologie Congénitale et PédiatriqueParisFrance
| | - Sophie‐Guiti Malekzadeh‐Milani
- M3C‐Necker, Hôpital Necker‐Enfants maladesAP‐HP Université de Paris Cité, Cardiologie Congénitale et PédiatriqueParisFrance
| | - Birger Tielemans
- Department of Imaging and Pathology, Biomedical MRI unit/MosaicKU LeuvenLeuvenBelgium
| | - Benoit Decante
- Preclinical Research Laboratory, Pulmonary Hypertension National Referral Center, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint JosephParis‐Saclay UniversityLe Plessis RobinsonFrance
| | - Carine Vastel‐Amzallag
- Paediatric Cardiology, Centre de Spécialités Pédiatriques de l’Est Parisien, CSPEPCréteilFrance
| | - Paul Habert
- Department of RadiologyNorth Hospital, Assistance Publique–Hôpitaux de MarseilleMarseilleFrance
- Aix Marseille Univ, LIIEMarseilleFrance
| | - Maria‐Rosa Ghigna
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel TherapiesLe Plessis RobinsonFrance
- Department of PathologyInstitut Gustave RoussyVillejuifFrance
| | - Marc Humbert
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel TherapiesLe Plessis RobinsonFrance
- Faculty of Medicine Le Kremlin‐BicêtreUniversité Paris‐SaclayBures‐sur‐YvetteFrance
- AP‐HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral CentreDMU 5 Thorinno, Hôpital BicêtreLe Kremlin‐BicêtreFrance
| | - David Montani
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel TherapiesLe Plessis RobinsonFrance
- Faculty of Medicine Le Kremlin‐BicêtreUniversité Paris‐SaclayBures‐sur‐YvetteFrance
- AP‐HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral CentreDMU 5 Thorinno, Hôpital BicêtreLe Kremlin‐BicêtreFrance
| | - David Boulate
- Department of Thoracic Surgery, Diseases of the Esophagus and Lung Transplantation, North HospitalAix Marseille University, Assistance Publique‐Hôpitaux de MarseilleMarseilleFrance
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel TherapiesLe Plessis RobinsonFrance
- COMPutational Pharmacology and clinical Oncology (COMPO), INRIA‐INSERMAix Marseille UniversityMarseilleFrance
| | - Frédéric Perros
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel TherapiesLe Plessis RobinsonFrance
- Paris‐Porto Pulmonary Hypertension Collaborative Laboratory (3PH), UMR_S 999, INSERMUniversité Paris‐SaclayParisFrance
- CarMeN Laboratory, INSERM U1060, INRAE U1397Université Claude Bernard Lyon1Pierre‐BéniteFrance
| |
Collapse
|
6
|
Zhang P, Da Silva Goncalves Bos D, Vang A, Feord J, McCullough DJ, Zimmer A, D'Silva N, Clements RT, Choudhary G. Reduced exercise capacity occurs before intrinsic skeletal muscle dysfunction in experimental rat models of pulmonary hypertension. Pulm Circ 2024; 14:e12358. [PMID: 38576776 PMCID: PMC10993156 DOI: 10.1002/pul2.12358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/06/2024] [Accepted: 03/08/2024] [Indexed: 04/06/2024] Open
Abstract
Reduced exercise capacity in pulmonary hypertension (PH) significantly impacts quality of life. However, the cause of reduced exercise capacity in PH remains unclear. The objective of this study was to investigate whether intrinsic skeletal muscle changes are causative in reduced exercise capacity in PH using preclinical PH rat models with different PH severity. PH was induced in adult Sprague-Dawley (SD) or Fischer (CDF) rats with one dose of SU5416 (20 mg/kg) injection, followed by 3 weeks of hypoxia and additional 0-4 weeks of normoxia exposure. Control s rats were injected with vehicle and housed in normoxia. Echocardiography was performed to assess cardiac function. Exercise capacity was assessed by VO2 max. Skeletal muscle structural changes (atrophy, fiber type switching, and capillary density), mitochondrial function, isometric force, and fatigue profile were assessed. In SD rats, right ventricular systolic dysfunction is associated with reduced exercise capacity in PH rats at 7-week timepoint in comparison to control rats, while no changes were observed in skeletal muscle structure, mitochondrial function, isometric force, or fatigue profile. CDF rats at 4-week timepoint developed a more severe PH and, in addition to right ventricular dysfunction, the reduced exercise capacity in these rats is associated with skeletal muscle atrophy; however, mitochondrial function, isometric force, and fatigue profile in skeletal muscle remain unchanged. Our data suggest that cardiopulmonary impairments in PH are the primary cause of reduced exercise capacity, which occurs before intrinsic skeletal muscle dysfunction.
Collapse
Affiliation(s)
- Peng Zhang
- Vascular Research LaboratoryProvidence VA Medical CenterProvidenceRhode IslandUSA
- Division of Cardiology, Department of MedicineAlpert Medical School of Brown UniversityProvidenceRhode IslandUSA
| | - Denielli Da Silva Goncalves Bos
- Vascular Research LaboratoryProvidence VA Medical CenterProvidenceRhode IslandUSA
- Division of Cardiology, Department of MedicineAlpert Medical School of Brown UniversityProvidenceRhode IslandUSA
- Pulmonary Division, Heart InstituteUniversity of São Paulo Medical SchoolSão PauloBrazil
| | - Alexander Vang
- Vascular Research LaboratoryProvidence VA Medical CenterProvidenceRhode IslandUSA
| | - Julia Feord
- Vascular Research LaboratoryProvidence VA Medical CenterProvidenceRhode IslandUSA
| | | | - Alexsandra Zimmer
- Vascular Research LaboratoryProvidence VA Medical CenterProvidenceRhode IslandUSA
- Division of Cardiology, Department of MedicineAlpert Medical School of Brown UniversityProvidenceRhode IslandUSA
| | - Natalie D'Silva
- Vascular Research LaboratoryProvidence VA Medical CenterProvidenceRhode IslandUSA
- Division of Cardiology, Department of MedicineAlpert Medical School of Brown UniversityProvidenceRhode IslandUSA
| | - Richard T. Clements
- Vascular Research LaboratoryProvidence VA Medical CenterProvidenceRhode IslandUSA
- Biomedical and Pharmaceutical SciencesUniversity of Rhode IslandKingstonRhode IslandUSA
| | - Gaurav Choudhary
- Vascular Research LaboratoryProvidence VA Medical CenterProvidenceRhode IslandUSA
- Division of Cardiology, Department of MedicineAlpert Medical School of Brown UniversityProvidenceRhode IslandUSA
| |
Collapse
|
7
|
Yasar Z, Ross MD, Gaffney CJ, Postlethwaite RD, Wilson R, Hayes LD. Aerobically trained older adults show impaired resting, but preserved exercise-induced circulating progenitor cell count, which was not improved by sprint interval training. Pflugers Arch 2023; 475:465-475. [PMID: 36786845 PMCID: PMC10011317 DOI: 10.1007/s00424-022-02785-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 11/24/2022] [Accepted: 12/19/2022] [Indexed: 02/15/2023]
Abstract
Older adults exhibit a reduced number and function of CD34 + circulating progenitor cells (CPC), a known risk factor for cardiovascular disease. Exercise promotes the mobilisation of CPCs from bone marrow, so whether ageing per se or physical inactivity in older age reduces CPCs is unknown. Thus, this study examined the effect of age on resting and exercise-induced changes in CPCs in aerobically trained adults and the effect of 8 weeks of sprint interval training (SIT) on resting and exercise-induced CPCs in older adults. Twelve young (22-34 years) and nine older (63-70 years) adults participated in the study. Blood was sampled pre and immediately post a graded exercise test to exhaustion in both groups. Older participants repeated the process after 8 weeks of SIT (3 × 20 s 'all-out' sprints, 2 × a week). Total CPCs (CD34+) and endothelial progenitor cells (EPCs: CD34+KDR+) were determined by flow cytometry. Older adults exhibited lower basal total CD34+ CPCs (828 ± 314 vs. 1186 ± 272 cells·mL-1, p = 0.0149) and CD34+KDR+ EPCs (177 ± 128 vs. 335 ± 92 cells·mL-1, p = 0.007) than younger adults. The maximal exercise test increased CPCs in young (CD34+: p = 0.004; CD34+KDR+: p = 0.017) and older adults (CD34+: p < 0.001; CD34+KDR+: p = 0.008), without difference between groups (p = 0.211). SIT did not alter resting or exercise-induced changes in CPCs in the older cohort (p > 0.232). This study suggests age per se does not impair exercise-induced CPC counts, but does lower resting CPC counts.
Collapse
Affiliation(s)
- Zerbu Yasar
- Active Ageing Research Group, Institute of Health, University of Cumbria, Lancaster, UK
| | - Mark D. Ross
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK
- School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, UK
| | - Christopher J. Gaffney
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | | | - Russell Wilson
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK
- School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, UK
| | - Lawrence D. Hayes
- Sport and Physical Activity Research Institute, School of Health and Life Sciences, University of the West of Scotland, Glasgow, UK
| |
Collapse
|
8
|
Drummond FR, Leite LB, de Miranda DC, Drummond LR, Lavorato VN, Soares LL, Neves CA, Natali AJ. Skeletal muscle dysfunctions in pulmonary arterial hypertension: Effects of aerobic exercise training. Front Physiol 2023; 14:1148146. [PMID: 37035672 PMCID: PMC10076612 DOI: 10.3389/fphys.2023.1148146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
Pulmonary arterial hypertension is associated with skeletal muscle myopathy and atrophy and impaired exercise tolerance. Aerobic exercise training has been recommended as a non-pharmacological therapy for deleterious effects imposed by pulmonary arterial hypertension. Aerobic physical training induces skeletal muscle adaptations via reduced inflammation, improved anabolic processes, decreased hypoxia and regulation of mitochondrial function. These benefits improve physical exertion tolerance and quality of life in patients with pulmonary arterial hypertension. However, the mechanisms underlying the therapeutic potential of aerobic exercise to skeletal muscle disfunctions in patients with pulmonary arterial hypertension are not well understood yet. This minireview highlights the pathways involved in skeletal muscle adaptations to aerobic exercise training in patients with pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Filipe Rios Drummond
- Department of General Biology, Laboratory of Structural Biology, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Luciano Bernardes Leite
- Department of Physical Education, Laboratory of Exercise Biology Federal University of Viçosa, Viçosa, MG, Brazil
- *Correspondence: Luciano Bernardes Leite,
| | - Denise Coutinho de Miranda
- Department of Biological Sciences, Laboratory of Cell Signaling, Federal University of Ouro Preto, Viçosa, MG, Brazil
- Department of Physical Education, Governador Ozanam Coelho University Center (UNIFAGOC), Ubá, Brazil
| | - Lucas Rios Drummond
- Department of Physiology and Biophysics, Laboratory of Endocrinology and Metabolism, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Victor Neiva Lavorato
- Department of Physical Education, Governador Ozanam Coelho University Center (UNIFAGOC), Ubá, Brazil
| | - Leôncio Lopes Soares
- Department of Physical Education, Laboratory of Exercise Biology Federal University of Viçosa, Viçosa, MG, Brazil
| | - Clóvis Andrade Neves
- Department of General Biology, Laboratory of Structural Biology, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Antônio José Natali
- Department of Physical Education, Laboratory of Exercise Biology Federal University of Viçosa, Viçosa, MG, Brazil
| |
Collapse
|
9
|
Butāne L, Spilva-Ekerte L, Šablinskis M, Skride A, Šmite D. Individually tailored home-based physiotherapy program makes sustainable improvement in exercise capacity and daily physical activity in patients with pulmonary arterial hypertension. Ther Adv Respir Dis 2022; 16:17534666221132477. [PMID: 36314474 PMCID: PMC9629575 DOI: 10.1177/17534666221132477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a rare, chronic, progressive, and life-threatening cardiopulmonary disease. This study investigated the impact of an individually tailored 12 weeks home-based physiotherapy program in PAH patients, with the aim to evaluate change in exercise capacity and daily physical activity level. METHODS This was an analysis of secondary outcomes from a prospective, randomized, controlled intervention study. Twenty-one participants were recruited from the Latvian PH registry based on inclusion criteria and randomized in a training group (TG) and control group (CG). Both groups continued a medical target therapy, but for TG, the individually tailored home-based physiotherapy program was added including physical exercises, relaxation, self-control, education, and supervision with telehealth elements. Outcomes included a 6-min walk test (6MWT) (m) and daily physical activity based on accelerometry results assessed at baseline, after 12 weeks, and at follow-up 6 months after commencement of intervention. RESULTS 6MWT distance significantly (p < 0.05) and clinically (>33 m) increased within TG after 12 weeks (51.8 m, 95% CI = 25.7-77.9 m, Cohen's d = 1.7) and at follow-up (75.5 m, 95% CI = 46.1-104.8 m, Cohen's d = 2.1). A significant difference in 6MWT results between the groups at 12 weeks and follow-up was approved. In TG, low-intensity activities significantly (p < 0.05) increased both after 12 weeks (Cohen's d = 1.6) and at follow-up (Cohen's d = 1.2), moderate-intensity activities significantly (p < 0.05) increased at follow-up (Cohen's d = 1.3), and no significant improvements were present in CG. CONCLUSION The individually tailored 12 weeks home-based physiotherapy program comprising comprehensive physical exercise training, relaxation, self-control skills training, and education, added to stable medical target therapy and supervised by physiotherapist through telehealth elements, is effective in improving exercise capacity and increasing daily time in low or moderate physical activities 6 months after commencement of the intervention in patients with PAH.
Collapse
Affiliation(s)
| | | | - Matīss Šablinskis
- Department of Cardiology, Pauls Stradiņš Clinical University Hospital, Riga, Latvia
| | - Andris Skride
- Department of Internal Diseases, Riga Stradiņš University, Riga, Latvia,Department of Cardiology, Pauls Stradiņš Clinical University Hospital, Riga, Latvia
| | - Daina Šmite
- Faculty of Rehabilitation, Riga Stradiņš University, Riga, Latvia
| |
Collapse
|
10
|
Long GM, Troutman AD, Gray DA, Fisher AJ, Lahm T, Coggan AR, Brown MB. Skeletal muscle blood flow during exercise is reduced in a rat model of pulmonary hypertension. Am J Physiol Regul Integr Comp Physiol 2022; 323:R561-R570. [PMID: 36036455 PMCID: PMC9602702 DOI: 10.1152/ajpregu.00327.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022]
Abstract
Pulmonary arterial hypertension (PAH) is characterized by exercise intolerance. Muscle blood flow may be reduced during exercise in PAH; however, this has not been directly measured. Therefore, we investigated blood flow during exercise in a rat model of monocrotaline (MCT)-induced pulmonary hypertension (PH). Male Sprague-Dawley rats (∼200 g) were injected with 60 mg/kg MCT (MCT, n = 23) and vehicle control (saline; CON, n = 16). Maximal rate of oxygen consumption (V̇o2max) and voluntary running were measured before PH induction. Right ventricle (RV) morphology and function were assessed via echocardiography and invasive hemodynamic measures. Treadmill running at 50% V̇o2max was performed by a subgroup of rats (MCT, n = 8; CON, n = 7). Injection of fluorescent microspheres determined muscle blood flow via photo spectroscopy. MCT demonstrated a severe phenotype via RV hypertrophy (Fulton index, 0.61 vs. 0.31; P < 0.001), high RV systolic pressure (51.5 vs. 22.4 mmHg; P < 0.001), and lower V̇o2max (53.2 vs. 71.8 mL·min-1·kg-1; P < 0.0001) compared with CON. Two-way ANOVA revealed exercising skeletal muscle blood flow relative to power output was reduced in MCT compared with CON (P < 0.001), and plasma lactate was increased in MCT (10.8 vs. 4.5 mmol/L; P = 0.002). Significant relationships between skeletal blood flow and blood lactate during exercise were observed for individual muscles (r = -0.58 to -0.74; P < 0.05). No differences in capillarization were identified. Skeletal muscle blood flow is significantly reduced in experimental PH. Reduced blood flow during exercise may be, at least in part, consequent to reduced exercise intensity in PH. This adds further evidence of peripheral muscle dysfunction and exercise intolerance in PAH.
Collapse
Affiliation(s)
- Gary Marshall Long
- Department of Kinesiology, University of Indianapolis, Indianapolis, Indiana
| | - Ashley D Troutman
- Department of Kinesiology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana
| | - Derrick A Gray
- Department of Kinesiology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana
| | - Amanda J Fisher
- Department of Kinesiology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana
| | - Tim Lahm
- Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, Colorado
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Indiana University, Indianapolis, Indiana
- Richard L. Roudebush Veteran Affairs Medical Center, Indianapolis, Indiana
| | - Andrew R Coggan
- Department of Kinesiology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana
| | - Mary Beth Brown
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
11
|
Avitabile CM, McBride MG, Harris MA, Whitehead KK, Fogel MA, Paridon SM, Zemel BS. Skeletal muscle deficits are associated with worse exercise performance in pediatric pulmonary hypertension. Front Pediatr 2022; 10:1025420. [PMID: 36275051 PMCID: PMC9579321 DOI: 10.3389/fped.2022.1025420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Skeletal muscle deficits are associated with worse exercise performance in adults with pulmonary hypertension (PH) but the impact is poorly understood in pediatric PH. OBJECTIVE To study muscle deficits, physical inactivity, and performance on cardiopulmonary exercise test (CPET) and exercise cardiac magnetic resonance (eCMR) in pediatric PH. METHODS Youth 8-18 years participated in a prospective, cross-sectional study including densitometry (DXA) for measurement of leg lean mass Z-score (LLMZ), handheld dynamometer with generation of dominant and non-dominant handgrip Z-scores, Physical Activity Questionnaire (PAQ), CPET, and optional eCMR. CPET parameters were expressed relative to published reference values. CMR protocol included ventricular volumes and indexed systemic flow at rest and just after supine ergometer exercise. Relationships between LLMZ, PAQ score, and exercise performance were assessed by Pearson correlation and multiple linear regression. RESULTS There were 25 participants (13.7 ± 2.8 years, 56% female, 64% PH Group 1, 60% functional class I); 12 (48%) performed both CPET and eCMR. Mean LLMZ (-0.96 ± 1.14) was associated with PAQ score (r = 50, p = 0.01) and with peak oxygen consumption (VO2) (r = 0.74, p = < 0.001), VO2 at anaerobic threshold (r = 0.65, p < 0.001), and peak work rate (r = 0.64, p < 0.01). Higher handgrip Z-scores were associated with better CPET and eCMR performance. On regression analysis, LLMZ and PAQ score were positively associated with peak VO2, while handgrip Z-score and PAQ score were positively associated with peak work rate. CONCLUSION Muscle mass and strength are positively associated with exercise performance in pediatric PH. Future studies should determine the effect of rehabilitation programs on muscle properties and exercise performance.
Collapse
Affiliation(s)
- Catherine M Avitabile
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Michael G McBride
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Matthew A Harris
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Kevin K Whitehead
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Mark A Fogel
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Stephen M Paridon
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Babette S Zemel
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States.,Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| |
Collapse
|
12
|
Mitrouska I, Bolaki M, Vaporidi K, Georgopoulos D. Respiratory system as the main determinant of dyspnea in patients with pulmonary hypertension. Pulm Circ 2022; 12:e12060. [PMID: 35506092 PMCID: PMC9053013 DOI: 10.1002/pul2.12060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/02/2022] [Accepted: 03/06/2022] [Indexed: 11/10/2022] Open
Abstract
Dyspnea on exertion is a devastating symptom, commonly observed in patients with pulmonary hypertension (PH). The pathophysiology of dyspnea in these patients has been mainly attributed to cardiovascular determinants and isolated abnormalities of the respiratory system during exercise, neglecting the contribution of the control of the breathing system. The aim of this review is to provide a novel approach to the interpretation of dyspnea in patients with PH, focused on the impact of the control of the breathing system during exercise. Exercise through multiple mechanisms affects the (1) ventilatory demands, as dictated by respiratory center activity, (2) actual ventilation, and (3) metabolic hyperbola. In patients with PH, exertional dyspnea can be explained by exercise-induced alterations in these variables. Compared to healthy subjects, at a given CO2 production during exercise, ventilatory demands in patients with PH are higher due to metabolic acidosis (early reaching the anaerobic threshold), hypoxemia, and excessive upward movement of metabolic hyperbola owing to abnormal exercise response of dead space to tidal volume ratio. Simultaneously, dynamic hyperinflation and respiratory muscles weakness decreases the actual ventilation for a given respiratory center activity, creating a dissociation between demands and ventilation. Consequently, a progressive increase in ventilatory demands and respiratory center activity occurs during exercise. The forebrain projection of high respiratory center activity causes exertional dyspnea despite the relatively low ventilation and significant ventilatory reserve. This type of analysis suggests that the respiratory system is the main determinant of exertional dyspnea in patients with PH, with the cardiovascular system being an indirect contributor.
Collapse
Affiliation(s)
- Ioanna Mitrouska
- Department of Pulmonary Medicine, University Hospital of Heraklion, Medical SchoolUniversity of CreteHeraklionCreteGreece
| | - Maria Bolaki
- Department of Intensive Care Medicine, University Hospital of Heraklion, Medical SchoolUniversity of CreteHeraklionCreteGreece
| | - Katerina Vaporidi
- Department of Intensive Care Medicine, University Hospital of Heraklion, Medical SchoolUniversity of CreteHeraklionCreteGreece
| | - Dimitris Georgopoulos
- Department of Intensive Care Medicine, University Hospital of Heraklion, Medical SchoolUniversity of CreteHeraklionCreteGreece
| |
Collapse
|
13
|
Prevalence of Micronutrient Deficiencies and Relationship with Clinical and Patient-Related Outcomes in Pulmonary Hypertension Types I and IV. Nutrients 2021; 13:nu13113923. [PMID: 34836178 PMCID: PMC8617670 DOI: 10.3390/nu13113923] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/15/2021] [Accepted: 10/21/2021] [Indexed: 01/24/2023] Open
Abstract
Background: Pulmonary hypertension (PH) is a rare progressive and lethal disease affecting pulmonary arteries and heart function. The disease may compromise the nutritional status of the patient, which impairs their physical performance. This study aimed to determine the prevalence of micronutrient deficiencies in pulmonary arterial hypertension (PAH) and chronic thrombo-embolic pulmonary hypertension (CTEPH) patients. Methods: Eighty-one blood samples from a prospective observational cohort study were analyzed for concentrations of micronutrients and inflammation-related factors. The samples consisted of newly diagnosed (treatment-naive) PAH and CTEPH patients and patients treated for 1.5 years according to ERS/ESC guidelines. Results: In the newly diagnosed group, 42% of PAH patients and 21% of CTEPH patients were iron deficient compared to 29% of PAH patients and 20% of CTEPH patients in the treatment group. Vitamin D deficiency occurred in 42% of the newly diagnosed PAH patients, 71% of the newly diagnosed CTEPH patients, 68% of the treated PAH patients, and 70% of the treated CTEPH patients. Iron levels correlated with the 6 min walking distance (6MWD). Conclusions: Iron and vitamin D deficiencies are highly prevalent in PAH and CTEPH patients, underlining the need for monitoring their status. Studies evaluating the effects of supplementation strategies for iron and vitamin D are necessary.
Collapse
|
14
|
Cobra SDB, Rodrigues MP, de Melo FX, Ferreira NMC, Melo-Silva CA. Right ventricular contractility decreases during exercise in patients with non-advanced idiopathic pulmonary fibrosis. Medicine (Baltimore) 2021; 100:e25915. [PMID: 34232164 PMCID: PMC8270621 DOI: 10.1097/md.0000000000025915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/21/2021] [Indexed: 01/04/2023] Open
Abstract
Early right ventricular dysfunction in patients with non-advanced idiopathic pulmonary fibrosis (IPF) has not been fully elucidated. Thus, we aimed to assess right ventricular functions in IPF patients and controls by speckle-tracking strain echocardiography at rest and peak exercise.We screened 116 IPF patients from February to August 2019 to include 20 patients with no history of oxygen therapy, peripheral saturation levels ≥92% at rest, Gender-Age-Physiology Index score ≤5, and modified Medical Research Council score ≤3. Additionally, we enrolled 10 matched controls. Transthoracic echocardiography images were acquired at rest and during a cardiopulmonary exercise test. We analyzed 2-dimensional echocardiographic parameters and right ventricular function using the global longitudinal strain assessed by the 2-dimensional speckle-tracking technique.In the control group, we found normal values of right ventricle longitudinal strain (RVLS) at rest and at peak exercise, the latter being much more negative (-23.6 ± 2.2% and -26.8 ± 3.1%, respectively; P < .001). By contrast, RVLS values in the IPF group increased from -21.1 ± 3.8% at rest to -17.0 ± 4.5% at peak exercise (P < .001). The exercise revealed a difference between the 2 groups as the mean RVLS values moved during peak exercise in opposite directions. Patients with IPF got worse, whereas control patients presented improved right ventricular contractility.Right ventricular dysfunction was unveiled by speckle-tracking echocardiography during exercise in non-advanced IPF patients. We suggest that this reflects an inadequate right ventricular-arterial coupling decreasing the right ventricular longitudinal contraction during exercise in these patients. This parameter may be useful as an early index of suspected pulmonary hypertension.
Collapse
Affiliation(s)
- Sandra de Barros Cobra
- Department of Cardiology, Federal District Base Hospital Institute and School of Medicine, University of Brasília, Brasília 70.330-150 – DF
| | | | | | | | - César Augusto Melo-Silva
- Laboratory of Respiratory Physiology, University of Brasília
- Division of Physical Therapy, University Hospital of Brasília, Brasília 70.910-900 – DF
- Núcleo de Integração Funcional, Rehabilitation Center, Brasília 70.830-350 – DF, Brazil
| |
Collapse
|
15
|
Rakhmawati A, Achmad IN, Hartopo AB, Anggrahini DW, Arso IA, Emoto N, Dinarti LK. Exercise Program Improves Functional Capacity and Quality of Life in Uncorrected Atrial Septal Defect-Associated Pulmonary Arterial Hypertension: A Randomized-Control Pilot Study. Ann Rehabil Med 2020; 44:468-480. [PMID: 33440095 PMCID: PMC7808796 DOI: 10.5535/arm.20100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE To assess the effect of combined hospital and home-based exercise programs on functional capacity and quality of life (QoL) among uncorrected atrial septal defect-associated pulmonary arterial hypertension (ASD-PAH) patients. METHODS This study was a randomized controlled trial with uncorrected ASD-PAH patients as the subjects. They were allocated randomly into control and exercise groups. Exercise group subjects performed hospital and home-based exercise programs, completing baseline 6-minute walking test (6MWT) and EQ-5D-3L QoL test (Utility Index and EQ-VAS scores), and were followed up for 12 weeks. The primary outcomes were 6MWT distance and EQ-5D-3L score at week 12. The N-terminal pro B-type natriuretic peptide (NT-proBNP) level was also assessed. A repeated-measure ANOVA was performed to detect endpoint differences over time. RESULTS The exercise group contained 20 subjects and control group contained 19. In total, 19 exercise group subjects and 16 control group subjects completed the protocol. The 6MWT distance, Utility Index score, and EQ-VAS score incrementally improved significantly in the exercise group from baseline until week 12, with mean differences of 76.7 m (p<0.001), 0.137 (p<0.001) and 15.5 (p<0.001), respectively. Compared with the control group, the exercise group had significantly increased 6MWT distance and utility index score at week 12. The EQ-VAS score increased in the exercise group at week 12. The NT-proBNP level decreased at week 12 in the exercise group. CONCLUSION Combined hospital and home-based exercise program added to PAH-targeted therapy, improving functional capacity and QoL in uncorrected ASD-PAH patients.
Collapse
Affiliation(s)
- Annis Rakhmawati
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital, Jogjakarta, Indonesia
| | - Indera Noor Achmad
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital, Jogjakarta, Indonesia
| | - Anggoro Budi Hartopo
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital, Jogjakarta, Indonesia
| | - Dyah Wulan Anggrahini
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital, Jogjakarta, Indonesia
| | - Irsad Andi Arso
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital, Jogjakarta, Indonesia
| | - Noriaki Emoto
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan.,Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, Kobe, Japan
| | - Lucia Kris Dinarti
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital, Jogjakarta, Indonesia
| |
Collapse
|
16
|
Prisco SZ, Thenappan T, Prins KW. Treatment Targets for Right Ventricular Dysfunction in Pulmonary Arterial Hypertension. JACC Basic Transl Sci 2020; 5:1244-1260. [PMID: 33426379 PMCID: PMC7775863 DOI: 10.1016/j.jacbts.2020.07.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 01/10/2023]
Abstract
Right ventricle (RV) dysfunction is the strongest predictor of mortality in pulmonary arterial hypertension (PAH), but, at present, there are no therapies directly targeting the failing RV. Although there are shared molecular mechanisms in both RV and left ventricle (LV) dysfunction, there are important differences between the 2 ventricles that may allow for the development of RV-enhancing or RV-directed therapies. In this review, we discuss the current understandings of the dysregulated pathways that promote RV dysfunction, highlight RV-enriched or RV-specific pathways that may be of particular therapeutic value, and summarize recent and ongoing clinical trials that are investigating RV function in PAH. It is hoped that development of RV-targeted therapies will improve quality of life and enhance survival for this deadly disease.
Collapse
Key Words
- FAO, fatty acid oxidation
- IPAH, idiopathic pulmonary arterial hypertension
- LV, left ventricle/ventricular
- PAH, pulmonary arterial hypertension
- PH, pulmonary hypertension
- RAAS, renin-angiotensin-aldosterone system
- RV, right ventricle/ventricular
- RVH, right ventricular hypertrophy
- SSc-PAH, systemic sclerosis-associated pulmonary arterial hypertension
- clinical trials
- miRNA/miR, micro-ribonucleic acid
- pulmonary arterial hypertension
- right ventricle
Collapse
Affiliation(s)
- Sasha Z. Prisco
- Cardiovascular Division, Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Thenappan Thenappan
- Cardiovascular Division, Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kurt W. Prins
- Cardiovascular Division, Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
17
|
Sayegh ALC, Silva BM, Ferreira EVM, Ramos RP, Fisher JP, Nery LE, Ota-Arakaki JS, Oliveira RKF. Clinical utility of ventilatory and gas exchange evaluation during low-intensity exercise for risk stratification and prognostication in pulmonary arterial hypertension. Respirology 2020; 26:264-272. [PMID: 33118293 DOI: 10.1111/resp.13959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/11/2020] [Accepted: 09/29/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND OBJECTIVE Peak oxygen consumption (pVO2 ), determined from CPET, provides a valuable indication of PAH severity and patient prognosis. However, CPET is often contraindicated in severe PAH and frequently terminated prior to achievement of a sufficient exercise effort. We sought to determine whether in PAH low-intensity [i.e. freewheeling exercise (FW)] exercise reveals abnormal VE /VCO2 and PET CO2 responses that are associated with pVO2 and serve as indices of PAH risk stratification and mortality. METHODS Retrospective analysis of CPET from 97 PAH patients and 20 age-matched controls was undertaken. FW VE /VCO2 and PET CO2 were correlated with pVO2 % age-predicted. Prognostication analysis was conducted using pVO2 > 65% age-predicted, as known to represent a low mortality risk. Primary outcome was mortality from any cause. RESULTS FW PET CO2 was correlated with pVO2 (P < 0.0001; r = 0.52), while FW VE /VCO2 was not (P = 0.13; r = -0.16). ROC curve analyses showed that FW PET CO2 (AUC = 0.659), but not FW VE /VCO2 (AUC = 0.587), provided predictive information identifying pVO2 > 65% age-predicted (best cut-off value of 28 mm Hg). By Cox analysis, FW PET CO2 < 28 mm Hg remained a predictor of mortality after adjusting for age and PAH aetiology (HR: 2.360, 95% CI: 1.144-4.866, P = 0.020). CONCLUSION Low PET CO2 during FW is associated with reduced pVO2 in PAH and provides predictive information for PAH risk stratification and prognostication.
Collapse
Affiliation(s)
- Ana Luiza C Sayegh
- Division of Respiratory Diseases, Department of Medicine, Federal University of Sao Paulo (UNIFESP), Sao Paulo, Brazil.,Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Bruno Moreira Silva
- Department of Physiology, Federal University of Sao Paulo (UNIFESP), Sao Paulo, Brazil
| | - Eloara V M Ferreira
- Division of Respiratory Diseases, Department of Medicine, Federal University of Sao Paulo (UNIFESP), Sao Paulo, Brazil
| | - Roberta P Ramos
- Division of Respiratory Diseases, Department of Medicine, Federal University of Sao Paulo (UNIFESP), Sao Paulo, Brazil
| | - James P Fisher
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Luiz E Nery
- Division of Respiratory Diseases, Department of Medicine, Federal University of Sao Paulo (UNIFESP), Sao Paulo, Brazil
| | - Jaquelina S Ota-Arakaki
- Division of Respiratory Diseases, Department of Medicine, Federal University of Sao Paulo (UNIFESP), Sao Paulo, Brazil
| | - Rudolf K F Oliveira
- Division of Respiratory Diseases, Department of Medicine, Federal University of Sao Paulo (UNIFESP), Sao Paulo, Brazil
| |
Collapse
|
18
|
Vieira JS, Cunha TF, Paixão NA, Dourado PM, Carrascoza LS, Bacurau AVN, Brum PC. Exercise intolerance establishment in pulmonary hypertension: Preventive effect of aerobic exercise training. Life Sci 2020; 261:118298. [PMID: 32822717 DOI: 10.1016/j.lfs.2020.118298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 10/23/2022]
Abstract
AIMS 1) Characterize the progression of exercise intolerance in monocrotaline-induced pulmonary hypertension (PH) in mice and 2) evaluate the therapeutic effect of aerobic exercise training (AET) on counteracting skeletal and cardiac dysfunction in PH. MAIN METHODS Wild type C57BL6/J mice were studied in two different time points: 2 months and 4 months. Exercise tolerance was evaluated by graded treadmill exercise test. The AET was performed in the last month of treatment of 4 months' time point. Cardiac function was evaluated by echocardiography. Skeletal muscle cross-sectional area was assessed by immunofluorescence. The diameter of cardiomyocytes and pulmonary edema were quantified by staining with hematoxylin-eosin. The variables were compared among the groups by two-way ANOVA or non-paired Student's t-test. Significance level was set at p < 0.05. KEY FINDINGS After 2 months of MCT treatment, mice presented pulmonary edema, right cardiac dysfunction and left ventricle hypertrophy. After 4 months of MCT treatment, mice showed pulmonary edema, right and left cardiac dysfunction and remodeling associated with exercise intolerance and skeletal muscle atrophy. AET was able to reverse cardiac left ventricle dysfunction and remodeling, prevent exercise intolerance and skeletal muscle dysfunction. Thus, our data provide evidence of skeletal muscle abnormalities on advanced PH. AET was efficient in inducing an anti-cardiac remodeling effect besides preventing exercise intolerance. SIGNIFICANCE Our study provides a robust model of PH in mice, as well as highlights the importance of AET as a preventive strategy for exercise intolerance and, skeletal and cardiac muscle abnormalities in PH.
Collapse
Affiliation(s)
- J S Vieira
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - T F Cunha
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - N A Paixão
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - P M Dourado
- Heart Institute, Medical School, University of São Paulo, São Paulo, Brazil
| | - L S Carrascoza
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - A V N Bacurau
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - P C Brum
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
19
|
Tran D, Munoz P, Lau EMT, Alison JA, Brown M, Zheng Y, Corkery P, Wong K, Lindstrom S, Celermajer DS, Davis GM, Cordina R. Inspiratory Muscle Training Improves Inspiratory Muscle Strength and Functional Exercise Capacity in Pulmonary Arterial Hypertension and Chronic Thromboembolic Pulmonary Hypertension: A Pilot Randomised Controlled Study. Heart Lung Circ 2020; 30:388-395. [PMID: 32736963 DOI: 10.1016/j.hlc.2020.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/20/2020] [Accepted: 06/13/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Exercise intolerance is present even in the early stages of pulmonary arterial hypertension (PAH) and is associated with poorer prognosis. Respiratory muscle dysfunction is common and may contribute to exercise limitation. We sought to investigate the effects of inspiratory muscle training (IMT) to improve exercise capacity in PAH. METHODS Adults with PAH were prospectively recruited and randomly assigned to either IMT or a control group. At baseline and after 8 weeks, assessment of respiratory muscle function, pulmonary function, neurohormonal activation, 6-minute walk distance and cardiopulmonary exercise testing variables were conducted. Inspiratory muscle strength was assessed by maximal static inspiratory pressure (PImax). The IMT group performed two cycles of 30 breaths at 30-40% of their PImax 5 days a week for 8 weeks. RESULTS Twelve (12) PAH patients (60±14 years, 10 females) were recruited and randomised (six in the IMT group and six in the control group). After 8 weeks, the IMT group improved PImax by 31 cmH2O compared with 10 cmH2O in controls, p=0.02. Following IMT, 6-minute walk distance improved by 24.5 m in the IMT group and declined by 12 m in the controls (mean difference 36.5 m, 95% CI 3.5-69.5, p=0.03). There was no difference in peak oxygen uptake between-groups (mean difference 0.4 mL/kg/min, 95% CI -2.6 to 3.4, p=0.77). There was no difference in the mean change between-groups in neurohormonal activation or pulmonary function. CONCLUSION In this pilot randomised controlled study, IMT improved PImax and 6-minute walk distance in PAH patients.
Collapse
Affiliation(s)
- Derek Tran
- Sydney School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Phillip Munoz
- Sydney School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Department of Respiratory Medicine, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Edmund M T Lau
- Department of Respiratory Medicine, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Jennifer A Alison
- Sydney School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Department of Physiotherapy, Royal Prince Alfred Hospital, Sydney, Australia
| | - Martin Brown
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Yizhong Zheng
- Department of Respiratory and Sleep Medicine, St George Hospital, Sydney, NSW, Australia
| | - Patricia Corkery
- Department of Respiratory Medicine, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Keith Wong
- Department of Respiratory Medicine, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Steven Lindstrom
- Department of Respiratory and Sleep Medicine, St George Hospital, Sydney, NSW, Australia
| | - David S Celermajer
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Glen M Davis
- Sydney School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Rachael Cordina
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
20
|
Hsu JY, Major JL, Riching AS, Sen R, Pires da Silva J, Bagchi RA. Beyond the genome: challenges and potential for epigenetics-driven therapeutic approaches in pulmonary arterial hypertension. Biochem Cell Biol 2020; 98:631-646. [PMID: 32706995 DOI: 10.1139/bcb-2020-0039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a devastating disease of the cardiopulmonary system caused by the narrowing of the pulmonary arteries, leading to increased vascular resistance and pressure. This leads to right ventricle remodeling, dysfunction, and eventually, death. While conventional therapies have largely focused on targeting vasodilation, other pathological features of PAH including aberrant inflammation, mitochondrial dynamics, cell proliferation, and migration have not been well explored. Thus, despite some recent improvements in PAH treatment, the life expectancy and quality of life for patients with PAH remains poor. Showing many similarities to cancers, PAH is characterized by increased pulmonary arterial smooth muscle cell proliferation, decreased apoptotic signaling pathways, and changes in metabolism. The recent successes of therapies targeting epigenetic modifiers for the treatment of cancer has prompted epigenetic research in PAH, revealing many new potential therapeutic targets. In this minireview we discuss the emergence of epigenetic dysregulation in PAH and highlight epigenetic-targeting compounds that may be effective for the treatment of PAH.
Collapse
Affiliation(s)
- Jessica Y Hsu
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jennifer L Major
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Andrew S Riching
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rwik Sen
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Julie Pires da Silva
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rushita A Bagchi
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
21
|
McGregor G, Bruce J, Ennis S, Mason J, Lall R, Ji C, Sandhu H, Seers K, Banerjee P, Canaway A, Booth K, Taylor SJC, Robertson E, Pincus T, Singh S, Fitzmaurice D, Bowater S, Clift P, Underwood M. Supervised pulmonary hypertension exercise rehabilitation (SPHERe): study protocol for a multi-centre randomised controlled trial. BMC Pulm Med 2020; 20:143. [PMID: 32429969 PMCID: PMC7236437 DOI: 10.1186/s12890-020-01182-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/11/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Supervised cardio-pulmonary rehabilitation may be safe and beneficial for people with pulmonary hypertension (PH) in groups 1 (pulmonary arterial hypertension) and 4 (chronic thromboembolic disease), particularly as a hospital in-patient. It has not been tested in the most common PH groups; 2 (left heart disease), 3 (lung disease), or 5 (other disorders). Further it has not been evaluated in the UK National Health Service (NHS) out-patient setting, or with long-term follow-up. The aim of this randomised controlled trial (RCT) is to test the clinical and cost-effectiveness of a supervised exercise rehabilitation intervention with psychosocial support compared to best practice usual care for people with PH in the community/outpatient setting. METHODS This multi-centre, pragmatic, two-arm RCT with embedded process evaluation aims to recruit 352 clinically stable adults with PH (groups 1-5) and WHO functional class II-IV. Participants will be randomised to either the Supervised Pulmonary Hypertension Exercise Rehabilitation (SPHERe) intervention or control. The SPHERe intervention consists of 1) individual assessment and familiarisation sessions; 2) 8-week, twice-weekly, supervised out-patient exercise training; 3) psychosocial/motivational support and education; 4) guided home exercise plan. The control intervention consists of best practice usual care with a single one-to-one practitioner appointment, and general advice on physical activity. Outcomes will be measured at baseline, 4 months (post-intervention) and 12 months by researchers blinded to treatment allocation. The primary outcome is the incremental shuttle walk test at 4 months. Secondary outcomes include health-related quality of life (HRQoL), time to clinical worsening and health and social care use. A purposive sample of participants (n = 20 intervention and n = 20 control) and practitioners (n = 20) will be interviewed to explore experiences of the trial, outcomes and interventions. DISCUSSION The SPHERe study is the first multi-centre clinical RCT to assess the clinical and cost effectiveness of a supervised exercise rehabilitation intervention compared to usual care, delivered in the UK NHS, for people in all PH groups. Results will inform clinicians and commissioners as to whether or not supervised exercise rehabilitation is effective and should be routinely provided for people with PH. TRIAL REGISTRATION ISRCTN no. 10608766, prospectively registered on 18th March 2019.
Collapse
Affiliation(s)
- Gordon McGregor
- Department of Cardiopulmonary Rehabilitation, Centre for Exercise & Health, University Hospitals Coventry & Warwickshire NHS Trust, Coventry, UK.
- Warwick Clinical Trials Unit, Warwick Medical School, University of Warwick, Coventry, UK.
- Centre for Sport Exercise & Life Sciences, Coventry University, Coventry, UK.
| | - Julie Bruce
- Warwick Clinical Trials Unit, Warwick Medical School, University of Warwick, Coventry, UK
| | - Stuart Ennis
- Department of Cardiopulmonary Rehabilitation, Centre for Exercise & Health, University Hospitals Coventry & Warwickshire NHS Trust, Coventry, UK
- Warwick Clinical Trials Unit, Warwick Medical School, University of Warwick, Coventry, UK
| | - James Mason
- Centre for Health Economics at Warwick, Warwick Medical School, University of Warwick, Coventry, UK
| | - Ranjit Lall
- Warwick Clinical Trials Unit, Warwick Medical School, University of Warwick, Coventry, UK
| | - Chen Ji
- Warwick Clinical Trials Unit, Warwick Medical School, University of Warwick, Coventry, UK
| | - Harbinder Sandhu
- Warwick Clinical Trials Unit, Warwick Medical School, University of Warwick, Coventry, UK
| | - Kate Seers
- Warwick Research in Nursing, Warwick Medical School, University of Warwick, Coventry, UK
| | - Prithwish Banerjee
- Warwick Clinical Trials Unit, Warwick Medical School, University of Warwick, Coventry, UK
- Department of Cardiology, University Hospitals Coventry & Warwickshire NHS Trust, Coventry, UK
| | - Alastair Canaway
- Warwick Clinical Trials Unit, Warwick Medical School, University of Warwick, Coventry, UK
| | - Katie Booth
- Warwick Clinical Trials Unit, Warwick Medical School, University of Warwick, Coventry, UK
| | - Stephanie J C Taylor
- Institute of Population Health Sciences, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | - Tamar Pincus
- Department of Psychology, Royal Holloway University of London, London, UK
| | - Sally Singh
- Centre for Exercise and Rehabilitation Science, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - David Fitzmaurice
- Warwick Clinical Trials Unit, Warwick Medical School, University of Warwick, Coventry, UK
| | - Sarah Bowater
- Department of Cardiology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Paul Clift
- Department of Cardiology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Martin Underwood
- Warwick Clinical Trials Unit, Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|
22
|
Recommendations for exercise in adolescents and adults with congenital heart disease. Prog Cardiovasc Dis 2020; 63:350-366. [DOI: 10.1016/j.pcad.2020.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 03/08/2020] [Indexed: 12/17/2022]
|
23
|
Ishrat R, Mujaddadi A, Ali M, Talwar D, Hussain M. Reliability and responsiveness of incremental shuttle walk test to estimate exercise capacity in patients with pulmonary arterial hypertension. COMPARATIVE EXERCISE PHYSIOLOGY 2020. [DOI: 10.3920/cep190056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The purpose of the present study was to evaluate the reliability and responsiveness of the incremental shuttle walk test (ISWT) to estimate exercise capacity in patients with pulmonary arterial hypertension (PAH). This was a cross-sectional longitudinal study performed on stable PAH patients (n=30, mean age ± standard deviation, 60±13.6 years) with World Health Organization functional class II & III. Reliability was assessed by comparing the distance covered between ISWT-1 (initial) and ISWT-2 (retest). Responsiveness was determined by comparing the distance covered in the ISWT-3 post pulmonary rehabilitation (PR) to the ISWT-1. The distance covered between ISWT-1 (177±87.85 m) and ISWT-2 (191.67±96.39 m) was not statistically significant. The result of the relative reliability has shown to be excellent with an intraclass correlation coefficient (ICC2,1= 0.98, 95%CI = 0.95-0.99). Absolute reliability was evaluated through the standard error of the measurement and minimal detectable change at a 95% confidence interval (MDC95) were 12.29 and 33.9 m, respectively. Bland Altman plot showed good agreement between the two ISWTs. Following PR, the effect size (ES=0.78) and standardised response mean (SRM=1.50) were moderate and large respectively. ISWT is considered to be a reliable and responsive measure to estimate exercise capacity in patients with PAH. The ISWT may be considered a suitable alternative tool over a 6-min walk test and in the absence of equipment availability or expertise for conducting cardiopulmonary exercise test for the assessment of exercise capacity in these patients.
Collapse
Affiliation(s)
- R. Ishrat
- Centre for Physiotherapy and Rehabilitation Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - A. Mujaddadi
- Centre for Physiotherapy and Rehabilitation Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - M.S. Ali
- Department of Pulmonary Rehabilitation, Metro Centre for Respiratory Diseases, Metro Hospital and Multispecialty Institute, Noida 201301, Uttar Pradesh, India
| | - D. Talwar
- Department of Pulmonology Allergy sleep and critical care medicine, Metro Centre for Respiratory Diseases, Metro Hospital and Multispecialty Institute, Noida 201301, Uttar Pradesh, India
| | - M.E. Hussain
- Centre for Physiotherapy and Rehabilitation Sciences, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
24
|
Cheyne WS, Harper MI, Gelinas JC, Sasso JP, Eves ND. Mechanical cardiopulmonary interactions during exercise in health and disease. J Appl Physiol (1985) 2020; 128:1271-1279. [PMID: 32163324 DOI: 10.1152/japplphysiol.00339.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The heart and lungs are anatomically coupled through the pulmonary circulation and coexist within the sealed thoracic cavity, making the function of these systems highly interdependent. Understanding of the complex mechanical interactions between cardiac and pulmonary systems has evolved over the last century to appreciate that changes in respiratory mechanics significantly impact pulmonary hemodynamics and ventricular filling and ejection. Furthermore, given that the left and right heart share a common septum and are surrounded by the nondistensible pericardium, direct ventricular interaction is an important mediator of both diastolic and systolic performance. Although it is generally considered that cardiopulmonary interaction in healthy individuals at rest minimally affects hemodynamics, the significance during exercise is less clear. Adverse heart-lung interaction in respiratory disease is of growing interest as it may contribute to the pathogenesis of comorbid cardiovascular dysfunction and exercise intolerance in these patients. Similarly, heart failure represents a pathological uncoupling of the cardiovascular and pulmonary systems, whereby cardiac function may be impaired by the normal ventilatory response to exercise. Despite significant research contributions to this complex area, the mechanisms of cardiopulmonary interaction in the intact human and the clinical consequences of adverse interactions in common respiratory and cardiovascular diseases, particularly during exercise, remain incompletely understood. The purpose of this review is to present the key physiological principles of cardiopulmonary interaction as they pertain to resting and exercising hemodynamics in healthy humans and the clinical implications of adverse cardiopulmonary interaction during exercise in chronic obstructive pulmonary disease (COPD), pulmonary hypertension, and heart failure.
Collapse
Affiliation(s)
- William S Cheyne
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Megan I Harper
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Jinelle C Gelinas
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - John P Sasso
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Neil D Eves
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| |
Collapse
|
25
|
Zhang Y, Zhang M, Xie W, Wan J, Tao X, Liu M, Zhen Y, Lin F, Wu B, Zhai Z, Wang C. Gremlin-1 is a key regulator of endothelial-to-mesenchymal transition in human pulmonary artery endothelial cells. Exp Cell Res 2020; 390:111941. [PMID: 32145252 DOI: 10.1016/j.yexcr.2020.111941] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/10/2020] [Accepted: 03/03/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Endothelial-to-mesenchymal transition (EndMT) has been implicated in initiation and progression of pulmonary arterial hypertension (PAH). Gremlin-1 promotes vascular remodeling of PAH and mediates epithelial-mesenchymal transition, which is similar to EndMT. In the present study we investigated the potential role of gremlin-1 plays in EndMT of pulmonary artery endothelial cells (PAECs). METHODS Immunofluorescence staining was performed to detect the expression of alpha smooth muscle actin (α-SMA) and von Willebrand factor (VWF). Migration and angiogenic responses of PAECs were determined by transwell assay and tube formation assay, respectively. Protein expression levels were determined by western blotting. RESULTS Gremlin-1 induced EndMT of PAECs in a phospho-smad2/3-dependent manner. This was characterized by the loss of platelet endothelial cell adhesion molecule 1 and an increase in protein levels of a-SMA, nerve-cadherin, and matrix metalloproteinase 2. It was also determined that gremlin-1 facilitated the migration and angiogenic responses of PAECs in a dose-dependent manner. Bone morphogenetic protein 7 (BMP-7) was found to attenuate gremlin-1-mediated EndMT, migration and angiogenesis of PAECs by inducing phosphorylation of Smad1/5/8 and suppressing phosphorylation of Smad2/3. CONCLUSION Gremlin-1 mediates EndMT in PAECs, and BMP-7 reverses gremlin-1-induced EndMT by an induction of p-Smad1/5/8 and suppression of p-Smad2/3.
Collapse
Affiliation(s)
- Yunxia Zhang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, NO 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, NO 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China; National Clinical Research Center for Respiratory Diseases, NO 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China
| | - Meng Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Anzhen Hospital, Capital Medical University, NO 2, Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Wanmu Xie
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, NO 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, NO 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China; National Clinical Research Center for Respiratory Diseases, NO 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China
| | - Jun Wan
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, NO 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, NO 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China; National Clinical Research Center for Respiratory Diseases, NO 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China
| | - Xincao Tao
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, NO 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, NO 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China; National Clinical Research Center for Respiratory Diseases, NO 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China
| | - Min Liu
- Department of Radiology, China-Japan Friendship Hospital, NO 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China
| | - Yanan Zhen
- Division of Cardiovascular Surgery, China-Japan Friendship Hospital, NO 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China
| | - Fan Lin
- Division of Cardiovascular Surgery, China-Japan Friendship Hospital, NO 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China
| | - Bo Wu
- Department of Lung Transplantation, the People's Hospital of Wuxi, 299 Qingyang Rd, Wuxi, 214023, China
| | - Zhenguo Zhai
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, NO 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, NO 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China; National Clinical Research Center for Respiratory Diseases, NO 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China.
| | - Chen Wang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, NO 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, NO 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China; National Clinical Research Center for Respiratory Diseases, NO 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China; Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
26
|
Goldberg L, Krauthammer A, Ashkenazi M, Soudack M, Tokatly Latzer I, Vardi A, Paret G. Predictors for plication performance following diaphragmatic paralysis in children. Pediatr Pulmonol 2020; 55:449-454. [PMID: 31589009 DOI: 10.1002/ppul.24539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 09/23/2019] [Indexed: 11/11/2022]
Abstract
INTRODUCTION AND OBJECTIVES Diaphragmatic paralysis (DP) in children can result from various etiologies. Guidelines for patient selection for diaphragmatic plication (DPL) are lacking. Our objectives were to describe the etiologies of DP and to determine the risk factors and predictors for DPL in the pediatric population. METHODS Retrospective data were retrieved from departmental databases on patients with DP from the pediatric, cardiac, and neonatal intensive care departments of Safra Children's Hospital from 2010 to 2017. RESULTS DP was diagnosed in 88 patients, 29 with noncardiac surgery-related etiologies, for example, congenital, surgery, trauma, and shock and 59 with cardiac surgery-related etiologies. In total, 27 (31%) patients underwent DPL, and they had significant comorbidities involving respiratory, central nervous, and cardiovascular systems, higher lung injury scores, and lower weight compared with the patients who did not undergo DPL (P = .002, P = .002, P < .001, P = .012, and P = .013, respectively). A multivariate regression model revealed significant independent predictors for DPL, including morbidities of central nervous (odds ratio [OR = 9.651, P = .005), respiratory (OR = 4.875, P = .039), and cardiovascular systems (OR = 23.938, P = .001). CONCLUSIONS Etiologies of DP are very diverse in the pediatric population. Comorbidities of respiratory, central nervous, and cardiovascular systems are risk factors for plication requirement in respiratory support-dependent pediatric patients with DP. Early DPL should be considered in these patients.
Collapse
Affiliation(s)
- Lior Goldberg
- Department of Pediatric Critical Care Medicine, Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Alexander Krauthammer
- Department of Pediatric Critical Care Medicine, Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Moshe Ashkenazi
- Sackler Faculty of Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Pediatric Pulmonary Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - Michal Soudack
- Sackler Faculty of Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Pediatric Imaging Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - Itay Tokatly Latzer
- Department of Pediatric Critical Care Medicine, Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amir Vardi
- Department of Pediatric Critical Care Medicine, Sheba Medical Center, Tel Hashomer, Israel
| | - Gideon Paret
- Department of Pediatric Critical Care Medicine, Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
27
|
Kahraman BO, Savci S, Ozsoy I, Baran A, Acar S, Ozpelit E, Balci A, Sevinc C, Akdeniz B. Effects of neuromuscular electrical stimulation in patients with pulmonary arterial hypertension: a randomized controlled pilot study. J Cardiol 2020; 75:702-708. [PMID: 32001075 DOI: 10.1016/j.jjcc.2019.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/01/2019] [Accepted: 12/18/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Patients with pulmonary arterial hypertension (PAH) present impairments in muscle strength and exercise capacity. There is growing evidence about the benefits of neuromuscular electrical stimulation (NMES) in patients with respiratory diseases, except in patients with PAH. The aim of this study was to investigate the effects of NMES on muscle strength, and other physical and psychosocial variables in patients with PAH. METHODS Patients with PAH were randomly divided into two groups as NMES and control. The NMES was applied to the bilateral deltoid and quadriceps femoris muscles with 50 Hz for 3 days/week, 8 weeks for the NMES group. Muscle strength, muscle cross-sectional area and thickness, arterial stiffness, exercise capacity, functional mobility and balance, balance confidence, fatigue, physical activity, and quality of life were assessed at baseline and after 8 weeks by blinded assessors. RESULTS There was no significant difference in the demographic and clinical characteristics between the patient groups (p > 0.05). The improvements in muscle strength, muscle cross-sectional area and thickness, pulse wave velocity, exercise capacity, functional mobility and balance, balance confidence, fatigue, physical activity, and quality of life were significantly higher in the NMES group compared to the control group (p < 0.05). CONCLUSIONS This study suggests that NMES intervention is safe and effective for patients with PAH.
Collapse
Affiliation(s)
- Buse Ozcan Kahraman
- School of Physical Therapy and Rehabilitation, Dokuz Eylül University, Izmir, Turkey.
| | - Sema Savci
- School of Physical Therapy and Rehabilitation, Dokuz Eylül University, Izmir, Turkey
| | - Ismail Ozsoy
- School of Physical Therapy and Rehabilitation, Kırsehir Ahi Evran University, Kirsehir, Turkey
| | - Agah Baran
- Department of Radiology, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Serap Acar
- School of Physical Therapy and Rehabilitation, Dokuz Eylül University, Izmir, Turkey
| | - Ebru Ozpelit
- Department of Cardiology, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Ali Balci
- Department of Radiology, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Can Sevinc
- Department of Chest Disease, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Bahri Akdeniz
- Department of Cardiology, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| |
Collapse
|
28
|
Lee SW, Loh SW, Ong C, Lee JH. Pertinent clinical outcomes in pediatric survivors of pediatric acute respiratory distress syndrome (PARDS): a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:513. [PMID: 31728366 DOI: 10.21037/atm.2019.09.32] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The objectives of this review are to describe the limitations of commonly used clinical outcomes [e.g., mortality, ventilation parameters, need for extracorporeal membrane oxygenation (ECMO), pediatric intensive care unit (PICU) and hospital length of stay (LOS)] in pediatric acute respiratory distress syndrome (PARDS) studies; and to explore other pertinent clinical outcomes that pediatric critical care practitioners should consider in future clinical practice and research studies. These include long-term pulmonary function, risk of pulmonary hypertension (PHT), nutrition status and growth, PICU-acquired weakness, neurological outcomes and neurocognitive development, functional status, health-related quality of life (HRQOL)], health-care costs, caregiver and family stress. PubMed was searched using the following keywords or medical subject headings (MESH): "acute lung injury (ALI)", "acute respiratory distress syndrome (ARDS)", "pediatric acute respiratory distress syndrome (PARDS)", "acute hypoxemia respiratory failure", "outcomes", "pediatric intensive care unit (PICU)", "lung function", "pulmonary hypertension", "growth", "nutrition', "steroid", "PICU-acquired weakness", "functional status scale", "neurocognitive", "psychology", "health-care expenditure", and "HRQOL". The concept of contemporary measure outcomes was adapted from adult ARDS long-term outcome studies. Articles were initially searched from existing PARDS articles pool. If the relevant measure outcomes were not found, where appropriate, we considered studies from non-ARDS patients within the PICU in whom these outcomes were studied. Long-term outcomes in survivors of PARDS were not follow-up in majority of pediatric studies regardless of whether the new or old definitions of ARDS in children were used. Relevant studies were scarce, and the number of participants was small. As such, available studies were not able to provide conclusive answers to most of our clinical queries. There remains a paucity of data on contemporary clinical outcomes in PARDS studies. In addition to the current commonly used outcomes, clinical researchers and investigators should consider examining these contemporary outcome measures in PARDS studies in the future.
Collapse
Affiliation(s)
- Siew Wah Lee
- Children's Intensive Care Unit, KK Women's and Children's Hospital, Singapore.,Pediatric Intensive Care Unit, Kuala Lumpur Hospital, Kuala Lumpur, Malaysia
| | - Sin Wee Loh
- Children's Intensive Care Unit, KK Women's and Children's Hospital, Singapore
| | - Chengsi Ong
- Department of Nutrition and Dietetics, KK Women's and Children's Hospital, Singapore.,Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jan Hau Lee
- Children's Intensive Care Unit, KK Women's and Children's Hospital, Singapore.,Duke-NUS Medical School, Singapore
| |
Collapse
|
29
|
Diaphragm function does not independently predict exercise intolerance in patients with precapillary pulmonary hypertension after adjustment for right ventricular function. Biosci Rep 2019; 39:BSR20190392. [PMID: 31427479 PMCID: PMC6723707 DOI: 10.1042/bsr20190392] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 07/19/2019] [Accepted: 07/30/2019] [Indexed: 11/22/2022] Open
Abstract
Background: Several determinants of exercise intolerance in patients with precapillary pulmonary hypertension (PH) due to pulmonary arterial hypertension and/or chronic thromboembolic PH (CTEPH) have been suggested, including diaphragm dysfunction. However, these have rarely been evaluated in a multimodal manner. Methods: Forty-three patients with PH (age 58 ± 17 years, 30% male) and 43 age- and gender-matched controls (age 54 ± 13 years, 30% male) underwent diaphragm function (excursion and thickening) assessment by ultrasound, standard spirometry, arterial blood gas analysis, echocardiographic assessment of pulmonary artery pressure (PAP), assay of amino-terminal pro-brain natriuretic peptide (NT-proBNP) levels, and cardiac magnetic resonance (CMR) imaging to evaluate right ventricular systolic ejection fraction (RVEF). Exercise capacity was determined using the 6-min walk distance (6MWD). Results: Excursion velocity during a sniff maneuver (SniffV, 4.5 ± 1.7 vs. 6.8 ± 2.3 cm/s, P<0.01) and diaphragm thickening ratio (DTR, 1.7 ± 0.5 vs. 2.8 ± 0.8, P<0.01) were significantly lower in PH patients versus controls. PH patients with worse exercise tolerance (6MWD <377 vs. ≥377 m) were characterized by worse SniffV, worse DTR, and higher NT-pro-BNP levels as well as by lower arterial carbon dioxide levels and RVEF, which were all univariate predictors of exercise limitation. On multivariate analysis, the only independent predictors of exercise limitation were RVEF (r = 0.47, P=0.001) and NT-proBNP (r = −0.27, P=0.047). Conclusion: Patients with PH showed diaphragm dysfunction, especially as exercise intolerance progressed. However, diaphragm dysfunction does not independently contribute to exercise intolerance, beyond what can be explained from right heart failure.
Collapse
|
30
|
Singh I, Rahaghi FN, Naeije R, Oliveira RKF, Vanderpool RR, Waxman AB, Systrom DM. Dynamic right ventricular-pulmonary arterial uncoupling during maximum incremental exercise in exercise pulmonary hypertension and pulmonary arterial hypertension. Pulm Circ 2019; 9:2045894019862435. [PMID: 31218910 PMCID: PMC6643191 DOI: 10.1177/2045894019862435] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Despite recent advances, the prognosis of pulmonary hypertension (PH) remains poor. While the initial insult in PH implicates the pulmonary vasculature, the functional state, exercise capacity, and survival of such patients are closely linked to right ventricular (RV) function. In the current study, we sought to investigate the effects of maximum incremental exercise on the matching of RV contractility and afterload (i.e. right ventricular-pulmonary arterial [RV-PA] coupling) in patients with exercise PH (ePH) and pulmonary arterial hypertension (PAH). End-systolic elastance (Ees), pulmonary arterial elastance (Ea), and RV-PA coupling (Ees/Ea) were determined using single-beat pressure-volume loop analysis in 40 patients that underwent maximum invasive cardiopulmonary exercise testing. Eleven patients had ePH, nine had PAH, and 20 were age-matched controls. During exercise, the impaired exertional contractile reserve in PAH was associated with blunted stroke volume index (SVI) augmentation and reduced peak oxygen consumption (peak VO2 %predicted). Compared to PAH, ePH demonstrated increased RV contractility in response to increasing RV afterload during exercise; however, this was insufficient and resulted in reduced peak RV-PA coupling. The dynamic RV-PA uncoupling in ePH was associated with similarly blunted SVI augmentation and peak VO2 as PAH. In conclusion, dynamic rest-to-peak exercise RV-PA uncoupling during maximum exercise blunts SV increase and reduces exercise capacity in exercise PH and PAH. In ePH, the insufficient increase in RV contractility to compensate for increasing RV afterload during maximum exercise leads to deterioration of RV-PA coupling. These data provide evidence that even in the early stages of PH, RV function is compromised.
Collapse
Affiliation(s)
- Inderjit Singh
- 1 Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale New Haven Hospital and Yale School of Medicine, New Haven, CT, USA
| | - Farbod N Rahaghi
- 2 Division of Pulmonary and Critical Care, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Robert Naeije
- 3 Department of Pathophysiology, Erasmsus Campus, Brussels, Belgium
| | - Rudolf K F Oliveira
- 4 Division of Respiratory Diseases, Department of Medicine, Federal University of São Paulo - UNIFESP, São Paulo, Brazil
| | | | - Aaron B Waxman
- 2 Division of Pulmonary and Critical Care, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - David M Systrom
- 2 Division of Pulmonary and Critical Care, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
31
|
Su Y, Wang J, Quan M. Novel insights into the molecular mechanisms underlying the beneficial effects of exercise training on pulmonary arterial hypertension. J Sports Med Phys Fitness 2018; 59:1584-1592. [PMID: 30421875 DOI: 10.23736/s0022-4707.18.09204-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Recent animal and clinical studies report that exercise training exerts positive influences in pulmonary arterial hypertension (PAH); however, the underlying mechanisms are largely unknown. To give insight into the molecular mechanisms of the improvement effects, we performed gene expression analysis. METHODS Three Gene Expression Omnibus (GEO) datasets were analyzed, including peripheral blood mononuclear (PBMC) gene expression profiles of exercise training in men and patients with PAH. Differentially expressed genes (DEGs) in each dataset were identified, and then, the common DEGs positively regulated by PAH and negatively regulated by exercise training, or the opposite, were further identified. Subsequently, biological processes and pathways were analyzed. RESULTS A total of 7229 DEGs with logFC>0.3 and P<0.05 were identified in exercise, whereas 749 and 2207 DEGs were identified in PAH from the two datasets. After overlapping the whole DEGs from all three datasets, total 16 common DEGs were identified, including BCLAF1, SATB1 and ZFP36L2. Seven of them were up-regulated in exercise training and down-regulated in PAH, and the others were opposite. In addition, these common DEGs were mainly enriched in negative regulation of cellular process, negative regulation of biological process and negative regulation of cellular macromolecule biosynthetic process. CONCLUSIONS Some genes have been implicated in the improvement of pulmonary vascular remodeling and PAH. These findings could not only improve the knowledge about the molecular mechanisms underlying the beneficial effects of exercise training on PAH, but also provide clues for further clinical and animal studies.
Collapse
Affiliation(s)
- Youcun Su
- School of Sports and Health School of Physical Education and Health Care, East China Normal University, Shanghai, China
| | - Jing Wang
- School of Sports Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Minghui Quan
- Department of Sport Rehabilitation, School of Kinesiology, Shanghai University of Sport, Shanghai, China -
| |
Collapse
|
32
|
McGregor G, Powell R, Finnegan S, Nichols S, Underwood M. Exercise rehabilitation programmes for pulmonary hypertension: a systematic review of intervention components and reporting quality. BMJ Open Sport Exerc Med 2018; 4:e000400. [PMID: 30364456 PMCID: PMC6196941 DOI: 10.1136/bmjsem-2018-000400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2018] [Indexed: 02/02/2023] Open
Abstract
Objectives To identify the components, and assess the reporting quality, of exercise training interventions for people living with pulmonary hypertension. Design Systematic review with analysis of intervention reporting quality using the Consensus on Exercise Reporting Template (CERT). Data sources Eligible studies in the Cochrane Systematic Review of exercise-based rehabilitation for pulmonary hypertension, updated with a new search of relevant databases from 1 August 2016 to 15 January 2018. Eligibility criteria Peer-reviewed journal articles of randomised and non-randomised controlled trials, and non-controlled prospective observational studies, investigating dynamic exercise training interventions in adult humans with diagnosed pulmonary hypertension, reporting on at least one physiological and/or psychosocial outcome. Results Interventions typically involved cycle ergometry and walking. They were delivered as 3-week inpatient, or outpatient and/or home-based programmes, lasting for 4–15 weeks. Components relating specifically to exercise prescription were described satisfactorily and in more detail than motivational/behavioural change strategies, adherence and fidelity. Mean CERT score was 13.1 (range 8–17) out of a possible maximum score of 19. No studies fully reported every aspect of an exercise intervention to the standard recommended by CERT. Summary/conclusion Considerable variability was evident in the components and reporting quality of interventions for exercise rehabilitation studies in pulmonary hypertension. Interventional studies using exercise training should pay greater attention to describing motivational/behavioural change strategies, adherence and fidelity. Detailed description of these parameters is essential for the safe and effective replication of exercise rehabilitation interventions for pulmonary hypertension in clinical practice. Trial registration number CRD42018085558.
Collapse
Affiliation(s)
- Gordon McGregor
- Department of Cardiopulmonary Rehabilitation, Centre for Exercise & Health, University Hospital, Coventry, UK.,School of Health & Life Sciences, Coventry University, Coventry, UK
| | - Richard Powell
- Department of Cardiopulmonary Rehabilitation, Centre for Exercise & Health, University Hospital, Coventry, UK
| | - Susanne Finnegan
- Clinical Trials Unit, Warwick Medical School, University of Warwick, Coventry, UK
| | | | - Martin Underwood
- Clinical Trials Unit, Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|
33
|
Vinke P, Jansen SM, Witkamp RF, van Norren K. Increasing quality of life in pulmonary arterial hypertension: is there a role for nutrition? Heart Fail Rev 2018; 23:711-722. [PMID: 29909553 PMCID: PMC6096781 DOI: 10.1007/s10741-018-9717-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease primarily affecting the pulmonary vasculature and heart. PAH patients suffer from exercise intolerance and fatigue, negatively affecting their quality of life. This review summarizes current insights in the pathophysiological mechanisms underlying PAH. It zooms in on the potential involvement of nutritional status and micronutrient deficiencies on PAH exercise intolerance and fatigue, also summarizing the potential benefits of exercise and nutritional interventions. Pubmed/Medline, Scopus, and Web of Science were searched for publications on pathophysiological mechanisms of PAH negatively affecting physical activity potential and nutritional status, and for potential effects of interventions involving exercise or nutritional measures known to improve exercise intolerance. Pathophysiological processes that contribute to exercise intolerance and impaired quality of life of PAH patients include right ventricular dysfunction, inflammation, skeletal muscle alterations, and dysfunctional energy metabolism. PAH-related nutritional deficiencies and metabolic alterations have been linked to fatigue, exercise intolerance, and endothelial dysfunction. Available evidence suggests that exercise interventions can be effective in PAH patients to improve exercise tolerance and decrease fatigue. By contrast, knowledge on the prevalence of micronutrient deficiencies and the possible effects of nutritional interventions in PAH patients is limited. Although data on nutritional status and micronutrient deficiencies in PAH are scarce, the available knowledge, including that from adjacent fields, suggests that nutritional intervention to correct deficiencies and metabolic alterations may contribute to a reduction of disease burden.
Collapse
Affiliation(s)
- Paulien Vinke
- Nutrition and Pharmacology Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - Suzanne M Jansen
- Actelion Pharmaceuticals Nederland B.V., Woerden, the Netherlands
| | - Renger F Witkamp
- Nutrition and Pharmacology Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Klaske van Norren
- Nutrition and Pharmacology Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| |
Collapse
|