1
|
Zhang X, Frankevich V, Ding J, Ma Y, Chingin K, Chen H. Direct mass spectrometry analysis of exhaled human breath in real-time. MASS SPECTROMETRY REVIEWS 2025; 44:43-61. [PMID: 37565588 DOI: 10.1002/mas.21855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/02/2022] [Accepted: 10/01/2022] [Indexed: 08/12/2023]
Abstract
The molecular composition of exhaled human breath can reflect various physiological and pathological conditions. Considerable progress has been achieved over the past decade in real-time analysis of exhaled human breath using direct mass spectrometry methods, including selected ion flow tube mass spectrometry, proton transfer reaction mass spectrometry, extractive electrospray ionization mass spectrometry, secondary electrospray ionization mass spectrometry, acetone-assisted negative photoionization mass spectrometry, atmospheric pressure photoionization mass spectrometry, and low-pressure photoionization mass spectrometry. Here, recent developments in direct mass spectrometry analysis of exhaled human breath are reviewed with regard to analytical performance (chemical sensitivity, selectivity, quantitative capabilities) and applications of the developed methods in disease diagnosis, targeted molecular detection, and real-time metabolic monitoring.
Collapse
Affiliation(s)
- Xiaoping Zhang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, People's Republic of China
| | - Vladimir Frankevich
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
| | - Jianhua Ding
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, People's Republic of China
| | - Yuanyuan Ma
- Department of GCP, Shanghai Public Health Clinical Center, Shanghai, China
| | - Konstantin Chingin
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, People's Republic of China
| | - Huanwen Chen
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, People's Republic of China
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, People's Republic of China
| |
Collapse
|
2
|
Wang MY, Mo XY, Yi MX, Lu HY. Visualization of the relationship between metabolism and lung diseases from the perspective of bibliometric analysis: research trends and future prospects. Front Med (Lausanne) 2024; 11:1443926. [PMID: 39664315 PMCID: PMC11631585 DOI: 10.3389/fmed.2024.1443926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/15/2024] [Indexed: 12/13/2024] Open
Abstract
Background Extensive research has examined the role of metabolism in lung disease development, yet a comprehensive literature review remains absent despite numerous publications. Objective This study aims to visualize and assess the advancements in research on metabolism and its role in lung diseases. Methods Publications from January 1, 1991, to April 30, 2024, related to lung diseases and metabolism were sourced from the Web of Science Core Collection and analyzed using CiteSpace 6.2.R4, VOSviewer 1.6.19, Bibliometrix, R Studio, and various online tools. Results A total of 1,542 studies were collected and processed through these platforms for literature analysis and data visualization. The analysis revealed a sharp increase in annual publications on metabolism and lung diseases, with the United States and China emerging as leading contributors. Current research trends highlight a shift toward investigating metabolic reprogramming of immune cells in the context of lung diseases. Moreover, genes such as TNF, DIF, AKT1, INS, IL-6, CXCL8, IL-1β, TP53, NF-κB1, MTOR, IFNG, TGF-β1, HIF1α, VEGFA, IL-10, NFE2L2, PPARG, AKT, CRP, STAT3, and CD4 have received significant attention in this research domain. Employing a bibliometric approach, this study offers a comprehensive and objective examination of the knowledge landscape, shedding light on the evolving trends in this field. The findings serve as a valuable resource for researchers, offering a clearer perspective on the advancements in metabolism-related lung disease studies.
Collapse
Affiliation(s)
| | | | | | - Hong-Yan Lu
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
3
|
Zhan J, Jarrell ZR, Hu X, Weinberg J, Orr M, Marts L, Jones DP, Go Y. A pilot metabolomics study across the continuum of interstitial lung disease fibrosis severity. Physiol Rep 2024; 12:e70093. [PMID: 39424430 PMCID: PMC11489002 DOI: 10.14814/phy2.70093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
Interstitial lung diseases (ILDs) include a variety of inflammatory and fibrotic pulmonary conditions. This study employs high-resolution metabolomics (HRM) to explore plasma metabolites and pathways across ILD phenotypes, including non-fibrotic ILD, idiopathic pulmonary fibrosis (IPF), and non-IPF fibrotic ILD. The study used 80 plasma samples for HRM, and involved linear trend and group-wise analyses of metabolites altered in ILD phenotypes. We utilized limma one-way ANOVA and mummichog algorithms to identify differences in metabolites and pathways across ILD groups. Then, we focused on metabolites within critical pathways, indicated by high pathway overlap sizes and low p-values, for further analysis. Targeted HRM identified putrescine, hydroxyproline, prolyl-hydroxyproline, aspartate, and glutamate with significant linear increases in more fibrotic ILD phenotypes, suggesting their role in ILD fibrogenesis. Untargeted HRM highlighted pathway alterations in lysine, vitamin D3, tyrosine, and urea cycle metabolism, all associated with pulmonary fibrosis. In addition, methylparaben level had a significantly increasing linear trend and was higher in the IPF than fibrotic and non-ILD groups. This study highlights the importance of specific amino acids, metabolic pathways, and xenobiotics in the progression of pulmonary fibrosis.
Collapse
Affiliation(s)
- Jiada Zhan
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of MedicineEmory UniversityAtlantaGeorgiaUSA
- Nutrition and Health Sciences, Laney Graduate SchoolEmory UniversityAtlantaGeorgiaUSA
| | - Zachery R. Jarrell
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of MedicineEmory UniversityAtlantaGeorgiaUSA
| | - Xin Hu
- Gangarosa Department of Environmental Health, Rollins School of Public HealthEmory UniversityAtlantaGeorgiaUSA
| | - Jaclyn Weinberg
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of MedicineEmory UniversityAtlantaGeorgiaUSA
| | - Michael Orr
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of MedicineEmory UniversityAtlantaGeorgiaUSA
| | - Lucian Marts
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of MedicineEmory UniversityAtlantaGeorgiaUSA
| | - Dean P. Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of MedicineEmory UniversityAtlantaGeorgiaUSA
- Nutrition and Health Sciences, Laney Graduate SchoolEmory UniversityAtlantaGeorgiaUSA
| | - Young‐Mi Go
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of MedicineEmory UniversityAtlantaGeorgiaUSA
- Nutrition and Health Sciences, Laney Graduate SchoolEmory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
4
|
Miller HA, Suliman S, Frieboes HB. Pulmonary Fibrosis Diagnosis and Disease Progression Detected Via Hair Metabolome Analysis. Lung 2024; 202:581-593. [PMID: 38861171 DOI: 10.1007/s00408-024-00712-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/30/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Fibrotic interstitial lung disease is often identified late due to non-specific symptoms, inadequate access to specialist care, and clinical unawareness precluding proper and timely treatment. Biopsy histological analysis is definitive but rarely performed due to its invasiveness. Diagnosis typically relies on high-resolution computed tomography, while disease progression is evaluated via frequent pulmonary function testing. This study tested the hypothesis that pulmonary fibrosis diagnosis and progression could be non-invasively and accurately evaluated from the hair metabolome, with the longer-term goal to minimize patient discomfort. METHODS Hair specimens collected from pulmonary fibrosis patients (n = 56) and healthy subjects (n = 14) were processed for metabolite extraction using 2DLC/MS-MS, and data were analyzed via machine learning. Metabolomic data were used to train machine learning classification models tuned via a rigorous combination of cross validation, feature selection, and testing with a hold-out dataset to evaluate classifications of diseased vs. healthy subjects and stable vs. progressed disease. RESULTS Prediction of pulmonary fibrosis vs. healthy achieved AUROCTRAIN = 0.888 (0.794-0.982) and AUROCTEST = 0.908, while prediction of stable vs. progressed disease achieved AUROCTRAIN = 0.833 (0.784 - 0.882) and AUROCTEST = 0. 799. Top metabolites for diagnosis included ornithine, 4-(methylnitrosamino)-1-3-pyridyl-N-oxide-1-butanol, Thr-Phe, desthiobiotin, and proline. Top metabolites for progression included azelaic acid, Thr-Phe, Ala-Tyr, indoleacetyl glutamic acid, and cytidine. CONCLUSION This study provides novel evidence that pulmonary fibrosis diagnosis and progression may in principle be evaluated from the hair metabolome. Longer term, this approach may facilitate non-invasive and accurate detection and monitoring of fibrotic lung diseases.
Collapse
Affiliation(s)
- Hunter A Miller
- Department of Bioengineering, University of Louisville, Lutz Hall 419, Louisville, KY, 40292, USA
| | - Sally Suliman
- Division of Pulmonary Medicine, University of Louisville, Louisville, KY, USA
- University of Arizona Medical Center Phoenix, Phoenix, AZ, USA
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville, Lutz Hall 419, Louisville, KY, 40292, USA.
- UofL Health - Brown Cancer Center, University of Louisville, Louisville, KY, USA.
- Center for Predictive Medicine, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
5
|
Liu F, Yao Y, Guo C, Dai P, Huang J, Peng P, Wang M, Dawa Z, Zhu C, Lin C. Trichodelphinine A alleviates pulmonary fibrosis by inhibiting collagen synthesis via NOX4-ARG1/TGF-β signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155755. [PMID: 38870750 DOI: 10.1016/j.phymed.2024.155755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Pulmonary fibrosis, a progressive and fatal lung disease with no effective treatment medication, is characterized by lung remodeling and fibroblastic foci caused by an oxidative imbalance with an overloading deposition of collagen. Trichodelphinine A, a hetisine-type C20-diterpenoid alkaloid, was found anti-fibrotic activity in vitro, but its effect and mechanism on pulmonary fibrosis still unknown. PURPOSE Our study aimed to investigate and validate the anti-fibrotic properties of trichodelphinine A in pulmonary fibrosis animals induced by bleomycin (BLM), and its mechanism whether via NOX4-ARG1/TGF-β signaling pathway. METHODS The anti-fibrotic effects of trichodelphinine A were evaluated using BLM-induced rats through indicators of lung histopathology and collagen synthesis. Dynamic metabolomics evaluated the metabolic disorder and therapeutic effect of trichodelphinine A. The interaction between trichodelphinine A and NOX4 receptor was confirmed using CETSA and molecular dynamics experiments. Molecular biology experiments were conducted in NOX4 gene knockout mice to investigate the intervention effect of trichodelphinine A. RESULTS Trichodelphinine A could suppress histopathologic changes, collagen deposition and proinflammatory cytokine release pulmonary fibrosis in bleomycin induced rats. Dynamic metabolomics studies revealed that trichodelphinine A could correct endogenous metabolic disorders of arachidonic acid, arginine and proline during fibrosis development, which revealed that the regulation of oxidative stress and amino acid metabolism targeting NOX4 and ARG1 may be the main pharmacological mechanisms of trichodelphinine A on pulmonary fibrosis. We further determined that trichodelphinine A inhibited over oxidative stress and collagen deposition by suppressing Nrf2-keap1 and ARG1-OAT signaling pathways, respectively. Molecular dynamics studies showed that trichodelphinine A was directly binds with NOX4, in which PHE354 and THR355 residues of NOX4 are critical binding sites for trichodelphinine A. Mechanistic validation in cells or mice with NOX4 knockout or silencing suggested that the anti-fibrotic effects of trichodelphinine A depended on inhibition of NOX4 to suppress ARG1/OAT activation and TGF-β/Smads signaling pathway. CONCLUSION Collectively, our findings indicate a powerful anti-fibrotic function of trichodelphinine A in pulmonary fibrosis via targeting NOX4. NOX4 mediates the activation of ARG1/OAT to regulate arginase-proline metabolism, and promotes TGF-β/Smads signaling pathway, thereby affecting the collagen synthesis in pulmonary fibrosis, which is a novel finding and indicates that inhibition of NOX4 is a novel therapeutic strategy for pulmonary fibrosis.
Collapse
Affiliation(s)
- Fangle Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China; The First Affiliated hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Yufeng Yao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Chengxi Guo
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Pengyu Dai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Jinhao Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Peng Peng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Meiqi Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Zeren Dawa
- University of Tibetan Medicine, Lasa 850000, PR China.
| | - Chenchen Zhu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.
| | - Chaozhan Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.
| |
Collapse
|
6
|
Lou Y, Zou X, Pan Z, Huang Z, Zheng S, Zheng X, Yang X, Bao M, Zhang Y, Gu J, Zhang Y. The mechanism of action of Botrychium (Thunb.) Sw. for prevention of idiopathic pulmonary fibrosis based on 1H-NMR-based metabolomics. J Pharm Pharmacol 2024; 76:1018-1027. [PMID: 38776436 DOI: 10.1093/jpp/rgae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVES This study aimed to reveal the anti-fibrotic effects of Botrychium ternatum (Thunb.) Sw. (BT) against idiopathic pulmonary fibrosis (IPF) and to preliminarily analyze its potential mechanism on bleomycin-induced IPF rats. METHODS The inhibition of fibrosis progression in vivo was assessed by histopathology combined with biochemical indicators. In addition, the metabolic regulatory mechanism was investigated using 1H-nuclear magnetic resonance-based metabolomics combined with multivariate statistical analysis. KEY FINDINGS Firstly, biochemical analysis revealed that BT notably suppressed the expression of hydroxyproline and transforming growth factor-β1 in the pulmonary tissue. Secondly, Masson's trichrome staining and hematoxylin and eosin showed that BT substantially improved the structure of the damaged lung and significantly inhibited the proliferation of collagen fibers and the deposition of extracellular matrix. Finally, serum metabolomic analysis suggested that BT may exert anti-fibrotic effects by synergistically regulating tyrosine metabolism; phenylalanine, tyrosine and tryptophan biosynthesis; and synthesis and degradation of ketone bodies. CONCLUSIONS Our study not only clarifies the potential anti-fibrotic mechanism of BT against IPF at the metabolic level but also provides a theoretical basis for developing BT as an effective anti-fibrotic agent.
Collapse
Affiliation(s)
- Yutao Lou
- Department of Pharmacy, Center for Clinical Pharmacy, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xiaozhou Zou
- Department of Pharmacy, Center for Clinical Pharmacy, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Zongfu Pan
- Department of Pharmacy, Center for Clinical Pharmacy, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Zhongjie Huang
- Department of Pharmacy, Center for Clinical Pharmacy, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Shuilian Zheng
- Department of Pharmacy, Center for Clinical Pharmacy, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Xiaowei Zheng
- Department of Pharmacy, Center for Clinical Pharmacy, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Xiuli Yang
- Department of Pharmacy, Center for Clinical Pharmacy, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Meihua Bao
- Academician Workstation, School of Stomatology, Changsha Medical University, Changsha, Hunan 410219, China
| | - Yuan Zhang
- Department of Pharmacy, Zhejiang Provincial People' s Hospital Bijie Hospital, Bijie, Guizhou 551799, China
| | - Jinping Gu
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yiwen Zhang
- Department of Pharmacy, Center for Clinical Pharmacy, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
7
|
Wei X, Jin C, Li D, Wang Y, Zheng S, Feng Q, Shi N, Kong W, Ma X, Wang J. Single-cell transcriptomics reveals CD8 + T cell structure and developmental trajectories in idiopathic pulmonary fibrosis. Mol Immunol 2024; 172:85-95. [PMID: 38936318 DOI: 10.1016/j.molimm.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 06/29/2024]
Abstract
Immune cells in the human lung are associated with idiopathic pulmonary fibrosis. However, the contribution of different immune cell subpopulations to the pathogenesis of pulmonary fibrosis remains unclear. We used single-cell RNA sequencing data to investigate the transcriptional profiles of immune cells in the lungs of 5 IPF patients and 3 subjects with non-fibrotic lungs. In an identifiable population of immune cells, we found increased percentage of CD8+ T cells in the T cell subpopulation in IPF. Monocle analyzed the dynamic immune status and cell transformation of CD8+ T cells, as well as the cytotoxicity and exhausted status of CD8+ T cell subpopulations at different stages. Among CD8+ T cells, we found differences in metabolic pathways in IPF and Ctrl, including lipid, amino acid and carbohydrate metabolic. By analyzing the metabolites of CD8+ T cells, we found that different populations of CD8+ T cells in IPF have unique metabolic characteristics, but they also have multiple identical up-regulated or down-regulated metabolites. In IPF, signaling pathways associated with fibrosis were enriched in CD8+ T cells, suggesting that CD8+ T cells may have an important contribution to fibrosis. Finally, we analyzed the interactions between CD8+ T cells and other cells. Together, these studies highlight key features of CD8+ T cells in the pathogenesis of IPF and help to develop effective therapeutic targets.
Collapse
Affiliation(s)
- Xuemei Wei
- Center of Respiratory and Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi 830000, China
| | - Chengji Jin
- Department of Respiratory Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou 570100, China
| | - Dewei Li
- Center of Respiratory and Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, China
| | - Yujie Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou 570100, China
| | - Shaomao Zheng
- Department of Respiratory Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou 570100, China
| | - Qiong Feng
- Department of Respiratory Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou 570100, China
| | - Ning Shi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi 830000, China
| | - Weina Kong
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi 830000, China
| | - Xiumin Ma
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi 830000, China.
| | - Jing Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou 570100, China; NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou 571199, China.
| |
Collapse
|
8
|
Wang Y, Wu GR, Yue H, Zhou Q, Zhang L, He L, Gu W, Gao R, Dong L, Zhang H, Zhao J, Liu X, Xiong W, Wang CY. Kynurenine acts as a signaling molecule to attenuate pulmonary fibrosis by enhancing the AHR-PTEN axis. J Adv Res 2024:S2090-1232(24)00254-6. [PMID: 38906325 DOI: 10.1016/j.jare.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/28/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024] Open
Abstract
INTRODUCTION Pulmonary fibrosis (PF) is a fatal fibrotic lung disease without any options to halt disease progression. Feasible evidence suggests that aberrant metabolism of amino acids may play a role in the pathoetiology of PF. However, the exact impact of kynurenine (Kyn), a metabolite derived from tryptophan (Trp) on PF is yet to be addressed. OBJECTIVES This study aims to elucidate the role of kynurenine in both the onset and advancement of PF. METHODS Liquid chromatography-tandem mass spectrometry was employed to assess Kyn levels in patients with idiopathic PF and PF associated with Sjögren's syndrome. Additionally, a mouse model of PF induced by bleomycin was utilized to study the impact of Kyn administration. Furthermore, cell models treated with TGF-β1 were used to explore the mechanism by which Kyn inhibits fibroblast functions. RESULTS We demonstrated that high levels of Kyn are a clinical feature in both idiopathic PF patients and primary Sjögren syndrome associated PF patients. Further studies illustrated that Kyn served as a braking molecule to suppress fibroblast functionality, thereby protecting mice from bleomycin-induced lung fibrosis. The protective effects depend on AHR, in which Kyn induces AHR nuclear translocation, where it upregulates PTEN expression to blunt TGF-β mediated AKT/mTOR signaling in fibroblasts. However, in fibrotic microenviroment, the expression of AHR is repressed by methyl-CpG-binding domain 2 (MBD2), a reader interpreting the effect of DNA methylation, which results in a significantly reduced sensitivity of Kyn to fibroblasts. Therefore, exogenous administration of Kyn substantially reversed established PF. CONCLUSION Our studies not only highlighted a critical role of Trp metabolism in PF pathogenesis, but also provided compelling evidence suggesting that Kyn could serve as a promising metabolite against PF.
Collapse
Affiliation(s)
- Yi Wang
- Department of Respiratory and Critical Care Medicine, the Center for Biomedical Research, National Health Commission Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China
| | - Guo-Rao Wu
- Department of Respiratory and Critical Care Medicine, the Center for Biomedical Research, National Health Commission Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China
| | - Huihui Yue
- Department of Respiratory and Critical Care Medicine, the Center for Biomedical Research, National Health Commission Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China
| | - Qing Zhou
- Department of Respiratory and Critical Care Medicine, the Center for Biomedical Research, National Health Commission Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China
| | - Lei Zhang
- Department of Respiratory and Critical Care Medicine, the Center for Biomedical Research, National Health Commission Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China
| | - Long He
- Department of Clinical Laboratory, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200011, China
| | - Weikuan Gu
- Department of Orthopedic Surgery and BME-Campbell Clinic, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Rongfen Gao
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China
| | - Huilan Zhang
- Department of Respiratory and Critical Care Medicine, the Center for Biomedical Research, National Health Commission Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China
| | - Jianping Zhao
- Department of Respiratory and Critical Care Medicine, the Center for Biomedical Research, National Health Commission Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China
| | - Xiansheng Liu
- Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China.
| | - Weining Xiong
- Department of Respiratory and Critical Care Medicine, the Center for Biomedical Research, National Health Commission Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China; Department of Respiratory and Critical Care Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Lu, Shanghai 200011, China.
| | - Cong-Yi Wang
- Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China; Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, the Key Laboratory of Endocrine and Metabolic Diseases of Shanxi Province, Taiyuan, China; The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
9
|
Lan YW, Chen YC, Yen CC, Chen HL, Tung MC, Fan HC, Chen CM. Kefir peptides mitigate bleomycin-induced pulmonary fibrosis in mice through modulating oxidative stress, inflammation and gut microbiota. Biomed Pharmacother 2024; 174:116431. [PMID: 38522238 DOI: 10.1016/j.biopha.2024.116431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/05/2024] [Accepted: 03/15/2024] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a progressive and life-threatening lung disease with high mortality rates. The limited availability of effective drugs for IPF treatment, coupled with concerns regarding adverse effects and restricted responsiveness, underscores the need for alternative approaches. Kefir peptides (KPs) have demonstrated antioxidative, anti-inflammatory, and antifibrotic properties, along with the capability to modulate gut microbiota. This study aims to investigate the impact of KPs on bleomycin-induced pulmonary fibrosis. METHODS Mice were treated with KPs for four days, followed by intratracheal injection of bleomycin for 21 days. Comprehensive assessments included pulmonary functional tests, micro-computed tomography (µ-CT), in vivo image analysis using MMPsense750, evaluation of inflammation- and fibrosis-related gene expression in lung tissue, and histopathological examinations. Furthermore, a detailed investigation of the gut microbiota community was performed using full-length 16 S rRNA sequencing in control mice, bleomycin-induced fibrotic mice, and KPs-pretreated fibrotic mice. RESULTS In KPs-pretreated bleomycin-induced lung fibrotic mice, notable outcomes included the absence of significant bodyweight loss, enhanced pulmonary functions, restored lung tissue architecture, and diminished thickening of inter-alveolar septa, as elucidated by morphological and histopathological analyses. Concurrently, a reduction in the expression levels of oxidative biomarkers, inflammatory factors, and fibrotic indicators was observed. Moreover, 16 S rRNA sequencing demonstrated that KPs pretreatment induced alterations in the relative abundances of gut microbiota, notably affecting Barnesiella_intestinihominis, Kineothrix_alysoides, and Clostridium_viride. CONCLUSIONS Kefir peptides exerted preventive effects, protecting mice against bleomycin-induced lung oxidative stress, inflammation, and fibrosis. These effects are likely linked to modifications in the gut microbiota community. The findings highlight the therapeutic potential of KPs in mitigating pulmonary fibrosis and advocate for additional exploration in clinical settings.
Collapse
Affiliation(s)
- Ying-Wei Lan
- Department of Life Sciences, College of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; Phoenix Children's Health Research Institute, Department of Child Health, University of Arizona College of Medicine, Phoenix 85004, USA.
| | - Ying-Cheng Chen
- Department of Life Sciences, College of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; Department of Basic Medical Sciences, Veterinary Medicines, Purdue University, West Lafayette, Indiana 47906, USA.
| | - Chih-Ching Yen
- Department of Life Sciences, College of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan.
| | - Hsiao-Ling Chen
- Department of Biomedical Science, Da-Yeh University, Changhua 515, Taiwan; Phermpep Co., Ltd., China Chemical & Pharmaceutical Group (CCPG), Taichung 42881, Taiwan
| | - Min-Che Tung
- Department of Surgery, and Tungs' Taichung Metro Harbor Hospital, Taichung 435, Taiwan
| | - Hueng-Chuen Fan
- Department of Surgery, and Tungs' Taichung Metro Harbor Hospital, Taichung 435, Taiwan
| | - Chuan-Mu Chen
- Department of Life Sciences, College of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; The iEGG and Animal Biotechnology Research Center, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
10
|
Zhu W, Liu C, Tan C, Zhang J. Predictive biomarkers of disease progression in idiopathic pulmonary fibrosis. Heliyon 2024; 10:e23543. [PMID: 38173501 PMCID: PMC10761784 DOI: 10.1016/j.heliyon.2023.e23543] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial disease that cannot be cured, and treatment options for IPF are very limited. Early diagnosis, close monitoring of disease progression, and timely treatment are therefore the best options for patients due to the irreversibility of IPF. Effective markers help doctors judge the development and prognosis of disease. Recent research on traditional biomarkers (KL-6, SP-D, MMP-7, TIMPs, CCL18) has provided novel ideas for predicting disease progression and prognosis. Some emerging biomarkers (HE4, GDF15, PRDX4, inflammatory cells, G-CSF) also provide more possibilities for disease prediction. In addition to markers in serum and bronchoalveolar lavage fluid (BALF), some improvements related to the GAP model and chest HRCT also show good predictive ability for disease prognosis.
Collapse
Affiliation(s)
- Weiwei Zhu
- Department of Pulmonary and Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, China
| | - Chunquan Liu
- Department of Thoracic Surgery, Beijing Friendship Hospital, Capital Medical University, China
| | - Chunting Tan
- Department of Pulmonary and Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, China
| | - Jie Zhang
- Department of Pulmonary and Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, China
| |
Collapse
|
11
|
Islam MZ, Giannoukos S, Räisänen SE, Wang K, Ma X, Wahl F, Zenobi R, Niu M. Exhaled volatile fatty acids, ruminal methane emission, and their diurnal patterns in lactating dairy cows. J Dairy Sci 2023; 106:6849-6859. [PMID: 37210352 DOI: 10.3168/jds.2023-23301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/08/2023] [Indexed: 05/22/2023]
Abstract
To date, the commonly used methods to assess rumen fermentation are invasive. Exhaled breath contains hundreds of volatile organic compounds (VOC) that can reflect animal physiological processes. In the present study, for the first time, we aimed to use a noninvasive metabolomics approach based on high-resolution mass spectrometry to identify rumen fermentation parameters in dairy cows. Enteric methane (CH4) production from 7 lactating cows was measured 8 times over 3 consecutive days using the GreenFeed system (C-Lock Technology Inc.). Simultaneously, exhalome samples were collected in Tedlar gas sampling bags and analyzed offline using a secondary electrospray ionization high-resolution mass spectrometry system. In total, 1,298 features were detected, among them targeted exhaled volatile fatty acids (eVFA; i.e., acetate, propionate, butyrate), which were putatively annotated using their exact mass-to-charge ratio. The intensity of eVFA, in particular acetate, increased immediately after feeding and followed a similar pattern to that observed for ruminal CH4 production. The average total eVFA concentration was 35.5 count per second (CPS), and among the individual eVFA, acetate had the greatest concentration, averaging 21.3 CPS, followed by propionate at 11.5 CPS, and butyrate at 2.67 CPS. Further, exhaled acetate was on average the most abundant of the individual eVFA at around 59.3%, followed by 32.5 and 7.9% of the total eVFA for propionate and butyrate, respectively. This corresponds well with the previously reported proportions of these VFA in the rumen. The diurnal patterns of ruminal CH4 emission and individual eVFA were characterized using a linear mixed model with cosine function fit. The model characterized similar diurnal patterns for eVFA and ruminal CH4 and H2 production. Regarding the diurnal patterns of eVFA, the phase (time of peak) of butyrate occurred first, followed by that of acetate and propionate. Importantly, the phase of total eVFA occurred around 1 h before that of ruminal CH4. This corresponds well with existing data on the relationship between rumen VFA production and CH4 formation. Results from the present study revealed a great potential to assess the rumen fermentation of dairy cows using exhaled metabolites as a noninvasive proxy for rumen VFA. Further validation, with comparisons to rumen fluid, and establishment of the proposed method are required.
Collapse
Affiliation(s)
- M Z Islam
- ETH Zürich, Department of Environmental Systems Science, Institute of Agricultural Sciences, 8092 Zürich, Switzerland
| | - S Giannoukos
- ETH Zürich, Department of Chemistry and Applied Biosciences, Analytical Chemistry, 8093 Zürich, Switzerland.
| | - S E Räisänen
- ETH Zürich, Department of Environmental Systems Science, Institute of Agricultural Sciences, 8092 Zürich, Switzerland
| | - K Wang
- ETH Zürich, Department of Environmental Systems Science, Institute of Agricultural Sciences, 8092 Zürich, Switzerland
| | - X Ma
- ETH Zürich, Department of Environmental Systems Science, Institute of Agricultural Sciences, 8092 Zürich, Switzerland
| | - F Wahl
- Food Microbial Systems Research Division, Agroscope, 3003 Bern, Switzerland
| | - R Zenobi
- ETH Zürich, Department of Chemistry and Applied Biosciences, Analytical Chemistry, 8093 Zürich, Switzerland
| | - M Niu
- ETH Zürich, Department of Environmental Systems Science, Institute of Agricultural Sciences, 8092 Zürich, Switzerland.
| |
Collapse
|
12
|
Lv J, Gao H, Ma J, Liu J, Tian Y, Yang C, Li M, Zhao Y, Li Z, Zhang X, Zhu Y, Zhang J, Wu L. Dynamic atlas of immune cells reveals multiple functional features of macrophages associated with progression of pulmonary fibrosis. Front Immunol 2023; 14:1230266. [PMID: 37771586 PMCID: PMC10525351 DOI: 10.3389/fimmu.2023.1230266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/24/2023] [Indexed: 09/30/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial lung disease with a high mortality rate and unclarified aetiology. Immune response is elaborately regulated during the progression of IPF, but immune cells subsets are complicated which has not been detailed described during IPF progression. Therefore, in the current study, we sought to investigate the role of immune regulation by elaborately characterize the heterogeneous of immune cells during the progression of IPF. To this end, we performed single-cell profiling of lung immune cells isolated from four stages of bleomycin-induced pulmonary fibrosis-a classical mouse model that mimics human IPF. The results revealed distinct components of immune cells in different phases of pulmonary fibrosis and close communication between macrophages and other immune cells along with pulmonary fibrosis progression. Enriched signals of SPP1, CCL5 and CXCL2 were found between macrophages and other immune cells. The more detailed definition of the subpopulations of macrophages defined alveolar macrophages (AMs) and monocyte-derived macrophages (mo-Macs)-the two major types of primary lung macrophages-exhibited the highest heterogeneity and dynamic changes in expression of profibrotic genes during disease progression. Our analysis suggested that Gpnmb and Trem2 were both upregulated in macrophages and may play important roles in pulmonary fibrosis progression. Additionally, the metabolic status of AMs and mo-Macs varied with disease progression. In line with the published data on human IPF, macrophages in the mouse model shared some features regarding gene expression and metabolic status with that of macrophages in IPF patients. Our study provides new insights into the pathological features of profibrotic macrophages in the lung that will facilitate the identification of new targets for disease intervention and treatment of IPF.
Collapse
Affiliation(s)
- Jiaoyan Lv
- Institute for Immunology, Tsinghua-Peking Joint Centre for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Haoxiang Gao
- Department of Automation, Ministry of Education (MOE) Key Laboratory of Bioinformatics, Bioinformatics Division and Centre for Synthetic & Systems Biology, BNRist, Tsinghua University, Beijing, China
| | - Jie Ma
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Jiachen Liu
- Institute for Immunology, Tsinghua-Peking Joint Centre for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Yujie Tian
- Institute for Immunology, Tsinghua-Peking Joint Centre for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Chunyuan Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Mansheng Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Yue Zhao
- Annoroad Gene Technology (Beijing) Co., Ltd., Beijing, China
| | - Zhimin Li
- Annoroad Gene Technology (Beijing) Co., Ltd., Beijing, China
| | - Xuegong Zhang
- Department of Automation, Ministry of Education (MOE) Key Laboratory of Bioinformatics, Bioinformatics Division and Centre for Synthetic & Systems Biology, BNRist, Tsinghua University, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yunping Zhu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Jianhong Zhang
- Institute for Immunology, Tsinghua-Peking Joint Centre for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China
| | - Li Wu
- Institute for Immunology, Tsinghua-Peking Joint Centre for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China
| |
Collapse
|
13
|
Kim H, Jang Y, Ryu J, Seo D, Lee S, Choi S, Kim D, Moh S, Shin J. The Dipeptide Gly-Pro (GP), Derived from Hibiscus sabdariffa, Exhibits Potent Antifibrotic Effects by Regulating the TGF-β1-ATF4-Serine/Glycine Biosynthesis Pathway. Int J Mol Sci 2023; 24:13616. [PMID: 37686422 PMCID: PMC10487435 DOI: 10.3390/ijms241713616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
TGF-β1, a key fibrotic cytokine, enhances both the expression and translocation of the activating transcriptional factor 4 (ATF4) and activates the serine/glycine biosynthesis pathway, which is crucial for augmenting collagen production. Targeting the TGF-β1-ATF4-serine/glycine biosynthesis pathway might offer a promising therapeutic approach for fibrotic diseases. In this study, we aimed to identify a proline-containing dipeptide in Hibiscus sabdariffa plant cells that modulates collagen synthesis. We induced Hibiscus sabdariffa plant cells and screened for a proline-containing dipeptide that can suppress TGF-β1-induced collagen synthesis in fibroblasts. Analyses were conducted using LC-MS/MS, RT-qPCR, Western blot analysis, and immunocytochemistry. We identified Gly-Pro (GP) from the extract of Hibiscus sabdariffa plant cells as a dipeptide capable of suppressing TGF-β1-induced collagen production. GP inhibited the phosphorylation of Smad2/3 and reduced the expression of ATF4, which is upregulated by TGF-β1. Notably, GP also decreased the expression of enzymes involved in the serine/glycine biosynthesis and glucose metabolism pathways, such as PHGDH, PSAT1, PSPH, SHMT2, and SLC2A1. Our findings indicate that the peptide GP, derived from Hibiscus sabdariffa plant cells, exhibits potent anti-fibrotic effects, potentially through its regulation of the TGF-β1-ATF4-serine/glycine biosynthesis pathway.
Collapse
Affiliation(s)
- HaiVin Kim
- Department of Biomedical Science, College of Life Science, Graduate School, CHA University, Seongnam 13488, Republic of Korea; (H.K.); (Y.J.); (D.S.)
| | - YoungSu Jang
- Department of Biomedical Science, College of Life Science, Graduate School, CHA University, Seongnam 13488, Republic of Korea; (H.K.); (Y.J.); (D.S.)
| | - JaeSang Ryu
- Department of Dermatology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam 13496, Republic of Korea; (J.R.); (D.K.)
| | - DaHye Seo
- Department of Biomedical Science, College of Life Science, Graduate School, CHA University, Seongnam 13488, Republic of Korea; (H.K.); (Y.J.); (D.S.)
| | - Sak Lee
- Plant Cell Research Institute of BIO-FD&C Co., Ltd., Incheon 21990, Republic of Korea;
| | - SungSoo Choi
- Daesang Holdings, Jung-gu, Seoul 04513, Republic of Korea;
| | - DongHyun Kim
- Department of Dermatology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam 13496, Republic of Korea; (J.R.); (D.K.)
| | - SangHyun Moh
- Plant Cell Research Institute of BIO-FD&C Co., Ltd., Incheon 21990, Republic of Korea;
| | - JungU Shin
- Department of Dermatology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam 13496, Republic of Korea; (J.R.); (D.K.)
| |
Collapse
|
14
|
Mercader-Barceló J, Martín-Medina A, Truyols-Vives J, Escarrer-Garau G, Elowsson L, Montes-Worboys A, Río-Bocos C, Muncunill-Farreny J, Velasco-Roca J, Cederberg A, Kadefors M, Molina-Molina M, Westergren-Thorsson G, Sala-Llinàs E. Mitochondrial Dysfunction in Lung Resident Mesenchymal Stem Cells from Idiopathic Pulmonary Fibrosis Patients. Cells 2023; 12:2084. [PMID: 37626894 PMCID: PMC10453747 DOI: 10.3390/cells12162084] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/09/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by an aberrant repair response with uncontrolled turnover of extracellular matrix involving mesenchymal cell phenotypes, where lung resident mesenchymal stem cells (LRMSC) have been supposed to have an important role. However, the contribution of LRMSC in lung fibrosis is not fully understood, and the role of LRMSC in IPF remains to be elucidated. Here, we performed transcriptomic and functional analyses on LRMSC isolated from IPF and control patients (CON). Both over-representation and gene set enrichment analyses indicated that oxidative phosphorylation is the major dysregulated pathway in IPF LRMSC. The most relevant differences in biological processes included complement activation, mesenchyme development, and aerobic electron transport chain. Compared to CON LRMSC, IPF cells displayed impaired mitochondrial respiration, lower expression of genes involved in mitochondrial dynamics, and dysmorphic mitochondria. These changes were linked to an impaired autophagic response and a lower mRNA expression of pro-apoptotic genes. In addition, IPF TGFβ-exposed LRMSC presented different expression profiles of mitochondrial-related genes compared to CON TGFβ-treated cells, suggesting that TGFβ reinforces mitochondrial dysfunction. In conclusion, these results suggest that mitochondrial dysfunction is a major event in LRMSC and that their occurrence might limit LRMSC function, thereby contributing to IPF development.
Collapse
Affiliation(s)
- Josep Mercader-Barceló
- iRESPIRE Research Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
- MolONE Research Group, University of the Balearic Islands, 07122 Palma, Spain
| | - Aina Martín-Medina
- iRESPIRE Research Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
| | - Joan Truyols-Vives
- MolONE Research Group, University of the Balearic Islands, 07122 Palma, Spain
| | | | - Linda Elowsson
- Lung Biology, Department of Experimental Medical Science, Lund University, 08908 Lund, Sweden
| | - Ana Montes-Worboys
- ILD Unit, Respiratory Department, University Hospital of Bellvitge-Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Carlos Río-Bocos
- iRESPIRE Research Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
| | | | - Julio Velasco-Roca
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
| | - Anna Cederberg
- Lung Biology, Department of Experimental Medical Science, Lund University, 08908 Lund, Sweden
| | - Måns Kadefors
- Lung Biology, Department of Experimental Medical Science, Lund University, 08908 Lund, Sweden
| | - Maria Molina-Molina
- ILD Unit, Respiratory Department, University Hospital of Bellvitge-Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, 08908 Barcelona, Spain
- Centre of Biomedical Research Network in Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| | | | - Ernest Sala-Llinàs
- iRESPIRE Research Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
- Centre of Biomedical Research Network in Respiratory Diseases (CIBERES), 28029 Madrid, Spain
- Respiratory Department, Son Espases University Hospital, 07120 Palma, Spain
| |
Collapse
|
15
|
Glenn LM, Troy LK, Corte TJ. Novel diagnostic techniques in interstitial lung disease. Front Med (Lausanne) 2023; 10:1174443. [PMID: 37188089 PMCID: PMC10175799 DOI: 10.3389/fmed.2023.1174443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Research into novel diagnostic techniques and targeted therapeutics in interstitial lung disease (ILD) is moving the field toward increased precision and improved patient outcomes. An array of molecular techniques, machine learning approaches and other innovative methods including electronic nose technology and endobronchial optical coherence tomography are promising tools with potential to increase diagnostic accuracy. This review provides a comprehensive overview of the current evidence regarding evolving diagnostic methods in ILD and to consider their future role in routine clinical care.
Collapse
Affiliation(s)
- Laura M. Glenn
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- Central Clinical School, The University of Sydney School of Medicine, Sydney, NSW, Australia
- NHMRC Centre of Research Excellence in Pulmonary Fibrosis, Camperdown, NSW, Australia
- *Correspondence: Laura M. Glenn,
| | - Lauren K. Troy
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- Central Clinical School, The University of Sydney School of Medicine, Sydney, NSW, Australia
- NHMRC Centre of Research Excellence in Pulmonary Fibrosis, Camperdown, NSW, Australia
| | - Tamera J. Corte
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- Central Clinical School, The University of Sydney School of Medicine, Sydney, NSW, Australia
- NHMRC Centre of Research Excellence in Pulmonary Fibrosis, Camperdown, NSW, Australia
| |
Collapse
|
16
|
Li J, Zhai X, Sun X, Cao S, Yuan Q, Wang J. Metabolic reprogramming of pulmonary fibrosis. Front Pharmacol 2022; 13:1031890. [PMID: 36452229 PMCID: PMC9702072 DOI: 10.3389/fphar.2022.1031890] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/01/2022] [Indexed: 08/13/2023] Open
Abstract
Pulmonary fibrosis is a progressive and intractable lung disease with fibrotic features that affects alveoli elasticity, which leading to higher rates of hospitalization and mortality worldwide. Pulmonary fibrosis is initiated by repetitive localized micro-damages of the alveolar epithelium, which subsequently triggers aberrant epithelial-fibroblast communication and myofibroblasts production in the extracellular matrix, resulting in massive extracellular matrix accumulation and interstitial remodeling. The major cell types responsible for pulmonary fibrosis are myofibroblasts, alveolar epithelial cells, macrophages, and endothelial cells. Recent studies have demonstrated that metabolic reprogramming or dysregulation of these cells exerts their profibrotic role via affecting pathological mechanisms such as autophagy, apoptosis, aging, and inflammatory responses, which ultimately contributes to the development of pulmonary fibrosis. This review summarizes recent findings on metabolic reprogramming that occur in the aforementioned cells during pulmonary fibrosis, especially those associated with glucose, lipid, and amino acid metabolism, with the aim of identifying novel treatment targets for pulmonary fibrosis.
Collapse
Affiliation(s)
- Jiaxin Li
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoxuan Zhai
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xiao Sun
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Shengchuan Cao
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Qiuhuan Yuan
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jiali Wang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
17
|
Zhao X, Ji K, Zhang M, Huang H, Wang F, Liu Y, Liu Q. NMN alleviates radiation-induced intestinal fibrosis by modulating gut microbiota. Int J Radiat Biol 2022; 99:823-834. [PMID: 36343364 DOI: 10.1080/09553002.2023.2145029] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
AIM Radiation-induced intestinal fibrosis, a common complication of long-term survivors after receiving abdominal and pelvic radiotherapy, has no effective clinical drugs at present. Nicotinamide mononucleotide (NMN) has been reported to alleviate a variety of age-related diseases and has potential of regulating gut microbiota. The current study focuses on the role of gut microbiota in chronic radiation induced intestinal fibrosis, and investigates whether NMN plays a protective role in radiation-induced intestinal fibrosis as well as the impact of NMN on radiation-induced dysbiosis of gut microbiota. MATERIALS AND METHODS C57BL/6J mice received 15 Gy abdominal irradiation and NMN (300 mg/kg/day) supplement in drinking water. Feces were collected at 4- and 8-months post-irradiation and performed 16S rRNA sequencing to detect the gut microbiota. Colon tissues were isolated at 12 months after irradiation with or without NMN supplementation for histological analysis. RESULTS We found that irradiation caused intestinal fibrosis, and altered the β diversity and composition of gut microbiota, while the gut microbiota was observed to be affected by time post-irradiation and age of mice. Long-term NMN supplementation alleviated intestinal fibrosis, and reshaped the composition and function of gut microbiota dysregulated by ionizing radiation (IR). In addition, Akkermansia muciniphila, a promising probiotic, and metabolism-related pathways, such as Biosynthesis of other secondary metabolites and Amino acid metabolism, were more abundant after NMN treatment in irradiated mice. CONCLUSION IR has a long-term effect on the gut microbiota and NMN supplementation can alleviate radiation induced intestinal fibrosis by reshaping the composition of gut microbiota and regulating the metabolic function of the microorganism.
Collapse
Affiliation(s)
- Xiaotong Zhao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Kaihua Ji
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Manman Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Hao Huang
- Effepharm (Shanghai) Co. Ltd., No.1 Mid Wangdong Rd, Songjiang District, Shanghai, 201601, China
| | - Feng Wang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Qiang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
18
|
Weber R, Perkins N, Bruderer T, Micic S, Moeller A. Identification of Exhaled Metabolites in Children with Cystic Fibrosis. Metabolites 2022; 12:980. [PMID: 36295881 PMCID: PMC9611656 DOI: 10.3390/metabo12100980] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022] Open
Abstract
The early detection of inflammation and infection is important to prevent irreversible lung damage in cystic fibrosis. Novel and non-invasive monitoring tools would be of high benefit for the quality of life of patients. Our group previously detected over 100 exhaled mass-to-charge (m/z) features, using on-line secondary electrospray ionization high-resolution mass spectrometry (SESI-HRMS), which distinguish children with cystic fibrosis from healthy controls. The aim of this study was to annotate as many m/z features as possible with putative chemical structures. Compound identification was performed by applying a rigorous workflow, which included the analysis of on-line MS2 spectra and a literature comparison. A total of 49 discriminatory exhaled compounds were putatively identified. A group of compounds including glycolic acid, glyceric acid and xanthine were elevated in the cystic fibrosis group. A large group of acylcarnitines and aldehydes were found to be decreased in cystic fibrosis. The proposed compound identification workflow was used to identify signatures of volatile organic compounds that discriminate children with cystic fibrosis from healthy controls, which is the first step for future non-invasive and personalized applications.
Collapse
Affiliation(s)
- Ronja Weber
- Department of Respiratory Medicine and Childhood Research Center, University Children’s Hospital Zurich, Steinwiesstrasse 75, 8032 Zurich, Switzerland
| | - Nathan Perkins
- Division of Clinical Chemistry and Biochemistry, University of Zurich, Steinwiesstrasse 75, 8032 Zurich, Switzerland
| | - Tobias Bruderer
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| | - Srdjan Micic
- Department of Respiratory Medicine and Childhood Research Center, University Children’s Hospital Zurich, Steinwiesstrasse 75, 8032 Zurich, Switzerland
| | - Alexander Moeller
- Department of Respiratory Medicine and Childhood Research Center, University Children’s Hospital Zurich, Steinwiesstrasse 75, 8032 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Raemistrasse 71, 8006 Zurich, Switzerland
| |
Collapse
|
19
|
Seeliger B, Carleo A, Wendel-Garcia PD, Fuge J, Montes-Warboys A, Schuchardt S, Molina-Molina M, Prasse A. Changes in serum metabolomics in idiopathic pulmonary fibrosis and effect of approved antifibrotic medication. Front Pharmacol 2022; 13:837680. [PMID: 36059968 PMCID: PMC9428132 DOI: 10.3389/fphar.2022.837680] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 07/21/2022] [Indexed: 11/22/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive disease with significant mortality and morbidity. Approval of antifibrotic therapy has ameliorated disease progression, but therapy response is heterogeneous and to date, adequate biomarkers predicting therapy response are lacking. In recent years metabolomic technology has improved and is broadly applied in cancer research thus enabling its use in other fields. Recently both aberrant metabolic and lipidomic pathways have been described to influence profibrotic responses. We thus aimed to characterize the metabolomic and lipidomic changes between IPF and healthy volunteers (HV) and analyze metabolomic changes following treatment with nintedanib and pirfenidone. We collected serial serum samples from two IPF cohorts from Germany (n = 122) and Spain (n = 21) and additionally age-matched healthy volunteers (n = 16). Metabolomic analysis of 630 metabolites covering 14 small molecule and 12 different lipid classes was carried out using flow injection analysis tandem mass spectrometry for lipids and liquid chromatography tandem mass spectrometry for small molecules. Levels were correlated with survival and disease severity. We identified 109 deregulated analytes in IPF compared to HV in cohort 1 and 112 deregulated analytes in cohort 2. Metabolites which were up-regulated in both cohorts were mainly triglycerides while the main class of down-regulated metabolites were phosphatidylcholines. Only a minority of de-regulated analytes were small molecules. Triglyceride subclasses were inversely correlated with baseline disease severity (GAP-score) and a clinical compound endpoint of lung function decline or death. No changes in the metabolic profiles were observed following treatment with pirfenidone. Nintedanib treatment induced up-regulation of triglycerides and phosphatidylcholines. Patients in whom an increase in these metabolites was observed showed a trend towards better survival using the 2-years composite endpoint (HR 2.46, p = 0.06). In conclusion, we report major changes in metabolites in two independent cohorts testing a large number of patients. Specific lipidic metabolite signatures may serve as biomarkers for disease progression or favorable treatment response to nintedanib.
Collapse
Affiliation(s)
- Benjamin Seeliger
- Department of Respiratory Medicine, Hannover Medical School and Biomedical Research in End-stage and Obstructive Lung Disease (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Alfonso Carleo
- Department of Respiratory Medicine, Hannover Medical School and Biomedical Research in End-stage and Obstructive Lung Disease (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | | | - Jan Fuge
- Department of Respiratory Medicine, Hannover Medical School and Biomedical Research in End-stage and Obstructive Lung Disease (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Ana Montes-Warboys
- ILD Multidisciplinary Unit, Hospital Universitari Bellvitge, IDIBELL, Universitat de Barcelona, Hospitalet de Llobregat, Barcelona, Spain
| | - Sven Schuchardt
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Maria Molina-Molina
- ILD Multidisciplinary Unit, Hospital Universitari Bellvitge, IDIBELL, Universitat de Barcelona, Hospitalet de Llobregat, Barcelona, Spain
- Centro Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Antje Prasse
- Department of Respiratory Medicine, Hannover Medical School and Biomedical Research in End-stage and Obstructive Lung Disease (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
- *Correspondence: Antje Prasse,
| |
Collapse
|
20
|
Yang X, Zhao G, Bo Y, Yang D, Dong Z, Wu G, Xu N, An M, Zhao L. Mechanisms exploration of Terrestrosin D on pulmonary fibrosis based on plasma metabolomics and network pharmacology. Biomed Chromatogr 2022; 36:e5441. [PMID: 35789496 DOI: 10.1002/bmc.5441] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/14/2022] [Accepted: 06/30/2022] [Indexed: 11/08/2022]
Abstract
Terrestrosin D (TED) is the active ingredient of Tribulus terrestris L., which is used in traditional Chinese medicine (TCM) formulations and has a wide range of pharmacological activities. A previous study showed that TED alleviated bleomycin (BLM)-induced pulmonary fibrosis (PF) in mice. However, the mechanisms underlying the therapeutic effect of TED are still unclear and need further investigation. In this study, we evaluated the effect of TED in a mice of BLM-induced PF in terms of histopathological and biochemical indices. UHPLC-MS-based plasma metabolomics combined with network pharmacology was used to explore the pathological basis of PF and the mechanism of action of TED. Histological and biochemical analyses showed that TED mitigated inflammatory injury in the lungs, especially at the dosage of 20 mg/kg. Furthermore, BLM changed the plasma metabolite profile in the mice, which was reversed by TED via regulation of amino acid and lipid metabolism. Subsequently, a biomarkers-targets-disease network was constructed, tumor necrosis factor (TNF)-α and transforming growth factor (TGF)-β1 were identified as the putative therapeutic targets of TED. Both factors were quantitatively analyzed by enzyme-linked immunosorbent assay (ELISA). Taken together, the combination of UHPLC-MS-based metabolomics and network pharmacology can unveil the mechanisms of diseases and drug action.
Collapse
Affiliation(s)
- Xuemiao Yang
- School of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia, P. R. China
| | - Guojun Zhao
- Department of Pharmacy, Baotou Fourth Hospital, Baotou, Inner Mongolia, P. R. China
| | - Yukun Bo
- School of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia, P. R. China
| | - Dan Yang
- School of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia, P. R. China
| | - Zhiqiang Dong
- Clinical Pharmacy, First Affiliated Hospital, Baotou Medical College, Baotou, Inner Mongolia, P. R. China
| | - Guodong Wu
- School of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia, P. R. China
| | - Nanbing Xu
- School of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia, P. R. China
| | - Ming An
- School of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia, P. R. China
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, P. R. China
| |
Collapse
|
21
|
Serum metabolomic research of the anti-pulmonary fibrosis effects of Shuangshen Pingfei Formula on bleomycin-induced pulmonary fibrosis rats. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1197:123225. [DOI: 10.1016/j.jchromb.2022.123225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/21/2022] [Accepted: 03/10/2022] [Indexed: 11/23/2022]
|
22
|
Plantier L, Smolinska A, Fijten R, Flamant M, Dallinga J, Mercadier JJ, Pachen D, d'Ortho MP, van Schooten FJ, Crestani B, Boots AW. The use of exhaled air analysis in discriminating interstitial lung diseases: a pilot study. Respir Res 2022; 23:12. [PMID: 35057817 PMCID: PMC8772159 DOI: 10.1186/s12931-021-01923-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/29/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fibrotic Interstitial lung diseases (ILD) are a heterogeneous group of chronic lung diseases characterized by diverse degrees of lung inflammation and remodeling. They include idiopathic ILD such as idiopathic pulmonary fibrosis (IPF), and ILD secondary to chronic inflammatory diseases such as connective tissue disease (CTD). Precise differential diagnosis of ILD is critical since anti-inflammatory and immunosuppressive drugs, which are beneficial in inflammatory ILD, are detrimental in IPF. However, differential diagnosis of ILD is still difficult and often requires an invasive lung biopsy. The primary aim of this study is to identify volatile organic compounds (VOCs) patterns in exhaled air to non-invasively discriminate IPF and CTD-ILD. As secondary aim, the association between the IPF and CTD-ILD discriminating VOC patterns and functional impairment is investigated. METHODS Fifty-three IPF patients, 53 CTD-ILD patients and 51 controls donated exhaled air, which was analyzed for its VOC content using gas chromatograph- time of flight- mass spectrometry. RESULTS By applying multivariate analysis, a discriminative profile of 34 VOCs was observed to discriminate between IPF patients and healthy controls whereas 11 VOCs were able to distinguish between CTD-ILD patients and healthy controls. The separation between IPF and CTD-ILD could be made using 16 discriminating VOCs, that also displayed a significant correlation with total lung capacity and the 6 min' walk distance. CONCLUSIONS This study reports for the first time that specific VOC profiles can be found to differentiate IPF and CTD-ILD from both healthy controls and each other. Moreover, an ILD-specific VOC profile was strongly correlated with functional parameters. Future research applying larger cohorts of patients suffering from a larger variety of ILDs should confirm the potential use of breathomics to facilitate fast, non-invasive and proper differential diagnosis of specific ILDs in the future as first step towards personalized medicine for these complex diseases.
Collapse
Affiliation(s)
- L Plantier
- Department of Pulmonology and Lung Function Testing, CHRU, Tours, France
- Université de Tours, Tours, France
- Centre d'Etude des Pathologies Respiratoires, INSERM UMR1100, Tours, France
| | - A Smolinska
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - R Fijten
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
- Department of Radiation Oncology (Maastro) GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6229 ET, Maastricht, The Netherlands
| | - M Flamant
- Service de Physiologie - Explorations Fonctionnelle, Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Paris, France
| | - J Dallinga
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - J J Mercadier
- Service de Physiologie - Explorations Fonctionnelle, Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Paris, France
| | - D Pachen
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - M P d'Ortho
- Service de Physiologie - Explorations Fonctionnelle, Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Paris, France
- Université de Paris, INSERM UMR 1141, NeuroDiderot, France
| | - F J van Schooten
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - B Crestani
- Service de Pneumologie A, DHU FIRE, Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Paris, France
- Université Paris Diderot, PRES Sorbonne Paris Cité, Paris, France
- INSERM UMR1152, Labex Inflamex, Paris, France
| | - A W Boots
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
23
|
Stockard B, Gauldin C, Truog W, Lewis T. Pharmacometabolomics Profiling of Preterm Infants Validates Patterns of Metabolism Associated With Response to Dexamethasone Treatment for Bronchopulmonary Dysplasia. Front Pediatr 2022; 10:898806. [PMID: 35757122 PMCID: PMC9226475 DOI: 10.3389/fped.2022.898806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/11/2022] [Indexed: 01/27/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is one of the most common health complications of premature birth. Corticosteroids are commonly used for treatment of BPD, but their use is challenging due to variability in treatment response. Previous pharmacometabolomics study has established patterns of metabolite levels with response to dexamethasone. We obtained additional patient samples for metabolomics analysis to find associations between the metabolome and dexamethasone response in a validation cohort. A total of 14 infants provided 15 plasma and 12 urine samples. The measure of treatment response was the calculated change in respiratory severity score (deltaRSS) from pre-to-post treatment. Each metabolite was assessed with paired analysis of pre and post-treatment samples using Wilcoxon signed rank test. Correlation analysis was conducted between deltaRSS and pre-to-post change in metabolite level. Paired association analysis identified 20 plasma and 26 urine metabolites with significant level difference comparing pre to post treatment samples (p < 0.05). 4 plasma and 4 urine metabolites were also significant in the original study. Pre-to-post treatment change in metabolite analysis identified 4 plasma and 8 urine metabolites significantly associated with deltaRSS (p < 0.05). Change in urine citrulline levels showed a similar correlation pattern with deltaRSS in the first study, with increasing level associated with improved drug response. These results help validate the first major findings from pharmacometabolomics of BPD including key metabolites within the urea cycle and trans-4-hydroxyproline as a potential marker for lung injury. Ultimately, this study furthers our understanding of the mechanisms of steroid response in BPD patients and helps to design future targeted metabolomics studies in this patient population.
Collapse
Affiliation(s)
- Bradley Stockard
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Department of Pediatrics, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO, United States
| | - Cheri Gauldin
- Division of Neonatology, Department of Pediatrics, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO, United States
| | - William Truog
- Division of Neonatology, Department of Pediatrics, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO, United States
| | - Tamorah Lewis
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Department of Pediatrics, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO, United States.,Division of Neonatology, Department of Pediatrics, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO, United States
| |
Collapse
|
24
|
Differentiation of Cystic Fibrosis-Related Pathogens by Volatile Organic Compound Analysis with Secondary Electrospray Ionization Mass Spectrometry. Metabolites 2021; 11:metabo11110773. [PMID: 34822431 PMCID: PMC8617967 DOI: 10.3390/metabo11110773] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/02/2022] Open
Abstract
Identifying and differentiating bacteria based on their emitted volatile organic compounds (VOCs) opens vast opportunities for rapid diagnostics. Secondary electrospray ionization high-resolution mass spectrometry (SESI-HRMS) is an ideal technique for VOC-biomarker discovery because of its speed, sensitivity towards polar molecules and compound characterization possibilities. Here, an in vitro SESI-HRMS workflow to find biomarkers for cystic fibrosis (CF)-related pathogens P. aeruginosa, S. pneumoniae, S. aureus, H. influenzae, E. coli and S. maltophilia is described. From 180 headspace samples, the six pathogens are distinguishable in the first three principal components and predictive analysis with a support vector machine algorithm using leave-one-out cross-validation exhibited perfect accuracy scores for the differentiation between the groups. Additionally, 94 distinctive features were found by recursive feature elimination and further characterized by SESI-MS/MS, which yielded 33 putatively identified biomarkers. In conclusion, the six pathogens can be distinguished in vitro based on their VOC profiles as well as the herein reported putative biomarkers. In the future, these putative biomarkers might be helpful for pathogen detection in vivo based on breath samples from patients with CF.
Collapse
|
25
|
Ung CY, Onoufriadis A, Parsons M, McGrath JA, Shaw TJ. Metabolic perturbations in fibrosis disease. Int J Biochem Cell Biol 2021; 139:106073. [PMID: 34461262 DOI: 10.1016/j.biocel.2021.106073] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/09/2021] [Accepted: 08/25/2021] [Indexed: 12/19/2022]
Abstract
Metabolic changes occur in all forms of disease but their impact on fibrosis is a relatively recent area of interest. This review provides an overview of the major metabolic pathways, glycolysis, amino acid metabolism and lipid metabolism, and highlights how they influence fibrosis at a cellular and tissue level, drawing on key discoveries in dermal, renal, pulmonary and hepatic fibrosis. The emerging influence of adipose tissue-derived cytokines is discussed and brings a link between fibrosis and systemic metabolism. To close, the concept of targeting metabolism for fibrotic therapy is reviewed, drawing on lessons from the more established field of cancer metabolism, with an emphasis on important considerations for clinical translation.
Collapse
Affiliation(s)
- Chuin Ying Ung
- St John's Institute of Dermatology, King's College London, London, SE19RT, UK.
| | | | - Maddy Parsons
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, SE11UL, UK.
| | - John A McGrath
- St John's Institute of Dermatology, King's College London, London, SE19RT, UK.
| | - Tanya J Shaw
- Centre for Inflammation Biology & Cancer Immunology, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
26
|
A model of the aged lung epithelium in idiopathic pulmonary fibrosis. Aging (Albany NY) 2021; 13:16922-16937. [PMID: 34238764 PMCID: PMC8312437 DOI: 10.18632/aging.203291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/19/2021] [Indexed: 01/19/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an age-related disorder that carries a universally poor prognosis and is thought to arise from repetitive micro injuries to the alveolar epithelium. To date, a major factor limiting our understanding of IPF is a deficiency of disease models, particularly in vitro models that can recapitulate the full complement of molecular attributes in the human condition. In this study, we aimed to develop a model that more closely resembles the aberrant IPF lung epithelium. By exposing mouse alveolar epithelial cells to repeated, low doses of bleomycin, instead of usual one-time exposures, we uncovered changes strikingly similar to those in the IPF lung epithelium. This included the acquisition of multiple phenotypic and functional characteristics of senescent cells and the adoption of previously described changes in mitochondrial homeostasis, including alterations in redox balance, energy production and activity of the mitochondrial unfolded protein response. We also uncovered dramatic changes in cellular metabolism and detected a profound loss of proteostasis, as characterized by the accumulation of cytoplasmic protein aggregates, dysregulated expression of chaperone proteins and decreased activity of the ubiquitin proteasome system. In summary, we describe an in vitro model that closely resembles the aberrant lung epithelium in IPF. We propose that this simple yet powerful tool could help uncover new biological mechanisms and assist in developing new pharmacological tools to treat the disease.
Collapse
|
27
|
Roque W, Romero F. Cellular metabolomics of pulmonary fibrosis, from amino acids to lipids. Am J Physiol Cell Physiol 2021; 320:C689-C695. [PMID: 33471621 PMCID: PMC8163573 DOI: 10.1152/ajpcell.00586.2020] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/25/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease of unknown etiology with limited treatment options. It is characterized by repetitive injury to alveolar epithelial cells and aberrant activation of numerous signaling pathways. Recent evidence suggests that metabolic reprogramming, metabolic dysregulation, and mitochondria dysfunction are distinctive features of the IPF lungs. Through numerous mechanisms, metabolomic abnormalities in alveolar epithelial cells, myofibroblast, macrophages, and fibroblasts contribute to the abnormal collagen synthesis and dysregulated airway remodeling described in lung fibrosis. This review summarizes the metabolomic changes in amino acids, lipids, glucose, and heme seen in IPF lungs. Simultaneously, we provide new insights into potential therapeutic strategies by targeting a variety of metabolites.
Collapse
Affiliation(s)
- Willy Roque
- Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Freddy Romero
- Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
28
|
Drabińska N, Flynn C, Ratcliffe N, Belluomo I, Myridakis A, Gould O, Fois M, Smart A, Devine T, Costello BDL. A literature survey of all volatiles from healthy human breath and bodily fluids: the human volatilome. J Breath Res 2021; 15. [PMID: 33761469 DOI: 10.1088/1752-7163/abf1d0] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/24/2021] [Indexed: 02/06/2023]
Abstract
This paper comprises an updated version of the 2014 review which reported 1846 volatile organic compounds (VOCs) identified from healthy humans. In total over 900 additional VOCs have been reported since the 2014 review and the VOCs from semen have been added. The numbers of VOCs found in breath and the other bodily fluids are: blood 379, breath 1488, faeces 443, milk 290, saliva 549, semen 196, skin 623 and urine 444. Compounds were assigned CAS registry numbers and named according to a common convention where possible. The compounds have been included in a single table with the source reference(s) for each VOC, an update on our 2014 paper. VOCs have also been grouped into tables according to their chemical class or functionality to permit easy comparison. Careful use of the database is needed, as a number of the identified VOCs only have level 2-putative assignment, and only a small fraction of the reported VOCs have been validated by standards. Some clear differences are observed, for instance, a lack of esters in urine with a high number in faeces and breath. However, the lack of compounds from matrices such a semen and milk compared to breath for example could be due to the techniques used or reflect the intensity of effort e.g. there are few publications on VOCs from milk and semen compared to a large number for breath. The large number of volatiles reported from skin is partly due to the methodologies used, e.g. by collecting skin sebum (with dissolved VOCs and semi VOCs) onto glass beads or cotton pads and then heating to a high temperature to desorb VOCs. All compounds have been included as reported (unless there was a clear discrepancy between name and chemical structure), but there may be some mistaken assignations arising from the original publications, particularly for isomers. It is the authors' intention that this work will not only be a useful database of VOCs listed in the literature but will stimulate further study of VOCs from healthy individuals; for example more work is required to confirm the identification of these VOCs adhering to the principles outlined in the metabolomics standards initiative. Establishing a list of volatiles emanating from healthy individuals and increased understanding of VOC metabolic pathways is an important step for differentiating between diseases using VOCs.
Collapse
Affiliation(s)
- Natalia Drabińska
- Division of Food Sciences, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-747 Olsztyn, Poland
| | - Cheryl Flynn
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Norman Ratcliffe
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Ilaria Belluomo
- Department of Surgery and Cancer, Imperial College London, St. Mary's Campus, QEQM Building, London W2 1NY, United Kingdom
| | - Antonis Myridakis
- Department of Surgery and Cancer, Imperial College London, St. Mary's Campus, QEQM Building, London W2 1NY, United Kingdom
| | - Oliver Gould
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Matteo Fois
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Amy Smart
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Terry Devine
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Ben De Lacy Costello
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| |
Collapse
|
29
|
Meier C, Freiburghaus K, Bovet C, Schniering J, Allanore Y, Distler O, Nakas C, Maurer B. Serum metabolites as biomarkers in systemic sclerosis-associated interstitial lung disease. Sci Rep 2020; 10:21912. [PMID: 33318574 PMCID: PMC7736572 DOI: 10.1038/s41598-020-78951-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 12/02/2020] [Indexed: 01/21/2023] Open
Abstract
Systemic sclerosis (SSc) is a severe multi-organ disease with interstitial lung disease (ILD) being the major cause of death. While targeted therapies are emerging, biomarkers for sub-stratifying patients based on individual profiles are lacking. Herein, we investigated how levels of serum metabolites correlated with different stages of SSc and SSc-ILD. Serum samples of patients with SSc without ILD, stable and progressive SSc-ILD as well as of healthy controls (HC) were analysed using liquid targeted tandem mass spectrometry. The best discriminating profile consisted of 4 amino acids (AA) and 3 purine metabolites. L-tyrosine, L-tryptophan, and 1-methyl-adenosine distinguished HC from SSc patients. L-leucine, L-isoleucine, xanthosine, and adenosine monophosphate differentiated between progressing and stable SSc-ILD. In SSc-ILD, both, L-leucine and xanthosine negatively correlated with changes in FVC% predicted. Additionally, xanthosine was negatively correlated with changes in DLco% predicted and positively with the prognostic GAP index. Validation of L-leucine and L-isoleucine by an enzymatic assay confirmed both the sub-stratification of SSc-ILD patients and correlation with lung function and prognosis score. Serum metabolites may have potential as biomarkers for discriminating SSc patients based on the presence and severity of ILD. Confirmation in larger cohorts will be needed to appreciate their value for routine clinical care.
Collapse
Affiliation(s)
- C Meier
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - K Freiburghaus
- University Institute of Clinical Chemistry, Bern University Hospital, University of Bern, Bern, Switzerland
| | - C Bovet
- University Institute of Clinical Chemistry, Bern University Hospital, University of Bern, Bern, Switzerland
| | - J Schniering
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Y Allanore
- Department of Rheumatology A, Descartes University, APHP, Cochin Hospital, Paris, France
| | - O Distler
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - C Nakas
- University Institute of Clinical Chemistry, Bern University Hospital, University of Bern, Bern, Switzerland
- Laboratory of Biometry, University of Thessaly, Volos, Greece
| | - B Maurer
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
30
|
Yang J, Pan X, Wang L, Yu G. Alveolar cells under mechanical stressed niche: critical contributors to pulmonary fibrosis. Mol Med 2020; 26:95. [PMID: 33054759 PMCID: PMC7556585 DOI: 10.1186/s10020-020-00223-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022] Open
Abstract
Pulmonary fibrosis arises from the repeated epithelial mild injuries and insufficient repair lead to over activation of fibroblasts and excessive deposition of extracellular matrix, which result in a mechanical stretched niche. However, increasing mechanical stress likely exists before the establishment of fibrosis since early micro injuries increase local vascular permeability and prompt cytoskeletal remodeling which alter cellular mechanical forces. It is noteworthy that COVID-19 patients with severe hypoxemia will receive mechanical ventilation as supportive treatment and subsequent pathology studies indicate lung fibrosis pattern. At advanced stages, mechanical stress originates mainly from the stiff matrix since boundaries between stiff and compliant parts of the tissue could generate mechanical stress. Therefore, mechanical stress has a significant role in the whole development process of pulmonary fibrosis. The alveoli are covered by abundant capillaries and function as the main gas exchange unit. Constantly subject to variety of damages, the alveolar epithelium injuries were recently recognized to play a vital role in the onset and development of idiopathic pulmonary fibrosis. In this review, we summarize the literature regarding the effects of mechanical stress on the fundamental cells constituting the alveoli in the process of pulmonary fibrosis, particularly on epithelial cells, capillary endothelial cells, fibroblasts, mast cells, macrophages and stem cells. Finally, we briefly review this issue from a more comprehensive perspective: the metabolic and epigenetic regulation.
Collapse
Affiliation(s)
- Juntang Yang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Outstanding Overseas Scientists Center for Pulmonary Fibrosis of Henan Province, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Xin Pan
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Outstanding Overseas Scientists Center for Pulmonary Fibrosis of Henan Province, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Lan Wang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Outstanding Overseas Scientists Center for Pulmonary Fibrosis of Henan Province, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Guoying Yu
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Outstanding Overseas Scientists Center for Pulmonary Fibrosis of Henan Province, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China.
| |
Collapse
|
31
|
Nojima Y, Takeda Y, Maeda Y, Bamba T, Fukusaki E, Itoh MN, Mizuguchi K, Kumanogoh A. Metabolomic analysis of fibrotic mice combined with public RNA-Seq human lung data reveal potential diagnostic biomarker candidates for lung fibrosis. FEBS Open Bio 2020; 10:2427-2436. [PMID: 32961634 PMCID: PMC7609803 DOI: 10.1002/2211-5463.12982] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/06/2020] [Accepted: 09/15/2020] [Indexed: 01/22/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a severe lung disease with poor survival that warrants early and precise diagnosis for timely therapeutic intervention. Despite accumulating genomic, transcriptomic, proteomic, and lipidomic data on IPF, evidence from water‐soluble metabolomics is limited. To identify biomarkers for IPF from water‐soluble metabolomic data, we measured the levels of various metabolites in bronchoalveolar lavage fluid (BALF) and serum samples from a bleomycin‐induced murine pulmonary fibrotic model using gas chromatography/mass spectrometry. Thirty‐two of 73 BALF metabolites and 29 of 74 serum metabolites were annotated. We observed that the levels of proline and methionine were higher in BALF but lower in serum than those in the control. Furthermore, analysis of public RNA‐Seq data from the lungs of patients with IPF revealed that proline‐ and methionine‐related genes were significantly upregulated compared to those in the lungs of healthy controls. These results suggest that proline and methionine may be potential biomarkers for IPF and may help to deepen our understanding of the pathophysiology of the disease. Based on our results, we propose a model capable of recapitulating the proline and methionine metabolism of fibrotic lungs, thereby providing better means for studying the disease and developing novel therapeutic strategies for IPF.
Collapse
Affiliation(s)
- Yosui Nojima
- Laboratory of BioinformaticsArtificial Intelligence Center for Health and Biomedical Research (ArCHER)National Institutes of Biomedical Innovation, Health and NutritionOsakaJapan
| | - Yoshito Takeda
- Department of Respiratory Medicine and Clinical ImmunologyOsaka University Graduate School of MedicineJapan
| | - Yohei Maeda
- Department of Respiratory Medicine and Clinical ImmunologyOsaka University Graduate School of MedicineJapan
| | - Takeshi Bamba
- Department of BiotechnologyGraduate School of EngineeringOsaka UniversityJapan
- Division of MetabolomicsMedical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Eiichiro Fukusaki
- Department of BiotechnologyGraduate School of EngineeringOsaka UniversityJapan
| | - Mari N. Itoh
- Laboratory of BioinformaticsArtificial Intelligence Center for Health and Biomedical Research (ArCHER)National Institutes of Biomedical Innovation, Health and NutritionOsakaJapan
| | - Kenji Mizuguchi
- Laboratory of BioinformaticsArtificial Intelligence Center for Health and Biomedical Research (ArCHER)National Institutes of Biomedical Innovation, Health and NutritionOsakaJapan
- Institute for Protein ResearchOsaka UniversityJapan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical ImmunologyOsaka University Graduate School of MedicineJapan
| |
Collapse
|
32
|
Zhu Z, Xu X, Wang F, Song Y, Zhu Y, Quan W, Zhang X, Bi C, He H, Li S, Li X. Integrative microRNA and mRNA expression profiling in acute aristolochic acid nephropathy in mice. Mol Med Rep 2020; 22:3367-3377. [PMID: 32945497 PMCID: PMC7453650 DOI: 10.3892/mmr.2020.11444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022] Open
Abstract
In acute aristolochic acid nephropathy (AAN), aristolochic acid (AA) induces renal injury and tubulointerstitial fibrosis. However, the roles of microRNAs (miRNAs/miRs) and mRNAs involved in AAN are not clearly understood. The aim of the present study was to examine AA‑induced genome‑wide differentially expressed (DE) miRNAs and DE mRNAs using deep sequencing in mouse kidneys, and to analyze their regulatory networks. In the present self‑controlled study, mice were treated with 5 mg/kg/day AA for 5 days, following unilateral nephrectomy. AA‑induced renal injury and tubulointerstitial fibrosis were detected using hematoxylin and eosin staining and Masson's trichrome staining in the mouse kidneys. A total of 82 DE miRNAs and 4,605 DE mRNAs were identified between the AA‑treated group and the self‑control group. Of these DE miRNAs and mRNAs, some were validated using reverse transcription‑quantitative PCR. Expression levels of the profibrotic miR‑21, miR‑433 and miR‑132 families were significantly increased, whereas expression levels of the anti‑fibrotic miR‑122‑5p and let‑7a‑1‑3p were significantly decreased. Functions and signaling pathways associated with the DE miRNAs and mRNAs were analyzed using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG). A total of 767 DE pairs (in opposing directions) of miRNAs and their mRNA targets were identified. Among these, regulatory networks of miRNAs and mRNAs were analyzed using KEGG to identify enriched signaling pathways and extracellular matrix‑associated pathways. In conclusion, the present study identified genome‑wide DE miRNAs and mRNAs in the kidneys of AA‑treated mice, as well as their regulatory pairs and signaling networks. The present results may improve the understanding of the role of DE miRNAs and their mRNA targets in the pathophysiology of acute AAN.
Collapse
Affiliation(s)
- Ziqiang Zhu
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Xinxing Xu
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Fengying Wang
- Department of Pediatrics, Sir Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 211100, P.R. China
| | - Yongrui Song
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Yanping Zhu
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Wei Quan
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Xueli Zhang
- Centre for Systems Biology, Soochow University, Suzhou, Jiangsu 215006, P.R. China
- School of Medicine, Institute of Medical Sciences, Örebro University, SE-70182 Örebro, Sweden
| | - Cheng Bi
- Centre for Systems Biology, Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Hongxin He
- Centre for Systems Biology, Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Shuang Li
- Centre for Systems Biology, Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Xiaozhong Li
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
33
|
Insights into the Role of Bioactive Food Ingredients and the Microbiome in Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2020; 21:ijms21176051. [PMID: 32842664 PMCID: PMC7503951 DOI: 10.3390/ijms21176051] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 02/08/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic disease mainly associated with aging and, to date, its causes are still largely unknown. It has been shown that dietary habits can accelerate or delay the occurrence of aging-related diseases; however, their potential role in IPF development has been underestimated so far. The present review summarizes the evidence regarding the relationship between diet and IPF in humans, and in animal models of pulmonary fibrosis, in which we discuss the bioactivity of specific dietary food ingredients, including fatty acids, peptides, amino acids, carbohydrates, vitamins, minerals and phytochemicals. Interestingly, many animal studies reveal preventive and therapeutic effects of particular compounds. Furthermore, it has been recently suggested that the lung and gut microbiota could be involved in IPF, a relationship which may be linked to changes in immunological and inflammatory factors. Thus, all the evidence so far puts forward the idea that the gut-lung axis could be modulated by dietary factors, which in turn have an influence on IPF development. Overall, the data reviewed here support the notion of identifying food ingredients with potential benefits in IPF, with the ultimate aim of designing nutritional approaches as an adjuvant therapeutic strategy.
Collapse
|
34
|
Bruderer T, Gaugg MT, Cappellin L, Lopez-Hilfiker F, Hutterli M, Perkins N, Zenobi R, Moeller A. Detection of Volatile Organic Compounds with Secondary Electrospray Ionization and Proton Transfer Reaction High-Resolution Mass Spectrometry: A Feature Comparison. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1632-1640. [PMID: 32584571 DOI: 10.1021/jasms.0c00059] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The analysis of volatiles is of high relevance for a wide range of applications from environmental air sampling and security screening to potential medical applications. High-resolution mass spectrometry methods offer a particularly wide compound coverage, sensitivity, and selectivity. Online approaches allow direct analysis in real time without the need for sample preparation. For the first time, we systematically compared the analysis of volatile organic compounds with secondary electrospray ionization (SESI) and proton transfer reaction (PTR) high-resolution mass spectrometry. The selected instruments had comparable mass resolving powers with m/Δm ≥ 15000, which is particularly suitable for nontargeted analysis, for example, of exhaled breath. Exhalations from 14 healthy adults were analyzed simultaneously on both instruments. In addition, 97 reference standards from nine chemical classes were analyzed with a liquid evaporation system. Surprisingly, in breath, we found more complementary than overlapping features. A clear mass dependence was observed for each method with the highest number of detected m/z features for SESI in the high mass region (m/z = 150-250) and for PTR in the low mass region (m/z = 50-150). SESI yielded a significantly higher numbers of peaks (828) compared to PTR (491) among a total of 1304 unique breath m/z features. The number of signals observed by both methods was lower than expected (133 features) with 797 unique SESI features and 374 unique PTR features. Hypotheses to explain the observed mass-dependent differences are proposed.
Collapse
Affiliation(s)
- Tobias Bruderer
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
- Division of Respiratory Medicine, University Children's Hospital Zurich and Children's Research Center Zurich, 8032 Zurich, Switzerland
| | - Martin T Gaugg
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| | - Luca Cappellin
- TOFWERK AG, 3645 Thun, Switzerland
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, 35131 Padua, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all'Adige, Italy
| | | | | | - Nathan Perkins
- Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| | - Alexander Moeller
- Division of Respiratory Medicine, University Children's Hospital Zurich and Children's Research Center Zurich, 8032 Zurich, Switzerland
| |
Collapse
|
35
|
Diagnostic approach of fibrosing interstitial lung diseases of unknown origin. Presse Med 2020; 49:104021. [PMID: 32437843 DOI: 10.1016/j.lpm.2020.104021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/03/2020] [Indexed: 12/25/2022] Open
Abstract
Interstitial lung diseases encompass a broad range of numerous individual conditions, some of them characterized histologically by fibrosis, especially idiopathic pulmonary fibrosis, nonspecific interstitial pneumonia, chronic hypersensitivity pneumonia, interstitial lung disease associated with connective tissue diseases, and unclassifiable interstitial lung disease. The diagnostic approach relies mainly on the clinical evaluation, especially assessment of the patient's demographics, history, smoking habits, occupational or domestic exposures, use of drugs, and on interpretation of high-quality HRCT of the chest. Imaging is key to the initial diagnostic approach, and often can confirm a definite diagnosis, particularly a diagnosis of idiopathic pulmonary fibrosis when showing a pattern of usual interstitial pneumonia in the appropriate context. In other cases, chest HRCT may orientate toward an alternative diagnosis and appropriate investigations to confirm the suspected diagnosis. Autoimmune serology helps diagnosing connective disease. Indications for bronchoalveolar lavage and for lung biopsy progressively become more restrictive, with better considerations for their discriminate value, of the potential risk associated with the procedure, and of the anticipated impact on management. Innovative techniques and genetics are beginning to contribute to diagnosing interstitial lung disease and to be implemented routinely in the clinic. Multidisciplinary discussion, enabling interaction between pulmonologists, chest radiologists, pathologists and often other healthcare providers, allows integration of all information available. It increases the accuracy of diagnosis and prognosis prediction, proposes a first-choice diagnosis, may suggest additional investigations, and often informs the management. The concept of working diagnosis, which can be revised upon additional information being made available especially longitudinal disease behaviour, helps dealing with diagnostic uncertainty inherent to interstitial lung diseases and facilitates management decisions. Above all, the clinical approach and how thoroughly the patient's history and possible exposures are assessed determine the possibility of an accurate diagnosis.
Collapse
|
36
|
George PM, Wells AU. Contemporary Concise Review 2019: Interstitial lung disease. Respirology 2020; 25:756-763. [PMID: 32187808 DOI: 10.1111/resp.13803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/04/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Peter M George
- Interstitial Lung Disease Unit, Royal Brompton and Harefield NHS Foundation Trust, London, UK.,National Heart and Lung Institute, Imperial College London, London, UK
| | - Athol U Wells
- Interstitial Lung Disease Unit, Royal Brompton and Harefield NHS Foundation Trust, London, UK.,National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
37
|
Hoffmann-Vold AM, Fretheim H, Meier C, Maurer B. Circulating biomarkers of systemic sclerosis - interstitial lung disease. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2020; 5:41-47. [PMID: 35382223 PMCID: PMC8922568 DOI: 10.1177/2397198319894851] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/06/2019] [Indexed: 10/24/2023]
Abstract
Interstitial lung disease is a frequent organ manifestation in systemic sclerosis and is associated with high mortality. It is crucial to diagnose interstitial lung disease in systemic sclerosis and to assess severity and identify patients prone to progression at an early stage to ultimately decrease organ damage and improve outcome. Circulating anti-topoisomerase-I autoantibodies have long been associated with the presence and development of systemic sclerosis - interstitial lung disease, evidence on their potential to further predict the clinical course of systemic sclerosis is however conflicting. C-reactive protein is a marker of infection and systemic inflammation with widespread clinical application and is elevated in systemic sclerosis with a tendency towards higher abundancy in patients with early disease. The role of other circulating biomarkers is promising but hampered by the lack of standardized criteria and guidelines for sample/data collection, analyses, reporting and validation and has not reached prime time for clinical application. However, epithelial markers including Krebs von den Lungen-6 and surfactant protein D and several cytokines and chemokines including CCL2 and CCL18 for severity assessment of systemic sclerosis - interstitial lung disease patients at the time of interstitial lung disease diagnosis and to predict interstitial lung disease progression have been reported and seem to be promising candidate biomarkers in the future.
Collapse
Affiliation(s)
- Anna-Maria Hoffmann-Vold
- Department of Rheumatology, Oslo
University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine,
University of Oslo, Oslo, Norway
| | - Håvard Fretheim
- Department of Rheumatology, Oslo
University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine,
University of Oslo, Oslo, Norway
| | - Chantal Meier
- Center of Experimental
Rheumatology, Department of Rheumatology, Zurich University Hospital,
Zurich, Switzerland
| | - Britta Maurer
- Center of Experimental
Rheumatology, Department of Rheumatology, Zurich University Hospital,
Zurich, Switzerland
| |
Collapse
|
38
|
Standardization procedures for real-time breath analysis by secondary electrospray ionization high-resolution mass spectrometry. Anal Bioanal Chem 2019; 411:4883-4898. [PMID: 30989265 PMCID: PMC6611759 DOI: 10.1007/s00216-019-01764-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/25/2019] [Accepted: 03/06/2019] [Indexed: 01/27/2023]
Abstract
Despite the attractiveness of breath analysis as a non-invasive means to retrieve relevant metabolic information, its introduction into routine clinical practice remains a challenge. Among all the different analytical techniques available to interrogate exhaled breath, secondary electrospray ionization high-resolution mass spectrometry (SESI-HRMS) offers a number of advantages (e.g., real-time, yet wide, metabolome coverage) that makes it ideal for untargeted and targeted studies. However, so far, SESI-HRMS has relied mostly on lab-built prototypes, making it difficult to standardize breath sampling and subsequent analysis, hence preventing further developments such as multi-center clinical studies. To address this issue, we present here a number of new developments. In particular, we have characterized a new SESI interface featuring real-time readout of critical exhalation parameters such as CO2, exhalation flow rate, and exhaled volume. Four healthy subjects provided breath specimens over a period of 1 month to characterize the stability of the SESI-HRMS system. A first assessment of the repeatability of the system using a gas standard revealed a coefficient of variation (CV) of 2.9%. Three classes of aldehydes, namely 4-hydroxy-2-alkenals, 2-alkenals and 4-hydroxy-2,6-alkedienals―hypothesized to be markers of oxidative stress―were chosen as representative metabolites of interest to evaluate the repeatability and reproducibility of this breath analysis analytical platform. Median and interquartile ranges (IQRs) of CVs for CO2, exhalation flow rate, and exhaled volume were 3.2% (1.5%), 3.1% (1.9%), and 5.0% (4.6%), respectively. Despite the high repeatability observed for these parameters, we observed a systematic decay in the signal during repeated measurements for the shorter fatty aldehydes, which eventually reached a steady state after three/four repeated exhalations. In contrast, longer fatty aldehydes showed a steady behavior, independent of the number of repeated exhalation maneuvers. We hypothesize that this highly molecule-specific and individual-independent behavior may be explained by the fact that shorter aldehydes (with higher estimated blood-to-air partition coefficients; approaching 100) mainly get exchanged in the airways of the respiratory system, whereas the longer aldehydes (with smaller estimated blood-to-air partition coefficients; approaching 10) are thought to exchange mostly in the alveoli. Exclusion of the first three exhalations from the analysis led to a median CV (IQR) of 6.7 % (5.5 %) for the said classes of aldehydes. We found that such intra-subject variability is in general much lower than inter-subject variability (median relative differences between subjects 48.2%), suggesting that the system is suitable to capture such differences. No batch effect due to sampling date was observed, overall suggesting that the intra-subject variability measured for these series of aldehydes was biological rather than technical. High correlations found among the series of aldehydes support this notion. Finally, recommendations for breath sampling and analysis for SESI-HRMS users are provided with the aim of harmonizing procedures and improving future inter-laboratory comparisons. Graphical abstract ![]()
Collapse
|
39
|
Yanagihara T, Kolb M. Molecular breath analysis for IPF: Can we make a few breaths count? Respirology 2019; 24:404-405. [DOI: 10.1111/resp.13503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 01/29/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Toyoshi Yanagihara
- Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, Department of MedicineMcMaster University Hamilton ON Canada
| | - Martin Kolb
- Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, Department of MedicineMcMaster University Hamilton ON Canada
| |
Collapse
|