1
|
Li H, Liu Y, Zhang H, Shi X, Luo Y, Fu G, Zhao C, Guo L, Li X, Shan L. Identification of potential diagnostic biomarkers and therapeutic targets in patients with hypoxia pulmonary hypertension. Int Immunopharmacol 2024; 142:113028. [PMID: 39226824 DOI: 10.1016/j.intimp.2024.113028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND Pulmonary hypertension is a serious disease. Emerging studies have shown that M2 macrophages play an essential role in pulmonary hypertension; however, their mechanism of action is uncertain. METHODS Four GEO datasets were downloaded. The differentially expressed genes (DEGs) were obtained using the limma package. Simultaneously, the Cell-type Identification By Estimating Relative Subsets Of RNA Transcripts (CIBERSORT) algorithm and weighted gene co-expression network analysis (WGCNA) were used to get the information about M2 macrophage-related modules. Potential key genes were obtained by intersecting DEGs with M2 macrophage-related module genes (M2MRGs), and finally the area under the curve (AUC) was calculated. Rats were exposed to hypoxia condition (10 % O2) for 4 weeks to induce PH. Subsequently, potential key genes with AUC>0.7 were analyzed by quantitative real-time polymerase chain reaction and Western blot using normoxia and hypoxia rat lungs. We knocked down EPHA3 in Raw264.7 cells and detected the protein expression of M2 macrophage markers including arginase 1 (ARG1) and interleukin 10 (IL-10), phospho-protein kinase B (P-Akt), and protein kinase B (Akt) to explore the downstream pathways of EPHA3. RESULTS Seven potential hub genes were detected by intersecting M2MRGs and DEGs. Six genes with AUC values above 0.7 were used for further exploration. The expression of EPHA3 mRNA and protein was significantly more upregulated in rats with hypoxia than in rats with normoxia. The expression levels of IL10, ARG1, and P-Akt/Akt decreased after knocking down EPHA3. CONCLUSIONS This study suggested that the activation of the P-Akt/Akt signaling pathway promoted by EPHA3 played an essential role in the progression of pulmonary hypertension.
Collapse
Affiliation(s)
- Hongyan Li
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Yi Liu
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Hongli Zhang
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Xianbao Shi
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Yue Luo
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Gaoge Fu
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Churong Zhao
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Lixuan Guo
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Xin Li
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Lina Shan
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China.
| |
Collapse
|
2
|
Meng ZY, Lu CH, Li J, Liao J, Wen H, Li Y, Huang F, Zeng ZY. Identification and experimental verification of senescence-related gene signatures and molecular subtypes in idiopathic pulmonary arterial hypertension. Sci Rep 2024; 14:22157. [PMID: 39333589 PMCID: PMC11437103 DOI: 10.1038/s41598-024-72979-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
Evidences illustrate that cell senescence contributes to the development of pulmonary arterial hypertension. However, the molecular mechanisms remain unclear. Since there may be different senescence subtypes between PAH patients, consistent senescence-related genes (SRGs) were utilized for consistent clustering by unsupervised clustering methods. Senescence is inextricably linked to the immune system, and the immune cells in each cluster were estimated by ssGSEA. To further screen out more important SRGs, machine learning algorithms were used for identification and their diagnostic value was assessed by ROC curves. The expression of hub genes were verified in vivo and in vitro. Transcriptome analysis was used to assess the effects of silence of hub gene on different pathways. Three senescence molecular subtypes were identified by consensus clustering. Compared with cluster A and B, most immune cells and checkpoint genes were higher in cluster C. Thus, we identified senescence cluster C as the immune subtype. The ROC curves of IGF1, HOXB7, and YWHAZ were remarkable in both datasets. The expression of these genes was increased in vitro. Western blot and immunohistochemical analyses revealed that YWHAZ expression was also increased. Our transcriptome analysis showed autophagy-related genes were significantly elevated after silence of YWHAZ. Our research provided several prospective SRGs and molecular subtypes. Silence of YWHAZ may contribute to the clearance of senescent endothelial cells by activating autophagy.
Collapse
Affiliation(s)
- Zhong-Yuan Meng
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, No.6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Chuang-Hong Lu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, No.6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Jing Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, No.6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Juan Liao
- Ultrasound Department, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Hong Wen
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, No.6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Yuan Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, No.6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Feng Huang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, No.6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
| | - Zhi-Yu Zeng
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, No.6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
| |
Collapse
|
3
|
Yang C, Liu YH, Zheng HK. Identification of TFRC as a biomarker for pulmonary arterial hypertension based on bioinformatics and experimental verification. Respir Res 2024; 25:296. [PMID: 39097701 PMCID: PMC11298087 DOI: 10.1186/s12931-024-02928-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a life-threatening chronic cardiopulmonary disease. However, there is a paucity of studies that reflect the available biomarkers from separate gene expression profiles in PAH. METHODS The GSE131793 and GSE113439 datasets were combined for subsequent analyses, and batch effects were removed. Bioinformatic analysis was then performed to identify differentially expressed genes (DEGs). Weighted gene co-expression network analysis (WGCNA) and a protein-protein interaction (PPI) network analysis were then used to further filter the hub genes. Functional enrichment analysis of the intersection genes was performed using Gene Ontology (GO), Disease Ontology (DO), Kyoto encyclopedia of genes and genomes (KEGG) and gene set enrichment analysis (GSEA). The expression level and diagnostic value of hub gene expression in pulmonary arterial hypertension (PAH) patients were also analyzed in the validation datasets GSE53408 and GSE22356. In addition, target gene expression was validated in the lungs of a monocrotaline (MCT)-induced pulmonary hypertension (PH) rat model and in the serum of PAH patients. RESULTS A total of 914 differentially expressed genes (DEGs) were identified, with 722 upregulated and 192 downregulated genes. The key module relevant to PAH was selected using WGCNA. By combining the DEGs and the key module of WGCNA, 807 genes were selected. Furthermore, protein-protein interaction (PPI) network analysis identified HSP90AA1, CD8A, HIF1A, CXCL8, EPRS1, POLR2B, TFRC, and PTGS2 as hub genes. The GSE53408 and GSE22356 datasets were used to evaluate the expression of TFRC, which also showed robust diagnostic value. According to GSEA enrichment analysis, PAH-relevant biological functions and pathways were enriched in patients with high TFRC levels. Furthermore, TFRC expression was found to be upregulated in the lung tissues of our experimental PH rat model compared to those of the controls, and the same conclusion was reached in the serum of the PAH patients. CONCLUSIONS According to our bioinformatics analysis, the observed increase of TFRC in the lung tissue of human PAH patients, as indicated by transcriptomic data, is consistent with the alterations observed in PAH patients and rodent models. These data suggest that TFRC may serve as a potential biomarker for PAH.
Collapse
Affiliation(s)
- Chuang Yang
- Department of cardiology, The second hospital of Jilin University, Changchun, China
| | - Yi-Hang Liu
- Department of cardiology, The second hospital of Jilin University, Changchun, China
| | - Hai-Kuo Zheng
- Department of cardiology, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
4
|
Yu X, Huang J, Liu X, Li J, Yu M, Li M, Xie Y, Li Y, Qiu J, Xu Z, Zhu T, Zhang W. LncRNAH19 acts as a ceRNA of let-7 g to facilitate endothelial-to-mesenchymal transition in hypoxic pulmonary hypertension via regulating TGF-β signalling pathway. Respir Res 2024; 25:270. [PMID: 38987833 PMCID: PMC11238495 DOI: 10.1186/s12931-024-02895-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Hypoxic pulmonary hypertension (HPH) is a challenging lung arterial disorder with remarkably high incidence and mortality rates, and the efficiency of current HPH treatment strategies is unsatisfactory. Endothelial-to-mesenchymal transition (EndMT) in the pulmonary artery plays a crucial role in HPH. Previous studies have shown that lncRNA-H19 (H19) is involved in many cardiovascular diseases by regulating cell proliferation and differentiation but the role of H19 in EndMT in HPH has not been defined. METHODS In this research, the expression of H19 was investigated in PAH human patients and rat models. Then, we established a hypoxia-induced HPH rat model to evaluate H19 function in HPH by Echocardiography and hemodynamic measurements. Moreover, luciferase reporter gene detection, and western blotting were used to explore the mechanism of H19. RESULTS Here, we first found that the expression of H19 was significantly increased in the endodermis of pulmonary arteries and that H19 deficiency obviously ameliorated pulmonary vascular remodelling and right heart failure in HPH rats, and these effects were associated with inhibition of EndMT. Moreover, an analysis of luciferase activity indicated that microRNA-let-7 g (let-7 g) was a direct target of H19. H19 deficiency or let-7 g overexpression can markedly downregulate the expression of TGFβR1, a novel target gene of let-7 g. Furthermore, inhibition of TGFβR1 induced similar effects to H19 deficiency. CONCLUSIONS In summary, our findings demonstrate that the H19/let-7 g/TGFβR1 axis is crucial in the pathogenesis of HPH by stimulating EndMT. Our study may provide new ideas for further research on HPH therapy in the near future.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Rats
- Disease Models, Animal
- Epithelial-Mesenchymal Transition/physiology
- Epithelial-Mesenchymal Transition/genetics
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/pathology
- Hypoxia/metabolism
- Hypoxia/genetics
- MicroRNAs/metabolism
- MicroRNAs/genetics
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Rats, Sprague-Dawley
- Receptor, Transforming Growth Factor-beta Type I/metabolism
- Receptor, Transforming Growth Factor-beta Type I/genetics
- RNA, Competitive Endogenous/genetics
- RNA, Competitive Endogenous/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Signal Transduction/physiology
- Transforming Growth Factor beta/metabolism
Collapse
Affiliation(s)
- Xin Yu
- Department of Pharmacy, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, P.R. China
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, Jiangxi, P.R. China
| | - Jiabing Huang
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, P.R. China
| | - Xu Liu
- College of Pharmacy, Xinxiang Medical University, No. 601 Jin-sui Road, Xinxiang, 453003, Henan, P.R. China
- Henan International Joint Laboratory of Cardiovascular Remodelling and Drug Intervention, Xinxiang, 453003, Henan, P.R. China
- Department of Pharmacy, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, Henan, P.R. China
| | - Juan Li
- Department of Pharmacy, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, P.R. China
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, Jiangxi, P.R. China
| | - Miao Yu
- College of Pharmacy, Xinxiang Medical University, No. 601 Jin-sui Road, Xinxiang, 453003, Henan, P.R. China
- Henan International Joint Laboratory of Cardiovascular Remodelling and Drug Intervention, Xinxiang, 453003, Henan, P.R. China
| | - Minghui Li
- College of Pharmacy, Xinxiang Medical University, No. 601 Jin-sui Road, Xinxiang, 453003, Henan, P.R. China
- Henan International Joint Laboratory of Cardiovascular Remodelling and Drug Intervention, Xinxiang, 453003, Henan, P.R. China
| | - Yuliang Xie
- College of Pharmacy, Xinxiang Medical University, No. 601 Jin-sui Road, Xinxiang, 453003, Henan, P.R. China
- Henan International Joint Laboratory of Cardiovascular Remodelling and Drug Intervention, Xinxiang, 453003, Henan, P.R. China
| | - Ye Li
- The First Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Junyu Qiu
- Queen Mary School, Medical Department, Nanchang University, Nanchang, 330031, China
| | - Zhou Xu
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Tiantian Zhu
- College of Pharmacy, Xinxiang Medical University, No. 601 Jin-sui Road, Xinxiang, 453003, Henan, P.R. China.
- Henan International Joint Laboratory of Cardiovascular Remodelling and Drug Intervention, Xinxiang, 453003, Henan, P.R. China.
| | - Weifang Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, P.R. China.
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, Jiangxi, P.R. China.
| |
Collapse
|
5
|
Luo A, Hao R, Zhou X, Jia Y, Bao C, Yang L, Zhou L, Gu C, Desai AA, Tang H, Chu AA. Transcriptomic profiling highlights cell proliferation in the progression of experimental pulmonary hypertension in rats. Sci Rep 2024; 14:14056. [PMID: 38890390 PMCID: PMC11189536 DOI: 10.1038/s41598-024-64251-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease characterized by pulmonary vascular remolding and occlusion, leading to the elevated pulmonary arterial pressures, right ventricular hypertrophy, and eventual heart failure if left untreated. Understanding the molecular mechanisms underlying the development and progression of pulmonary hypertension (PH) is crucial for devising efficient therapeutic approaches for the disease. Lung homogenates were collected weekly and underwent RNA-sequencing in the monocrotaline (MCT)-induced PH rat model to explore genes associated with PH progression. Statistical analyses revealed 1038, 1244, and 3125 significantly altered genes (P < 0.05, abs (log2fold change) > log21.5) between control and MCT-exposed rats during the first, second, and third week, respectively. Pathway enrichment analyses revealed involvement of cell cycle and innate immune system for the upregulated genes, GPCR and VEGF signaling for the downregulated genes. Furthermore, qRT-PCR validated upregulation of representative genes associated with cell cycle including Cdc25c (cell division cycle 25C), Cdc45, Top2a (topoisomerase IIα), Ccna2 (cyclin A2) and Ccnb1 (cyclin B1). Western blot and immunofluorescence analysis confirmed increases in PCNA, Ccna2, Top2a, along with other proliferation markers in the lung tissue of MCT-treated rats. In summary, RNA sequencing data highlights the significance of cell proliferation in progression of rodent PH.
Collapse
Affiliation(s)
- Ang Luo
- College of Veterinary Medicine, Northwest A and F University, Yangling, 712100, China.
| | - Rongrong Hao
- College of Veterinary Medicine, Northwest A and F University, Yangling, 712100, China
| | - Xia Zhou
- College of Veterinary Medicine, Northwest A and F University, Yangling, 712100, China
| | - Yangfan Jia
- Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China
| | - Changlei Bao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Lei Yang
- College of Veterinary Medicine, Northwest A and F University, Yangling, 712100, China
| | - Lirong Zhou
- College of Veterinary Medicine, Northwest A and F University, Yangling, 712100, China
| | - Chenxin Gu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Ankit A Desai
- Department of Medicine, Indiana University, Indianapolis, IN, 46202, USA
| | - Haiyang Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| | - Ai-Ai Chu
- Division of Echocardiography, Department of Cardiology, Gansu Provincial Hospital, Lanzhou, 730000, China.
| |
Collapse
|
6
|
Lou YX, Shi ED, Yang R, Yang Y. Exploring the mechanisms of glycolytic genes involvement in pulmonary arterial hypertension through integrative bioinformatics analysis. J Cell Mol Med 2024; 28:e18447. [PMID: 38837574 DOI: 10.1111/jcmm.18447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/17/2024] [Accepted: 05/13/2024] [Indexed: 06/07/2024] Open
Abstract
The purpose of this study was to identify the mechanisms underlying the involvement of glycolytic genes in pulmonary arterial hypertension (PAH). This study involved downloading 3 datasets from the GEO database at the National Center for Biotechnology Information. The datasets were processed to obtain expression matrices for analysis. Genes involved in glycolysis-related pathways were obtained, and genes related to glycolysis were selected based on significant differences in expression. Gene Ontology functional annotation analysis, Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis, and GSEA enrichment analysis were performed on the DEGs. Combining LASSO regression with SVM-RFE machine learning technology, a PAH risk prediction model based on glycolysis related gene expression was constructed, and CIBERSORTx technology was used to analyse the immune cell composition of PAH patients. Gene enrichment analysis revealed that the DEGs work synergistically across multiple biological pathways. A total of 6 key glycolysis-related genes were selected using LASSO regression and SVM. A bar plot was constructed to evaluate the weights of the key genes and predict the risk of PAH. The clinical application value and predictive accuracy of the model were assessed. Immunological feature analysis revealed significant correlations between key glycolysis-related genes and the abundances of different immune cell types. The glycolysis genes (ACSS2, ALAS2, ALDH3A1, ADOC3, NT5E, and TALDO1) identified in this study play important roles in the development of pulmonary arterial hypertension, providing new evidence for the involvement of glycolysis in PAH.
Collapse
Affiliation(s)
- Yu-Xuan Lou
- Department of cardiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Er-Dan Shi
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Rong Yang
- Department of Rheumatology and Immunology, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Yang Yang
- Department of cardiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
7
|
Li X, Ma S, Wang Q, Li Y, Ji X, Liu J, Ma J, Wang Y, Zhang Z, Zhang H, Chen H, Xi L, Zhang Y, Xie W, Sun L, Fu Z, Yang P, Wang C, Zhai Z. A new integrative analysis of histopathology and single cell RNA-seq reveals the CCL5 mediated T and NK cell interaction with vascular cells in idiopathic pulmonary arterial hypertension. J Transl Med 2024; 22:502. [PMID: 38797830 PMCID: PMC11129488 DOI: 10.1186/s12967-024-05304-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Inflammation and dysregulated immunity play vital roles in idiopathic pulmonary arterial hypertension (IPAH), while the mechanisms that initiate and promote these processes are unclear. METHODS Transcriptomic data of lung tissues from IPAH patients and controls were obtained from the Gene Expression Omnibus database. Weighted gene co-expression network analysis (WGCNA), differential expression analysis, protein-protein interaction (PPI) and functional enrichment analysis were combined with a hemodynamically-related histopathological score to identify inflammation-associated hub genes in IPAH. The monocrotaline-induced rat model of pulmonary hypertension was utilized to confirm the expression pattern of these hub genes. Single-cell RNA-sequencing (scRNA-seq) data were used to identify the hub gene-expressing cell types and their intercellular interactions. RESULTS Through an extensive bioinformatics analysis, CXCL9, CCL5, GZMA and GZMK were identified as hub genes that distinguished IPAH patients from controls. Among these genes, pulmonary expression levels of Cxcl9, Ccl5 and Gzma were elevated in monocrotaline-exposed rats. Further investigation revealed that only CCL5 and GZMA were highly expressed in T and NK cells, where CCL5 mediated T and NK cell interaction with endothelial cells, smooth muscle cells, and fibroblasts through multiple receptors. CONCLUSIONS Our study identified a new inflammatory pathway in IPAH, where T and NK cells drove heightened inflammation predominantly via the upregulation of CCL5, providing groundwork for the development of targeted therapeutics.
Collapse
Affiliation(s)
- Xincheng Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Shuangshuang Ma
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qi Wang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Yishan Li
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, 030001, China
| | - Xiaofan Ji
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Jixiang Liu
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Jing Ma
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Yongbing Wang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Zhu Zhang
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Hong Zhang
- State Key Laboratory of Respiratory Health and Multimorbidity, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College; National Center for Respiratory Medicine; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; National Clinical Research Center for Respiratory Diseases, Beijing, 100730, China
| | - Hong Chen
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Linfeng Xi
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Yunxia Zhang
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Wanmu Xie
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Lu Sun
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Zhihui Fu
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Peiran Yang
- State Key Laboratory of Respiratory Health and Multimorbidity, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College; National Center for Respiratory Medicine; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; National Clinical Research Center for Respiratory Diseases, Beijing, 100730, China.
| | - Chen Wang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China.
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Zhenguo Zhai
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China.
| |
Collapse
|
8
|
Chen Y, Liu J, Zhang Q, Chai L, Chen H, Li D, Wang Y, Qiu Y, Shen N, Zhang J, Wang Q, Wang J, Xie X, Li S, Li M. Activation of CaMKII/HDAC4 by SDF1 contributes to pulmonary arterial hypertension via stabilization Runx2. Eur J Pharmacol 2024; 970:176483. [PMID: 38479721 DOI: 10.1016/j.ejphar.2024.176483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 04/02/2024]
Abstract
Stromal derived factor 1 (SDF1) has been shown to be involved in the pathogenesis of pulmonary artery hypertension (PAH). However, the detailed molecular mechanisms remain unclear. To address this, we utilized primary cultured rat pulmonary artery smooth muscle cells (PASMCs) and monocrotaline (MCT)-induced PAH rat models to investigate the mechanisms of SDF1 driving PASMCs proliferation and pulmonary arterial remodeling. SDF1 increased runt-related transcription factor 2 (Runx2) acetylation by Calmodulin (CaM)-dependent protein kinase II (CaMKII)-dependent HDAC4 cytoplasmic translocation, elevation of Runx2 acetylation conferred its resistance to proteasome-mediated degradation. The accumulation of Runx2 further upregulated osteopontin (OPN) expression, finally leading to PASMCs proliferation. Blocking SDF1, suppression of CaMKII, inhibition the nuclear export of HDAC4 or silencing Runx2 attenuated pulmonary arterial remodeling and prevented PAH development in MCT-induced PAH rat models. Our study provides novel sights for SDF1 induction of PASMCs proliferation and suggests that targeting SDF1/CaMKII/HDAC4/Runx2 axis has potential value in the management of PAH.
Collapse
Affiliation(s)
- Yuqian Chen
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Jin Liu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Qianqian Zhang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Limin Chai
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Huan Chen
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Danyang Li
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Yan Wang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Yuanjie Qiu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Nirui Shen
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Jia Zhang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Qingting Wang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Jian Wang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Xinming Xie
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Shaojun Li
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Manxiang Li
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
9
|
Sun H, Du Z, Zhang X, Gao S, Ji Z, Luo G, Pan S. Neutrophil extracellular traps promote proliferation of pulmonary smooth muscle cells mediated by CCDC25 in pulmonary arterial hypertension. Respir Res 2024; 25:183. [PMID: 38664728 PMCID: PMC11046914 DOI: 10.1186/s12931-024-02813-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Previous studies have indicated that neutrophil extracellular traps (NETs) play a pivotal role in pathogenesis of pulmonary arterial hypertension (PAH). However, the specific mechanism underlying the impact of NETs on pulmonary artery smooth muscle cells (PASMCs) has not been determined. The objective of this study was to elucidate underlying mechanisms through which NETs contribute to progression of PAH. METHODS Bioinformatics analysis was employed in this study to screen for potential molecules and mechanisms associated with occurrence and development of PAH. These findings were subsequently validated in human samples, coiled-coil domain containing 25 (CCDC25) knockdown PASMCs, as well as monocrotaline-induced PAH rat model. RESULTS NETs promoted proliferation of PASMCs, thereby facilitating pathogenesis of PAH. This phenomenon was mediated by the activation of transmembrane receptor CCDC25 on PASMCs, which subsequently activated ILK/β-parvin/RAC1 pathway. Consequently, cytoskeletal remodeling and phenotypic transformation occur in PASMCs. Furthermore, the level of NETs could serve as an indicator of PAH severity and as potential therapeutic target for alleviating PAH. CONCLUSION This study elucidated the involvement of NETs in pathogenesis of PAH through their influence on the function of PASMCs, thereby highlighting their potential as promising targets for the evaluation and treatment of PAH.
Collapse
Affiliation(s)
- Hongxiao Sun
- Heart Center, Women and Children's Hospital, Qingdao University, Qingdao, China
| | - Zhanhui Du
- Heart Center, Women and Children's Hospital, Qingdao University, Qingdao, China
| | - Xu Zhang
- Heart Center, Women and Children's Hospital, Qingdao University, Qingdao, China
| | - Shuai Gao
- Heart Center, Women and Children's Hospital, Qingdao University, Qingdao, China
| | - Zhixian Ji
- Heart Center, Women and Children's Hospital, Qingdao University, Qingdao, China
| | - Gang Luo
- Heart Center, Women and Children's Hospital, Qingdao University, Qingdao, China
| | - Silin Pan
- Heart Center, Women and Children's Hospital, Qingdao University, Qingdao, China.
| |
Collapse
|
10
|
Zhou R, Li R, Ding Q, Zhang Y, Yang H, Han Y, Liu C, Liu J, Wang S. OPN silencing reduces hypoxic pulmonary hypertension via PI3K-AKT-induced protective autophagy. Sci Rep 2024; 14:8670. [PMID: 38622371 PMCID: PMC11018812 DOI: 10.1038/s41598-024-59367-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 04/09/2024] [Indexed: 04/17/2024] Open
Abstract
Hypoxic pulmonary hypertension (HPH) is a pulmonary vascular disease primarily characterized by progressive pulmonary vascular remodeling in a hypoxic environment, posing a significant clinical challenge. Leveraging data from the Gene Expression Omnibus (GEO) and human autophagy-specific databases, osteopontin (OPN) emerged as a differentially expressed gene, upregulated in cardiovascular diseases such as pulmonary arterial hypertension (PAH). Despite this association, the precise mechanism by which OPN regulates autophagy in HPH remains unclear, prompting the focus of this study. Through biosignature analysis, we observed significant alterations in the PI3K-AKT signaling pathway in PAH-associated autophagy. Subsequently, we utilized an animal model of OPNfl/fl-TAGLN-Cre mice and PASMCs with OPN shRNA to validate these findings. Our results revealed right ventricular hypertrophy and elevated mean pulmonary arterial pressure (mPAP) in hypoxic pulmonary hypertension model mice. Notably, these effects were attenuated in conditionally deleted OPN-knockout mice or OPN-silenced hypoxic PASMCs. Furthermore, hypoxic PASMCs with OPN shRNA exhibited increased autophagy compared to those in hypoxia alone. Consistent findings from in vivo and in vitro experiments indicated that OPN inhibition during hypoxia reduced PI3K expression while increasing LC3B and Beclin1 expression. Similarly, PASMCs exposed to hypoxia and PI3K inhibitors had higher expression levels of LC3B and Beclin1 and suppressed AKT expression. Based on these findings, our study suggests that OPNfl/fl-TAGLN-Cre effectively alleviates HPH, potentially through OPN-mediated inhibition of autophagy, thereby promoting PASMCs proliferation via the PI3K-AKT signaling pathway. Consequently, OPN emerges as a novel therapeutic target for HPH.
Collapse
Affiliation(s)
- Rui Zhou
- Qinghai University Medical Department, Xining, 810016, China
| | - Ran Li
- Zhengzhou Medical and Health Vocational College, Zhengzhou, 452385, China
| | - Qi Ding
- Pathology Department of Tianjin Huanghe Hospital, Tianjin, 300110, China
| | - Yuwei Zhang
- Department of Public Health, School of Medical, Qinghai University, Xining, 810016, China
| | - Hui Yang
- Qinghai University Medical Department, Xining, 810016, China
| | - Ying Han
- Qinghai University Medical Department, Xining, 810016, China
| | - Chuanchuan Liu
- Key Laboratory of Hydatid Disease, Qinghai University, Xining, 810001, China
| | - Jie Liu
- Qinghai University Medical Department, Xining, 810016, China
| | - Shenglan Wang
- Qinghai University Medical Department, Xining, 810016, China.
| |
Collapse
|
11
|
Du Y, Zhang J, Guo K, Yin Y. Identification of potential biomarkers for idiopathic pulmonary arterial hypertension using single-cell and bulk RNA sequencing analysis. Front Genet 2024; 15:1328234. [PMID: 38586587 PMCID: PMC10995363 DOI: 10.3389/fgene.2024.1328234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/12/2024] [Indexed: 04/09/2024] Open
Abstract
Idiopathic pulmonary arterial hypertension (IPAH) is a rare and severe cardiopulmonary disease with a challenging prognosis, and its underlying pathogenesis remains elusive. A comprehensive understanding of IPAH is crucial to unveil potential diagnostic markers and therapeutic targets. In this study, we investigated cellular heterogeneity and molecular pathology in IPAH using single-cell RNA sequencing (scRNA-seq) analysis. Our scRNA-seq results revealed significant alterations in three crucial signaling pathways in IPAH: the hypoxia pathway, TGF β pathway, and ROS pathway, primarily attributed to changes in gene expression within arterial endothelial cells. Moreover, through bulk RNA sequencing analysis, we identified differentially expressed genes (DEGs) enriched in GO and KEGG pathways, implicated in regulating cell adhesion and oxidative phosphorylation in IPAH lungs. Similarly, DEGs-enriched pathways in IPAH arterial endothelial cells were also identified. By integrating DEGs from three IPAH datasets and applying protein-protein interaction (PPI) analysis, we identified 12 candidate biomarkers. Subsequent validation in two additional PAH datasets led us to highlight five potential biomarkers (CTNNB1, MAPK3, ITGB1, HSP90AA1, and DDX5) with promising diagnostic significance for IPAH. Furthermore, real-time quantitative polymerase chain reaction (RT-qPCR) confirmed significant differences in the expression of these five genes in pulmonary arterial endothelial cells from PAH mice. In conclusion, our findings shed light on the pivotal role of arterial endothelial cells in the development of IPAH. Furthermore, the integration of single-cell and bulk RNA sequencing datasets allowed us to pinpoint novel candidate biomarkers for the diagnosis of IPAH. This work opens up new avenues for research and potential therapeutic interventions in IPAH management.
Collapse
Affiliation(s)
- Yan Du
- Department of Pathology, Wuxi Maternity and Child Healthcare Hospital, Affiliated Women’s Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China
| | - Jingqiu Zhang
- Department of Pathology, Wuxi Maternity and Child Healthcare Hospital, Affiliated Women’s Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China
| | - Kai Guo
- Department of Pathology, Suzhou Science and Technology Town Hospital, Suzhou, China
| | - Yongxiang Yin
- Department of Pathology, Wuxi Maternity and Child Healthcare Hospital, Affiliated Women’s Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
12
|
Hansen TS, Karimi Galougahi K, Tang O, Tsang M, Scherrer-Crosbie M, Arystarkhova E, Sweadner K, Bursill C, Bubb KJ, Figtree GA. The FXYD1 protein plays a protective role against pulmonary hypertension and arterial remodeling via redox and inflammatory mechanisms. Am J Physiol Heart Circ Physiol 2024; 326:H623-H635. [PMID: 38133617 DOI: 10.1152/ajpheart.00090.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023]
Abstract
Pulmonary hypertension (PH) consists of a heterogenous group of diseases that culminate in increased pulmonary arterial pressure and right ventricular (RV) dysfunction. We sought to investigate the role of FXYD1, a small membrane protein that modulates Na+-K+-ATPase function, in the pathophysiology of PH. We mined online transcriptome databases to assess FXYD1 expression in PH. We characterized the effects of FXYD1 knockout (KO) in mice on right and left ventricular (RV and LV) function using echocardiography and measured invasive hemodynamic measurements under normal conditions and after treatment with bleomycin sulfate or chronic hypoxia to induce PH. Using immunohistochemistry, immunoblotting, and functional assays, we examined the effects of FXYD1 KO on pulmonary microvasculature and RV and LV structure and assessed signaling via endothelial nitric oxide synthase (eNOS) and inflammatory pathways. FXYD1 lung expression tended to be lower in samples from patients with idiopathic pulmonary arterial hypertension (IPAH) compared with controls, supporting a potential pathophysiological role. FXYD1 KO mice displayed characteristics of PH including significant increases in pulmonary arterial pressure, increased muscularization of small pulmonary arterioles, and impaired RV systolic function, in addition to LV systolic dysfunction. However, when PH was stimulated with standard models of lung injury-induced PH, there was no exacerbation of disease in FXYD1 KO mice. Both the lungs and left ventricles exhibited elevated nitrosative stress and inflammatory milieu. The absence of FXYD1 in mice results in LV inflammation and cardiopulmonary redox signaling changes that predispose to pathophysiological features of PH, suggesting FXYD1 may be protective.NEW & NOTEWORTHY This is the first study to show that deficiency of the FXYD1 protein is associated with pulmonary hypertension. FXYD1 expression is lower in the lungs of people with idiopathic pulmonary artery hypertension. FXYD1 deficiency results in both left and right ventricular functional impairment. Finally, FXYD1 may endogenously protect the heart from oxidative and inflammatory injury.
Collapse
Affiliation(s)
- Thomas S Hansen
- Kolling Institute, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | | | - Owen Tang
- Kolling Institute, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Michael Tsang
- Kolling Institute, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Marielle Scherrer-Crosbie
- Perelman School of Medicine, The Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Elena Arystarkhova
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Kathleen Sweadner
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Christina Bursill
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Vascular Research Centre, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Kristen J Bubb
- Kolling Institute, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Biomedicine Discovery Institute and Victorian Heart Institute, Monash University Faculty of Medicine, Nursing and Health Sciences, Clayton, Victoria, Australia
| | - Gemma A Figtree
- Kolling Institute, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
13
|
Feng Y, Yu Z, Tang M, Li J, Peng B, Juaiti M, Tang Y, Liang B, Ouyang M, Liu Q, Song J. Transcriptome-Wide N6-Methyladenosine Alternations in Pulmonary Arteries of Monocrotaline-Induced Pulmonary Arterial Hypertension in Rats and Novel Therapeutic Targets. Biomedicines 2024; 12:364. [PMID: 38397966 PMCID: PMC10886831 DOI: 10.3390/biomedicines12020364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
N6-methyladenosine (m6A) is a post-transcriptional epigenetic change with transcriptional stability and functionality regulated by specific m6A-modifying enzymes. However, the significance of genes modified by m6A and enzymes specific to m6A regulation in the context of pulmonary arterial hypertension (PAH) remains largely unexplored. MeRIP-seq and RNA-seq were applied to explore variances in m6A and RNA expression within the pulmonary artery tissues of control and monocrotaline-induced PAH rats. Functional enrichments were analyzed using the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. To screen candidate m6A-related genes, the STRING and Metascape databases were used to construct a protein-protein interaction network followed by a real-time PCR validation of their expression. The expression level of an m6A regulator was further investigated using immunohistochemical staining, immunofluorescence, and Western blot techniques. Additionally, proliferation assays were conducted on primary rat pulmonary artery smooth muscle cells (PASMCs). We identified forty-two differentially expressed genes that exhibited either hypermethylated or hypomethylated m6A. These genes are predominantly related to the extracellular matrix structure, MAPK, and PI3K/AKT pathways. A candidate gene, centromere protein F (CENPF), was detected with increased expression in the PAH group. Additionally, we first identified an m6A reader, leucine rich pentatricopeptide repeat containing (LRPPRC), which was downregulated in the PAH rat model. The in vitro downregulation of Lrpprc mediated by siRNA resulted in the enhanced proliferation and elevated expression of Cenpf mRNA in primary rat PASMCs. Our study revealed a modified transcriptome-wide m6A landscape and associated regulatory mechanisms in the pulmonary arteries of PAH rats, potentially offering a novel target for therapeutic strategies in the future.
Collapse
Affiliation(s)
- Yilu Feng
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha 410008, China; (Y.F.); (Z.Y.); (B.P.); (M.J.); (Y.T.); (B.L.)
- Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha 410011, China; (J.L.); (M.O.)
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Zaixin Yu
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha 410008, China; (Y.F.); (Z.Y.); (B.P.); (M.J.); (Y.T.); (B.L.)
| | - Mi Tang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China;
| | - Jiang Li
- Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha 410011, China; (J.L.); (M.O.)
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Baohua Peng
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha 410008, China; (Y.F.); (Z.Y.); (B.P.); (M.J.); (Y.T.); (B.L.)
| | - Mukamengjiang Juaiti
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha 410008, China; (Y.F.); (Z.Y.); (B.P.); (M.J.); (Y.T.); (B.L.)
| | - Yiyang Tang
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha 410008, China; (Y.F.); (Z.Y.); (B.P.); (M.J.); (Y.T.); (B.L.)
| | - Benhui Liang
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha 410008, China; (Y.F.); (Z.Y.); (B.P.); (M.J.); (Y.T.); (B.L.)
| | - Mingqi Ouyang
- Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha 410011, China; (J.L.); (M.O.)
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Qingqing Liu
- Department of Respiratory and Critical Care, The Second Xiangya Hospital, Central South University, Changsha 410011, China;
| | - Jie Song
- Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha 410011, China; (J.L.); (M.O.)
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| |
Collapse
|
14
|
Jia Q, Ouyang Y, Yang Y, Yao S, Chen X, Hu Z. Osteopontin: A Novel Therapeutic Target for Respiratory Diseases. Lung 2024; 202:25-39. [PMID: 38060060 DOI: 10.1007/s00408-023-00665-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/22/2023] [Indexed: 12/08/2023]
Abstract
Osteopontin (OPN) is a multifunctional phosphorylated protein that is involved in physiological and pathological events. Emerging evidence suggests that OPN also plays a critical role in the pathogenesis of respiratory diseases. OPN can be produced and secreted by various cell types in lungs and overexpression of OPN has been found in acute lung injury/acute respiratory distress syndrome (ALI/ARDS), pulmonary hypertension (PH), pulmonary fibrosis diseases, lung cancer, lung infection, chronic obstructive pulmonary disease (COPD), and asthma. OPN exerts diverse effects on the inflammatory response, immune cell activation, fibrosis and tissue remodeling, and tumorigenesis of these respiratory diseases, and genetic and pharmacological moudulation of OPN exerts therapeutic effects in the treatment of respiratory diseases. In this review, we summarize the recent evidence of multifaceted roles and underlying mechanisms of OPN in these respiratory diseases, and targeting OPN appears to be a potential therapeutic intervention for these diseases.
Collapse
Affiliation(s)
- Qi Jia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, 430022, China
| | - Yeling Ouyang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, 430022, China
| | - Yiyi Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, 430022, China
| | - Shanglong Yao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, 430022, China
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, 430022, China
| | - Zhiqiang Hu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, 430022, China.
| |
Collapse
|
15
|
Che H, Yi J, Zhao X, Yu H, Wang X, Zhang R, Li X, Fu J, Li Q. Characterization of PKCα-rutin interactions and their application as a treatment strategy for pulmonary arterial hypertension by inhibiting ferroptosis. Food Funct 2024; 15:779-793. [PMID: 38126185 DOI: 10.1039/d3fo01306e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
As a common plant-derived dietary flavonoid, rutin receives widespread attention because of its good antioxidant bioactivities. Protein kinase Cα (PKCα) is a serine/threonine kinase that is involved in uncountable cellular processes, among which ferroptosis, a novel form of cell death, is triggered by lipid peroxidation and has been reported to be associated with pulmonary arterial hypertension (PAH). But it is still not well appreciated how rutin inhibits ferroptosis in PAH and what function PKCα has in this process. In this study, we first observed whether rutin could prevent PAH by attenuating ferroptosis with a PAH animal model and pulmonary artery smooth muscle cells (PASMCs) under hypoxia. Mitochondrial metabolomics and network pharmacology were employed to clarify the metabolic alterations and screen target proteins, and the results showed that PKCα was a vital node in rutin regulating mitochondrial metabolism related to ferroptosis in PAH. Based on molecular docking and multispectral analysis, we found that rutin could directly interact with PKCα through hydrogen bonds, which could induce static quenching, and then influence the secondary structure of PKCα. In conclusion, these findings mainly point to a novel mechanism that rutin protects PAH rats by modifying the structure and altering the activity of PKCα, and thus suppressing ferroptosis. This work reveals that the interaction behaviors between small molecules and bio-macromolecules are a critical factor to develop natural biological active ingredients and gives an insight into the potential applications of flavonoids in health and disease.
Collapse
Affiliation(s)
- Haixia Che
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China.
| | - Jie Yi
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China.
| | - Xiaoting Zhao
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China.
| | - Hong Yu
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China.
| | - Xianyao Wang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China.
| | - Rui Zhang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China.
| | - Xin Li
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jia Fu
- College of Medical Laboratory Science and Technology, Harbin Medical University at Daqing, Heilongjiang Province, China
| | - Qian Li
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China.
| |
Collapse
|
16
|
Li J, Jiang S, Huang C, Lu B, Yang X. Identification and validation of genes associated with aging-related cardiovascular disease. FASEB J 2024; 38:e23370. [PMID: 38168496 DOI: 10.1096/fj.202301270rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 11/15/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024]
Abstract
Aging is acknowledged as the most significant risk factor for cardiovascular disease (CVD). This study sought to identify and validate potential aging-related genes associated with CVD by using bioinformatics. The confluence of the limma test, weighted correlation network analysis (WGCNA), and 2129 aging and senescence-associated genes led to the identification of aging-related differential expression genes (ARDEGs). By using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), potential biological roles and pathways of ARDEGs were identified. To find the significantly different functions between CVD and non-cardiovascular disease (nCVD) and to reckon the processes score, enrichment analysis of all genes was carried out using gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA). By using GO and KEGG, potential biological roles and pathways of ARDEGs were identified. To evaluate the immune cell composition of the immune microenvironment, we performed an immune infiltration analysis on the dataset from the training group. We were able to acquire four ARDEGs (PTGS2, MMP9, HBEGF, and FN1). Aging, cellular senescence, and nitric oxide signal transduction were selected for biological function analysis. The diagnostic value of the four ARDEGs in distinguishing CVD from nCVD samples was deemed to be favorable. This research identified four ARDEGs that are associated with CVD. This study provides insight into prospective novel biomarkers for aging-related CVD diagnosis and progression monitoring.
Collapse
Affiliation(s)
- Jing Li
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, P. R. China
| | - Shengping Jiang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, P. R. China
| | - Chengyun Huang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, P. R. China
| | - Baihui Lu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, P. R. China
| | - Xiaolong Yang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, P. R. China
| |
Collapse
|
17
|
Yu W, Zhang Q, Qiu Y, Chen H, Huang X, Xiao L, Xu G, Li S, Hu P, Tong X. CDN1163 alleviates SERCA2 dysfunction-induced pulmonary vascular remodeling by inhibiting the phenotypic transition of pulmonary artery smooth muscle cells. Clin Exp Hypertens 2023; 45:2272062. [PMID: 37899350 DOI: 10.1080/10641963.2023.2272062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/10/2023] [Indexed: 10/31/2023]
Abstract
BACKGROUND AND PURPOSE Substitution of Cys674 (C674) in the sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2 (SERCA2) causes SERCA2 dysfunction which leads to activated inositol requiring enzyme 1 alpha (IRE1α) and spliced X-box binding protein 1 (XBP1s) pathway accelerating cell proliferation of pulmonary artery smooth muscle cells (PASMCs) followed by significant pulmonary vascular remodeling resembling human pulmonary hypertension. Based on this knowledge, we intend to investigate other potential mechanisms involved in SERCA2 dysfunction-induced pulmonary vascular remodeling. EXPERIMENTAL APPROACH Heterozygous SERCA2 C674S knock-in (SKI) mice of which half of cysteine in 674 was substituted by serine to mimic the partial irreversible oxidation of C674 were used. The lungs of SKI mice and their littermate wild-type mice were collected for PASMC culture, protein expression, and pulmonary vascular remodeling analysis. RESULTS SERCA2 dysfunction increased intracellular Ca2+ levels, which activated Ca2+-dependent calcineurin (CaN) and promoted the nuclear translocation and protein expression of the nuclear factor of activated T-lymphocytes 4 (NFAT4) in an IRE1α/XBP1s pathway-independent manner. In SKI PASMCs, the scavenge of intracellular Ca2+ by BAPTA-AM or inhibition of CaN by cyclosporin A can prevent PASMC phenotypic transition. CDN1163, a SERCA2 agonist, suppressed the activation of CaN/NFAT4 and IRE1α/XBP1s pathways, reversed the protein expression of PASMC phenotypic transition markers and cell cycle-related proteins, and inhibited cell proliferation and migration when given to SKI PASMCs. Furthermore, CDN1163 ameliorated pulmonary vascular remodeling in SKI mice. CONCLUSIONS AND IMPLICATIONS SERCA2 dysfunction promotes PASMC phenotypic transition and pulmonary vascular remodeling by multiple mechanisms, which could be improved by SERCA2 agonist CDN1163.
Collapse
Affiliation(s)
- Weimin Yu
- Institute of Health Biological Chemical Medication, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Qian Zhang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yixiang Qiu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Hui Chen
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Xiaoyang Huang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Li Xiao
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Gang Xu
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Siqi Li
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
- Central Clinical School, Monash University, Melbourne, Australia
| | - Pingping Hu
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Xiaoyong Tong
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
- Jinfeng Laboratory, Chongqing, China
| |
Collapse
|
18
|
Yi D, Liu B, Ding H, Li S, Li R, Pan J, Ramirez K, Xia X, Kala M, Ye Q, Lee WH, Frye RE, Wang T, Zhao Y, Knox KS, Glembotski CC, Fallon MB, Dai Z. E2F1 Mediates SOX17 Deficiency-Induced Pulmonary Hypertension. Hypertension 2023; 80:2357-2371. [PMID: 37737027 PMCID: PMC10591929 DOI: 10.1161/hypertensionaha.123.21241] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 08/17/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND Rare genetic variants and genetic variation at loci in an enhancer in SOX17 (SRY-box transcription factor 17) are identified in patients with idiopathic pulmonary arterial hypertension (PAH) and PAH with congenital heart disease. However, the exact role of genetic variants or mutations in SOX17 in PAH pathogenesis has not been reported. METHODS SOX17 expression was evaluated in the lungs and pulmonary endothelial cells (ECs) of patients with idiopathic PAH. Mice with Tie2Cre-mediated Sox17 knockdown and EC-specific Sox17 deletion were generated to determine the role of SOX17 deficiency in the pathogenesis of PAH. Human pulmonary ECs were cultured to understand the role of SOX17 deficiency. Single-cell RNA sequencing, RNA-sequencing analysis, and luciferase assay were performed to understand the underlying molecular mechanisms of SOX17 deficiency-induced PAH. E2F1 (E2F transcription factor 1) inhibitor HLM006474 was used in EC-specific Sox17 mice. RESULTS SOX17 expression was downregulated in the lung and pulmonary ECs from patients with idiopathic PAH. Mice with Tie2Cre-mediated Sox17 knockdown and EC-specific Sox17 deletion induced spontaneously mild pulmonary hypertension. Loss of endothelial Sox17 in EC exacerbated hypoxia-induced pulmonary hypertension in mice. Loss of SOX17 in lung ECs induced endothelial dysfunctions including upregulation of cell cycle programming, proliferative and antiapoptotic phenotypes, augmentation of paracrine effect on pulmonary arterial smooth muscle cells, impaired cellular junction, and BMP (bone morphogenetic protein) signaling. E2F1 signaling was shown to mediate the SOX17 deficiency-induced EC dysfunction. Pharmacological inhibition of E2F1 in Sox17 EC-deficient mice attenuated pulmonary hypertension development. CONCLUSIONS Our study demonstrated that endothelial SOX17 deficiency induces pulmonary hypertension through E2F1. Thus, targeting E2F1 signaling represents a promising approach in patients with PAH.
Collapse
Affiliation(s)
- Dan Yi
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Translational Cardiovascular Research Center, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Bin Liu
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Translational Cardiovascular Research Center, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Hongxu Ding
- Department of Pharmacy Practice & Science, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
| | - Shuai Li
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Rebecca Li
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Jiakai Pan
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Karina Ramirez
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Xiaomei Xia
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Mrinalini Kala
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Qinmao Ye
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Won Hee Lee
- Translational Cardiovascular Research Center, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | | | - Ting Wang
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Department of Environmental Health Science and Center of Translational Science, Florida International University, Port Saint Lucie, Florida, USA
| | - Yutong Zhao
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Kenneth S. Knox
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Christopher C. Glembotski
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Translational Cardiovascular Research Center, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Michael B. Fallon
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Zhiyu Dai
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Translational Cardiovascular Research Center, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
- Sarver Heart Center, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
19
|
Simpson CE, Ambade AS, Harlan R, Roux A, Aja S, Graham D, Shah AA, Hummers LK, Hemnes AR, Leopold JA, Horn EM, Berman-Rosenzweig ES, Grunig G, Aldred MA, Barnard J, Comhair SAA, Tang WHW, Griffiths M, Rischard F, Frantz RP, Erzurum SC, Beck GJ, Hill NS, Mathai SC, Hassoun PM, Damico RL. Kynurenine pathway metabolism evolves with development of preclinical and scleroderma-associated pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 2023; 325:L617-L627. [PMID: 37786941 PMCID: PMC11068393 DOI: 10.1152/ajplung.00177.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/08/2023] [Accepted: 09/17/2023] [Indexed: 10/04/2023] Open
Abstract
Understanding metabolic evolution underlying pulmonary arterial hypertension (PAH) development may clarify pathobiology and reveal disease-specific biomarkers. Patients with systemic sclerosis (SSc) are regularly surveilled for PAH, presenting an opportunity to examine metabolic change as disease develops in an at-risk cohort. We performed mass spectrometry-based metabolomics on longitudinal serum samples collected before and near SSc-PAH diagnosis, compared with time-matched SSc subjects without PAH, in a SSc surveillance cohort. We validated metabolic differences in a second cohort and determined metabolite-phenotype relationships. In parallel, we performed serial metabolomic and hemodynamic assessments as the disease developed in a preclinical model. For differentially expressed metabolites, we investigated corresponding gene expression in human and rodent PAH lungs. Kynurenine and its ratio to tryptophan (kyn/trp) increased over the surveillance period in patients with SSc who developed PAH. Higher kyn/trp measured two years before diagnostic right heart catheterization increased the odds of SSc-PAH diagnosis (OR 1.57, 95% CI 1.05-2.36, P = 0.028). The slope of kyn/trp rise during SSc surveillance predicted PAH development and mortality. In both clinical and experimental PAH, higher kynurenine pathway metabolites correlated with adverse pulmonary vascular and RV measurements. In human and rodent PAH lungs, expression of TDO2, which encodes tryptophan 2,3 dioxygenase (TDO), a protein that catalyzes tryptophan conversion to kynurenine, was significantly upregulated and tightly correlated with pulmonary hypertensive features. Upregulated kynurenine pathway metabolism occurs early in PAH, localizes to the lung, and may be modulated by TDO2. Kynurenine pathway metabolites may be candidate PAH biomarkers and TDO warrants exploration as a potential novel therapeutic target.NEW & NOTEWORTHY Our study shows an early increase in kynurenine pathway metabolism in at-risk subjects with systemic sclerosis who develop pulmonary arterial hypertension (PAH). We show that kynurenine pathway upregulation precedes clinical diagnosis and that this metabolic shift is associated with increased disease severity and shorter survival times. We also show that gene expression of TDO2, an enzyme that generates kynurenine from tryptophan, rises with PAH development.
Collapse
Affiliation(s)
- Catherine E Simpson
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Anjira S Ambade
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Robert Harlan
- Johns Hopkins All Children's Molecular Determinants Core, Johns Hopkins All Children's Hospital, St. Petersburg, Florida, United States
| | - Aurelie Roux
- Johns Hopkins All Children's Molecular Determinants Core, Johns Hopkins All Children's Hospital, St. Petersburg, Florida, United States
| | - Susan Aja
- Johns Hopkins All Children's Molecular Determinants Core, Johns Hopkins All Children's Hospital, St. Petersburg, Florida, United States
| | - David Graham
- Johns Hopkins All Children's Molecular Determinants Core, Johns Hopkins All Children's Hospital, St. Petersburg, Florida, United States
| | - Ami A Shah
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Laura K Hummers
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Anna R Hemnes
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States
| | - Jane A Leopold
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States
| | - Evelyn M Horn
- Division of Cardiology, Department of Medicine, Cornell University Medical Center, New York, New York, United States
| | - Erika S Berman-Rosenzweig
- Division of Pediatric Cardiology, Columbia University Medical Center/NewYork-Presbyterian Hospital, New York, New York, United States
| | - Gabriele Grunig
- Divisions of Environmental and Pulmonary Medicine, Department of Medicine, NYU Grossman School of Medicine, New York, New York, United States
| | - Micheala A Aldred
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - John Barnard
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States
| | - Suzy A A Comhair
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States
| | - W H Wilson Tang
- Division of Heart Failure and Transplant Medicine, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, United States
| | - Megan Griffiths
- Division of Pediatric Cardiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Franz Rischard
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Arizona College of Medicine, Tucson, Arizona, United States
| | - Robert P Frantz
- Division of Circulatory Failure, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Serpil C Erzurum
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States
| | - Gerald J Beck
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States
| | - Nicholas S Hill
- Pulmonary, Critical Care and Sleep Division, Tufts University, Boston, Massachusetts, United States
| | - Stephen C Mathai
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Paul M Hassoun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Rachel L Damico
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| |
Collapse
|
20
|
Lu G, Du R, Liu Y, Zhang S, Li J, Pei J. RGS5 as a Biomarker of Pericytes, Involvement in Vascular Remodeling and Pulmonary Arterial Hypertension. Vasc Health Risk Manag 2023; 19:673-688. [PMID: 37881333 PMCID: PMC10596204 DOI: 10.2147/vhrm.s429535] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023] Open
Abstract
Introduction Pulmonary arterial hypertension (PAH) is a life-threatening disease characterized by a sustained rise in mean pulmonary artery pressure. Pulmonary vascular remodeling serves an important role in PAH. Identifying a key driver gene to regulate vascular remodeling of the pulmonary microvasculature is critical for PAH management. Methods Differentially expressed genes were identified using the Gene Expression Omnibus (GEO) GSE117261, GSE48149, GSE113439, GSE53408 and GSE16947 datasets. A co-expression network was constructed using weighted gene co-expression network analysis. Novel and key signatures of PAH were screened using four algorithms, including weighted gene co-expression network analysis, GEO2R analysis, support vector machines recursive feature elimination and robust rank aggregation rank analysis. Regulator of G-protein signaling 5 (RGS5), a pro-apoptotic/anti-proliferative protein, which regulate arterial tone and blood pressure in vascular smooth muscle cells. The expression of RGS5 was determined using reverse transcription-quantitative PCR (RT-qPCR) in PAH and normal mice. The location of RGS5 and pericytes was detected using immunofluorescence. Results Compared with that in the normal group, RGS5 expression was upregulated in the PAH group based on GEO and RT-qPCR analyses. RGS5 expression in single cells was enriched in pericytes in single-cell RNA sequencing analysis. RGS5 co-localization with pericytes was detected in the pulmonary microvasculature of PAH. Conclusion RGS5 regulates vascular remodeling of the pulmonary microvasculature and the occurrence of PAH through pericytes, which has provided novel ideas and strategies regarding the occurrence and innovative treatment of PAH.
Collapse
Affiliation(s)
- Guofang Lu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi’an, 710032, People’s Republic of China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, 710032, People’s Republic of China
| | - Rui Du
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, Fourth Military Medical University, Xi’an, 710038, People’s Republic of China
| | - Yali Liu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi’an, 710032, People’s Republic of China
| | - Shumiao Zhang
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi’an, 710032, People’s Republic of China
| | - Juan Li
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi’an, 710032, People’s Republic of China
| | - Jianming Pei
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi’an, 710032, People’s Republic of China
| |
Collapse
|
21
|
Zhong C, Si Y, Yang H, Zhou C, Chen Y, Wang C, Liu Y, Chen C, Shi H, Lai X, Tang H. Identification of monocyte-associated pathways participated in the pathogenesis of pulmonary arterial hypertension based on omics-data. Pulm Circ 2023; 13:e12319. [PMID: 38130888 PMCID: PMC10733707 DOI: 10.1002/pul2.12319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/23/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is one kind of chronic and uncurable diseases that can cause heart failure. Immune microenvironment plays a significant role in PAH. The aim of this study was to assess the role of immune cell infiltration in the pathogenesis of PAH. Differentially expressed genes based on microarray data were enriched in several immune-related pathways. To evaluate the immune cell infiltration, based on the microarray data sets in the GEO database, we used both ssGSEA and the CIBERSORT algorithm. Additionally, single-cell RNA sequencing (scRNA-seq) data was used to further explicit the specific role and intercellular communications. Then receiver operating characteristic curves and least absolute shrinkage and selection operator were used to discover and test the potential diagnostic biomarkers for PAH. Both the immune cell infiltration analyses based on the microarray data sets and the cell proportion in scRNA-seq data exhibited a significant downregulation in the infiltration of monocytes in PAH. Then, the intercellular communications showed that the interaction weighs of most immune cells, including monocytes changed between the control and PAH groups, and the ITGAL-ITGB2 and ICAM signaling pathways played critical roles in this process. In addition, ITGAM and ICAM2 displayed good diagnosis values in PAH. This study implicated that the change of monocyte was one of the key immunologic features of PAH. Monocyte-associated ICAM-1 and ITGAL-ITGB2 signaling pathways might be involved in the pathogenesis of PAH.
Collapse
Affiliation(s)
- Caiming Zhong
- Department of Respiratory and Critical Care Medicine, Shanghai Changzheng HospitalNaval Medical UniversityShanghaiChina
- Department of Respiratory and Critical Care Medicine, Shanghai Changhai HospitalNaval Medical UniversityShanghaiChina
| | - Yachen Si
- Department of Nephrology, Shanghai Changhai HospitalNaval Medical UniversityShanghaiChina
| | - Huanhuan Yang
- Department of Respiratory and Critical Care Medicine, Shanghai Changzheng HospitalNaval Medical UniversityShanghaiChina
| | - Chao Zhou
- Department of Respiratory and Critical Care Medicine, Shanghai Changzheng HospitalNaval Medical UniversityShanghaiChina
| | - Yang Chen
- Department of Respiratory and Critical Care Medicine, Shanghai Changzheng HospitalNaval Medical UniversityShanghaiChina
| | - Chen Wang
- Department of Respiratory and Critical Care Medicine, Shanghai Changzheng HospitalNaval Medical UniversityShanghaiChina
| | - Yalong Liu
- Department of Respiratory and Critical Care Medicine, Shanghai Changzheng HospitalNaval Medical UniversityShanghaiChina
| | - Cheng Chen
- Department of Respiratory and Critical Care Medicine, Shanghai Changzheng HospitalNaval Medical UniversityShanghaiChina
| | - Hui Shi
- Department of Respiratory and Critical Care Medicine, Shanghai Changhai HospitalNaval Medical UniversityShanghaiChina
| | - Xueli Lai
- Department of Nephrology, Shanghai Changhai HospitalNaval Medical UniversityShanghaiChina
| | - Hao Tang
- Department of Respiratory and Critical Care Medicine, Shanghai Changzheng HospitalNaval Medical UniversityShanghaiChina
| |
Collapse
|
22
|
Zhao H, Wang L, Yan Y, Zhao QH, He J, Jiang R, Luo CJ, Qiu HL, Miao YQ, Gong SG, Yuan P, Wu WH. Identification of the shared gene signatures between pulmonary fibrosis and pulmonary hypertension using bioinformatics analysis. Front Immunol 2023; 14:1197752. [PMID: 37731513 PMCID: PMC10507338 DOI: 10.3389/fimmu.2023.1197752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/14/2023] [Indexed: 09/22/2023] Open
Abstract
Pulmonary fibrosis (PF) and pulmonary hypertension (PH) have common pathophysiological features, such as the significant remodeling of pulmonary parenchyma and vascular wall. There is no effective specific drug in clinical treatment for these two diseases, resulting in a worse prognosis and higher mortality. This study aimed to screen the common key genes and immune characteristics of PF and PH by means of bioinformatics to find new common therapeutic targets. Expression profiles are downloaded from the Gene Expression Database. Weighted gene co-expression network analysis is used to identify the co-expression modules related to PF and PH. We used the ClueGO software to enrich and analyze the common genes in PF and PH and obtained the protein-protein interaction (PPI) network. Then, the differential genes were screened out in another cohort of PF and PH, and the shared genes were crossed. Finally, RT-PCR verification and immune infiltration analysis were performed on the intersection genes. In the result, the positive correlation module with the highest correlation between PF and PH was determined, and it was found that lymphocyte activation is a common feature of the pathophysiology of PF and PH. Eight common characteristic genes (ACTR2, COL5A2, COL6A3, CYSLTR1, IGF1, RSPO3, SCARNA17 and SEL1L) were gained. Immune infiltration showed that compared with the control group, resting CD4 memory T cells were upregulated in PF and PH. Combining the results of crossing characteristic genes in ImmPort database and RT-PCR, the important gene IGF1 was obtained. Knocking down IGF1 could significantly reduce the proliferation and apoptosis resistance in pulmonary microvascular endothelial cells, pulmonary smooth muscle cells, and fibroblasts induced by hypoxia, platelet-derived growth factor-BB (PDGF-BB), and transforming growth factor-β1 (TGF-β1), respectively. Our work identified the common biomarkers of PF and PH and provided a new candidate gene for the potential therapeutic targets of PF and PH in the future.
Collapse
Affiliation(s)
- Hui Zhao
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai, China
| | - Lan Wang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yi Yan
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qin-Hua Zhao
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jing He
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Rong Jiang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ci-Jun Luo
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hong-Ling Qiu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yu-Qing Miao
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai, China
| | - Su-Gang Gong
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ping Yuan
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wen-Hui Wu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
23
|
Liu H, Wang S, Chen Q, Ge X, Ning H, Guo Y, Wang D, Ai K, Hu C. Natural Targeting Potent ROS-Eliminating Tungsten-Based Polyoxometalate Nanodots for Efficient Treatment of Pulmonary Hypertension. Adv Healthc Mater 2023; 12:e2300252. [PMID: 37196347 DOI: 10.1002/adhm.202300252] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/27/2023] [Indexed: 05/19/2023]
Abstract
Pulmonary hypertension (PH) is a disease of pulmonary artery stenosis and blockage caused by abnormal pulmonary artery smooth muscle cells (PASMCs), with high morbidity and mortality. High levels of reactive oxygen species (ROS) in pulmonary arteries play a crucial role in inducing phenotypic switch and abnormal proliferation of PASMCs. However, antioxidants are rarely approved for the treatment of PH because of a lack of targeting and low bioavailability. In this study, the presence of an enhanced permeability and retention effect (EPR)-like effect in the pulmonary arteries of PH is revealed by tissue transmission electron microscopy (TEM). Subsequently, for the first time, tungsten-based polyoxometalate nanodots (WNDs) are developed with potent elimination of multiple ROS for efficient treatment of PH thanks to the high proportion of reduced W5+ . WNDs are effectively enriched in the pulmonary artery by intravenous injection because of the EPR-like effect of PH, and significantly prevent the abnormal proliferation of PASMCs, greatly improve the remodeling of pulmonary arteries, and ultimately improve right heart function. In conclusion, this work provides a novel and effective solution to the dilemma of targeting ROS for the treatment of PH.
Collapse
Affiliation(s)
- Hong Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Shuya Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Qiaohui Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Xiaoyue Ge
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Huang Ning
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Yanzi Guo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Di Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Changsha, 410078, China
| | - Changping Hu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Changsha, 410078, China
- Department of Pharmacy, Changzhi Medical College, Changzhi, 046000, China
| |
Collapse
|
24
|
Lian G, You J, Lin W, Gao G, Xu C, Wang H, Luo L. Bioinformatics analysis of the immune cell infiltration characteristics and correlation with crucial diagnostic markers in pulmonary arterial hypertension. BMC Pulm Med 2023; 23:300. [PMID: 37582718 PMCID: PMC10428559 DOI: 10.1186/s12890-023-02584-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a pathophysiological syndrome, characterized by pulmonary vascular remodeling. Immunity and inflammation are progressively recognized properties of PAH, which are crucial for the initiation and maintenance of pulmonary vascular remodeling. This study explored immune cell infiltration characteristics and potential biomarkers of PAH using comprehensive bioinformatics analysis. METHODS Microarray data of GSE117261, GSE113439 and GSE53408 datasets were downloaded from Gene Expression Omnibus database. The differentially expressed genes (DEGs) were identified in GSE117261 dataset. The proportions of infiltrated immune cells were evaluated by CIBERSORT algorithm. Feature genes of PAH were selected by least absolute shrinkage and selection operator (LASSO) regression analysis and validated by fivefold cross-validation, random forest and logistic regression. The GSE113439 and GSE53408 datasets were used as validation sets and logistic regression and receiver operating characteristic (ROC) curve analysis were performed to evaluate the prediction value of PAH. The PAH-associated module was identified by weighted gene association network analysis (WGCNA). The intersection of genes in the modules screened and DEGs was used to construct protein-protein interaction (PPI) network and the core genes were selected. After the intersection of feature genes and core genes, the hub genes were identified. The correlation between hub genes and immune cell infiltration was analyzed by Pearson correlation analysis. The expression level of LTBP1 in the lungs of monocrotaline-induced PAH rats was determined by Western blotting. The localization of LTBP1 and CD4 in lungs of PAH was assayed by immunofluorescence. RESULTS A total of 419 DEGs were identified, including 223 upregulated genes and 196 downregulated genes. Functional enrichment analysis revealed that a significant enrichment in inflammation, immune response, and transforming growth factor β (TGFβ) signaling pathway. CIBERSORT analysis showed that ten significantly different types of immune cells were identified between PAH and control. Resting memory CD4+ T cells, CD8+ T cells, γδ T cells, M1 macrophages, and resting mast cells in the lungs of PAH patients were significantly higher than control. Seventeen feature genes were identified by LASSO regression for PAH prediction. WGCNA identified 15 co-expression modules. PPI network was constructed and 100 core genes were obtained. Complement C3b/C4b receptor 1 (CR1), thioredoxin reductase 1 (TXNRD1), latent TGFβ binding protein 1 (LTBP1), and toll-like receptor 1 (TLR1) were identified as hub genes and LTBP1 has the highest diagnostic efficacy for PAH (AUC = 0.968). Pearson correlation analysis showed that LTBP1 was positively correlated with resting memory CD4+ T cells, but negatively correlated with monocytes and neutrophils. Western blotting showed that the protein level of LTBP1 was increased in the lungs of monocrotaline-induced PAH rats. Immunofluorescence of lung tissues from rats with PAH showed increased expression of LTBP1 in pulmonary arteries as compared to control and LTBP1 was partly colocalized with CD4+ cells in the lungs. CONCLUSION LTBP1 was correlated with immune cell infiltration and identified as the critical diagnostic maker for PAH.
Collapse
Affiliation(s)
- Guili Lian
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Chazhong Road 20, Taijiang District, Fuzhou, 350005, People's Republic of China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People's Republic of China
| | - Jingxian You
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Chazhong Road 20, Taijiang District, Fuzhou, 350005, People's Republic of China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People's Republic of China
| | - Weijun Lin
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Chazhong Road 20, Taijiang District, Fuzhou, 350005, People's Republic of China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People's Republic of China
| | - Gufeng Gao
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Chazhong Road 20, Taijiang District, Fuzhou, 350005, People's Republic of China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People's Republic of China
| | - Changsheng Xu
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Chazhong Road 20, Taijiang District, Fuzhou, 350005, People's Republic of China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People's Republic of China
| | - Huajun Wang
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Chazhong Road 20, Taijiang District, Fuzhou, 350005, People's Republic of China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People's Republic of China
| | - Li Luo
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Chazhong Road 20, Taijiang District, Fuzhou, 350005, People's Republic of China.
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People's Republic of China.
- Clinical Research Center for Geriatric Hypertension Disease of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People's Republic of China.
- Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fujian Province, Fuzhou, 350005, People's Republic of China.
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, People's Republic of China.
| |
Collapse
|
25
|
Barkas GI, Kotsiou OS. The Role of Osteopontin in Respiratory Health and Disease. J Pers Med 2023; 13:1259. [PMID: 37623509 PMCID: PMC10455105 DOI: 10.3390/jpm13081259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/24/2023] [Accepted: 08/12/2023] [Indexed: 08/26/2023] Open
Abstract
The biological functions of osteopontin (OPN) are diverse and specific to physiological and pathophysiological conditions implicated in inflammation, biomineralization, cardiovascular diseases, cellular viability, cancer, diabetes, and renal stone disease. We aimed to present the role of OPN in respiratory health and disease. OPN influences the immune system and is a chemo-attractive protein correlated with respiratory disease severity. There is evidence that OPN can advance the disease stage associated with its fibrotic, inflammatory, and immune functions. OPN contributes to eosinophilic airway inflammation. OPN can destroy the lung parenchyma through its neutrophil influx and fibrotic mechanisms, linking OPN to at least one of the two major chronic obstructive pulmonary disease phenotypes. Respiratory diseases that involve irreversible lung scarring, such as idiopathic pulmonary disease, are linked to OPN, with protein levels being overexpressed in individuals with severe or advanced stages of the disorders and considerably lower levels in those with less severe symptoms. OPN plays a significant role in lung cancer progression and metastasis. It is also implicated in the pathogenesis of pulmonary hypertension, coronavirus disease 2019, and granuloma generation.
Collapse
Affiliation(s)
- Georgios I. Barkas
- Department of Human Pathophysiology, Faculty of Nursing, University of Thessaly, 41500 Larissa, Greece
| | - Ourania S. Kotsiou
- Department of Human Pathophysiology, Faculty of Nursing, University of Thessaly, 41500 Larissa, Greece
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| |
Collapse
|
26
|
Wang Y, Zeng Z, Zeng Z, Chu G, Shan X. Elevated CHCHD4 orchestrates mitochondrial oxidative phosphorylation to disturb hypoxic pulmonary hypertension. J Transl Med 2023; 21:464. [PMID: 37438854 DOI: 10.1186/s12967-023-04268-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/11/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a highly prevalent cardiopulmonary disorder characterized by vascular remodeling and increased resistance in pulmonary artery. Mitochondrial coiled-coil-helix-coiled-coil-helix domain (CHCHD)-containing proteins have various important pathophysiological roles. However, the functional roles of CHCHD proteins in hypoxic PAH is still ambiguous. Here, we aimed to investigate the role of CHCHD4 in hypoxic PAH and provide new insight into the mechanism driving the development of PAH. METHODS Serotype 1 adeno-associated viral vector (AAV) carrying Chchd4 was intratracheally injected to overexpress CHCHD4 in Sprague Dawley (SD) rats. The Normoxia groups of animals were housed at 21% O2. Hypoxia groups were housed at 10% O2, for 8 h/day for 4 consecutive weeks. Hemodynamic and histological characteristics are investigated in PAH. Primary pulmonary artery smooth muscle cells of rats (PASMCs) are used to assess how CHCHD4 affects proliferation and migration. RESULTS We found CHCHD4 was significantly downregulated among CHCHD proteins in hypoxic PASMCs and lung tissues from hypoxic PAH rats. AAV1-induced CHCHD4 elevation conspicuously alleviates vascular remodeling and pulmonary artery resistance, and orchestrates mitochondrial oxidative phosphorylation in PASMCs. Moreover, we found overexpression of CHCHD4 impeded proliferation and migration of PASMCs. Mechanistically, through lung tissues bulk RNA-sequencing (RNA-seq), we further identified CHCHD4 modulated mitochondrial dynamics by directly interacting with SAM50, a barrel protein on mitochondrial outer membrane surface. Furthermore, knockdown of SAM50 reversed the biological effects of CHCHD4 overexpression in isolated PASMCs. CONCLUSIONS Collectively, our data demonstrated that CHCHD4 elevation orchestrates mitochondrial oxidative phosphorylation and antagonizes aberrant PASMC cell growth and migration, thereby disturbing hypoxic PAH, which could serve as a promising therapeutic target for PAH treatment.
Collapse
Affiliation(s)
- Yu Wang
- Department of Cardiology, Changhai Hospital, Navy Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China
| | - Zhenyu Zeng
- Department of Cardiology, Changhai Hospital, Navy Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China
| | - Zhaoxiang Zeng
- Department of Vascular Surgery, Changhai Hospital, Navy Medical University, Shanghai, People's Republic of China
| | - Guojun Chu
- Department of Cardiology, Changhai Hospital, Navy Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China.
| | - Xinghua Shan
- Department of Cardiology, Changhai Hospital, Navy Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
27
|
Simpson CE, Ambade AS, Harlan R, Roux A, Graham D, Klauer N, Tuhy T, Kolb TM, Suresh K, Hassoun PM, Damico RL. Spatial and temporal resolution of metabolic dysregulation in the Sugen hypoxia model of pulmonary hypertension. Pulm Circ 2023; 13:e12260. [PMID: 37404901 PMCID: PMC10315560 DOI: 10.1002/pul2.12260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/06/2023] Open
Abstract
Although PAH is partially attributed to disordered metabolism, previous human studies have mostly examined circulating metabolites at a single time point, potentially overlooking crucial disease biology. Current knowledge gaps include an understanding of temporal changes that occur within and across relevant tissues, and whether observed metabolic changes might contribute to disease pathobiology. We utilized targeted tissue metabolomics in the Sugen hypoxia (SuHx) rodent model to investigate tissue-specific metabolic relationships with pulmonary hypertensive features over time using regression modeling and time-series analysis. Our hypotheses were that some metabolic changes would precede phenotypic changes, and that examining metabolic interactions across heart, lung, and liver tissues would yield insight into interconnected metabolic mechanisms. To support the relevance of our findings, we sought to establish links between SuHx tissue metabolomics and human PAH -omics data using bioinformatic predictions. Metabolic differences between and within tissue types were evident by Day 7 postinduction, demonstrating distinct tissue-specific metabolism in experimental pulmonary hypertension. Various metabolites demonstrated significant tissue-specific associations with hemodynamics and RV remodeling. Individual metabolite profiles were dynamic, and some metabolic shifts temporally preceded the emergence of overt pulmonary hypertension and RV remodeling. Metabolic interactions were observed such that abundance of several liver metabolites modulated lung and RV metabolite-phenotype relationships. Taken all together, regression analyses, pathway analyses and time-series analyses implicated aspartate and glutamate signaling and transport, glycine homeostasis, lung nucleotide abundance, and oxidative stress as relevant to early PAH pathobiology. These findings offer valuable insights into potential targets for early intervention in PAH.
Collapse
Affiliation(s)
- Catherine E. Simpson
- Johns Hopkins University Division of Pulmonary and Critical Care MedicineBaltimoreMarylandUSA
| | - Anjira S. Ambade
- Johns Hopkins University Division of Pulmonary and Critical Care MedicineBaltimoreMarylandUSA
| | - Robert Harlan
- Johns Hopkins All Children's Hospital Molecular Determinants CoreSt. PetersburgFloridaUSA
| | - Aurelie Roux
- Johns Hopkins All Children's Hospital Molecular Determinants CoreSt. PetersburgFloridaUSA
| | - David Graham
- Johns Hopkins All Children's Hospital Molecular Determinants CoreSt. PetersburgFloridaUSA
| | - Neal Klauer
- Johns Hopkins University Division of Pulmonary and Critical Care MedicineBaltimoreMarylandUSA
| | - Tijana Tuhy
- Johns Hopkins University Division of Pulmonary and Critical Care MedicineBaltimoreMarylandUSA
| | - Todd M. Kolb
- Johns Hopkins University Division of Pulmonary and Critical Care MedicineBaltimoreMarylandUSA
| | - Karthik Suresh
- Johns Hopkins University Division of Pulmonary and Critical Care MedicineBaltimoreMarylandUSA
| | - Paul M. Hassoun
- Johns Hopkins University Division of Pulmonary and Critical Care MedicineBaltimoreMarylandUSA
| | - Rachel L. Damico
- Johns Hopkins University Division of Pulmonary and Critical Care MedicineBaltimoreMarylandUSA
| |
Collapse
|
28
|
Jiang CY, Wu LW, Liu YW, Feng B, Ye LC, Huang X, He YY, Shen Y, Zhu YF, Zhou XL, Jiang DJ, Qi HK, Zhang H, Yan Y. Identification of ACKR4 as an immune checkpoint in pulmonary arterial hypertension. Front Immunol 2023; 14:1153573. [PMID: 37449198 PMCID: PMC10337759 DOI: 10.3389/fimmu.2023.1153573] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Objective Inflammation is recognized as a contributor in the development of pulmonary arterial hypertension (PAH), and the recruitment and functional capacity of immune cells are well-orchestrated by chemokines and their receptors. This study is aimed at identification of critical chemokines in the progression of PAH via transcriptomic analysis. Methods Differentially expressed genes (DEGs) from lungs of PAH patients were achieved compared to controls based on Gene Expression Omnibus (GEO) database. Gene set enrichment analysis (GSEA) was applied for functional annotation and pathway enrichement. The abundance of immune cells was estimated by the xCell algorithm. Weighted correlation network analysis (WGCNA) was used to construct a gene expression network, based on which a diagnostic model was generated to determine its accuracy to distinguish PAH from control subjects. Target genes were then validated in lung of hypoxia-induce pulmonary hypertension (PH) mouse model. Results ACKR4 (atypical chemokine receptor 4) was downregulated in PAH lung tissues in multiple datasets. PAH relevant biological functions and pathways were enriched in patients with low-ACKR4 level according to GSEA enrichment analysis. Immuno-infiltration analysis revealed a negative correlation of activated dendritic cells, Th1 and macrophage infiltration with ACKR4 expression. Three gene modules were associated with PAH via WGCNA analysis, and a model for PAH diagnosis was generated using CXCL12, COL18A1 and TSHZ2, all of which correlated with ACKR4. The ACKR4 expression was also downregulated in lung tissues of our experimental PH mice compared to that of controls. Conclusions The reduction of ACKR4 in lung tissues of human PAH based on transcriptomic data is consistent with the alteration observed in our rodent PH. The correlation with immune cell infiltration and functional annotation indicated that ACKR4 might serve as a protective immune checkpoint for PAH.
Collapse
Affiliation(s)
- Chen-Yu Jiang
- Shanghai Clinical Research Center for Rare Pediatric Diseases, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Wei Wu
- Shanghai Clinical Research Center for Rare Pediatric Diseases, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi-Wei Liu
- Shanghai Clinical Research Center for Rare Pediatric Diseases, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bei Feng
- Shanghai Clinical Research Center for Rare Pediatric Diseases, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lin-Cai Ye
- Shanghai Clinical Research Center for Rare Pediatric Diseases, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xu Huang
- Shanghai Clinical Research Center for Rare Pediatric Diseases, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yang-Yang He
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Yi Shen
- Shanghai Clinical Research Center for Rare Pediatric Diseases, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi-Fan Zhu
- Shanghai Clinical Research Center for Rare Pediatric Diseases, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xing-Liang Zhou
- Shanghai Clinical Research Center for Rare Pediatric Diseases, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dai-Ji Jiang
- Shanghai Clinical Research Center for Rare Pediatric Diseases, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hai-Kun Qi
- School of Biomedical Engineering, Shanghaitech University, Shanghai, China
| | - Hao Zhang
- Shanghai Clinical Research Center for Rare Pediatric Diseases, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Yan
- Shanghai Clinical Research Center for Rare Pediatric Diseases, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
29
|
Mamazhakypov A, Maripov A, Sarybaev AS, Schermuly RT, Sydykov A. Osteopontin in Pulmonary Hypertension. Biomedicines 2023; 11:biomedicines11051385. [PMID: 37239056 DOI: 10.3390/biomedicines11051385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Pulmonary hypertension (PH) is a pathological condition with multifactorial etiology, which is characterized by elevated pulmonary arterial pressure and pulmonary vascular remodeling. The underlying pathogenetic mechanisms remain poorly understood. Accumulating clinical evidence suggests that circulating osteopontin may serve as a biomarker of PH progression, severity, and prognosis, as well as an indicator of maladaptive right ventricular remodeling and dysfunction. Moreover, preclinical studies in rodent models have implicated osteopontin in PH pathogenesis. Osteopontin modulates a plethora of cellular processes within the pulmonary vasculature, including cell proliferation, migration, apoptosis, extracellular matrix synthesis, and inflammation via binding to various receptors such as integrins and CD44. In this article, we provide a comprehensive overview of the current understanding of osteopontin regulation and its impact on pulmonary vascular remodeling, as well as consider research issues required for the development of therapeutics targeting osteopontin as a potential strategy for the management of PH.
Collapse
Affiliation(s)
- Argen Mamazhakypov
- Department of Internal Medicine, Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, 35392 Giessen, Germany
| | - Abdirashit Maripov
- Department of Mountain and Sleep Medicine and Pulmonary Hypertension, National Center of Cardiology and Internal Medicine, Bishkek 720040, Kyrgyzstan
| | - Akpay S Sarybaev
- Department of Mountain and Sleep Medicine and Pulmonary Hypertension, National Center of Cardiology and Internal Medicine, Bishkek 720040, Kyrgyzstan
| | - Ralph Theo Schermuly
- Department of Internal Medicine, Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, 35392 Giessen, Germany
| | - Akylbek Sydykov
- Department of Internal Medicine, Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, 35392 Giessen, Germany
| |
Collapse
|
30
|
Yang HT, Wang G, Zhu PC, Xiao ZY. Silencing EIF3A ameliorates pulmonary arterial hypertension through HDAC1 and PTEN/PI3K/AKT pathway in vitro and in vivo. Exp Cell Res 2023; 426:113555. [PMID: 36921705 DOI: 10.1016/j.yexcr.2023.113555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/27/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Pulmonary vascular remodeling caused by the excessive proliferation of pulmonary arterial smooth muscle cells (PASMCs) is the hallmark feature of pulmonary arterial hypertension (PAH). Eukaryotic initiation factor 3 subunit A (EIF3A) exhibited proliferative activity in multiple cell types. The present study investigated the role of EIF3A in the progression of PAH. A monocrotaline (MCT)-induced PAH rat model was constructed, and adeno-associated virus type 1 (AAV1) carrying EIF3A shRNA was intratracheally delivered to PAH rats to block EIF3A expression. PASMCs were isolated from rats and treated with PDGF-BB to simulate PASMC proliferation, and shRNA for EIF3 was conducted to investigate the mechanism behind the role of EIF3A in PASMC function in vitro. EIF3A expression was upregulated in pulmonary arteries, and EIF3A inhibition effectively improved pulmonary hypertension and right ventricular hypertrophy and suppressed MCT-induced vascular remodeling in vivo. In addition, we found that genetic knockdown of EIF3A reduced PDGF-triggered proliferation and arrested cell cycle, accompanied by downregulated proliferation-related protein expression in PASMCs. Mechanistically, the histone deacetylase 1 (HDAC1)-mediated PTEN/PI3K/AKT pathway was recognized as a primary mechanism in PAH progression. Silencing EIF3A decreased HDAC1 expression, and further inhibited the excessive proliferation of PASMCs by increasing the phosphatase and tension homolog (PTEN) expression and suppressing the AKT phosphorylation. Notably, HDAC1 expression reversed the effect of silencing EIF3A on PAH and PTEN/PI3K/AKT pathway. Collectively, silencing EIF3A improved PAH by decreasing PASMC proliferation through the HDAC1-mediated PTEN/PI3K/AKT pathway. These findings suggest that targeting EIF3A may represent a potential approach for the treatment of PAH.
Collapse
Affiliation(s)
- Hai-Tao Yang
- Dalian Medical University, Dalian, Liaoning, China; Department of Anesthesiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Guan Wang
- Department of Anesthesiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Peng-Cheng Zhu
- Department of Anesthesiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Zhao-Yang Xiao
- Department of Anesthesiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
31
|
Hu H, Cai J, Qi D, Li B, Yu L, Wang C, Bajpai AK, Huang X, Zhang X, Lu L, Liu J, Zheng F. Identification of Potential Biomarkers for Group I Pulmonary Hypertension Based on Machine Learning and Bioinformatics Analysis. Int J Mol Sci 2023; 24:ijms24098050. [PMID: 37175757 PMCID: PMC10178909 DOI: 10.3390/ijms24098050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/20/2023] [Accepted: 03/31/2023] [Indexed: 05/15/2023] Open
Abstract
A number of processes and pathways have been reported in the development of Group I pulmonary hypertension (Group I PAH); however, novel biomarkers need to be identified for a better diagnosis and management. We employed a robust rank aggregation (RRA) algorithm to shortlist the key differentially expressed genes (DEGs) between Group I PAH patients and controls. An optimal diagnostic model was obtained by comparing seven machine learning algorithms and was verified in an independent dataset. The functional roles of key DEGs and biomarkers were analyzed using various in silico methods. Finally, the biomarkers and a set of key candidates were experimentally validated using patient samples and a cell line model. A total of 48 key DEGs with preferable diagnostic value were identified. A gradient boosting decision tree algorithm was utilized to build a diagnostic model with three biomarkers, PBRM1, CA1, and TXLNG. An immune-cell infiltration analysis revealed significant differences in the relative abundances of seven immune cells between controls and PAH patients and a correlation with the biomarkers. Experimental validation confirmed the upregulation of the three biomarkers in Group I PAH patients. In conclusion, machine learning and a bioinformatics analysis along with experimental techniques identified PBRM1, CA1, and TXLNG as potential biomarkers for Group I PAH.
Collapse
Affiliation(s)
- Hui Hu
- Center for Gene Diagnosis, Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jie Cai
- Department of Cardial Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430060, China
| | - Daoxi Qi
- Center for Gene Diagnosis, Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Boyu Li
- Center for Gene Diagnosis, Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Li Yu
- Center for Gene Diagnosis, Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Chen Wang
- Center for Gene Diagnosis, Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Akhilesh K Bajpai
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Xiaoqin Huang
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Xiaokang Zhang
- Center for Gene Diagnosis, Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Jinping Liu
- Department of Cardial Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430060, China
| | - Fang Zheng
- Center for Gene Diagnosis, Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
32
|
Ma Q, Yang Q, Xu J, Sellers HG, Brown ZL, Liu Z, Bordan Z, Shi X, Zhao D, Cai Y, Pareek V, Zhang C, Wu G, Dong Z, Verin AD, Gan L, Du Q, Benkovic SJ, Xu S, Asara JM, Ben-Sahra I, Barman S, Su Y, Fulton DJR, Huo Y. Purine synthesis suppression reduces the development and progression of pulmonary hypertension in rodent models. Eur Heart J 2023; 44:1265-1279. [PMID: 36721994 PMCID: PMC10319969 DOI: 10.1093/eurheartj/ehad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 12/30/2022] [Accepted: 01/18/2023] [Indexed: 02/02/2023] Open
Abstract
AIMS Proliferation of vascular smooth muscle cells (VSMCs) is a hallmark of pulmonary hypertension (PH). Proliferative cells utilize purine bases from the de novo purine synthesis (DNPS) pathways for nucleotide synthesis; however, it is unclear whether DNPS plays a critical role in VSMC proliferation during development of PH. The last two steps of DNPS are catalysed by the enzyme 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inosine monophosphate cyclohydrolase (ATIC). This study investigated whether ATIC-driven DNPS affects the proliferation of pulmonary artery smooth muscle cells (PASMCs) and the development of PH. METHODS AND RESULTS Metabolites of DNPS in proliferative PASMCs were measured by liquid chromatography-tandem mass spectrometry. ATIC expression was assessed in platelet-derived growth factor-treated PASMCs and in the lungs of PH rodents and patients with pulmonary arterial hypertension. Mice with global and VSMC-specific knockout of Atic were utilized to investigate the role of ATIC in both hypoxia- and lung interleukin-6/hypoxia-induced murine PH. ATIC-mediated DNPS at the mRNA, protein, and enzymatic activity levels were increased in platelet-derived growth factor-treated PASMCs or PASMCs from PH rodents and patients with pulmonary arterial hypertension. In cultured PASMCs, ATIC knockdown decreased DNPS and nucleic acid DNA/RNA synthesis, and reduced cell proliferation. Global or VSMC-specific knockout of Atic attenuated vascular remodelling and inhibited the development and progression of both hypoxia- and lung IL-6/hypoxia-induced PH in mice. CONCLUSION Targeting ATIC-mediated DNPS compromises the availability of purine nucleotides for incorporation into DNA/RNA, reducing PASMC proliferation and pulmonary vascular remodelling and ameliorating the development and progression of PH.
Collapse
Affiliation(s)
- Qian Ma
- Vascular Biology Center, Medical College of Georgia, Augusta University, Sanders Building, CB-3919A, 1460 Laney Walker Blvd, Augusta, GA 30912-2500, USA
| | - Qiuhua Yang
- Vascular Biology Center, Medical College of Georgia, Augusta University, Sanders Building, CB-3919A, 1460 Laney Walker Blvd, Augusta, GA 30912-2500, USA
| | - Jiean Xu
- Vascular Biology Center, Medical College of Georgia, Augusta University, Sanders Building, CB-3919A, 1460 Laney Walker Blvd, Augusta, GA 30912-2500, USA
| | - Hunter G Sellers
- Vascular Biology Center, Medical College of Georgia, Augusta University, Sanders Building, CB-3919A, 1460 Laney Walker Blvd, Augusta, GA 30912-2500, USA
| | - Zach L Brown
- Vascular Biology Center, Medical College of Georgia, Augusta University, Sanders Building, CB-3919A, 1460 Laney Walker Blvd, Augusta, GA 30912-2500, USA
| | - Zhiping Liu
- Vascular Biology Center, Medical College of Georgia, Augusta University, Sanders Building, CB-3919A, 1460 Laney Walker Blvd, Augusta, GA 30912-2500, USA
| | - Zsuzsanna Bordan
- Vascular Biology Center, Medical College of Georgia, Augusta University, Sanders Building, CB-3919A, 1460 Laney Walker Blvd, Augusta, GA 30912-2500, USA
| | - Xiaofan Shi
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Dingwei Zhao
- Vascular Biology Center, Medical College of Georgia, Augusta University, Sanders Building, CB-3919A, 1460 Laney Walker Blvd, Augusta, GA 30912-2500, USA
| | - Yongfeng Cai
- Vascular Biology Center, Medical College of Georgia, Augusta University, Sanders Building, CB-3919A, 1460 Laney Walker Blvd, Augusta, GA 30912-2500, USA
| | - Vidhi Pareek
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, PA 16802, USA
| | - Chunxiang Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Sanders Building, CB-3919A, 1460 Laney Walker Blvd, Augusta, GA 30912-2500, USA
| | - Alexander D Verin
- Vascular Biology Center, Medical College of Georgia, Augusta University, Sanders Building, CB-3919A, 1460 Laney Walker Blvd, Augusta, GA 30912-2500, USA
| | - Lin Gan
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Quansheng Du
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Stephen J Benkovic
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, PA 16802, USA
| | - Suowen Xu
- Department of Endocrinology, the First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China
| | - John M Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Issam Ben-Sahra
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Scott Barman
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yunchao Su
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - David J R Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta University, Sanders Building, CB-3919A, 1460 Laney Walker Blvd, Augusta, GA 30912-2500, USA
| | - Yuqing Huo
- Vascular Biology Center, Medical College of Georgia, Augusta University, Sanders Building, CB-3919A, 1460 Laney Walker Blvd, Augusta, GA 30912-2500, USA
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Sanders Building, CB-3919A, 1460 Laney Walker Blvd, Augusta, GA 30912-2500, USA
| |
Collapse
|
33
|
He Z, Chang T, Chen Y, Wang H, Dai L, Zeng H. PARM1 Drives Smooth Muscle Cell Proliferation in Pulmonary Arterial Hypertension via AKT/FOXO3A Axis. Int J Mol Sci 2023; 24:ijms24076385. [PMID: 37047359 PMCID: PMC10094810 DOI: 10.3390/ijms24076385] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/25/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a group of severe, progressive, and debilitating diseases with limited therapeutic options. This study aimed to explore novel therapeutic targets in PAH through bioinformatics and experiments. Weighted gene co-expression network analysis (WGCNA) was applied to detect gene modules related to PAH, based on the GSE15197, GSE113439, and GSE117261. GSE53408 was applied as validation set. Subsequently, the validated most differentially regulated hub gene was selected for further ex vivo and in vitro assays. PARM1, TSHZ2, and CCDC80 were analyzed as potential intervention targets for PAH. Consistently with the bioinformatic results, our ex vivo and in vitro data indicated that PARM1 expression increased significantly in the lung tissue and/or pulmonary artery of the MCT-induced PAH rats and hypoxia-induced PAH mice in comparison with the respective controls. Besides, a similar expression pattern of PARM1 was found in the hypoxia- and PDGF--treated isolated rat primary pulmonary arterial smooth muscle cells (PASMCs). In addition, hypoxia/PDGF--induced PARM1 protein expression could promote the elevation of phosphorylation of AKT, phosphorylation of FOXO3A and PCNA, and finally the proliferation of PASMCs in vitro, whereas PARM1 siRNA treatment inhibited it. Mechanistically, PARM1 promoted PAH via AKT/FOXO3A/PCNA signaling pathway-induced PASMC proliferation.
Collapse
|
34
|
Garrison AT, Bignold RE, Wu X, Johnson JR. Pericytes: The lung-forgotten cell type. Front Physiol 2023; 14:1150028. [PMID: 37035669 PMCID: PMC10076600 DOI: 10.3389/fphys.2023.1150028] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
Pericytes are a heterogeneous population of mesenchymal cells located on the abluminal surface of microvessels, where they provide structural and biochemical support. Pericytes have been implicated in numerous lung diseases including pulmonary arterial hypertension (PAH) and allergic asthma due to their ability to differentiate into scar-forming myofibroblasts, leading to collagen deposition and matrix remodelling and thus driving tissue fibrosis. Pericyte-extracellular matrix interactions as well as other biochemical cues play crucial roles in these processes. In this review, we give an overview of lung pericytes, the key pro-fibrotic mediators they interact with, and detail recent advances in preclinical studies on how pericytes are disrupted and contribute to lung diseases including PAH, allergic asthma, and chronic obstructive pulmonary disease (COPD). Several recent studies using mouse models of PAH have demonstrated that pericytes contribute to these pathological events; efforts are currently underway to mitigate pericyte dysfunction in PAH by targeting the TGF-β, CXCR7, and CXCR4 signalling pathways. In allergic asthma, the dissociation of pericytes from the endothelium of blood vessels and their migration towards inflamed areas of the airway contribute to the characteristic airway remodelling observed in allergic asthma. Although several factors have been suggested to influence this migration such as TGF-β, IL-4, IL-13, and periostin, recent evidence points to the CXCL12/CXCR4 pathway as a potential therapeutic target. Pericytes might also play an essential role in lung dysfunction in response to ageing, as they are responsive to environmental risk factors such as cigarette smoke and air pollutants, which are the main drivers of COPD. However, there is currently no direct evidence delineating the contribution of pericytes to COPD pathology. Although there is a lack of human clinical data, the recent available evidence derived from in vitro and animal-based models shows that pericytes play important roles in the initiation and maintenance of chronic lung diseases and are amenable to pharmacological interventions. Therefore, further studies in this field are required to elucidate if targeting pericytes can treat lung diseases.
Collapse
Affiliation(s)
- Annelise T. Garrison
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Rebecca E. Bignold
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Xinhui Wu
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Jill R. Johnson
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| |
Collapse
|
35
|
Vera-Zambrano A, Baena-Nuevo M, Rinné S, Villegas-Esguevillas M, Barreira B, Telli G, de Benito-Bueno A, Blázquez JA, Climent B, Pérez-Vizcaino F, Valenzuela C, Decher N, Gonzalez T, Cogolludo A. Sigma-1 receptor modulation fine-tunes K V1.5 channels and impacts pulmonary vascular function. Pharmacol Res 2023; 189:106684. [PMID: 36740150 DOI: 10.1016/j.phrs.2023.106684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/23/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
KV1.5 channels are key players in the regulation of vascular tone and atrial excitability and their impairment is associated with cardiovascular diseases including pulmonary arterial hypertension (PAH) and atrial fibrillation (AF). Unfortunately, pharmacological strategies to improve KV1.5 channel function are missing. Herein, we aimed to study whether the chaperone sigma-1 receptor (S1R) is able to regulate these channels and represent a new strategy to enhance their function. By using different electrophysiological and molecular techniques in X. laevis oocytes and HEK293 cells, we demonstrate that S1R physically interacts with KV1.5 channels and regulate their expression and function. S1R induced a bimodal regulation of KV1.5 channel expression/activity, increasing it at low concentrations and decreasing it at high concentrations. Of note, S1R agonists (PRE084 and SKF10047) increased, whereas the S1R antagonist BD1047 decreased, KV1.5 expression and activity. Moreover, PRE084 markedly increased KV1.5 currents in pulmonary artery smooth muscle cells and attenuated vasoconstriction and proliferation in pulmonary arteries. We also show that both KV1.5 channels and S1R, at mRNA and protein levels, are clearly downregulated in samples from PAH and AF patients. Moreover, the expression of both genes showed a positive correlation. Finally, the ability of PRE084 to increase KV1.5 function was preserved under sustained hypoxic conditions, as an in vitro PAH model. Our study provides insight into the key role of S1R in modulating the expression and activity of KV1.5 channels and highlights the potential role of this chaperone as a novel pharmacological target for pathological conditions associated with KV1.5 channel dysfunction.
Collapse
Affiliation(s)
- Alba Vera-Zambrano
- Department of Biochemistry, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain; Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Madrid, Spain.
| | - Maria Baena-Nuevo
- Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain
| | - Susanne Rinné
- Institute of Physiology and Pathophysiology, Vegetative Physiology, University of Marburg, 35043 Marburg, Germany
| | - Marta Villegas-Esguevillas
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Madrid, Spain; Ciber Enfermedades Respiratorias (CIBERES), Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Bianca Barreira
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Madrid, Spain; Ciber Enfermedades Respiratorias (CIBERES), Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Gokcen Telli
- Hacettepe University, Department of Pharmacology, Faculty of Pharmacy, Ankara, Turkey
| | | | | | - Belén Climent
- Department of Physiology, Faculty of Pharmacy, University Complutense of Madrid, Madrid, Spain
| | - Francisco Pérez-Vizcaino
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Madrid, Spain; Ciber Enfermedades Respiratorias (CIBERES), Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Carmen Valenzuela
- Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain; Spanish Network for Biomedical Research in Cardiovascular Research (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Niels Decher
- Institute of Physiology and Pathophysiology, Vegetative Physiology, University of Marburg, 35043 Marburg, Germany
| | - Teresa Gonzalez
- Department of Biochemistry, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain; Department of Physiology, Faculty of Pharmacy, University Complutense of Madrid, Madrid, Spain
| | - Angel Cogolludo
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Madrid, Spain; Ciber Enfermedades Respiratorias (CIBERES), Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.
| |
Collapse
|
36
|
Pulmonary Vascular Remodeling in Pulmonary Hypertension. J Pers Med 2023; 13:jpm13020366. [PMID: 36836600 PMCID: PMC9967990 DOI: 10.3390/jpm13020366] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Pulmonary vascular remodeling is the critical structural alteration and pathological feature in pulmonary hypertension (PH) and involves changes in the intima, media and adventitia. Pulmonary vascular remodeling consists of the proliferation and phenotypic transformation of pulmonary artery endothelial cells (PAECs) and pulmonary artery smooth muscle cells (PASMCs) of the middle membranous pulmonary artery, as well as complex interactions involving external layer pulmonary artery fibroblasts (PAFs) and extracellular matrix (ECM). Inflammatory mechanisms, apoptosis and other factors in the vascular wall are influenced by different mechanisms that likely act in concert to drive disease progression. This article reviews these pathological changes and highlights some pathogenetic mechanisms involved in the remodeling process.
Collapse
|
37
|
Yi D, Liu B, Ding H, Li S, Li R, Pan J, Ramirez K, Xia X, Kala M, Singh I, Ye Q, Lee WH, Frye RE, Wang T, Zhao Y, Knox KS, Glembotski CC, Fallon MB, Dai Z. E2F1 Mediates SOX17 Deficiency-Induced Pulmonary Hypertension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.15.528740. [PMID: 36824855 PMCID: PMC9949178 DOI: 10.1101/2023.02.15.528740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Rationale Rare genetic variants and genetic variation at loci in an enhancer in SRY-Box Transcription Factor 17 (SOX17) are identified in patients with idiopathic pulmonary arterial hypertension (PAH) and PAH with congenital heart disease. However, the exact role of genetic variants or mutation in SOX17 in PAH pathogenesis has not been reported. Objectives To investigate the role of SOX17 deficiency in pulmonary hypertension (PH) development. Methods Human lung tissue and endothelial cells (ECs) from IPAH patients were used to determine the expression of SOX17. Tie2Cre-mediated and EC-specific deletion of Sox17 mice were assessed for PH development. Single-cell RNA sequencing analysis, human lung ECs, and smooth muscle cell culture were performed to determine the role and mechanisms of SOX17 deficiency. A pharmacological approach was used in Sox17 deficiency mice for therapeutic implication. Measurement and Main Results SOX17 expression was downregulated in the lungs and pulmonary ECs of IPAH patients. Mice with Tie2Cre mediated Sox17 knockdown and EC-specific Sox17 deletion developed spontaneously mild PH. Loss of endothelial Sox17 in EC exacerbated hypoxia-induced PH in mice. Loss of SOX17 in lung ECs induced endothelial dysfunctions including upregulation of cell cycle programming, proliferative and anti-apoptotic phenotypes, augmentation of paracrine effect on pulmonary arterial smooth muscle cells, impaired cellular junction, and BMP signaling. E2F Transcription Factor 1 (E2F1) signaling was shown to mediate the SOX17 deficiency-induced EC dysfunction and PH development. Conclusions Our study demonstrated that endothelial SOX17 deficiency induces PH through E2F1 and targeting E2F1 signaling represents a promising approach in PAH patients.
Collapse
Affiliation(s)
- Dan Yi
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Translational Cardiovascular Research Center, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Bin Liu
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Translational Cardiovascular Research Center, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Hongxu Ding
- Department of Pharmacy Practice & Science, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
| | - Shuai Li
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Rebecca Li
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Jiakai Pan
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Karina Ramirez
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Xiaomei Xia
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Mrinalini Kala
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Indrapal Singh
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Qinmao Ye
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Won Hee Lee
- Translational Cardiovascular Research Center, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | | | - Ting Wang
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Department of Environmental Health Science and Center of Translational Science, Florida International University, Port Saint Lucie, Florida, USA
| | - Yutong Zhao
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Kenneth S. Knox
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Christopher C. Glembotski
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Translational Cardiovascular Research Center, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Michael B. Fallon
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Zhiyu Dai
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Translational Cardiovascular Research Center, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
- Sarver Heart Center, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
38
|
Jiang C, Jiang W. Lasso algorithm and support vector machine strategy to screen pulmonary arterial hypertension gene diagnostic markers. Scott Med J 2023; 68:21-31. [PMID: 36253715 DOI: 10.1177/00369330221132158] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
BACKGROUND This study employs machine learning strategy algorithms to screen the optimal gene signature of pulmonary arterial hypertension (PAH) under big data in the medical field. METHODS The public database Gene Expression Omnibus (GEO) was used to analyze datasets of 32 normal controls and 37 PAH disease samples. The enrichment analysis was performed after selecting the differentially expressed genes. Two machine learning methods, the least absolute shrinkage and selection operator (LASSO) and support vector machine (SVM), were used to identify the candidate genes. The external validation data set further tests the expression level and diagnostic value of candidate diagnostic genes. The diagnostic effectiveness was evaluated by obtaining the receiver operating characteristic curve (ROC). The convolution tool CIBERSORT was used to estimate the composition pattern of the immune cell subtypes and to perform correlation analysis based on the combined training dataset. RESULTS A total of 564 differentially expressed genes (DEGs) were screened in normal control and pulmonary hypertension samples. The enrichment analysis results were found to be closely related to cardiovascular diseases, inflammatory diseases, and immune-related pathways. The LASSO and SVM algorithms in machine learning used 5 × cross-validation to identify 9 and 7 characteristic genes. The two machine learning algorithms shared Caldesmon 1 (CALD1) and Solute Carrier Family 7 Member 11 (SLC7A11) as genetic signals highly correlated with PAH. The results showed that the area under ROC (AUC) of the specific characteristic diagnostic genes were CALD1 (AUC = 0.924) and SLC7A11 (AUC = 0.962), indicating that the two diagnostic genes have high diagnostic value. CONCLUSION CALD1 and SLC7A11 can be used as diagnostic markers of PAH to obtain new insights for the further study of the immune mechanism involved in PAH.
Collapse
Affiliation(s)
- Chenyang Jiang
- Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong, China.,The First Clinical Medical College of Guangxi Medical University, Nanning, China
| | - Weidong Jiang
- Department of Cardiology, Nantong Hospital of Traditional Chinese Medicine, Nantong, China
| |
Collapse
|
39
|
Hong J, Wong B, Rhodes CJ, Kurt Z, Schwantes-An TH, Mickler EA, Gräf S, Eyries M, Lutz KA, Pauciulo MW, Trembath RC, Montani D, Morrell NW, Wilkins MR, Nichols WC, Trégouët DA, Aldred MA, Desai AA, Tuder RM, Geraci MW, Eghbali M, Stearman RS, Yang X. Integrative Multiomics to Dissect the Lung Transcriptional Landscape of Pulmonary Arterial Hypertension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.12.523812. [PMID: 36712057 PMCID: PMC9882207 DOI: 10.1101/2023.01.12.523812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Pulmonary arterial hypertension (PAH) remains an incurable and often fatal disease despite currently available therapies. Multiomics systems biology analysis can shed new light on PAH pathobiology and inform translational research efforts. Using RNA sequencing on the largest PAH lung biobank to date (96 disease and 52 control), we aim to identify gene co-expression network modules associated with PAH and potential therapeutic targets. Co-expression network analysis was performed to identify modules of co-expressed genes which were then assessed for and prioritized by importance in PAH, regulatory role, and therapeutic potential via integration with clinicopathologic data, human genome-wide association studies (GWAS) of PAH, lung Bayesian regulatory networks, single-cell RNA-sequencing data, and pharmacotranscriptomic profiles. We identified a co-expression module of 266 genes, called the pink module, which may be a response to the underlying disease process to counteract disease progression in PAH. This module was associated not only with PAH severity such as increased PVR and intimal thickness, but also with compensated PAH such as lower number of hospitalizations, WHO functional class and NT-proBNP. GWAS integration demonstrated the pink module is enriched for PAH-associated genetic variation in multiple cohorts. Regulatory network analysis revealed that BMPR2 regulates the main target of FDA-approved riociguat, GUCY1A2, in the pink module. Analysis of pathway enrichment and pink hub genes (i.e. ANTXR1 and SFRP4) suggests the pink module inhibits Wnt signaling and epithelial-mesenchymal transition. Cell type deconvolution showed the pink module correlates with higher vascular cell fractions (i.e. myofibroblasts). A pharmacotranscriptomic screen discovered ubiquitin-specific peptidases (USPs) as potential therapeutic targets to mimic the pink module signature. Our multiomics integrative study uncovered a novel gene subnetwork associated with clinicopathologic severity, genetic risk, specific vascular cell types, and new therapeutic targets in PAH. Future studies are warranted to investigate the role and therapeutic potential of the pink module and targeting USPs in PAH.
Collapse
|
40
|
van der Have O, Mead TJ, Westöö C, Peruzzi N, Mutgan AC, Norvik C, Bech M, Struglics A, Hoetzenecker K, Brunnström H, Westergren‐Thorsson G, Kwapiszewska G, Apte SS, Tran‐Lundmark K. Aggrecan accumulates at sites of increased pulmonary arterial pressure in idiopathic pulmonary arterial hypertension. Pulm Circ 2023; 13:e12200. [PMID: 36824691 PMCID: PMC9941846 DOI: 10.1002/pul2.12200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Expansion of extracellular matrix occurs in all stages of pulmonary angiopathy associated with pulmonary arterial hypertension (PAH). In systemic arteries, dysregulation and accumulation of the large chondroitin-sulfate proteoglycan aggrecan is associated with swelling and disruption of vessel wall homeostasis. Whether aggrecan is present in pulmonary arteries, and its potential roles in PAH, has not been thoroughly investigated. Here, lung tissue from 11 patients with idiopathic PAH was imaged using synchrotron radiation phase-contrast microcomputed tomography (TOMCAT beamline, Swiss Light Source). Immunohistochemistry for aggrecan core protein in subsequently sectioned lung tissue demonstrated accumulation in PAH compared with failed donor lung controls. RNAscope in situ hybridization indicated ACAN expression in vascular endothelium and smooth muscle cells. Based on qualitative histological analysis, aggrecan localizes to cellular, rather than fibrotic or collagenous, lesions. Interestingly, ADAMTS15, a potential aggrecanase, was upregulated in pulmonary arteries in PAH. Aligning traditional histological analysis with three-dimensional renderings of pulmonary arteries from synchrotron imaging identified aggrecan in lumen-reducing lesions containing loose, cell-rich connective tissue, at sites of intrapulmonary bronchopulmonary shunting, and at sites of presumed elevated pulmonary blood pressure. Our findings suggest that ACAN expression may be an early response to injury in pulmonary angiopathy and supports recent work showing that dysregulation of aggrecan turnover is a hallmark of arterial adaptations to altered hemodynamics. Whether cause or effect, aggrecan and aggrecanase regulation in PAH are potential therapeutic targets.
Collapse
Affiliation(s)
- Oscar van der Have
- Department of Experimental Medical Science, Faculty of MedicineLund UniversityLundSweden
| | - Timothy J. Mead
- Department of Biomedical EngineeringCleveland Clinic Lerner Research InstituteClevelandOhioUSA
| | - Christian Westöö
- Department of Experimental Medical Science, Faculty of MedicineLund UniversityLundSweden
| | - Niccolò Peruzzi
- Department of Experimental Medical Science, Faculty of MedicineLund UniversityLundSweden
- Department of Medical Radiation Physics, Clinical Sciences LundLund UniversityLundSweden
| | - Ayse C. Mutgan
- Ludwig Boltzmann Institute for Lung Vascular ResearchGrazAustria
- Division of Physiology, Otto Loewi Research CenterMedical University GrazGrazAustria
| | - Christian Norvik
- Department of Experimental Medical Science, Faculty of MedicineLund UniversityLundSweden
| | - Martin Bech
- Department of Medical Radiation Physics, Clinical Sciences LundLund UniversityLundSweden
| | - André Struglics
- Department of Clinical Sciences Lund, Orthopaedics, Faculty of MedicineLund UniversityLundSweden
| | | | - Hans Brunnström
- Department of Clinical Sciences Lund, Division of Pathology, Faculty of MedicineLund UniversityLundSweden
- Department of Genetics and PathologyDivision of Laboratory MedicineLundSweden
| | - Gunilla Westergren‐Thorsson
- Department of Experimental Medical Science, Faculty of MedicineLund UniversityLundSweden
- Wallenberg Center for Molecular MedicineLund UniversityLundSweden
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular ResearchGrazAustria
- Division of Physiology, Otto Loewi Research CenterMedical University GrazGrazAustria
- Institute for Lung HealthJustus Liebig UniversityGiessenGermany
| | - Suneel S. Apte
- Department of Biomedical EngineeringCleveland Clinic Lerner Research InstituteClevelandOhioUSA
| | - Karin Tran‐Lundmark
- Department of Experimental Medical Science, Faculty of MedicineLund UniversityLundSweden
- Wallenberg Center for Molecular MedicineLund UniversityLundSweden
- The Pediatric Heart CenterSkåne University HospitalLundSweden
| |
Collapse
|
41
|
Li Q, Hujiaaihemaiti M, Wang J, Uddin MN, Li MY, Aierken A, Wu Y. Identifying key transcription factors and miRNAs coregulatory networks associated with immune infiltrations and drug interactions in idiopathic pulmonary arterial hypertension. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:4153-4177. [PMID: 36899621 DOI: 10.3934/mbe.2023194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
BACKGROUND The deregulated genetic factors are critically associated with idiopathic pulmonary arterial hypertension (IPAH) development and progression. However, the identification of hub-transcription factors (TFs) and miRNA-hub-TFs co-regulatory network-mediated pathogenesis in IPAH remains lacking. METHODS We used GSE48149, GSE113439, GSE117261, GSE33463, and GSE67597 for identifying key genes and miRNAs in IPAH. We used a series of bioinformatics approaches, including R packages, protein-protein interaction (PPI) network, and gene set enrichment analysis (GSEA) to identify the hub-TFs and miRNA-hub-TFs co-regulatory networks in IPAH. Also, we employed a molecular docking approach to evaluate the potential protein-drug interactions. RESULTS We found that 14 TFs encoding genes, including ZNF83, STAT1, NFE2L3, and SMARCA2 are upregulated, and 47 TFs encoding genes, including NCOR2, FOXA2, NFE2, and IRF5 are downregulated in IPAH relative to the control. Then, we identified the differentially expressed 22 hub-TFs encoding genes, including four upregulated (STAT1, OPTN, STAT4, and SMARCA2) and 18 downregulated (such as NCOR2, IRF5, IRF2, MAFB, MAFG, and MAF) TFs encoding genes in IPAH. The deregulated hub-TFs regulate the immune system, cellular transcriptional signaling, and cell cycle regulatory pathways. Moreover, the identified differentially expressed miRNAs (DEmiRs) are involved in the co-regulatory network with hub-TFs. The six hub-TFs encoding genes, including STAT1, MAF, CEBPB, MAFB, NCOR2, and MAFG are consistently differentially expressed in the peripheral blood mononuclear cells of IPAH patients, and these hub-TFs showed significant diagnostic efficacy in distinguishing IPAH cases from the healthy individuals. Moreover, we revealed that the co-regulatory hub-TFs encoding genes are correlated with the infiltrations of various immune signatures, including CD4 regulatory T cells, immature B cells, macrophages, MDSCs, monocytes, Tfh cells, and Th1 cells. Finally, we discovered that the protein product of STAT1 and NCOR2 interacts with several drugs with appropriate binding affinity. CONCLUSIONS The identification of hub-TFs and miRNA-hub-TFs co-regulatory networks may provide a new avenue into the mechanism of IPAH development and pathogenesis.
Collapse
Affiliation(s)
- Qian Li
- Department of General Medicine, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Minawaer Hujiaaihemaiti
- Department of General Medicine, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Jie Wang
- Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Md Nazim Uddin
- Institute of Food Science and Technology, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
| | - Ming-Yuan Li
- Department of General Medicine, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Alidan Aierken
- Department of General Medicine, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Yun Wu
- Department of General Medicine, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| |
Collapse
|
42
|
Hu S, Wang L, Xu Y, Li F, Wang T. Disulfiram attenuates hypoxia-induced pulmonary hypertension by inhibiting GSDMD cleavage and pyroptosis in HPASMCs. Respir Res 2022; 23:353. [PMID: 36527086 PMCID: PMC9756478 DOI: 10.1186/s12931-022-02279-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Pulmonary hypertension (PH) is characterized by progressive pulmonary arterial remodelling, associated with different severities of inflammation and altered immune processes. Disulfiram eliminates the formation of N-gasdermin D (GSDMD) plasma membrane pores to prevent pyroptosis. Pyroptosis is a form of lytic cell death characterized by inflammasome activation and proinflammatory cytokine release that acts in the development of PH. We sought to investigate whether disulfiram could alleviate hypoxia-induced PH by inhibiting pyroptosis. METHODS To investigate whether disulfiram alleviates the progression of pulmonary hypertension, rodents were exposed to chronic hypoxia (10% oxygen, 4 weeks) to induce PH. The severity of PH was assessed by measuring right ventricular systolic pressure, mean pulmonary artery pressure, and the degree of right ventricular hypertrophy. Western blotting was used to measure proteins associated with the pyroptosis pathway, and ELISA was performed to measure the secretion of IL-18 and IL-1β, both of which are the primary methods for assessing pyroptosis. RESULTS IL-18 and IL-1β concentrations were higher in patients with PH than in normal controls. Disulfiram suppressed the progression of PH in mice and rats through the alleviation of pulmonary arterial remodelling. Pyroptosis-related proteins and the inflammasome were activated in rodent models of PH. Disulfiram inhibited the processing of GSDMD into N-GSDMD and attenuated the secretion of IL-1β and IL18. In vivo experiments showed that disulfiram also inhibited lytic death in HPASMCs. CONCLUSIONS Disulfiram treatment reduces PH progression through suppressing vascular remodelling by inhibiting GSDMD cleavage and pyroptosis. It might become a novel therapeutic option for the treatment of PH.
Collapse
Affiliation(s)
- Shunlian Hu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
- The Center for Biomedical Research, National Health Committee (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Lu Wang
- Department of Respiratory and Critical Care Medicine, Miyun Teaching Hospital of Capital Medical University, Beijing, People's Republic of China
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Miyun District, Beijing, People's Republic of China
- Department of Respiratory and Critical Care Medicine, Beijing Miyun Hospital, Beijing, People's Republic of China
| | - Yahan Xu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
- The Center for Biomedical Research, National Health Committee (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Fajiu Li
- The Sixth Hospital of Wuhan City, Affiliated Hospital of Jianghan University, Beijing, People's Republic of China
| | - Tao Wang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
- The Center for Biomedical Research, National Health Committee (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| |
Collapse
|
43
|
Identification of JPX-RABEP1 Pair as an Immune-Related Biomarker and Therapeutic Target in Pulmonary Arterial Hypertension by Bioinformatics and Experimental Analyses. Int J Mol Sci 2022; 23:ijms232415559. [PMID: 36555200 PMCID: PMC9779127 DOI: 10.3390/ijms232415559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/25/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a pulmonary vascular disease characterized by pulmonary vascular remodeling and right heart enlargement the pathogenesis of PAH is complicated; no biologic-based therapy is available for the treatment of PAH, but recent studies suggest that inflammatory response and abnormal proliferation of pulmonary artery smooth muscle cells are the main pathogenic mechanism, while the role of immune-related long non-coding RNAs (lncRNAs) remains unclear. The aim of this study was to systematically analyze immune-related lncRNAs in PAH. Here, we downloaded a publicly available microarray data from PAH and control patients (GSE113439). A total of 243 up-regulated and 203 down-regulated differentially expressed genes (DEGs) were screened, and immune-related DEGs were further obtained from ImmPort. The immune-related lncRNAs were obtained by co-expression analysis of immune-related mRNAs. Then, immune-related lncRNAs-mRNAs network including 2 lncRNAs and 6 mRNAs was constructed which share regulatory miRNAs and have significant correlation. Among the lncRNA-mRNA pairs, one pair (JPX-RABEP1) was verified in the validating dataset GSE53408 and PAH mouse model. Furthermore, the immune cell infiltration analysis of the GSE113439 dataset revealed that the JPX-RABEP1 pair may participate in the occurrence and development of PAH through immune cell infiltration. Together, our findings reveal that the lncRNA-mRNA pair JPX-RABEP1 may be a novel biomarker and therapeutic target for PAH.
Collapse
|
44
|
Wang D, Mo Y, Zhang D, Bai Y. Analysis of m 7G methylation modification patterns and pulmonary vascular immune microenvironment in pulmonary arterial hypertension. Front Immunol 2022; 13:1014509. [PMID: 36544768 PMCID: PMC9762157 DOI: 10.3389/fimmu.2022.1014509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022] Open
Abstract
Background M7G methylation modification plays an important role in cardiovascular disease development. Dysregulation of the immune microenvironment is closely related to the pathogenesis of PAH. However, it is unclear whether m7G methylation is involved in the progress of PAH by affecting the immune microenvironment. Methods The gene expression profile of PAH was obtained from the GEO database, and the m7G regulatory factors were analyzed for differences. Machine learning algorithms were used to screen characteristic genes, including the least absolute shrinkage and selection operator, random forest, and support vector machine recursive feature elimination analysis. Constructed a nomogram model, and receiver operating characteristic was used to evaluate the diagnosis of disease characteristic genes value. Next, we used an unsupervised clustering method to perform consistent clustering analysis on m7G differential genes. Used the ssGSEA algorithm to estimate the relationship between the m7G regulator in PAH and immune cell infiltration and analyze the correlation with disease-characteristic genes. Finally, the listed drugs were evaluated through the screened signature genes. Results We identified 15 kinds of m7G differential genes. CYFIP1, EIF4E, and IFIT5 were identified as signature genes by the machine learning algorithm. Meanwhile, two m7G molecular subtypes were identified by consensus clustering (cluster A/B). In addition, immune cell infiltration analysis showed that activated CD4 T cells, regulatory T cells, and type 2 T helper cells were upregulated in m7G cluster B, CD56 dim natural killer cells, MDSC, and monocyte were upregulated in the m7G cluster A. It might be helpful to select Calpain inhibitor I and Everolimus for the treatment of PAH. Conclusion Our study identified CYFIP1, EIF4E, and IFIT5 as novel diagnostic biomarkers in PAH. Furthermore, their association with immune cell infiltration may facilitate the development of immune therapy in PAH.
Collapse
Affiliation(s)
- Desheng Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Yanfei Mo
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Dongfang Zhang
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, Liaoning, China,*Correspondence: Yang Bai, ; Dongfang Zhang,
| | - Yang Bai
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China,*Correspondence: Yang Bai, ; Dongfang Zhang,
| |
Collapse
|
45
|
Duo M, Liu Z, Zhang Y, Li P, Weng S, Xu H, Wang Y, Jiang T, Wu R, Cheng Z. Construction of a diagnostic signature and immune landscape of pulmonary arterial hypertension. Front Cardiovasc Med 2022; 9:940894. [DOI: 10.3389/fcvm.2022.940894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 11/16/2022] [Indexed: 12/04/2022] Open
Abstract
BackgroundMolecular biomarkers are widely used for disease diagnosis and exploration of pathogenesis. Pulmonary arterial hypertension (PAH) is a rapidly progressive cardiopulmonary disease with delayed diagnosis. Studies were limited regarding molecular biomarkers correlated with PAH from a broad perspective.MethodsTwo independent microarray cohorts comprising 73 PAH samples and 36 normal samples were enrolled in this study. The weighted gene co-expression network analysis (WGCNA) was performed to identify the key modules associated with PAH. The LASSO algorithm was employed to fit a diagnostic model. The latent biology mechanisms and immune landscape were further revealed via bioinformatics tools.ResultsThe WGCNA approach ultimately identified two key modules significantly associated with PAH. For genes within the two models, differential expression analysis between PAH and normal samples further determined nine key genes. With the expression profiles of these nine genes, we initially developed a PAH diagnostic signature (PDS) consisting of LRRN4, PI15, BICC1, PDE1A, TSHZ2, HMCN1, COL14A1, CCDC80, and ABCB1 in GSE117261 and then validated this signature in GSE113439. The ROC analysis demonstrated outstanding AUCs with 0.948 and 0.945 in two cohorts, respectively. Besides, patients with high PDS scores enriched plenty of Th17 cells and neutrophils, while patients with low PDS scores were dramatically related to mast cells and B cells.ConclusionOur study established a robust and promising signature PDS for diagnosing PAH, with key genes, novel pathways, and immune landscape offering new perspectives for exploring the molecular mechanisms and potential therapeutic targets of PAH.
Collapse
|
46
|
Tan R, You Q, Yu D, Xiao C, Adu-Amankwaah J, Cui J, Zhang T. Novel hub genes associated with pulmonary artery remodeling in pulmonary hypertension. Front Cardiovasc Med 2022; 9:945854. [PMID: 36531719 PMCID: PMC9748075 DOI: 10.3389/fcvm.2022.945854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/15/2022] [Indexed: 12/02/2022] Open
Abstract
Pulmonary hypertension (PH) is a life-threatening disease with complex pathogenesis. According to etiology, PH is divided into five major groups in clinical classification. However, pulmonary artery (PA) remodeling is their common feature, in addition to bone morphogenetic protein receptor type 2; it is elusive whether there are other novel common genes and similar underlying mechanisms. To identify novel common hub genes involved in PA remodeling at different PH groups, we analyzed mRNA-Seq data located in the general gene expression profile GSE130391 utilizing bioinformatics technology. This database contains PA samples from different PH groups of hospitalized patients with chronic thromboembolic pulmonary hypertension (CTEPH), idiopathic pulmonary artery hypertension (IPAH), and PA samples from organ donors without known pulmonary vascular diseases as control. We screened 22 hub genes that affect PA remodeling, most of which have not been reported in PH. We verified the top 10 common hub genes in hypoxia with Sugen-induced PAH rat models by qRT-PCR. The three upregulated candidate genes are WASF1, ARHGEF1 and RB1 and the seven downregulated candidate genes are IL1R1, RHOB, DAPK1, TNFAIP6, PKN1, PLOD2, and MYOF. WASF1, ARHGEF1, and RB1 were upregulated significantly in hypoxia with Sugen-induced PAH, while IL1R1, DAPK1, and TNFA1P6 were upregulated significantly in hypoxia with Sugen-induced PAH. The DEGs detected by mRNA-Seq in hospitalized patients with PH are different from those in animal models. This study will provide some novel target genes to further study PH mechanisms and treatment.
Collapse
Affiliation(s)
- Rubin Tan
- Department of Physiology, Basic Medical School, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Rubin Tan
| | - Qiang You
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Dongdong Yu
- Department of Tumor Radiotherapy, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chushu Xiao
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Joseph Adu-Amankwaah
- Department of Physiology, Basic Medical School, Xuzhou Medical University, Xuzhou, China
| | - Jie Cui
- Department of Physiology, Basic Medical School, Xuzhou Medical University, Xuzhou, China
| | - Ting Zhang
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
47
|
Hindmarch CCT, Tian L, Xiong PY, Potus F, Bentley RET, Al-Qazazi R, Prins KW, Archer SL. An integrated proteomic and transcriptomic signature of the failing right ventricle in monocrotaline induced pulmonary arterial hypertension in male rats. Front Physiol 2022; 13:966454. [PMID: 36388115 PMCID: PMC9664166 DOI: 10.3389/fphys.2022.966454] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/19/2022] [Indexed: 01/25/2023] Open
Abstract
Aim: Pulmonary arterial hypertension (PAH) is an obstructive pulmonary vasculopathy that results in death from right ventricular failure (RVF). There is limited understanding of the molecular mechanisms of RVF in PAH. Methods: In a PAH-RVF model induced by injection of adult male rats with monocrotaline (MCT; 60 mg/kg), we performed mass spectrometry to identify proteins that change in the RV as a consequence of PAH induced RVF. Bioinformatic analysis was used to integrate our previously published RNA sequencing data from an independent cohort of PAH rats. Results: We identified 1,277 differentially regulated proteins in the RV of MCT rats compared to controls. Integration of MCT RV transcriptome and proteome data sets identified 410 targets that are concordantly regulated at the mRNA and protein levels. Functional analysis of these data revealed enriched functions, including mitochondrial metabolism, cellular respiration, and purine metabolism. We also prioritized 15 highly enriched protein:transcript pairs and confirmed their biological plausibility as contributors to RVF. We demonstrated an overlap of these differentially expressed pairs with data published by independent investigators using multiple PAH models, including the male SU5416-hypoxia model and several male rat strains. Conclusion: Multiomic integration provides a novel view of the molecular phenotype of RVF in PAH which includes dysregulation of pathways involving purine metabolism, mitochondrial function, inflammation, and fibrosis.
Collapse
Affiliation(s)
- Charles Colin Thomas Hindmarch
- QCPU, Queen’s Cardiopulmonary Unit, Translational Institute of Medicine (TIME), Department of Medicine, Queen’s University, Kingston, ON, Canada
| | - Lian Tian
- Department of Medicine, Queen’s University, Kingston, ON, Canada
| | - Ping Yu Xiong
- Department of Medicine, Queen’s University, Kingston, ON, Canada
| | - Francois Potus
- Pulmonary Hypertension Research Group, Centre de Recherche de l’Institut Universitaire de Cardiologie et Pneumologie de Quebec, Quebec City, QC, Canada
| | | | - Ruaa Al-Qazazi
- Department of Medicine, Queen’s University, Kingston, ON, Canada
| | - Kurt W. Prins
- Cardiovascular Division, Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Stephen L. Archer
- QCPU, Queen’s Cardiopulmonary Unit, Translational Institute of Medicine (TIME), Department of Medicine, Queen’s University, Kingston, ON, Canada,Department of Medicine, Queen’s University, Kingston, ON, Canada,*Correspondence: Stephen L. Archer,
| |
Collapse
|
48
|
FAM171B as a Novel Biomarker Mediates Tissue Immune Microenvironment in Pulmonary Arterial Hypertension. Mediators Inflamm 2022; 2022:1878766. [PMID: 36248192 PMCID: PMC9553458 DOI: 10.1155/2022/1878766] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/22/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
The purpose of this study was to uncover potential diagnostic indicators of pulmonary arterial hypertension (PAH), evaluate the function of immune cells in the pathogenesis of the disease, and find innovative treatment targets and medicines with the potential to enhance prognosis. Gene Expression Omnibus was utilized to acquire the PAH datasets. We recognized differentially expressed genes (DEGs) and investigated their functions utilizing R software. Weighted gene coexpression network analysis, least absolute shrinkage and selection operators, and support vector machines were used to identify biomarkers. The extent of immune cell infiltration in the normal and PAH tissues was determined using CIBERSORT. Additionally, the association between diagnostic markers and immune cells was analyzed. In this study, 258DEGs were used to analyze the disease ontology. Most DEGs were linked with atherosclerosis, arteriosclerotic cardiovascular disease, and lung disease, including obstructive lung disease. Gene set enrichment analysis revealed that compared to normal samples, results from PAH patients were mostly associated with ECM-receptor interaction, arrhythmogenic right ventricular cardiomyopathy, the Wnt signaling pathway, and focal adhesion. FAM171B was identified as a biomarker for PAH (area under the curve = 0.873). The mechanism underlying PAH may be mediated by nave CD4 T cells, resting memory CD4 T cells, resting NK cells, monocytes, activated dendritic cells, resting mast cells, and neutrophils, according to an investigation of immune cell infiltration. FAM171B expression was also associated with resting mast cells, monocytes, and CD8 T cells. The results suggest that PAH may be closely related to FAM171B with high diagnostic performance and associated with immune cell infiltration, suggesting that FAM171B may promote the progression of PAH by stimulating immune infiltration and immune response. This study provides valuable insights into the pathogenesis and treatment of PAH.
Collapse
|
49
|
Identification of Signal Pathways and Hub Genes of Pulmonary Arterial Hypertension by Bioinformatic Analysis. Can Respir J 2022; 2022:1394088. [PMID: 36072642 PMCID: PMC9444450 DOI: 10.1155/2022/1394088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/19/2022] [Indexed: 11/30/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive and complex pulmonary vascular disease with poor prognosis. The aim of this study was to provide a new understanding of the pathogenesis of disease and potential treatment targets for patients with PAH based on multiple-microarray analysis.Two microarray datasets (GSE53408 and GSE113439) downloaded from the Gene Expression Omnibus (GEO) database were analysed. All the raw data were processed by R, and differentially expressed genes (DEGs) were screened out by the “limma” package. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed and visualized by R and Cytoscape software. Protein-protein interactions (PPI) of DEGs were analysed based on the NetworkAnalyst online tool. A total of 442 upregulated DEGs and 84 downregulated DEGs were identified. GO enrichment analysis showed that these DEGs were mainly enriched in mitotic nuclear division, organelle fission, chromosome segregation, nuclear division, and sister chromatid segregation. Significant KEGG pathway enrichment included ribosome biogenesis in eukaryotes, RNA transport, proteoglycans in cancer, dilated cardiomyopathy, rheumatoid arthritis, vascular smooth muscle contraction, focal adhesion, regulation of the actin cytoskeleton, and hypertrophic cardiomyopathy. The PPI network identified 10 hub genes including HSP90AA1, CDC5L, MDM2, LRRK2, CFTR, IQGAP1, CAND1, TOP2A, DDX21, and HIF1A. We elucidated potential biomarkers and therapeutic targets for PAH by bioinformatic analysis, which provides a theoretical basis for future study.
Collapse
|
50
|
Santos-Gomes J, Gandra I, Adão R, Perros F, Brás-Silva C. An Overview of Circulating Pulmonary Arterial Hypertension Biomarkers. Front Cardiovasc Med 2022; 9:924873. [PMID: 35911521 PMCID: PMC9333554 DOI: 10.3389/fcvm.2022.924873] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Pulmonary arterial hypertension (PAH), also known as Group 1 Pulmonary Hypertension (PH), is a PH subset characterized by pulmonary vascular remodeling and pulmonary arterial obstruction. PAH has an estimated incidence of 15-50 people per million in the United States and Europe, and is associated with high mortality and morbidity, with patients' survival time after diagnosis being only 2.8 years. According to current guidelines, right heart catheterization is the gold standard for diagnostic and prognostic evaluation of PAH patients. However, this technique is highly invasive, so it is not used in routine clinical practice or patient follow-up. Thereby, it is essential to find new non-invasive strategies for evaluating disease progression. Biomarkers can be an effective solution for determining PAH patient prognosis and response to therapy, and aiding in diagnostic efforts, so long as their detection is non-invasive, easy, and objective. This review aims to clarify and describe some of the potential new candidates as circulating biomarkers of PAH.
Collapse
Affiliation(s)
- Joana Santos-Gomes
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Inês Gandra
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Rui Adão
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Frédéric Perros
- Paris-Porto Pulmonary Hypertension Collaborative Laboratory (3PH), UMR_S 999, INSERM, Université Paris-Saclay, Paris, France
- Université Paris–Saclay, AP-HP, INSERM UMR_S 999, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital de Bicêtre, Le Kremlin Bicêtre, France
| | - Carmen Brás-Silva
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| |
Collapse
|