1
|
Larska M, Tomana J, Krzysiak MK, Pomorska-Mól M, Socha W. Prevalence of coronaviruses in European bison (Bison bonasus) in Poland. Sci Rep 2024; 14:12928. [PMID: 38839918 PMCID: PMC11153543 DOI: 10.1038/s41598-024-63717-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024] Open
Abstract
Coronaviruses have been confirmed to infect a variety of species, but only one case of associated winter dysentery of European bison has been described. The study aimed to analyze the prevalence, and define the impact on the species conservation, the source of coronavirus infection, and the role of the European bison in the transmission of the pathogen in Poland. Molecular and serological screening was performed on 409 European bison from 6 free-ranging and 14 captive herds over the period of 6 years (2017-2023). Presence of coronavirus was confirmed in one nasal swab by pancoronavirus RT-PCR and in 3 nasal swab samples by bovine coronavirus (BCoV) specific real time RT-PCR. The detected virus showed high (> 98%) homology in both RdRp and Spike genes to BCoV strains characterised recently in Polish cattle and strains isolated from wild cervids in Italy. Antibodies specific to BCoV were found in 6.4% of tested samples, all originating from free-ranging animals. Seroprevalence was higher in adult animals over 5 years of age (p = 0.0015) and in females (p = 0.09). Our results suggest that European bison play only a limited role as reservoirs of bovine-like coronaviruses. Although the most probable source of infections in the European bison population in Poland is cattle, other wild ruminants could also be involved. In addition, the zoonotic potential of bovine coronaviruses is quite low.
Collapse
Affiliation(s)
- Magdalena Larska
- Department of Virology, National Veterinary Research Institute, Puławy, Poland
| | | | - Michał K Krzysiak
- Sub-Department of Parasitology and Invasive Diseases, Veterinary Faculty, University of Life Sciences, Lublin, Poland
| | - Małgorzata Pomorska-Mól
- Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animal Science, University of Life Sciences, Poznan, Poland
| | - Wojciech Socha
- Department of Virology, National Veterinary Research Institute, Puławy, Poland.
| |
Collapse
|
2
|
Ferrara G, Improda E, Piscopo F, Esposito R, Iovane G, Pagnini U, Montagnaro S. Bluetongue virus seroprevalence and risk factor analysis in cattle and water buffalo in southern Italy (Campania region). Vet Res Commun 2024; 48:579-584. [PMID: 37682447 PMCID: PMC10810927 DOI: 10.1007/s11259-023-10215-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023]
Abstract
Bluetongue is an arthropod-borne viral infection that is notifiable in several countries and causes significant economic losses and major concerns for ruminant trade. In this study, we investigated bluetongue 1seroprevalence in the Campania region, southern Italy, in cattle and buffalo populations, and assessed which factors were correlated with a high risk of exposure. The infection was widespread, as evidenced by the high individual (43.6%) and herd prevalence (85.4%). The highest prevalence was found in adult animals. Among the climatic factors analyzed, average temperature played a prominent role, being capable of affecting the probability of being positive for this infection. Surprisingly, exposure to Schmallenberg virus did not predispose animals to be positive for bluetongue virus, even though these infections share the same vector (Culicoides). Our data, consistent with those in the literature, suggest the transversal spread of bluetongue virus in the Mediterranean area, and indicate a limited co-exposure rate between Bluetongue and Schmallenberg viruses.
Collapse
Affiliation(s)
- Gianmarco Ferrara
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino N.1, 80137, Naples, Italy.
| | - Elvira Improda
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino N.1, 80137, Naples, Italy
| | - Federica Piscopo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino N.1, 80137, Naples, Italy
| | - Riccardo Esposito
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino N.1, 80137, Naples, Italy
| | - Giuseppe Iovane
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino N.1, 80137, Naples, Italy
| | - Ugo Pagnini
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino N.1, 80137, Naples, Italy
| | - Serena Montagnaro
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino N.1, 80137, Naples, Italy
| |
Collapse
|
3
|
Didkowska A, Klich D, Nowak M, Wojciechowska M, Prolejko K, Kwiecień E, Rzewuska M, Olech W, Anusz K. A serological survey of pathogens associated with the respiratory and digestive system in the Polish European bison (Bison bonasus) population in 2017-2022. BMC Vet Res 2023; 19:74. [PMID: 37264393 DOI: 10.1186/s12917-023-03627-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 05/25/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND The European bison (Bison bonasus) is a near threatened species and requires health monitoring. The aim of the present study was to determine the prevalence of antibodies to pathogens known to cause respiratory and digestive illness in ruminants. RESULTS In the studied 328 European bison, the highest seroprevalence was observed for Bovine herpesvirus-1 (BoHV-1) (50.27%), Bovine Coronavirus (BCoV) (26.36%), and Bluetongue Virus (BTV) (12.83%). For Mycoplasma bovis strains and Bovine Viral Diarrhea Virus (BVDV), positive results were rare. Interestingly, a higher prevalence of BTV antibodies was noted in the northeastern populations and older animals. CONCLUSIONS Our findings indicate that the Polish European bison population appears to have considerable contact with BoHV-1; however, this does not appear to be of great significance, as clinical symptoms and post-mortem lesions are rarely noted in Polish European bison population. The high seroprevalence of BTV in the north-east of Poland is an ongoing trend, also noted in previous studies. It is possible that European bison may perpetuate the virus in this region. This is the first report of antibodies for BCoV in European bison.
Collapse
Affiliation(s)
- Anna Didkowska
- Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, Warsaw, Poland.
| | - Daniel Klich
- Department of Animal Genetics and Conservation, Institute of Animal Sciences, University of Life Sciences (SGGW), Ciszewskiego 8, Warsaw, 02-786, Poland
| | - Magdalena Nowak
- Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, Warsaw, Poland
| | - Marlena Wojciechowska
- Department of Animal Genetics and Conservation, Institute of Animal Sciences, University of Life Sciences (SGGW), Ciszewskiego 8, Warsaw, 02-786, Poland
| | - Kinga Prolejko
- Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, Warsaw, Poland
| | - Ewelina Kwiecień
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8, Warsaw, 02-786, Poland
| | - Magdalena Rzewuska
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8, Warsaw, 02-786, Poland
| | - Wanda Olech
- Department of Animal Genetics and Conservation, Institute of Animal Sciences, University of Life Sciences (SGGW), Ciszewskiego 8, Warsaw, 02-786, Poland
| | - Krzysztof Anusz
- Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, Warsaw, Poland
| |
Collapse
|
4
|
Klich D, Didkowska A, Pyziel-Serafin AM, Perlińska-Teresiak M, Wołoszyn-Gałęza A, Żoch K, Balcerak M, Olech W. Contact between European bison and cattle from the cattle breeders' perspective, in the light of the risk of pathogen transmission. PLoS One 2023; 18:e0285245. [PMID: 37134113 PMCID: PMC10155960 DOI: 10.1371/journal.pone.0285245] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/18/2023] [Indexed: 05/04/2023] Open
Abstract
Pathogens transmitted between wildlife and domestic animals can pose a threat to endangered species, undermine conservation efforts in wildlife, and affect productivity and parasite control in domestic animals. There are several examples of pathogen transmission between European bison and other animals. The present study surveyed breeders from the vicinity of four large wisent populations in eastern Poland about observed contacts between wisent and cattle. Such contacts were noted by 37% of breeders, indicating a significant risk of contact between European bison and cattle in the study areas, even in the areas where the European bison live mainly in a forest complex, i.e., in the Borecka Forest. A higher potential risk of contacts between European bison and cattle was noted in the Białowieska Forest and the Bieszczady Mountains than in the Borecka and Knyszyńska Forests. In the Białowieska Forest, the risk of viral pathogen transmission resulting from contacts is higher (more direct contacts), and in the case of the Bieszczady Mountains, the probability of parasitic diseases is higher. The chance of contacts between European bison and cattle depended on the distance of cattle pastures from human settlements. Moreover, such contact was possible throughout the year, not only in spring and fall. It appears possible to minimize the risk of contacts between wisent and cattle by changing management practices for both species, such as keeping grazing areas as close as possible to settlements, and reducing the time cattle graze on pastures. However, the risk of contact is much greater if European bison populations are large and are dispersed beyond forest complexes.
Collapse
Affiliation(s)
- Daniel Klich
- Department of Animal Genetic and Conservation, Institute of Animal Sciences, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Anna Didkowska
- Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Warsaw, Poland
| | - Anna M Pyziel-Serafin
- Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Warsaw, Poland
| | - Magdalena Perlińska-Teresiak
- Department of Animal Genetic and Conservation, Institute of Animal Sciences, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | | | | | - Marek Balcerak
- Department of Animal Breeding, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Wanda Olech
- Department of Animal Genetic and Conservation, Institute of Animal Sciences, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| |
Collapse
|
5
|
Dettmann RA, Ritterson R, Lauer E, Casagrande R. Concepts to Bolster Biorisk Management. Health Secur 2022; 20:376-386. [PMID: 35997589 DOI: 10.1089/hs.2022.0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The rapid increase in the power of the life sciences has not been accompanied by a proportionate increase in the sophistication of biorisk management. Through conversations with thought leaders in biosafety and biosecurity, we have identified 19 concepts that are critical for biorisk management to continue to ensure the responsible and safe conduct of the life sciences in the future. Our work is not meant to be a comprehensive list, but rather a collection of topics that we hope will spark dialogue in the policy, research, and biorisk management communities.
Collapse
Affiliation(s)
- Robert August Dettmann
- Robert August Dettmann is an Analyst and MPH Student (Johns Hopkins Bloomberg School of Public Health); Gryphon Scientific, Takoma Park, MD
| | - Ryan Ritterson
- Ryan Ritterson, PhD, is Executive Vice President of Research; Gryphon Scientific, Takoma Park, MD
| | - Erin Lauer
- Erin Lauer is a Senior Analyst; Gryphon Scientific, Takoma Park, MD
| | - Rocco Casagrande
- Rocco Casagrande, PhD, is Chair of the Board; Gryphon Scientific, Takoma Park, MD
| |
Collapse
|
6
|
Wernike K, Fischer L, Holsteg M, Aebischer A, Petrov A, Marquart K, Schotte U, Schön J, Hoffmann D, Hechinger S, Neubauer-Juric A, Blicke J, Mettenleiter TC, Beer M. Serological screening in wild ruminants in Germany, 2021/22: No evidence of SARS-CoV-2, bluetongue virus or pestivirus spread but high seroprevalences against Schmallenberg virus. Transbound Emerg Dis 2022; 69:e3289-e3296. [PMID: 35585653 PMCID: PMC9348064 DOI: 10.1111/tbed.14600] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 11/30/2022]
Abstract
Wildlife animals may be susceptible to multiple infectious agents of public health or veterinary relevance, thereby potentially forming a reservoir that bears the constant risk of re‐introduction into the human or livestock population. Here, we serologically investigated 493 wild ruminant samples collected in the 2021/2022 hunting season in Germany for the presence of antibodies against the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) and four viruses pathogenic to domestic ruminants, namely, the orthobunyavirus Schmallenberg virus (SBV), the reovirus bluetongue virus (BTV) and ruminant pestiviruses like bovine viral diarrhoea virus or border disease virus. The animal species comprised fallow deer, red deer, roe deer, mouflon and wisent. For coronavirus serology, additional 307 fallow, roe and red deer samples collected between 2017 and 2020 at three military training areas were included. While antibodies against SBV could be detected in about 13.6% of the samples collected in 2021/2022, only one fallow deer of unknown age tested positive for anti‐BTV antibodies, and all samples reacted negative for antibodies against ruminant pestiviruses. In an ELISA based on the receptor‐binding domain (RBD) of SARS‐CoV‐2, 25 out of 493 (5.1%) samples collected in autumn and winter 2021/2022 scored positive. This sero‐reactivity could not be confirmed by the highly specific virus neutralisation test, occurred also in 2017, 2018 and 2019, that is, prior to the human SARS‐CoV‐2 pandemic, and was likewise observed against the RBD of the related SARS‐CoV‐1. Therefore, the SARS‐CoV‐2 sero‐reactivity was most likely induced by another hitherto unknown deer virus belonging to the subgenus Sarbecovirus of betacoronaviruses.
Collapse
Affiliation(s)
- Kerstin Wernike
- Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Luisa Fischer
- State Agency for Nature, Environment and Consumer Protection North Rhine-Westphalia, Wildlife Research Institute, Bonn, Germany
| | - Mark Holsteg
- Chamber of Agriculture for North Rhine-Westphalia, Bovine Health Service, Bad Sassendorf, Germany
| | | | - Anja Petrov
- Central Institute of the Bundeswehr Medical Service Kiel, Kronshagen, Germany
| | - Katharina Marquart
- Central Institute of the Bundeswehr Medical Service Kiel, Kronshagen, Germany
| | - Ulrich Schotte
- Central Institute of the Bundeswehr Medical Service Kiel, Kronshagen, Germany
| | - Jacob Schön
- Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Donata Hoffmann
- Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | | | | | - Julia Blicke
- Ministry of Climate Protection, Environment, Energy and Mobility, Mainz, Germany
| | | | - Martin Beer
- Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| |
Collapse
|
7
|
Morales-Castilla I, Pappalardo P, Farrell MJ, Aguirre AA, Huang S, Gehman ALM, Dallas T, Gravel D, Davies TJ. Forecasting parasite sharing under climate change. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200360. [PMID: 34538143 PMCID: PMC8450630 DOI: 10.1098/rstb.2020.0360] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2021] [Indexed: 12/12/2022] Open
Abstract
Species are shifting their distributions in response to climate change. This geographic reshuffling may result in novel co-occurrences among species, which could lead to unseen biotic interactions, including the exchange of parasites between previously isolated hosts. Identifying potential new host-parasite interactions would improve forecasting of disease emergence and inform proactive disease surveillance. However, accurate predictions of future cross-species disease transmission have been hampered by the lack of a generalized approach and data availability. Here, we propose a framework to predict novel host-parasite interactions based on a combination of niche modelling of future host distributions and parasite sharing models. Using the North American ungulates as a proof of concept, we show this approach has high cross-validation accuracy in over 85% of modelled parasites and find that more than 34% of the host-parasite associations forecasted by our models have already been recorded in the literature. We discuss potential sources of uncertainty and bias that may affect our results and similar forecasting approaches, and propose pathways to generate increasingly accurate predictions. Our results indicate that forecasting parasite sharing in response to shifts in host geographic distributions allow for the identification of regions and taxa most susceptible to emergent pathogens under climate change. This article is part of the theme issue 'Infectious disease macroecology: parasite diversity and dynamics across the globe'.
Collapse
Affiliation(s)
- Ignacio Morales-Castilla
- Universidad de Alcalá, GloCEE - Global Change Ecology and Evolution Research Group, Departamento de Ciencias de la Vida, 28805, Alcalá de Henares, Madrid, Spain
| | - Paula Pappalardo
- Department of Invertebrate Zoology, Smithsonian National Museum of Natural History, Washington, DC 20560, USA
| | - Maxwell J. Farrell
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - A. Alonso Aguirre
- Department of Environmental Science and Policy, George Mason University, Fairfax, VA 22030-4400, USA
| | - Shan Huang
- Senckenberg Biodiversity and Climate Centre (SBiK-F), Senckenberganlage 25, Frankfurt (Main) 60325, Germany
| | - Alyssa-Lois M. Gehman
- Department of Zoology, University of British Columbia, Canada
- Hakai Institute, end of Kwakshua Channel, Calvert Island, Canada
| | - Tad Dallas
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70806, USA
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Dominique Gravel
- Département de biologie, Université de Sherbrooke, 2500 Boul. de l'Université, Sherbroke, Canada J1K2R1
| | - T. Jonathan Davies
- Departments of Botany and Forest and Conservation Sciences, University of British Columbia, Canada
- Department of Botany and Plant Biotechnology, African Centre for DNA Barcoding, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
8
|
Paulauskas A, Aleksandravičienė A, Lipatova I, Griciuvienė L, Kibiša A, Žukauskienė J, Radzijevskaja J. Molecular detection of Babesia spp. in European bison (Bison bonasus) and their ticks. Ticks Tick Borne Dis 2021; 12:101807. [PMID: 34416567 DOI: 10.1016/j.ttbdis.2021.101807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/14/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022]
Abstract
Babesia spp. are tick-borne haemoparasites that infect a wide range of domestic and wild mammals. Free-ranging ungulates are considered to be important reservoir hosts of Babesia parasites. The European bison (Bison bonasus) is a large and rare ungulate species, reintroduced into the forests of Central Europe after an absence of several decades. Owing to their protected status, studies of tick-borne pathogens in European bison have so far been rare and fragmented. The aim of this study was to investigate the presence of Babesia infection in free-ranging and captive herds of European bison and their ticks. Tissue samples obtained from 37 European bison individuals and 242 ticks belonging to two species, Ixodes ricinus and Dermacentor reticulatus, collected from bison were subjected to PCR analysis of the 18S rRNA gene followed by sequencing. Babesia spp. were detected in 8% of the samples from European bison and in 11% of the ticks. Sequence analysis of partial 18S rRNA gene indicated the presence of B. divergens and B. capreoli in European bison, while B. divergens, B. microti and B. venatorum were detected in ixodid ticks. To the best of authors' knowledge, this is the first molecular detection and characterization of Babesia spp. in European bison and their ticks.
Collapse
Affiliation(s)
| | | | - Indrė Lipatova
- Vytautas Magnus University, K. Donelaičio 58, Kaunas LT-44248, Lithuania
| | - Loreta Griciuvienė
- Vytautas Magnus University, K. Donelaičio 58, Kaunas LT-44248, Lithuania
| | - Artūras Kibiša
- Vytautas Magnus University, K. Donelaičio 58, Kaunas LT-44248, Lithuania
| | - Judita Žukauskienė
- Vytautas Magnus University, K. Donelaičio 58, Kaunas LT-44248, Lithuania
| | - Jana Radzijevskaja
- Vytautas Magnus University, K. Donelaičio 58, Kaunas LT-44248, Lithuania
| |
Collapse
|
9
|
Krzysiak MK, Anusz K, Konieczny A, Rola J, Salat J, Strakova P, Olech W, Larska M. The European bison (Bison bonasus) as an indicatory species for the circulation of tick-borne encephalitis virus (TBEV) in natural foci in Poland. Ticks Tick Borne Dis 2021; 12:101799. [PMID: 34358779 DOI: 10.1016/j.ttbdis.2021.101799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 07/05/2021] [Accepted: 07/05/2021] [Indexed: 12/16/2022]
Abstract
Tick-borne encephalitis (TBE) is one of the most common zoonotic diseases in Europe transmitted by Ixodidae vectors. While small mammals such as bank voles and ticks constitute the main reservoirs for virus transmission, large sylvatic species act as a food source for ticks. Cervids such as roe deer and red deer are considered sentinel species for TBE in natural foci. In addition, an increase of the population size and density of large wild mammals in an area corresponds to an increase in the tick burden and may potentially increase the prevalence of TBE virus (TBEV) in ticks and tick hosts and further exposure risk in humans. Humans are considered accidental hosts. The prevalence of TBE relies on interactions between host, vector and environment. The present study examines the exposure of the largest European herbivore, the European bison (Bison bonasus) to TBEV infection. Assessed using the IMMUNOZYM FSME ELISA (PROGEN), the overall TBEV seroprevalence was 62.7% in the 335 European bison that were studied. ELISA results were confirmed by the gold-standard virus neutralization test (VNT) with 98.7% sensitivity and thus giving a true prevalence of 63.5%. TBEV seroprevalence was significantly correlated to the origin, age group, sex, population type (free living/captive) and sanitary status (healthy/selectively eliminated/found dead/killed in accident) of the European bison in the univariable analysis. The highest seroprevalences were observed in the three largest north-eastern wild populations (Białowieska, Borecka and Knyszyńska forests), which corresponded with the highest incidence of human cases reported in the country. The risk of TBEV seropositivity increased with age and was higher in female and free-ranging European bison. Additionally, to the epidemiological investigation, the continuous detection of TBEV antibodies was studied by repetitive testing of animals over the course of 34 months. Two of six seropositive animals remained seropositive throughout the study. The presence of antibodies was followed throughout the study in seropositive European bison and for at least a year in animals that seroconverted during the observation period.
Collapse
Affiliation(s)
- Michał K Krzysiak
- Białowieża National Park, Park Pałacowy 11, 17-230, Białowieża, Poland; Faculty of Civil Engineering and Environmental Sciences, Institute of Forest Sciences, Białystok University of Technology, Wiejska 45 E, 15-351, Białystok, Poland.
| | - Krzysztof Anusz
- Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, Warsaw University Of Life Sciences (WULS), ul. Nowoursynowska 166, Warszawa 02-786, Poland
| | - Andrzej Konieczny
- Faculty of Agrobioengineering, University of Live Sciences, ul. Akademicka 13, Lublin 20-950, Poland
| | - Jerzy Rola
- Department of Virology, National Veterinary Research Institute, AL. Partyzantów 57, Pulawy 24-100, Poland
| | - Jiri Salat
- Veterinary Research Institute, Hudcova 296/70, Brno 621 00, Czech Republic; Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, Ceské Budejovice 37005, Czech Republic
| | - Petra Strakova
- Veterinary Research Institute, Hudcova 296/70, Brno 621 00, Czech Republic; Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, Ceské Budejovice 37005, Czech Republic
| | - Wanda Olech
- Institute of Animal Sciences, Warsaw University of Life Science (WULS), ul. Ciszewskiego 8, Warszawa 02-786, Poland
| | - Magdalena Larska
- Department of Virology, National Veterinary Research Institute, AL. Partyzantów 57, Pulawy 24-100, Poland
| |
Collapse
|
10
|
Infection with Foamy Virus in Wild Ruminants-Evidence for a New Virus Reservoir? Viruses 2020; 12:v12010058. [PMID: 31947727 PMCID: PMC7019589 DOI: 10.3390/v12010058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/29/2019] [Accepted: 12/31/2019] [Indexed: 12/14/2022] Open
Abstract
Foamy viruses (FVs) are widely distributed and infect many animal species including non-human primates, horses, cattle, and cats. Several reports also suggest that other species can be FV hosts. Since most of such studies involved livestock or companion animals, we aimed to test blood samples from wild ruminants for the presence of FV-specific antibodies and, subsequently, genetic material. Out of 269 serum samples tested by ELISA with the bovine foamy virus (BFV) Gag and Bet antigens, 23 sera showed increased reactivity to at least one of them. High reactive sera represented 30% of bison samples and 7.5% of deer specimens. Eleven of the ELISA-positives were also strongly positive in immunoblot analyses. The peripheral blood DNA of seroreactive animals was tested by semi-nested PCR. The specific 275 bp fragment of the pol gene was amplified only in one sample collected from a red deer and the analysis of its sequence showed the highest homology for European BFV isolates. Such results may suggest the existence of a new FV reservoir in bison as well as in deer populations. Whether the origin of such infections stems from a new FV or is the result of BFV inter-species transmission remains to be clarified.
Collapse
|
11
|
Tabecka-Lonczynska A, Mytych J, Solek P, Kowalewski MP, Koziorowski M. Seasonal expression of insulin-like growth factor 1 (IGF-1), its receptor IGF-1R and klotho in testis and epididymis of the European bison (Bison bonasus, Linnaeus 1758). Theriogenology 2018; 126:199-205. [PMID: 30579142 DOI: 10.1016/j.theriogenology.2018.12.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/04/2018] [Indexed: 12/12/2022]
Abstract
The European bisons are the largest mammals of Europe that are still in danger of extinction. The species conservation is associated with their continuous reproduction, and bisons are characterized by the well-pronounced seasonality of reproductive processes. However, the exact mechanisms regulating their reproduction still remain unknown. Our previous studies indicated the involvement of some of the growth factors in the regulation of male seasonal reproductive activities in bison, showing expression patterns that seemed to be regulated by the length of the daylight. In the present study, using RT-PCR and Western blot approaches, we verified the expression and possible relationship between the insulin-like growth factor (IGF-1), its receptor (IGF-1R), and klotho in testis and epididymis of the European bison in pre- and post-reproductive periods, i.e., in June and in December. The observed expression of IGF-1 and IGF-1R mRNA in testis and epididymis was higher in June than in December. At the same time, klotho mRNA expression in both testis and epididymis did not differ between the analyzed seasons. However, along with the higher levels of IGF-1R protein observed in June, klotho protein levels for the membrane form and for the secrete form were higher in December than in June. Finally, the messenger and protein expression profiles presented herein indicate the importance of both the IGF-system and klotho in reproductive processes in the European bison, implying their involvement in the regulation of seasonal testicular activity in males of this threatened species.
Collapse
Affiliation(s)
- Anna Tabecka-Lonczynska
- Department of Animal Physiology and Reproduction, Faculty of Biotechnology, University of Rzeszow, Werynia 502, 36-100, Kolbuszowa, Poland.
| | - Jennifer Mytych
- Department of Animal Physiology and Reproduction, Faculty of Biotechnology, University of Rzeszow, Werynia 502, 36-100, Kolbuszowa, Poland
| | - Przemyslaw Solek
- Department of Animal Physiology and Reproduction, Faculty of Biotechnology, University of Rzeszow, Werynia 502, 36-100, Kolbuszowa, Poland
| | - Mariusz P Kowalewski
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Winterthurerstr. 260, CH-8057, Switzerland
| | - Marek Koziorowski
- Department of Animal Physiology and Reproduction, Faculty of Biotechnology, University of Rzeszow, Werynia 502, 36-100, Kolbuszowa, Poland
| |
Collapse
|
12
|
Tabecka-Lonczynska A, Mytych J, Solek P, Kulpa-Greszta M, Sowa-Kucma M, Koziorowski M. Vascular endothelial growth factor (VEGF-A) and fibroblast growth factor (FGF-2) as potential regulators of seasonal reproductive processes in male European bison (Bison bonasus, Linnaeus 1758). Gen Comp Endocrinol 2018; 263:72-79. [PMID: 29626449 DOI: 10.1016/j.ygcen.2018.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 03/04/2018] [Accepted: 04/03/2018] [Indexed: 11/25/2022]
Abstract
Growth factors: vascular endothelial growth factor A (VEGF-A) and fibroblast growth factor (FGF-2) were reported to affect normal physiological reproductive processes in human, domestic and free living animals. Moreover, some reports suggest that VEGF-A and FGF-2 may be directly involved in the control of the annual reproductive cycle of seasonally breeding animals but detailed knowledge is still missing. Our study aimed to demonstrate the expression of mRNA and protein for both factors in the tissues of testis and epididymis (caput, corpus, cauda) at different periods of the year (March, June, November, December) in European bison as a model of seasonally breeding animal. Results suggest, that VEGF-A expression was more pronounced in testis than in epididymis and the highest expression was noted in December and June. Surprisingly, the highest protein accumulation was observed in June at the same level in all tissues analyzed. On the other hand, the highest FGF-2 mRNA expression was noted in testis in June and in epididymis in March. However, no differences in protein expression of FGF-2 were found between analyzed groups. The results indicate that both factors are necessary for proper functioning of the reproductive system and their levels differ seasonally. Perhaps, it is linked to increased need of these factors in the testis as well as epididymis during preparation for the reproductive functions. Moreover, VEGF-A and FGF-2 not only may regulate reproductive functions by affecting vascularization and cell nutrition, but it also may be possible that they possess protective functions by stabilizing the reproductive cells. Therefore, obtained results provide new insight into mechanisms underlying seasonal breeding of the male European bison.
Collapse
Affiliation(s)
- Anna Tabecka-Lonczynska
- Department of Animal Physiology and Reproduction, Faculty of Biotechnology, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa, Poland.
| | - Jennifer Mytych
- Department of Animal Physiology and Reproduction, Faculty of Biotechnology, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa, Poland
| | - Przemyslaw Solek
- Department of Animal Physiology and Reproduction, Faculty of Biotechnology, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa, Poland
| | - Magdalena Kulpa-Greszta
- Department of Animal Physiology and Reproduction, Faculty of Biotechnology, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa, Poland
| | - Magdalena Sowa-Kucma
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, Laboratory of Trace Elements Neurobiology, Smeta 12, 31-343 Kraków, Poland; Department of Human Physiology, Institute of Clinical and Experimental Medicine, Medical Faculty, University of Rzeszow, Kopisto 2a, 35-310 Rzeszów, Poland
| | - Marek Koziorowski
- Department of Animal Physiology and Reproduction, Faculty of Biotechnology, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa, Poland
| |
Collapse
|
13
|
Duszewska AM, Gręda P, Baraniewicz M, Bielecki W, Niżański W, Partyka A, Tracz M, Nowak Z, Chełmońska-Soyta A, Olech W. Obtaining Wisent early blastocyst in vitro is a basic for protection and creation of biodiversity for this threatened species. Reprod Domest Anim 2018. [PMID: 29542185 DOI: 10.1111/rda.13168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Wisent, or European bison (Bison bonasus), is listed as "vulnerable" on the IUCN Red List of Threatened Species and is therefore protected by international law. For the first time, a Wisent embryo has been obtained in vitro. This procedure creates a new opportunity to protect and increase Wisent reproductive potential and thereby opens new possibilities for the establishment of a controlled and broad reserve of the gene pool.
Collapse
Affiliation(s)
- A M Duszewska
- Faculty of Veterinary Medicine, Department of Morphological Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - P Gręda
- Faculty of Veterinary Medicine, Department of Morphological Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - M Baraniewicz
- Faculty of Veterinary Medicine, Department of Morphological Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - W Bielecki
- Faculty of Veterinary Medicine, Department of Pathology and Veterinary Diagnostics, Warsaw University of Life Sciences, Warsaw, Poland
| | - W Niżański
- Faculty of Veterinary Medicine, Department of Reproduction and Clinic of Farm Animals, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - A Partyka
- Faculty of Veterinary Medicine, Department of Reproduction and Clinic of Farm Animals, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - M Tracz
- Faculty of Veterinary Medicine, Department of Food Hygiene and Public Health Protection, Warsaw University of Life Sciences, Warsaw, Poland
| | - Z Nowak
- Faculty of Animal Science, Department of Genetics and Animal Breeding, Warsaw University of Life Sciences, Warsaw, Poland
| | - A Chełmońska-Soyta
- Faculty of Veterinary Medicine, Department of Immunology, Pathophysiology and Prevention Veterinary, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - W Olech
- Faculty of Animal Science, Department of Genetics and Animal Breeding, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
14
|
Kęsik-Maliszewska J, Jabłoński A, Larska M. Were Polish Wild Boars Exposed to Schmallenberg Virus? J Vet Res 2017; 61:151-155. [PMID: 29978067 PMCID: PMC5894389 DOI: 10.1515/jvetres-2017-0019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/23/2017] [Indexed: 11/15/2022] Open
Abstract
Introduction A novel to Europe Schmallenberg virus (SBV) causes clinical disease manifested by reproduction disorders in farm ruminants. In free-living ruminants, SBV antibodies as well as the virus were detected. Recent studies also revealed SBV antibodies in wild boars. The study investigates SBV antibodies occurring in wild boars in Poland at the peak of recent virus epidemics in the country. Material and Methods Samples collected from 203 wild boars culled during the 2012/2013 and 2013/2014 hunting season were serologically tested using multi-species cELISA. Attempted neutralisation tests failed due to poor serum quality. RT-PCR was implemented in seropositive and doubtful animals. Results Two samples collected from wild boar in the winter of 2013 gave a positive result in ELISA, while another two from the 2012/2013 hunting season were doubtful. No SBV RNA was detected in spleen and liver tissues. Conclusion Low SBV seroprevalence in wild boars, despite high incidence of SBV infections occurring simultaneously in wild ruminants, suggests that boars are unlikely to be a significant reservoir of the virus in the sylvatic environment in Poland.
Collapse
Affiliation(s)
| | - Artur Jabłoński
- Department of Swine Diseases, National Veterinary Research Institute, 24-100 Pulawy, Poland
| | - Magdalena Larska
- Department of Virology, National Veterinary Research Institute, 24-100 Pulawy, Poland
| |
Collapse
|
15
|
Abstract
Schmallenberg virus (SBV), an emerging arbovirus in Europe, is an important pathogen in domestic ruminants; however, its impact on free-ranging wild ruminants is not well studied. Three hundred and forty-seven serum samples collected between 2011 and 2016 from 302 European bison ( Bison bonasus) from 12 different sites in Poland were tested for the presence of SBV antibodies. In addition, 86 sera were collected between 2013 and 2016 from three species of cervids for testing for SBV antibodies. After the first detection of the virus in Poland in October 2012, the proportion of SBV-seropositive European bison reached 81% (95% confidence interval [CI]: 77.1-85.8%), whereas in cervids seroprevalence was 34% (95% CI: 23.5-43.9%). There was an increase in seroprevalence in European bison from 2012 to 2014. Biting midges ( Culicoides spp.), the primary vectors of SBV, were monitored entomologically for the identification of the biting midge populations and virologically for SBV infections in the Białowieża Forest region, which contains the world's largest European bison population. We detected SBV by PCR in 3% of Culicoides pools from 2015. In addition, seven fetal brain samples from European bison or cervids were tested and were negative for SBV RNA. Our results indicate a high seroprevalence with reduced transmission of SBV in subsequent years in the European bison populations and lower seroprevalence in cervids.
Collapse
|
16
|
Zhai SL, Lv DH, Wen XH, Zhu XL, Yang YQ, Chen QL, Wei WK. Preliminary serological evidence for Schmallenberg virus infection in China. Trop Anim Health Prod 2017; 50:449-453. [DOI: 10.1007/s11250-017-1433-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/20/2017] [Indexed: 11/28/2022]
|