1
|
Jayappa K, Rajkhowa TK, Gaikwad SS. Canine parvovirus in North-East India: a phylogenetic and evolutionary analysis. Vet Q 2024; 44:1-13. [PMID: 39350725 PMCID: PMC11445921 DOI: 10.1080/01652176.2024.2408742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 08/09/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024] Open
Abstract
Canine parvovirus type 2 (CPV-2) infection in dogs is considered as one of the most common cause of morbidity and mortality in young dogs and continues to occur with high incidence worldwide. Despite a single-stranded DNA virus, CPV-2 possesses a high mutation rate which has led to the development of new variants from time to time. These variants are classically classified based on the amino acid markers present in the VP2 gene. In this study, we examined 20 different cases of CPV-2 infection from seven different states of the North East region (NER) of India. The near-complete genome sequences of all these isolates were subjected to phylodynamic and phylogeographic analysis to evaluate the genetic diversity and geographical spread of CPV-2 variants. Analysis of the deduced amino acid sequences revealed residues characteristic of the 'Asian CPV-2c lineage' in all the 20 sequences confirming it as the dominant strain circulating in NER, India. The phylogenetic analysis based on the whole genome showed that all 20 sequences formed a monophyletic clade together with other Asian CPV-2c sequences. Furthermore, phylogeographic analysis based on the VP2 gene showed the likely introduction of Asian CPV-2c strain to India from China. This study marks the first comprehensive report elucidating the molecular epidemiology of CPV-2 in India.
Collapse
Affiliation(s)
- Kiran Jayappa
- Department of Veterinary Pathology, College of Veterinary Sciences & Animal Husbandry, Central Agricultural University (I), Selesih, Aizawl, Mizoram, India
| | - Tridib Kumar Rajkhowa
- Department of Veterinary Pathology, College of Veterinary Sciences & Animal Husbandry, Central Agricultural University (I), Selesih, Aizawl, Mizoram, India
| | | |
Collapse
|
2
|
Pelegrinová A, Petroušková P, Korytár Ľ, Ondrejková A, Drážovská M, Vojtek B, Mojžišová J, Prokeš M, Kostičák M, Zákutná Ľ, Dolník M, Mandelík R. The first evidence of Asian-like CPV-2b in Slovakia in a vaccinated dog with an acute fatal course of parvovirus infection: a case report. Vet Res Commun 2024; 48:3253-3262. [PMID: 39120673 PMCID: PMC11442606 DOI: 10.1007/s11259-024-10492-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
This study provides a comprehensive description of the clinical course of a fatal parvovirus infection in a vaccinated dachshund puppy, along with the first identification of a new CPV-2 variant in Slovakia, elucidated through molecular amino acid analysis of the VP2 gene. The dog exhibited clinical signs such as apathy, vomiting, and bloody diarrhea. After confirming CPV-2 infection with a commercial snap test, intensive therapy was initiated. The dog succumbed within 48 h of admission. A rectal swab sample was collected, CPV-2 was examined using the PCR method, and sequenced. The virus detected in the patient was related to strains of CPV-2c of Asian origin and unrelated to European CPV-2b strains. The sequence had genetic signatures typical of Asian strains (VP2: 5Gly, 267Tyr, 324Ile, 370Arg, and 440Thr). Phylogenetic analysis classified this strain as similar to Asian strains of CPV-2c. It is believed to be derived from an Asian strain similar to CPV-2c that acquired the 426Asp mutation. With this finding, we present the first evidence of an Asian-like CPV-2b strain in the territory of Slovakia.
Collapse
Affiliation(s)
- Andrea Pelegrinová
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, Košice, 041 81, Slovakia
| | - Patrícia Petroušková
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, Košice, 041 81, Slovakia.
| | - Ľuboš Korytár
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, Košice, 041 81, Slovakia
| | - Anna Ondrejková
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, Košice, 041 81, Slovakia
| | - Monika Drážovská
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, Košice, 041 81, Slovakia
| | - Boris Vojtek
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, Košice, 041 81, Slovakia
| | - Jana Mojžišová
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, Košice, 041 81, Slovakia
| | - Marián Prokeš
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, Košice, 041 81, Slovakia
| | - Maroš Kostičák
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, Košice, 041 81, Slovakia
| | - Ľubica Zákutná
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, Košice, 041 81, Slovakia
| | - Michal Dolník
- Clinic of Ruminants, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, Košice, 041 81, Slovakia
| | - René Mandelík
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, Košice, 041 81, Slovakia.
| |
Collapse
|
3
|
Grecco S, Condon E, Bucafusco D, Bratanich AC, Panzera Y, Pérez R. Comparative genomics of canine parvovirus in South America: Diversification patterns in local populations. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 123:105633. [PMID: 38969193 DOI: 10.1016/j.meegid.2024.105633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/05/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024]
Abstract
Canine parvovirus (CPV) is a significant pathogen in domestic dogs worldwide, causing a severe and often fatal disease. CPV comprises three antigenic variants (2a, 2b, and 2c) distributed unevenly among several phylogenetic groups. The present study compared genetic variability and evolutionary patterns in South American CPV populations. We collected samples from puppies suspected of CPV infection in the neighboring Argentina and Uruguay. Antigenic variants were preliminarily characterized using PCR-RFLP and partial vp2 sequencing. Samples collected in Argentina during 2008-2018 were mainly of the 2c variant. In the Uruguayan strains (2012-2019), the 2a variant wholly replaced the 2c from 2014. Full-length coding genome and vp2 sequences were compared with global strains. The 2c and 2a strains fell by phylogenetic analysis into two phylogroups (Europe I and Asia I). The 2c strains from Argentina and Uruguay clustered in the Europe I group, with strains from America, Europe, Asia, and Oceania. Europe I is widely distributed in South America in the dog population and is also being detected in the wildlife population. The 2a strains from Uruguay formed the distinct Asia I group with strains from Asia, Africa, America, and Oceania. This Asia I group is increasing its distribution in South America and worldwide. Our research reveals high genetic variability in adjacent synchronic samples and different evolutionary patterns in South American CPV. We also highlight the importance of ancestral migrations and local diversification in the evolution of global CPV strains.
Collapse
Affiliation(s)
- Sofía Grecco
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Emma Condon
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Danilo Bucafusco
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Virología. Av. Chorroarín 280, C1427CWO, Ciudad Autónoma de Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Investigaciones en Producción Animal (INPA), Buenos Aires, Argentina
| | - Ana Cristina Bratanich
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Virología. Av. Chorroarín 280, C1427CWO, Ciudad Autónoma de Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Investigaciones en Producción Animal (INPA), Buenos Aires, Argentina
| | - Yanina Panzera
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Ruben Pérez
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay.
| |
Collapse
|
4
|
Reddy H, Srinivas MV, Vasu J, Prabavathy A, Dhodapkar R, Mukhopadhyay HK. Whole-genome sequence analysis of canine parvovirus reveals replacement with a novel CPV-2c strain throughout India. Arch Virol 2024; 169:189. [PMID: 39192096 DOI: 10.1007/s00705-024-06096-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/27/2024] [Indexed: 08/29/2024]
Abstract
Canine parvovirus (CPV) infection causes severe gastroenteritis in canines, with high mortality in puppies. This virus evolved from feline panleukopenia virus by altering its transferrin receptor (TfR), followed by the emergence of CPV-2 variants in subsequent years with altered immunodominant amino acid residues in the VP2 protein. While previous studies have focused on the VP2 gene, there have been fewer studies on non-structural protein (NS1 and NS2) genes. In the present study, CPV genome sequences from clinical samples collected from canines throughout India in 2023, previous Indian CPV isolates from 2009-2019, and the current Indian CPV vaccine strain were compared. The study showed that the CPV-2c (N426E) variant had almost completely replaced the previously dominant CPV-2a variant (N426) in India. The Q370R mutation of VP2 was the most common change in the recent CPV-2c strain (CPV-2c 370Arg variant). Phylogenetic analysis showed the existence of three clades among the recent CPV-2c strains, and sequence analysis identified several new sites of positive selection in the VP1 (N-terminus), VP2, NS1, and NS2 protein-encoding genes in recent CPV strains, indicating the emergence of new CPV-2c variants with varied antigenic and replication properties. The predominant 'CPV-2c 370Arg variants' were grouped with the Chinese and Nigerian CPV-2c strains but were separate from the CPV vaccine strain and earlier isolates from our repository. VP2 epitope analysis predicted nine amino acid variations (including two new variations) in four potential linear B-cell epitopes in the CPV-2c 370Arg variants that might make vaccine failure more likely. This pan-Indian study lays the foundation for further research concerning the dynamics of virus evolution and understanding genetic mutations.
Collapse
Affiliation(s)
- Harish Reddy
- Department of Veterinary Microbiology, Rajiv Gandhi Institute of Veterinary Education & Research, Puducherry, 605 009, India
| | - Mouttou Vivek Srinivas
- Department of Veterinary Microbiology, Rajiv Gandhi Institute of Veterinary Education & Research, Puducherry, 605 009, India.
| | - Jayalakshmi Vasu
- Department of Veterinary Microbiology, Rajiv Gandhi Institute of Veterinary Education & Research, Puducherry, 605 009, India
| | - Abiramy Prabavathy
- Department of Veterinary Medicine, Rajiv Gandhi Institute of Veterinary Education & Research, Puducherry, 605 009, India
| | - Rahul Dhodapkar
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry, India
| | - Hirak Kumar Mukhopadhyay
- Department of Veterinary Microbiology, Rajiv Gandhi Institute of Veterinary Education & Research, Puducherry, 605 009, India
| |
Collapse
|
5
|
Mira F, Schirò G, Giudice E, Purpari G, Origgi F, Vicari D, Di Pietro S, Antoci F, Gucciardi F, Geraci F, Talarico V, Guercio A. Viral pathogens in domestic cats in southern Italy: A retrospective analysis in Sicily, 2020-2022. Comp Immunol Microbiol Infect Dis 2024; 111:102209. [PMID: 38880052 DOI: 10.1016/j.cimid.2024.102209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
A retrospective study was carried out on selected feline viral pathogens detected in domestic cat in Sicily, southern Italy. Samples from 64 cats, collected from 2020 to 2022, were analysed for the presence of feline panleukopenia virus, canine parvovirus type 2 (CPV-2), feline coronavirus (FCoV), feline calicivirus (FCV), feline herpesvirus type 1, norovirus (NoV), and rotavirus (RoV). Single (45 %) or mixed (38 %) viral infections were detected. FPV, related with other Italian FPV strains, remains the main viral cause of infection (66 %). CPV-2c Asian lineage strains (3 %) were detected for the first time in domestic cats in Europe. FCoV (29.6 %), either enteric or systemic, and systemic FCV (18.7 %) infections were detected in positive cats. Less commonly reported viruses (GIV.2/GVI.2 NoVs, RoV), potentially related to the animal/human interface, were detected at lower rates as well (5 %). The present epidemiological data suggest the need to improve disease prevention, immunization, and biosecurity strategies.
Collapse
Affiliation(s)
- Francesco Mira
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, Palermo 90129, Italy; Department of Veterinary Science, University of Messina, Polo Universitario dell'Annunziata, Messina 98168, Italy
| | - Giorgia Schirò
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, Palermo 90129, Italy; Department of Veterinary Science, University of Messina, Polo Universitario dell'Annunziata, Messina 98168, Italy.
| | - Elisabetta Giudice
- Department of Veterinary Science, University of Messina, Polo Universitario dell'Annunziata, Messina 98168, Italy
| | - Giuseppa Purpari
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, Palermo 90129, Italy
| | - Francesco Origgi
- Department of Veterinary Science, University of Messina, Polo Universitario dell'Annunziata, Messina 98168, Italy
| | - Domenico Vicari
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, Palermo 90129, Italy
| | - Simona Di Pietro
- Department of Veterinary Science, University of Messina, Polo Universitario dell'Annunziata, Messina 98168, Italy
| | - Francesco Antoci
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, Palermo 90129, Italy
| | - Francesca Gucciardi
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, Palermo 90129, Italy
| | - Francesco Geraci
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, Palermo 90129, Italy
| | - Virginia Talarico
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, Palermo 90129, Italy
| | - Annalisa Guercio
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, Palermo 90129, Italy
| |
Collapse
|
6
|
Alfano F, Lucibelli MG, Serra F, Levante M, Rea S, Gallo A, Petrucci F, Pucciarelli A, Picazio G, Monini M, Di Bartolo I, d’Ovidio D, Santoro M, De Carlo E, Fusco G, Amoroso MG. Identification of Aichivirus in a Pet Rat ( Rattus norvegicus) in Italy. Animals (Basel) 2024; 14:1765. [PMID: 38929384 PMCID: PMC11200523 DOI: 10.3390/ani14121765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
We investigated the occurrence of eight potential zoonotic viruses in 91 exotic companion mammals from pet shops in southern Italy via real-time PCR and end-point PCR. The animals were screened for aichivirus, sapovirus, astrovirus, hepatitis A, noroviruses (GI and GII), rotavirus, circovirus, and SARS-CoV-2. Among the nine species of exotic pets studied, only one rat tested positive for aichivirus. The high sequence similarity to a murine kobuvirus-1 strain previously identified in China suggests that the virus may have been introduced into Italy through the importation of animals from Asia. Since exotic companion mammals live in close contact with humans, continuous sanitary monitoring is crucial to prevent the spread of new pathogens among domestic animals and humans. Further investigations on detecting and typing zoonotic viruses are needed to identify emerging and re-emerging viruses to safeguard public health.
Collapse
Affiliation(s)
- Flora Alfano
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (M.G.L.); (F.S.); (M.L.); (S.R.); (A.G.); (A.P.); (G.P.); (E.D.C.); (G.F.); (M.G.A.)
| | - Maria Gabriella Lucibelli
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (M.G.L.); (F.S.); (M.L.); (S.R.); (A.G.); (A.P.); (G.P.); (E.D.C.); (G.F.); (M.G.A.)
| | - Francesco Serra
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (M.G.L.); (F.S.); (M.L.); (S.R.); (A.G.); (A.P.); (G.P.); (E.D.C.); (G.F.); (M.G.A.)
| | - Martina Levante
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (M.G.L.); (F.S.); (M.L.); (S.R.); (A.G.); (A.P.); (G.P.); (E.D.C.); (G.F.); (M.G.A.)
| | - Simona Rea
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (M.G.L.); (F.S.); (M.L.); (S.R.); (A.G.); (A.P.); (G.P.); (E.D.C.); (G.F.); (M.G.A.)
| | - Amalia Gallo
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (M.G.L.); (F.S.); (M.L.); (S.R.); (A.G.); (A.P.); (G.P.); (E.D.C.); (G.F.); (M.G.A.)
| | - Federica Petrucci
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (M.G.L.); (F.S.); (M.L.); (S.R.); (A.G.); (A.P.); (G.P.); (E.D.C.); (G.F.); (M.G.A.)
| | - Alessia Pucciarelli
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (M.G.L.); (F.S.); (M.L.); (S.R.); (A.G.); (A.P.); (G.P.); (E.D.C.); (G.F.); (M.G.A.)
| | - Gerardo Picazio
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (M.G.L.); (F.S.); (M.L.); (S.R.); (A.G.); (A.P.); (G.P.); (E.D.C.); (G.F.); (M.G.A.)
| | - Marina Monini
- Istituto Superiore di Sanità, 00161 Rome, Italy; (M.M.); (I.D.B.)
| | | | | | - Mario Santoro
- Stazione Zoologica Anton Dohrn, 80122 Napoli, Italy;
| | - Esterina De Carlo
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (M.G.L.); (F.S.); (M.L.); (S.R.); (A.G.); (A.P.); (G.P.); (E.D.C.); (G.F.); (M.G.A.)
| | - Giovanna Fusco
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (M.G.L.); (F.S.); (M.L.); (S.R.); (A.G.); (A.P.); (G.P.); (E.D.C.); (G.F.); (M.G.A.)
| | - Maria Grazia Amoroso
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (M.G.L.); (F.S.); (M.L.); (S.R.); (A.G.); (A.P.); (G.P.); (E.D.C.); (G.F.); (M.G.A.)
| |
Collapse
|
7
|
Mira F, Schirò G, Franzo G, Canuti M, Purpari G, Giudice E, Decaro N, Vicari D, Antoci F, Castronovo C, Guercio A. Molecular epidemiology of canine parvovirus type 2 in Sicily, southern Italy: A geographical island, an epidemiological continuum. Heliyon 2024; 10:e26561. [PMID: 38420403 PMCID: PMC10900816 DOI: 10.1016/j.heliyon.2024.e26561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/10/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
Since it emerged as a major dog pathogen, canine parvovirus type 2 (CPV-2) has featured a remarkable genetic and phenotypic heterogeneity, whose biological, epidemiological, and clinical impact is still debated. The continuous monitoring of this pathogen is thus of pivotal importance. In the present study, the molecular epidemiology of CPV-2 in Sicily, southern Italy, has been updated by analysing 215 nearly complete sequences of the capsid protein VP2, obtained from rectal swabs/faeces or tissue samples collected between 2019 and 2022 from 346 dogs with suspected infectious gastrointestinal disease. The presence of the original CPV-2 type (4%) and CPV-2a (9%), CPV-2b (18%), or CPV-2c (69%) variants was documented. Over the years, we observed a decrease in the frequency of CPV-2a/-2b and a rapid increase of CPV-2c frequency, with a progressive replacement of the European lineage of CPV-2c by the Asian lineage. The observed scenario, besides confirming epidemiological relevance of CPV-2, highlights the occurrence of antigenic variant shifts over time, with a trend toward the replacement of CPV-2a, CPV-2b, and the European lineage of CPV-2c by the emerging Asian CPV-2c lineage. The comparison with other Italian and international sequences suggests the occurrence of viral exchange with other Italian regions and different countries, although the directionality of such viral flows could not be often established with confidence. In several instances, potential CPV-2 introductions led to epidemiological dead ends. However, major, long-lasting clades were also identified, supporting successful infection establishment, local spreading, and evolution. These results, besides demonstrating the need for implementing more effective control measures to prevent viral introductions and minimize circulation, stress the relevance of routine monitoring activities as the only tool to effectively understand CPV-2 epidemiology and evolution, and develop adequate countermeasures.
Collapse
Affiliation(s)
- Francesco Mira
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, 90129, Palermo, Italy
- Department of Veterinary Science, University of Messina, Polo Universitario dell'Annunziata, 98168, Messina, Italy
| | - Giorgia Schirò
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, 90129, Palermo, Italy
- Department of Veterinary Science, University of Messina, Polo Universitario dell'Annunziata, 98168, Messina, Italy
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health, University of Padua, Viale dell'Università 16, 35020, Legnaro (PD), Italy
| | - Marta Canuti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Via Francesco Sforza 35, 20122, Milan, Italy
- Coordinate Research Centre EpiSoMI (Epidemiology and Molecular Surveillance of Infections), Università degli Studi di Milano, Milan, Italy
- Centre for Multidisciplinary Research in Health Science (MACH), Università degli Studi di Milano, Milan, Italy
| | - Giuseppa Purpari
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, 90129, Palermo, Italy
| | - Elisabetta Giudice
- Department of Veterinary Science, University of Messina, Polo Universitario dell'Annunziata, 98168, Messina, Italy
| | - Nicola Decaro
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.p. per Casamassima Km 3, 70010, Valenzano, (BA), Italy
| | - Domenico Vicari
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, 90129, Palermo, Italy
| | - Francesco Antoci
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, 90129, Palermo, Italy
| | - Calogero Castronovo
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, 90129, Palermo, Italy
| | - Annalisa Guercio
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, 90129, Palermo, Italy
| |
Collapse
|
8
|
Faleye TOC, Driver EM, Bowes DA, Smith A, Kaiser NA, Wright JM, Chapman AR, Halden RU, Varsani A, Scotch M. Canine Parvovirus 2C Identified in Dog Feces from Poop Bags Collected from Outdoor Waste Bins in Arizona USA, June 2022. Transbound Emerg Dis 2023; 2023:5596886. [PMID: 38983716 PMCID: PMC11232495 DOI: 10.1155/2023/5596886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Canine parvoviruses (CPVs) are a major cause of morbidity and mortality in dogs. However, surveillance has been largely limited to clinically manifest cases, resulting in a dearth of CPV genomic information on virus type, abundance, and diversity, limiting our understanding of its evolutionary dynamics. We tested the feasibility of using dog feces in poop bags collected from outdoor waste bins as a source for environmental surveillance of CPV. After polymerase chain reaction, long-read sequencing, and bioinformatics, we identified that CPV-2c was present in Arizona, USA, in June 2022 and documented variants with amino acid substitutions 530E and 101K in NS1 and NS2, respectively. Based on publicly available sequence data in GenBank as of January 2023, the CPV genome described here represents the only CPV genome described in the USA from the 2022 season, despite news of CPV outbreak-associated fatalities in dogs in the USA. This highlights the need for more studies that document CPV complete or near complete genomes, as well as experimental studies, to further our understanding of its evolutionary process.
Collapse
Affiliation(s)
- Temitope O C Faleye
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, AZ, USA
| | - Erin M Driver
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, AZ, USA
| | - Devin A Bowes
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, AZ, USA
| | - Abriana Smith
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, AZ, USA
| | - Nicole A Kaiser
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, AZ, USA
| | - Jillian M Wright
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, AZ, USA
| | - Ainsley R Chapman
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, AZ, USA
| | - Rolf U Halden
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, AZ, USA
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA
- One Water One Health, Nonprofit Project of the Arizona State University Foundation, Tempe, AZ, USA
| | - Arvind Varsani
- Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Matthew Scotch
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, AZ, USA
- College of Health Solutions, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
9
|
Franzo G, Mira F, Schirò G, Canuti M. Not Asian Anymore: Reconstruction of the History, Evolution, and Dispersal of the "Asian" Lineage of CPV-2c. Viruses 2023; 15:1962. [PMID: 37766368 PMCID: PMC10535194 DOI: 10.3390/v15091962] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Variability has been one of the hallmarks of canine parvovirus type 2 (CPV-2) since its discovery, and several lineages and antigenic variants have emerged. Among these, a group of viruses commonly called Asian CPV-2c has recently been reported with increasing frequency in different regions. Currently, its global epidemiology and evolution are essentially unknown. The present work deals with this information gap by evaluating, via sequence, phylodynamic, and phylogeographic analyses, all the complete coding sequences of strains classified as Asian CPV-2c based on a combination of amino acid markers and phylogenetic analysis. After its estimated origin around 2008, this lineage circulated undetected in Asia until approximately 2012, when an expansion in viral population size and geographical distribution occurred, involving Africa, Europe, and North America. Asia was predicted to be the main nucleus of viral dispersal, leading to multiple introduction events in other continents/countries, where infection establishment, persistence, and rapid evolution occurred. Although the dog is the main host, other non-canine species were also involved, demonstrating the host plasticity of this lineage. Finally, although most of the strains showed an amino acid motif considered characteristic of this lineage, several exceptions were observed, potentially due to convergent evolution or reversion phenomena.
Collapse
Affiliation(s)
- Giovanni Franzo
- Department of Animal Medicine, Production and Health (MAPS), Padua University, 35020 Legnaro, Italy
| | - Francesco Mira
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (F.M.); (G.S.)
- Department of Veterinary Science, University of Messina, Polo Universitario dell’Annunziata, 98168 Messina, Italy
| | - Giorgia Schirò
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (F.M.); (G.S.)
- Department of Veterinary Science, University of Messina, Polo Universitario dell’Annunziata, 98168 Messina, Italy
| | - Marta Canuti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
- Coordinate Research Centre EpiSoMI (Epidemiology and Molecular Surveillance of Infections), Università degli Studi di Milano, 20122 Milan, Italy
- Centre for Multidisciplinary Research in Health Science (MACH), Università degli Studi di Milano, 20122 Milan, Italy
| |
Collapse
|
10
|
Bui TTN, Hoang M, Nguyen VD, Nam Nguyen M, Than VT. Molecular characterisation of the current high prevalence of the new CPV-2c variants in the Southern Vietnamese dogs signifies a widespread in the worldwide dog population. Vet Med Sci 2023. [PMID: 37192523 PMCID: PMC10357223 DOI: 10.1002/vms3.1163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/18/2023] [Accepted: 04/18/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND Canine parvovirus type 2 (CPV-2) is known as the primary etiological agent cause of acute gastroenteritis, myocarditis and death of canids worldwide. In Vietnam, although CPV-2 infection and its outbreaks are the most important risk factors of the canine's health concern, lack of available information about the molecular epidemiology of the CPV-2. OBJECTIVES In this study, the complete coding sequences of 10 CPV-2 strains collected from dogs vaccinated with CPV-2 vaccination were analysed to better understand the genomic characteristics of the current circulating CPV-2 in Vietnam. METHODS Ten CPV-specific PCR-positive rectal swab samples were collected from dogs with acute symptoms of haemorrhagic diarrhoea and vomiting in Vietnam in 2019. The complete coding sequences of these CPV strains were analysed to determine their phylogeny and genetic relationship with other available CPV strains globally. RESULTS Analysis of the VP2 gene sequences demonstrated that the studied strains belonged to the new CPV-2c variants with the unique mutations at amino acids 5Ala-Gly and 447Iso-Met . Phylogenetic tree analysis indicated that the studied strains share a common evolutionary origin with the current CPV-2c strains circulating in dogs in Asia countries, including China, Thailand, Taiwan and Mongolia, in recent years. Low sequence identity between the studied strains and commercial vaccine strains was observed. CONCLUSIONS This study provides deep insights into the molecular characteristics, genetic diversity, and evolution of circulating CPV-2 strains in Vietnam. We recommend more studies to estimate the effectiveness of the CPV vaccine and the need to continue developing other effective vaccination essential to better control the widespread of these new CPV-2 variants.
Collapse
Affiliation(s)
- Thi To Nga Bui
- Department of Veterinary Pathology, College of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Minh Hoang
- Department of Veterinary Pathology, College of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Van Dung Nguyen
- Sub-Department of Animal Health of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Minh Nam Nguyen
- Research Center for Genetics and Reproductive Health, School of Medicine, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Van Thai Than
- Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| |
Collapse
|
11
|
Fu P, He D, Cheng X, Niu X, Wang C, Fu Y, Li K, Zhu H, Lu W, Wang J, Chu B. Prevalence and Characteristics of Canine Parvovirus Type 2 in Henan Province, China. Microbiol Spectr 2022; 10:e0185622. [PMID: 36377944 PMCID: PMC9769957 DOI: 10.1128/spectrum.01856-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
To investigate the epidemic profile and genetic diversity of canine parvovirus type 2 (CPV-2), a total of 111 clinical samples collected from dogs suspected of CPV-2 infection in 10 cities of Henan province of China during 2020 to 2021 were screened by PCR. The results showed a CPV-2-positive rate of 88.29% (98/111). Nearly full-length genomes of 98 CPV-2 strains were sequenced and analyzed. CPV-2c strains (91.84%, 90/98) were significantly higher than that of new CPV-2a strains (8.16%, 8/98) in Henan province without detecting other CPV genotypes, indicating that CPV-2c has become the dominant genotype in Henan province. A phylogenetic analysis of NS1 and VP2 amino acids grouped the strains in this study with Asian strains, which clustered into an identical branch. Based on the CPV-2 VP2 sequences in this study and available in the NCBI database, the adaptation analyses showed that 17 positive selection sites and 10 parallel evolution sites were identified in the VP2 protein of CPV-2, of which three sites (sites 5, 370, and 426) were both under positive selection pressure and parallel evolution. Interestingly, two amino acid mutations (A5G and Q370R) were also observed in the VP2 proteins of 82 CPV-2c strains in this study, which differed from the earlier CPV-2c strain (GU380303) in China. In addition, a unique mutation (I447M) was observed in the VP2 protein of five CPV-2c strains, which was first reported in China. This study provides powerful insight to further our understanding of the epidemic status and evolution of CPV-2 in China. IMPORTANCE CPV-2 was the original virus strain identified in dogs, which cause an acute and lethal disease in dogs. Subsequently, the original CPV-2 was replaced throughout the world by novel antigenic variants (e.g., CPV-2a, CPV-2b, new CPV-2a, new CPV-2b, and CPV-2c). Currently, the epidemiological characteristics of CPV-2 in Henan province of China is still unclear. In our study, a total of 98 nearly full-length genomes of CPV-2 strains were obtained to explore prevalence and genetic evolution of CPV-2 in Henan Province. Moreover, the epidemiological and genetic evolution of CPV-2 in China since its discovery was also investigated. The results of this study will provide valuable information regarding the evolution of CPV-2 strains in China.
Collapse
Affiliation(s)
- Pengfei Fu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Growth and Development, The Education Department of Henan Province, Zhengzhou, Henan Province, China
| | - Dongchang He
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xuan Cheng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Growth and Development, The Education Department of Henan Province, Zhengzhou, Henan Province, China
| | - Xinrui Niu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Growth and Development, The Education Department of Henan Province, Zhengzhou, Henan Province, China
| | - Congrong Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Growth and Development, The Education Department of Henan Province, Zhengzhou, Henan Province, China
| | - Yiqian Fu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Growth and Development, The Education Department of Henan Province, Zhengzhou, Henan Province, China
| | - Kun Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Heshui Zhu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Growth and Development, The Education Department of Henan Province, Zhengzhou, Henan Province, China
| | - Weifei Lu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Growth and Development, The Education Department of Henan Province, Zhengzhou, Henan Province, China
| | - Jiang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Growth and Development, The Education Department of Henan Province, Zhengzhou, Henan Province, China
| | - Beibei Chu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Growth and Development, The Education Department of Henan Province, Zhengzhou, Henan Province, China
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, Henan Province, China
| |
Collapse
|
12
|
Molecular epidemiology of canine parvovirus in Namibia: Introduction pathways and local persistence. Prev Vet Med 2022; 209:105780. [DOI: 10.1016/j.prevetmed.2022.105780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/10/2022] [Accepted: 10/16/2022] [Indexed: 11/17/2022]
|
13
|
Bahoussi AN, Wang PH, Ma ZH, Rani N, Wu C, Xing L. Identification of novel recombinants and proposed standard reference genomes for phylogenetic classification of canine parvovirus-2 (CPV-2): Comprehensive analysis revealing global evolutionary trait. Front Vet Sci 2022; 9:1030522. [DOI: 10.3389/fvets.2022.1030522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/28/2022] [Indexed: 11/17/2022] Open
Abstract
Sustained spread and continuous evolution of CPV-2 generate new genetic information; nevertheless, there is no adopted phylogenetic tool, and parvo virologists still refer to the three antigenic variants. Herein, this report attempted to review the evolutionary trait of CPV-2 and proposed standard reference genomes using the Maximum Likelihood-based phylogenetic analysis and Parsimony-Informative Sites. The analysis revealed three main evolutionary pathways where CPV-2 strains cluster into distinct clades depicted as GI, GII, or GIII, respectively. Furthermore, novel CPV-2 natural recombinants were detected, occurring only between the newly identified strains (2017–2020). Those findings provide unique insights into the evolutionary relatedness of CPV-2, clarify discrepancies between different geographic areas and will contribute to achieving a more reliable CPV-2 genetic and evolutionary genotyping classification.
Collapse
|
14
|
Schirò G, Mira F, Decaro N, Desario C, Chiaramonte G, Di Bella S, Cannella V, Purpari G, Ventriglia G, Randazzo V, Vicari D, Gucciardi F, Castronovo C, Guercio A. Persistence of DNA from canine parvovirus modified-live virus in canine tissues. Vet Res Commun 2022; 47:567-574. [PMID: 36323836 PMCID: PMC9630067 DOI: 10.1007/s11259-022-10008-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/22/2022] [Indexed: 11/06/2022]
Abstract
Canine parvovirus (CPV-2) modified-live virus vaccine strain can replicate in lymphoid tissues and intestinal mucosa after administration, being shed through canine faeces. Detection of vaccine strains has been reported in the bloodstream and faeces, potentially interfering with molecular diagnostic tests. The persistence of these strains in canine tissues has not yet been described. With this aim, canine tissues were tested during a molecular survey to screen for the presence of canine enteric viruses. Tissue samples from 165 dead dogs were tested by a conventional PCR assay. Positive samples and five commercial vaccines were subjected to sequence analysis. Vaccinal strains were detected and virus load was measured by using a set of real-time PCR assays using minor-groove binder (MGB) probes. Seventy-five dogs (45.4%) tested positive for CPV-2. Strains from 70 dogs were characterised as field variants. The presence of CPV sequences of vaccine origin was observed in the spleen, intestine, and mesenteric lymph nodes of five young dogs. Vaccinal strains were detected from 12 to 24 days after the last vaccine administration. Viral loads comprised between 6.3 × 102 and 9.95 × 104 DNA copies/10 µl of template. This study confirms that CPV vaccinal strains can be detected in canine tissues after vaccination, so post-mortem diagnosis of CPV infection needs further molecular analyses to assess the viral type (vaccine or field strains). The present study updates the current information on the persistence of CPV vaccine strains in canine tissues and their possible interference with molecular assays.
Collapse
Affiliation(s)
- Giorgia Schirò
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Palermo, Italy
| | - Francesco Mira
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Palermo, Italy.
| | - Nicola Decaro
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Valenzano, BA, Italy
| | - Costantina Desario
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Valenzano, BA, Italy
| | | | - Santina Di Bella
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Palermo, Italy
| | - Vincenza Cannella
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Palermo, Italy
| | - Giuseppa Purpari
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Palermo, Italy
| | - Gianluca Ventriglia
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Valenzano, BA, Italy
| | - Vincenzo Randazzo
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Palermo, Italy
| | - Domenico Vicari
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Palermo, Italy
| | - Francesca Gucciardi
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Palermo, Italy
| | - Calogero Castronovo
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Palermo, Italy
| | - Annalisa Guercio
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Palermo, Italy
| |
Collapse
|
15
|
Emergence of canine parvovirus type 2c (CPV-2c) of Asian origin in domestic dogs in Myanmar. Comp Immunol Microbiol Infect Dis 2022; 90-91:101901. [DOI: 10.1016/j.cimid.2022.101901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 11/18/2022]
|
16
|
Mira F, Puleio R, Schirò G, Condorelli L, Di Bella S, Chiaramonte G, Purpari G, Cannella V, Balboni A, Randazzo V, Antoci F, Vicari D, Guercio A. Study on the Canine Adenovirus Type 1 (CAdV-1) Infection in Domestic Dogs in Southern Italy. Pathogens 2022; 11:1254. [PMID: 36365005 PMCID: PMC9693395 DOI: 10.3390/pathogens11111254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 07/29/2023] Open
Abstract
Canine adenovirus type 1 (CAdV-1) is the causative agent of a systemic and potentially fatal viral disease of domestic and wild canids. In Italy, CAdV-1 infection has also been occasionally described in dogs, but information on the epidemiology and its genomic features is still limited. A study was conducted on 291 dogs suspected of infectious gastrointestinal disease. Samples collected from dogs in southern Italy between 2017 and 2020 were analyzed. Virological and histopathological assays were carried out. The presence of CAdVs and other canine viral enteropathogens was investigated, and sequence and phylogenetic analyses were performed. CAdV-1 was detected in six (2.1%) dead stray dogs alone or in mixed infections with other viruses. Gross lesions and histopathological findings referred to CAdV infection were observed, also involving the central nervous system tissues. All inoculated samples were successfully isolated. Sequence analysis evidenced divergences with the circulating strains previously described in Italy and a closer relation with older CAdV-1 strains collected from other countries, suggesting a genetic heterogeneity of CAdV-1 in Italy. The evidence of the circulation of CAdV-1 and its genomic features allows us to have more in-depth knowledge of the epidemiology and evolution of the CAdV-1 genomic variants.
Collapse
Affiliation(s)
- Francesco Mira
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Via Gino Marinuzzi n. 3, 90129 Palermo, Italy
| | - Roberto Puleio
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Via Gino Marinuzzi n. 3, 90129 Palermo, Italy
| | - Giorgia Schirò
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Via Gino Marinuzzi n. 3, 90129 Palermo, Italy
| | - Lucia Condorelli
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Via Gino Marinuzzi n. 3, 90129 Palermo, Italy
| | - Santina Di Bella
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Via Gino Marinuzzi n. 3, 90129 Palermo, Italy
| | - Gabriele Chiaramonte
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Via Gino Marinuzzi n. 3, 90129 Palermo, Italy
| | - Giuseppa Purpari
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Via Gino Marinuzzi n. 3, 90129 Palermo, Italy
| | - Vincenza Cannella
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Via Gino Marinuzzi n. 3, 90129 Palermo, Italy
| | - Andrea Balboni
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy
| | - Vincenzo Randazzo
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Via Gino Marinuzzi n. 3, 90129 Palermo, Italy
| | - Francesco Antoci
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Via Gino Marinuzzi n. 3, 90129 Palermo, Italy
| | - Domenico Vicari
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Via Gino Marinuzzi n. 3, 90129 Palermo, Italy
| | - Annalisa Guercio
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Via Gino Marinuzzi n. 3, 90129 Palermo, Italy
| |
Collapse
|
17
|
Identification and Molecular Characterization of a Divergent Asian-like Canine Parvovirus Type 2b (CPV-2b) Strain in Southern Italy. Int J Mol Sci 2022; 23:ijms231911240. [PMID: 36232542 PMCID: PMC9570342 DOI: 10.3390/ijms231911240] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Canine parvovirus type 2 (CPV-2) is an infectious agent relevant to domestic and wild carnivorans. Recent studies documented the introduction and spread of CPV-2c strains of Asian origin in the Italian canine population. We investigated tissue samples from a puppy collected during necropsy for the presence of viral enteropathogens and all samples tested positive only for CPV-2. The full coding sequence of a CPV-2b (VP2 426Asp) strain was obtained. This virus was related to CPV-2c strains of Asian origin and unrelated to European CPV-2b strains. The sequence had genetic signatures typical of Asian strains (NS1: 60Val, 545Val, 630Pro; VP2: 5Gly, 267Tyr, 324Ile) and mutations rarely reported in Asian CPV-2b strains (NS1: 588N; VP2: 370Arg). Phylogenetic analyses placed this strain in well-supported clades, including Asian CPV-2c-like strains, but always as a basal, single-sequence long branch. No recombination was observed for this strain, and we speculate that it could have originated from an Asian CPV-2c-like strain that acquired the 426Asp mutation. This study reports the first evidence of an Asian-like CPV-2b strain in Italy, confirming the occurrence of continuous changes in the global CPV-2 spread. Since positive convergent mutations complicate data interpretation, a combination of phylogenetic and mutation pattern analyses is crucial in studying the origin and evolution of CPV-2 strains.
Collapse
|
18
|
Ndiana LA, Lanave G, Zarea AAK, Desario C, Odigie EA, Ehab FA, Capozza P, Greco G, Buonavoglia C, Decaro N. Molecular characterization of carnivore protoparvovirus 1 circulating in domestic carnivores in Egypt. Front Vet Sci 2022; 9:932247. [PMID: 35937285 PMCID: PMC9354892 DOI: 10.3389/fvets.2022.932247] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022] Open
Abstract
Canine parvovirus (CPV) and feline panleukopenia virus (FPV), now included in the unique species Carnivore protoparvovirus 1 (CPPV1), have been circulating in dogs and cats for several decades and are considered the causes of clinically important diseases, especially in young animals. While genetic evidence of the circulation of parvoviruses in Egyptian domestic carnivores has been provided since 2016, to date, all available data are based on partial fragments of the VP2 gene. This study reports the molecular characterization of CPPV strains from Egypt based on the full VP2 gene. Overall, 196 blood samples were collected from dogs and cats presented at veterinary clinics for routine medical assessment in 2019 in Egypt. DNA extracts were screened and characterized by real-time PCR. Positive samples were amplified by conventional PCR and then were sequenced. Nucleotide and amino acid changes in the sequences were investigated and phylogeny was inferred. Carnivore protoparvovirus DNA was detected in 18 out of 96 dogs (18.8%) and 7 of 100 cats (7%). Phylogenetic analyses based on the full VP2 gene revealed that 9 sequenced strains clustered with different CPV clades (5 with 2c, 2 with 2a, 1 with 2b, and 1 with 2) and 1 strain with the FPV clade. All three CPV variants were detected in dog and cat populations with a predominance of CPV-2c strains (7 of 18, 38.9%) in dog samples, thus mirroring the circulation of this variant in African, European, and Asian countries. Deduced amino acid sequence alignment revealed the presence of the previously unreported unique mutations S542L, H543Q, Q549H, and N557T in the Egyptian CPV-2c strains.
Collapse
Affiliation(s)
- Linda A. Ndiana
- Department of Veterinary Medicine, University of Bari, Bari, Italy
- Department of Veterinary Microbiology, College of Veterinary Medicine, Michael Okpara University of Agriculture, Umudike, Nigeria
| | - Gianvito Lanave
- Department of Veterinary Medicine, University of Bari, Bari, Italy
- *Correspondence: Gianvito Lanave
| | - Aya A. K. Zarea
- Department of Veterinary Medicine, University of Bari, Bari, Italy
- Department of Microbiology and Immunology, National Research Centre, Veterinary Research Institute, Giza, Egypt
| | | | - Eugene A. Odigie
- Department of Veterinary Medicine, University of Bari, Bari, Italy
| | - Fouad A. Ehab
- Department of Microbiology and Immunology, National Research Centre, Veterinary Research Institute, Giza, Egypt
| | - Paolo Capozza
- Department of Veterinary Medicine, University of Bari, Bari, Italy
| | - Grazia Greco
- Department of Veterinary Medicine, University of Bari, Bari, Italy
| | | | - Nicola Decaro
- Department of Veterinary Medicine, University of Bari, Bari, Italy
| |
Collapse
|
19
|
Urbani L, Tirolo A, Balboni A, Troia R, Dondi F, Battilani M. Concomitant Infections With Canine Parvovirus Type 2 and Intracellular Tick-Borne Pathogens in Two Puppy Dogs. Front Vet Sci 2022; 9:964177. [PMID: 35928114 PMCID: PMC9343697 DOI: 10.3389/fvets.2022.964177] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
In this report the concomitant infection with canine parvovirus type 2 (CPV-2), Hepatozoon canis and Ehrlichia canis in two puppy dogs from Southern Italy is described. Dogs were referred to a veterinary university hospital for the acute onset of lethargy and gastrointestinal signs. A complete clinical and clinicopathological evaluation was carried out and the multiple infection was confirmed by microscopic detection of inclusion bodies in peripheral blood smear, rapid immunoenzymatic tests, indirect fluorescent antibody tests, and molecular assays. Sequence analysis revealed that the CPV-2 identified belonged to the 2c variant and had amino acid residues in the predicted VP2 protein typical of “Asian-like” strains widespread in Asia and occasionally reported in Romania, Nigeria and Italy, particularly in the region of Sicily. Numerous monocytes were infected by both H. canis gamonts and E. canis morulae, suggesting that this co-infection is not accidental and that E. canis preferably infects those cells parasitized by H. canis. The clinical presentation of these animals was severe but supportive cares associated with early etiological therapy allowed a good prognosis. Movement of puppies from geographic areas where vector-borne pathogens are endemic must be carefully evaluated and core vaccinations and ectoparasite prevention treatments must be rigorously adopted.
Collapse
|
20
|
Genetic characterization and evolutionary analysis of canine parvovirus in Tangshan, China. Arch Virol 2022; 167:2263-2269. [PMID: 35829824 DOI: 10.1007/s00705-022-05502-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/29/2022] [Indexed: 11/02/2022]
Abstract
Canine parvovirus (CPV) is a major enteric virus of carnivores worldwide that poses a considerable threat to dogs. In this study, we investigated the genetic variation of CPV in Tangshan, China, and the relationships between CPV disease and the vaccination status, age, and gender of dogs. Seventy-seven fecal samples from dogs in Tangshan that tested positive for CPV were obtained for analysis. Twenty-two full-length VP2 gene sequences were successfully amplified. The 22 strains included 17 CPV-2c variants, four new CPV-2a variants, and one new CPV-2b variant. Phylogenetic analysis showed that all of the CPV-2c strains clustered together and were closely related to CPV-2c strains from Asia but distantly related to CPV-2c strains from Europe. Further amino acid sequence analysis showed that, relative to CPV-2c strains from Europe, most of the CPV-2c stains in this study had A5G, F267Y, Y324I, and Q370R mutations. These findings provide a more comprehensive understanding of the variants of CPV circulating in China.
Collapse
|
21
|
Canuti M, Mira F, Sorensen RG, Rodrigues B, Bouchard É, Walzthoni N, Hopson M, Gilroy C, Whitney HG, Lang AS. Distribution and diversity of dog parvoviruses in wild, free-roaming and domestic canids of Newfoundland and Labrador, Canada. Transbound Emerg Dis 2022; 69:e2694-e2705. [PMID: 35689408 DOI: 10.1111/tbed.14620] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/21/2022] [Accepted: 05/28/2022] [Indexed: 01/02/2023]
Abstract
Some parvoviruses of carnivorans can infect multiple host species. Since many canine parvoviruses were only discovered recently, their host-range is still unexplored. We examined the host distribution and diversity of five dog parvoviruses in four canine populations from Newfoundland and Labrador, Canada, and investigated the potential for these viruses to cross the species barriers. Canine bocavirus 2 (CBoV-2) and the minute virus of canines were detected in stool from free-roaming dogs from Labrador (5/48 [10.4%] and 3/48 [6.3%], respectively) and two different CBoV-2 variants were identified. Canine bufavirus was identified in stool from free-roaming dogs (1/48, 2.1%) and foxes (3/80, 3.8%) from Labrador, but two different variants were observed in the two host species. The variant found in foxes was highly divergent from previously identified strains. Two cachavirus 1 variants, genetically similar to those circulating in other Canadian wildlife, were found in spleens from Newfoundland coyotes (3/87, 3.5%). Canine parvovirus type 2 (CPV-2) was found in stool from free-roaming dogs from Labrador (2/48, 4.2%) and in spleens from Newfoundland coyotes (3/87, 3.5%). Comparing CPV-2 sequences from these hosts to those retrieved from local symptomatic domestic dogs revealed the presence of a highly heterogeneous viral population as detected strains belonged to five different clades. The close relationship between CPV-2a strains from a dog and a coyote suggests the occurrence of viral transfer between wild and domestic canids. The identification of highly related strains with a similar molecular signature characteristic of older CPV-2 strains in free-roaming and domestic dogs suggests a probable common ancestry and that older CPV-2 strains, which have not been identified in dogs since the 1990s, persist in this part of Canada. Follow-up studies should evaluate samples from a larger number of animals and host species to extensively investigate the possible occurrence of cross-species transmission for recently discovered parvoviruses.
Collapse
Affiliation(s)
- Marta Canuti
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Francesco Mira
- Istituto Zooprofilattico Sperimentale della Sicilia 'A. Mirri', Palermo, Italy
| | - Rachel G Sorensen
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Bruce Rodrigues
- Wildlife Division, Newfoundland and Labrador Department of Fisheries, Forestry, and Agriculture, Corner Brook, Newfoundland and Labrador, Canada
| | - Émilie Bouchard
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Natasha Walzthoni
- Veterinary Specialty Centre of Newfoundland and Labrador, Mount Pearl, Newfoundland and Labrador, Canada
| | - Marti Hopson
- Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Cornelia Gilroy
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Hugh G Whitney
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Andrew S Lang
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
22
|
Tang Y, Tang N, Zhu J, Wang M, Liu Y, Lyu Y. Molecular characteristics and genetic evolutionary analyses of circulating parvoviruses derived from cats in Beijing. BMC Vet Res 2022; 18:195. [PMID: 35606875 PMCID: PMC9125828 DOI: 10.1186/s12917-022-03281-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 03/28/2022] [Indexed: 11/10/2022] Open
Abstract
Background Feline parvovirus (FPV) is a member of the family Parvoviridae, which is a major enteric pathogen of cats worldwide. This study aimed to investigate the prevalence of feline parvovirus in Beijing of China and analyze the genetic features of detected viruses. Results In this study, a total of 60 (8.5%) parvovirus-positive samples were detected from 702 cat fecal samples using parvovirus-specific PCR. The complete VP2 genes were amplified from all these samples. Among them, 55 (91.7%) sequences were characterized as FPV, and the other five (8.3%) were typed as canine parvovirus type 2 (CPV-2) variants, comprised of four CPV-2c and a new CPV-2b strain. In order to investigate the origin of CPV-2 variants in cats, we amplified full-length VP2 genes from seven fecal samples of dogs infected with CPV-2, which were further classified as CPV-2c. The sequences of new CPV-2b/MT270586 and CPV-2c/MT270587 detected from feline samples shared 100% identity with previous canine isolates KT156833 and MF467242 respectively, suggesting the CPV-2 variants circulating in cats might be derived from dogs. Sequence analysis indicated new mutations, Ala91Ser and Ser192Phe, in the FPV sequences, while obtained CPV-2c carried mutations reported in Asian CPV variants, showing they share a common evolutionary pattern with the Asian 2c strains. Interestingly, the FPV sequence (MT270571), displaying four CPV-specific residues, was found to be a putative recombinant sequence between CPV-2c and FPV. Phylogenetic analysis of the VP2 gene showed that amino acid and nucleotide mutations promoted the evolution of FPV and CPV lineages. Conclusions Our findings will be helpful to further understand the circulation and evolution of feline and canine parvovirus in Beijing.
Collapse
Affiliation(s)
- Yashu Tang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Na Tang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jingru Zhu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Min Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yang Liu
- College of Veterinary Medicine, Veterinary Teaching Hospital, China Agricultural University, Beijing, 100193, China
| | - Yanli Lyu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
23
|
Molecular analysis of the full-length VP2 gene of Brazilian strains of canine parvovirus 2 shows genetic and structural variability between wild and vaccine strains. Virus Res 2022; 313:198746. [DOI: 10.1016/j.virusres.2022.198746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 11/21/2022]
|
24
|
Schirò G, Gambino D, Mira F, Vitale M, Guercio A, Purpari G, Antoci F, Licitra F, Chiaramonte G, La Giglia M, Randazzo V, Vicari D. Antimicrobial Resistance (AMR) of Bacteria Isolated from Dogs with Canine Parvovirus (CPV) Infection: The Need for a Rational Use of Antibiotics in Companion Animal Health. Antibiotics (Basel) 2022; 11:antibiotics11020142. [PMID: 35203745 PMCID: PMC8868125 DOI: 10.3390/antibiotics11020142] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/05/2023] Open
Abstract
Canine parvovirus type 2 (CPV-2) represents a major viral threat to dogs. Considering the potential effects of pets on antimicrobial resistance, information on the CPV and associated bacterial co-infections is limited. The aim of this study was to analyze the antimicrobial susceptibility and multidrug-resistance profiles of bacterial species from tissue samples of dogs with canine parvovirus infection. A set of PCR assays and sequence analyses was used for the detection and the molecular characterization of the CPV strains and other enteric viruses. Bacterial isolation, the determination of antimicrobial susceptibility via the disk diffusion method, and the determination of the minimum inhibitory concentration were performed. The detection of β-lactamase genes and toxin genes for specific bacteria was also carried out. CPV infection was confirmed in 23 dogs. Forty-three bacterial strains were isolated and all showed phenotypic resistance. Seventeen multidrug-resistant bacteria and bacteria with high resistance to third- and fourth-generation cephalosporins and metronidazole were detected. Almost 50% of the isolated Enterobacteriaceae were positive for at least one β-lactamase gene, with the majority carrying more genes as well. The evidence for multi-resistant bacteria with the potential for intra- or cross-species transmission should be further considered in a One Health approach.
Collapse
|
25
|
T598 and T601 phosphorylation sites of canine parvovirus NS1 are crucial for viral replication and pathogenicity. Vet Microbiol 2021; 264:109301. [PMID: 34915313 DOI: 10.1016/j.vetmic.2021.109301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/24/2021] [Accepted: 12/05/2021] [Indexed: 11/21/2022]
Abstract
Canine parvovirus-2 (CPV-2) is an important pathogen causing severe diseases in dogs and other wild carnivores. Phosphorylation of NS1 may be related to CPV-2 pathogenicity, but the exact mechanism is unclear. Here, we conducted parvovirus disease surveillance in Shaanxi Province of China and 51 fecal swabs were detected to be infected with CPV-2. The 7 CPV-2 strains were identified, all of which belonged to CPV-2c. The complete genome sequence of one of the strains (CPV-2c XY) was cloned into pKQLL plasmid to construct a full-length infectious clone plasmid pX-CPV-2c, which carried a genetic marker. The plasmid pX-CPV-2c was transfected into F81 cells for virus rescue. And the rescued virus, which was designed as X-CPV-2c, showed the similar biological property to parental CPV-2c XY in vitro and in vivo. We further constructed four NS1 phosphorylation site mutant strains (X-CPV-2cT584A, X-CPV-2cS592A, X-CPV-2cT598A/T601A and X-CPV-2cT617A) on the basis of X-CPV-2c. After the analysis and comparison of biological characteristics, the low pathogenic strain X-CPV-2cT598A/T601A was further screened out, which emphasized the importance of phosphorylation sites 598 T/601 T for the pathogenicity of CPV-2. Overall, our data indicated that T598 and T601, the C-terminal phosphorylation site of CPV-2 NS1, play important roles in viral pathogenicity and laid the foundation for the development of new attenuated live vaccine vectors.
Collapse
|
26
|
Liu C, Gao J, Li H, Sun F, Liang H, Liu H, Yi J. Phylogenetic Characteristics of Canine Parvovirus Type 2c Variant Endemic in Shanghai, China. Viruses 2021; 13:v13112257. [PMID: 34835063 PMCID: PMC8618335 DOI: 10.3390/v13112257] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 01/13/2023] Open
Abstract
Canine parvovirus type 2 (CPV-2) has spread and mutated globally over the past 40 years. In the present study, 206 samples from dogs suspected of CPV-2 infection were collected from five veterinary clinics in Shanghai city, China. The average positive rate for CPV-2 was detected to be 40.78% using the PCR method. Using an F81 cell (feline kidney cell) culture, the isolates of three CPV-2c strains were obtained. The near full-length genome sequences of the isolates were determined and submitted to GenBank: CPV-SH2001 (MW650830), CPV-SH2002 (MW811188), and CPV-SH2003 (MW811189). By comparing the amino acid sequences of 12 CPV strains with those of 48 related strains retrieved from GenBank, all of the CPV strains from Shanghai were typed as belonging to a relatively new CPV-2c variant spreading in Asia, with typical amino acid residues (5Gly, 267Tyr, 324Ile, and 370Arg) in the VP2 protein. The divergence time of this new CPV-2c clade was estimated by the phylogenetic tree using the maximum likelihood and RelTime with Dated Tips (RTDT) approaches. Our results indicate that the 426 and 324 VP2 amino acid residues are under strong selection pressure with a posterior probability of 0.966 and 0.943, respectively. Therefore, this study provides insight into the phylogenetic characteristics of the current CPV-2c variant in Shanghai city, China.
Collapse
Affiliation(s)
- Chengqian Liu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (C.L.); (J.G.); (H.L.); (F.S.)
| | - Jun Gao
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (C.L.); (J.G.); (H.L.); (F.S.)
| | - Hong Li
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (C.L.); (J.G.); (H.L.); (F.S.)
| | - Fengping Sun
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (C.L.); (J.G.); (H.L.); (F.S.)
| | - Hongyu Liang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China;
| | - Huili Liu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (C.L.); (J.G.); (H.L.); (F.S.)
- Correspondence: (H.L.); (J.Y.)
| | - Jianzhong Yi
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (C.L.); (J.G.); (H.L.); (F.S.)
- Correspondence: (H.L.); (J.Y.)
| |
Collapse
|
27
|
Mira F. From molecular surveillance to electronic health data and back: creating virtual biobanks for infectious diseases of companion animals. Vet Rec 2021; 189:241-243. [PMID: 34558712 DOI: 10.1002/vetr.998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Francesco Mira
- Istituto Zooprofilattico Sperimentale della Sicilia 'A Mirri', Palermo, Italy
| |
Collapse
|
28
|
Takano T, Hamaguchi S, Hasegawa N, Doki T, Soma T. Predominance of canine parvovirus 2b in Japan: an epidemiological study during 2014-2019. Arch Virol 2021; 166:3151-3156. [PMID: 34387749 DOI: 10.1007/s00705-021-05200-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/16/2021] [Indexed: 10/20/2022]
Abstract
Canine parvovirus 2 (CPV-2) is an important pathogen of domestic dogs and wild canids. In Japan, CPV-2 infection is one of the most common infectious diseases of dogs. We analyzed samples collected between 2014 and 2019 to identify antigenic variants of CPV-2 in dogs in Japan. Our results demonstrated that the CPV-2b variant was predominant. The CPV-2c variant was not found among our samples. Our findings demonstrate that the distribution of CPV-2 antigenic variants in Japan was more similar to that in Australia than to that in neighboring countries in Asia.
Collapse
Affiliation(s)
- Tomomi Takano
- Laboratory of Veterinary Infectious Disease, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan.
| | - Shun Hamaguchi
- Laboratory of Veterinary Infectious Disease, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| | - Nobuhisa Hasegawa
- Laboratory of Veterinary Infectious Disease, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| | - Tomoyoshi Doki
- Laboratory of Veterinary Infectious Disease, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| | - Takehisa Soma
- Veterinary Diagnostic Laboratory, Marupi Lifetech Co., Ltd, Fushio-cho, Ikeda, Osaka, 563-0011, Japan
| |
Collapse
|
29
|
Tion MT, Shima FK, Ogbu KI, Omobowale TO, Amine AA, Nguetyo SA, Igoh FA, Oochi JO, Fotina HA, Saganuwan SA, Zon GA. Genetic diversity of canine parvovirus variants circulating in Nigeria. INFECTION GENETICS AND EVOLUTION 2021; 94:104996. [PMID: 34246800 DOI: 10.1016/j.meegid.2021.104996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/26/2021] [Accepted: 07/06/2021] [Indexed: 02/04/2023]
Abstract
Canine parvovirus (CPV) is a fast-evolving single-stranded DNA virus that causes severe and fatal gastrointestinal disease in dogs. Lately, several mutations affecting viral protein (VP) capsid resulting in highly pathogenic variants with distinctive immunological and clinicopathological characteristics abound. This study involved screening stools of 44 randomly selected clinical cases of canine gastroenteritis from 4 cities (Ibadan, Jos, Makurdi, and Zaria) in Nigeria for CPV antigen using an on-the-spot immunoassay test kit, as well as, molecular detection of viral nucleic acid by polymerase chain reaction. Subsequently, nucleic acid sequencing of 1195-bp amplicons encompassing the VP2 encoding region was done. The resultant 40 high-quality amino acid sequences obtained were analysed for the identification and grouping of the viruses into their discrete variants - CPV-2a, CPV-2b, or CPV-2c, using key amino acids substitutions - Asn, Asp, or Glu respectively at position 426 of the VP2 gene. One-third (11/40; 27.5%) of the analysed sequences were identified as CPV-2a and two-third (29/40; 72.5%) as CPV-2c. The original CPV and CPV-2b were not detected. Also, the "new CPV-2a variant" with mutation S297A identified had two additional mutations (Y324I and T440A) associated with selective pressure and vaccination failure in their sequences. Similarly, unique CPV-2c mutants carrying genetic markers (S297A, Y324I, and Q370R) that are highly related to CPVs of Asian origin were observed. These findings revealed a high level of divergence of existing CPVs in circulation; suggesting that CPV is rapidly evolving in Nigeria lately.
Collapse
Affiliation(s)
- Matthew Terzungwe Tion
- College of Veterinary Medicine, University of Agriculture, Makurdi, Benue State, Nigeria; Faculty of Veterinary Medicine, Sumy National Agrarian University, 160 Herasima Kondratieva Street, Sumy 40021, Ukraine.
| | - Felix Kundu Shima
- Department of Veterinary Medicine, University of Ibadan, Oyo State, Nigeria
| | - Kenneth Ikejiofor Ogbu
- Department of Animal Health, School of Animal Health, Production and Technology, Federal College of Animal Health and Production Technology, Vom, Plateau State, Nigeria
| | | | - Andrew Aondowase Amine
- College of Veterinary Medicine, University of Agriculture, Makurdi, Benue State, Nigeria
| | | | - Favour Ann Igoh
- College of Veterinary Medicine, University of Agriculture, Makurdi, Benue State, Nigeria
| | - Josiah Oochi Oochi
- College of Veterinary Medicine, University of Agriculture, Makurdi, Benue State, Nigeria
| | - Hanna Anatoliyivna Fotina
- Faculty of Veterinary Medicine, Sumy National Agrarian University, 160 Herasima Kondratieva Street, Sumy 40021, Ukraine
| | | | - Gregory Anatoliiovych Zon
- Faculty of Veterinary Medicine, Sumy National Agrarian University, 160 Herasima Kondratieva Street, Sumy 40021, Ukraine
| |
Collapse
|
30
|
Shima FK, Gberindyer FA, Tion MT, Fagbohun OA, Omobowale TO, Nottidge HO. Diagnostic Performance of a Rapid Immunochromatographic Test Kit for Detecting Canine Parvovirus Infection. Top Companion Anim Med 2021; 45:100551. [PMID: 34119705 DOI: 10.1016/j.tcam.2021.100551] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/26/2021] [Accepted: 06/03/2021] [Indexed: 11/18/2022]
Abstract
In dogs, canine parvovirus (CPV) enteritis is associated with high morbidity and fatality rates requiring early diagnosis to facilitate treatment and reduce its spread. In recent times, various commercial immunochromatographic (IC) test kits are available for its rapid diagnosis, which require an assessment of their accuracy. Therefore, precision of a point-of-care IC combination test kit for canine coronavirus (CCoV)/CPV faecal antigen detection was evaluated in this study. Multicentred random faecal samples from 115 dogs with gastroenteritis were checked for the presence of CPV antigens using the SensPERT IC combination test kit and the result was compared with polymerase chain reaction (PCR) as a reference test. Parvovirus was detected in 105 (91.3%) and 108 (93.9%) faecal samples by the point-of-care test kit and PCR, respectively. The point-of-care IC test kit showed 95.4% relative sensitivity, 71.4% specificity, 98.1% positive predictive value, 50.0% negative predictive value, and 93.9% accuracy comparable to conventional PCR in the samples tested. This point-of-care test kit also demonstrated a fair positive likelihood ratio (3.34), a very low negative likelihood ratio (0.07) and a moderate agreement (Kappa = 0.6) compared with conventional PCR. This test kit has shown to be very useful in the screening of dogs for CPV infection, and is a reliable alternative for diagnosing CPV both in conventional laboratories and remote areas without laboratories. Negative results in the IC testing with high suspicion of CPV infection should be further confirmed using superior test such as PCR.
Collapse
Affiliation(s)
- Felix K Shima
- Department of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Fidelis A Gberindyer
- Department of Veterinary Pharmacology and Toxicology, Federal University of Agriculture, Makurdi, Nigeria
| | - Matthew T Tion
- Department of Veterinary Medicine, Federal University of Agriculture, Makurdi, Nigeria
| | - Olusegun A Fagbohun
- Department of Veterinary Microbiology, University of Ibadan, Ibadan, Nigeria
| | | | - Helen O Nottidge
- Department of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
31
|
Smith SL, Afonso MM, Roberts L, Noble PJM, Pinchbeck GL, Radford AD. A virtual biobank for companion animals: A parvovirus pilot study. Vet Rec 2021; 189:e556. [PMID: 34101190 DOI: 10.1002/vetr.556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/19/2021] [Accepted: 05/13/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND There is a lack of national population data concerning infectious disease in companion animals. Here, we piloted the feasibility of linking diagnostic laboratories, population surveillance and modern sequencing approaches to extract targeted diagnostic samples from laboratories before they were discarded, as a novel route to better understand national epidemiology of major small animal pathogens. METHODS Samples tested for canine or feline parvovirus were requested from a national veterinary diagnostic laboratory and analysed by Sanger or next generation sequencing. Samples were linked to electronic health data held in the SAVSNET database. RESULTS Sequences obtained from positive samples, together with associated metadata, provided new insights into the recent geographical distribution of parvovirus strains in circulation in the United Kingdom (UK). CONCLUSIONS This collaboration with industry represents a 'National Virtual Biobank' that can rapidly be called on, to efficiently add new layers of epidemiological information of relevance to animal, and potentially human, population health.
Collapse
Affiliation(s)
- Shirley L Smith
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, Wirral, UK
| | - Maria M Afonso
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, Wirral, UK
| | | | - Peter-John M Noble
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, Wirral, UK
| | - Gina L Pinchbeck
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, Wirral, UK
| | - Alan D Radford
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, Wirral, UK
| |
Collapse
|
32
|
Balboni A, Niculae M, Di Vito S, Urbani L, Terrusi A, Muresan C, Battilani M. The detection of canine parvovirus type 2c of Asian origin in dogs in Romania evidenced its progressive worldwide diffusion. BMC Vet Res 2021; 17:206. [PMID: 34090429 PMCID: PMC8180150 DOI: 10.1186/s12917-021-02918-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Background Canine parvovirus (CPV) is one of the most important pathogens of dogs. Despite vaccination, CPV infections are still ubiquitous in dogs, and the three antigenic variants 2a, 2b and 2c are variously distributed in the canine population worldwide. To date, no information is available on CPV variants circulating in some European countries. The aim of this study was to genetically characterise the CPV detected in ten dogs with clinical signs of acute gastroenteritis in Romania. The presence of Carnivore protoparvovirus 1 DNA was investigated in faecal samples using an end-point PCR targeting the complete VP2 gene and positive amplicons were sequenced and analysed. Results All ten dogs with acute gastroenteritis tested positive to Carnivore protoparvovirus 1 DNA in faecal samples. The identified viruses belonged to CPV-2c type, showed identical sequences of the VP2 gene and were characterised by distinctive amino acid residues in the deduced VP2 protein: 5-glicine (5Gly), 267-tirosine (267Tyr), 324-isoleucine (324Ile) and 370-arginine (370Arg). These distinctive amino acid residues have already been reported in CPV-2c widespread in Asia and occasionally detected in Italy and Nigeria. Conclusions Since CPV-2c with VP2 amino acid residues 5Gly, 267Tyr, 324Ile and 370Arg were never reported before 2013, it can be assumed that this virus is progressively expanding its spread in the world dog population. This study adds new data about the presence of this new virus in Europe and underline worrying questions about its potential impact on the health of the canine population. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-021-02918-6.
Collapse
Affiliation(s)
- Andrea Balboni
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano dell'Emilia, Bologna, Italy
| | - Mihaela Niculae
- Department of Clinical Sciences, Division of Infectious Diseases, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Serena Di Vito
- Department of Clinical Sciences, Division of Infectious Diseases, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Lorenza Urbani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano dell'Emilia, Bologna, Italy
| | - Alessia Terrusi
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano dell'Emilia, Bologna, Italy
| | - Cosmin Muresan
- Department of Clinical Sciences, Division of Infectious Diseases, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Mara Battilani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano dell'Emilia, Bologna, Italy.
| |
Collapse
|
33
|
Chang AM, Chen CC. Molecular Characteristics of Carnivore protoparvovirus 1 with High Sequence Similarity between Wild and Domestic Carnivores in Taiwan. Pathogens 2021; 10:pathogens10060671. [PMID: 34072499 PMCID: PMC8229444 DOI: 10.3390/pathogens10060671] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 01/26/2023] Open
Abstract
Carnivore protoparvovirus 1 (CPPV-1) is a DNA virus causing gastrointestinal disease and immunosuppression in various terrestrial carnivores. Domestic dogs and cats are considered the primary CPPV-1 reservoirs. The habitat overlap of wild carnivores and free-roaming dogs increases the threat of CPPV-1 transmission between them. This study explored the CPPV-1 distribution among wild carnivores in Taiwan through PCR screening and compared the partial capsid protein (VP2) gene sequences from wild and domestic carnivores. In total, 181 samples were collected from 32 masked palm civets (Paguma larvata), 63 Chinese ferret badgers (Melogale moschata), and 86 crab-eating mongooses (Herpestes urva), from 2015 to 2019 were screened for CPPV-1. The average prevalence of CPPV-1 was 17.7% (32/181), with the highest prevalence in masked palm civets (37.5%). In addition, a masked palm civet was coinfected with two CPPV-1 strains. Among the 33 partial VP2 gene sequences, 23 were identical to the sequences amplified from domestic dogs and cats in Asia, and the remaining 10 were identified for the first time. This study supported the circulation of CPPV-1 strains with the same genomic features as domestic carnivores that are also in wild carnivores from the same environment in Taiwan by molecular data. Therefore, further population control and health management of free-roaming domestic carnivores are recommended.
Collapse
Affiliation(s)
- Ai-Mei Chang
- International Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
- Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Chen-Chih Chen
- Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Institute of Wildlife Conservation, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Correspondence: ; Tel.: +886-87703202 (ext. 6596)
| |
Collapse
|
34
|
Jelinek HF, Mousa M, Alefishat E, Osman W, Spence I, Bu D, Feng SF, Byrd J, Magni PA, Sahibzada S, Tay GK, Alsafar HS. Evolution, Ecology, and Zoonotic Transmission of Betacoronaviruses: A Review. Front Vet Sci 2021; 8:644414. [PMID: 34095271 PMCID: PMC8173069 DOI: 10.3389/fvets.2021.644414] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/25/2021] [Indexed: 12/18/2022] Open
Abstract
Coronavirus infections have been a part of the animal kingdom for millennia. The difference emerging in the twenty-first century is that a greater number of novel coronaviruses are being discovered primarily due to more advanced technology and that a greater number can be transmitted to humans, either directly or via an intermediate host. This has a range of effects from annual infections that are mild to full-blown pandemics. This review compares the zoonotic potential and relationship between MERS, SARS-CoV, and SARS-CoV-2. The role of bats as possible host species and possible intermediate hosts including pangolins, civets, mink, birds, and other mammals are discussed with reference to mutations of the viral genome affecting zoonosis. Ecological, social, cultural, and environmental factors that may play a role in zoonotic transmission are considered with reference to SARS-CoV, MERS, and SARS-CoV-2 and possible future zoonotic events.
Collapse
Affiliation(s)
- Herbert F. Jelinek
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center of Heath Engineering Innovation, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Mira Mousa
- Nuffield Department of Women's and Reproduction Health, Oxford University, Oxford, United Kingdom
| | - Eman Alefishat
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Wael Osman
- Department of Chemistry, College of Arts and Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ian Spence
- Discipline of Pharmacology, University of Sydney, Sydney, NSW, Australia
| | - Dengpan Bu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing, China
| | - Samuel F. Feng
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Mathematics, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Jason Byrd
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Paola A. Magni
- Discipline of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
- Murdoch University Singapore, King's Centre, Singapore, Singapore
| | - Shafi Sahibzada
- Antimicrobial Resistance and Infectious Diseases Laboratory, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| | - Guan K. Tay
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Division of Psychiatry, Faculty of Health and Medical Sciences, The University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Habiba S. Alsafar
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Genetics and Molecular Biology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
35
|
Julien DA, Sargeant JM, Filejski C, Harper SL. Who let the dogs In? An epidemiological study quantifying domestically sourced and imported dogs in Southern Ontario, Canada. Zoonoses Public Health 2021; 68:588-600. [PMID: 33987921 DOI: 10.1111/zph.12847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/25/2021] [Accepted: 04/25/2021] [Indexed: 11/28/2022]
Abstract
Dogs are reservoirs for many zoonoses. In southern Ontario, Canada, minimal data exist on the sources from which domestic dogs are acquired (i.e., domestic or imported). The objectives of this study were to (1) describe the proportions of domestically sourced and imported dogs in southern Ontario, Canada, (2) describe the characteristics of newly acquired dogs including their province/country of origin, accompanying health documentation and respondent opinion regarding disease risks from different sources, and (3) determine whether a difference in the proportion of imported dogs exists between rural and urban households in southern Ontario, Canada. We conducted a cross-sectional observational study using an online questionnaire. A total of 2,006 respondents (1,002 rural and 1,004 urban), each representing one household, participated. Over the previous seven-year period, 731 (36.44%, (731/2,006)) respondents domestically sourced at least one dog, with 684 providing information regarding 962 dogs. Domestically sourced dogs were frequently puppies three to five-month-old (25.05%, (241/962)), male (51.87%, (499/962)), from a breeder (30.98%, (298/962)), and sourced from within Ontario (92.93%, (894/962)). As self-reported by respondents, 63.52% (484/762) of domestically sourced dogs greater than 3 months were vaccinated against rabies. Over the same period, individuals from 55 of 2,006 households (2.74%) imported at least one dog. Imported dogs were frequently under three months of age (29.09%, 16/55)), male (58.18%, (32/55)), and found via a breeder (32.73%, (18/55)). Most imported dogs originated from the USA (52.73%, (29/55)). Rabies vaccination in dogs three months and older is provincially required in Ontario and is also required for canine importation into Canada; however, some imported dogs over three months were unvaccinated (7.69%, (3/39)). The odds ratio for importing at least one dog in urban households compared with rural households was 1.93 (95% CI: 1.03-3.62) when controlling for number of household occupants and gross household income.
Collapse
Affiliation(s)
- Danielle A Julien
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.,Centre for Public Health and Zoonoses, University of Guelph, Guelph, ON, Canada
| | - Jan M Sargeant
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.,Centre for Public Health and Zoonoses, University of Guelph, Guelph, ON, Canada
| | | | - Sherilee L Harper
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.,Centre for Public Health and Zoonoses, University of Guelph, Guelph, ON, Canada.,School of Public Health, University of Alberta, Edmonton, AL, Canada
| |
Collapse
|
36
|
Ndiana LA, Odaibo GN, Olaleye DO. Molecular characterization of canine parvovirus from domestic dogs in Nigeria: Introduction and spread of a CPV-2c mutant and replacement of older CPV-2a by the "new CPV-2a" strain. Virusdisease 2021; 32:361-368. [PMID: 34350320 DOI: 10.1007/s13337-021-00689-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 04/10/2021] [Indexed: 11/26/2022] Open
Abstract
Canine parvovirus (CPV) is a contagious and highly pathogenic virus of dogs. After its first report in 1978, the CPV original type (CPV-2) was rapidly and totally replaced by three antigenic variants named CPV-2a, CPV-2b and CPV-2c that circulate in various countries at different frequencies and recently reported in Nigeria. This study describes the molecular characterization of 28 CPV strains in dogs presenting with gastroenteritis in veterinary clinics at Lagos and Ibadan, Nigeria. The results show the predominance (92.8%) of CPV-2a, while CPV-2c was found only in two samples. Phylogenetic analyses revealed that the CPV Nigerian strains were closely related to Asian strains and 26 CPV-2a out of 28 CPV sequences fell into 2 different subclades consistent with predicted amino acid mutations at position 267, 321, 324 and 440. Lys321Asn was evident in all the Nigerian strains whilst Phe267Tyr and Tyr324Ile were observed in 96.4% of the sequences, respectively. Thr440Ala occurred in 89.3% of sequences from this study. The new CPV-2a was predominant and appears to have replaced other CPV-2a strains in South-western Nigeria whilst the CPV-2c strain which is identical to the isolate recently reported in Northern Nigeria, may have been introduced in this country at the time of this study. Monitoring virus epidemiology is important to better understand the dynamics of CPV evolution and the eventual need to change or improve existing vaccination strategies.
Collapse
Affiliation(s)
- L A Ndiana
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Department of Veterinary Microbiology, College of Veterinary Medicine, Michael Okpara University of Agriculture, Umudike, Nigeria
| | - G N Odaibo
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - D O Olaleye
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
37
|
Doan HTT, Le XTK, Do RT, Nguyen KT, Le TH. Canine parvovirus type 2c in Vietnam continues to produce distinct descendants with new mutations restricted to Vietnamese variants. Arch Virol 2021; 166:1741-1749. [PMID: 33860842 DOI: 10.1007/s00705-021-05059-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 02/15/2021] [Indexed: 11/27/2022]
Abstract
Viral protein 2 (VP2) of canine parvovirus (CPV) exhibits a high degree of genetic and antigenic diversity. We analyzed 88 Vietnamese CPV-VP2 sequences (1755 bp), 34 from this study and 54 from previous studies, and discovered a new sublineage, "new var.", within the lineage CPV-2c-"new", characterized by the mutation 5G/447M, which is restricted to the Vietnamese isolates. These new mutants appear to have emerged in recent years, accounting for 65.5% of the total. With strong nodal support (98%), the distinct Vietnamese 2c-"new-var." sublineage (5G/426E/447M) was found to be separate from the 2c-"new" sublineage (5G/426E/447I) within the 2c-(Asia)/Asia-2c lineage. Amino acid changes in epitopes of VP2 might have led to the generation of subvariants and affected the antigenicity, immunogenicity, or virulence of the virus, resulting in vaccine failure worldwide.
Collapse
Affiliation(s)
- Huong Thi Thanh Doan
- Immunology Department, Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), 18. Hoang Quoc Viet Rd., Cau Giay, Hanoi, Vietnam. .,Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST), 18. Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.
| | - Xuyen Thi Kim Le
- Immunology Department, Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), 18. Hoang Quoc Viet Rd., Cau Giay, Hanoi, Vietnam.,Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST), 18. Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Roan Thi Do
- Immunology Department, Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), 18. Hoang Quoc Viet Rd., Cau Giay, Hanoi, Vietnam.,Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST), 18. Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Khue Thi Nguyen
- Immunology Department, Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), 18. Hoang Quoc Viet Rd., Cau Giay, Hanoi, Vietnam.,Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST), 18. Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Thanh Hoa Le
- Immunology Department, Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), 18. Hoang Quoc Viet Rd., Cau Giay, Hanoi, Vietnam. .,Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST), 18. Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.
| |
Collapse
|
38
|
Ndiana LA, Lanave G, Desario C, Berjaoui S, Alfano F, Puglia I, Fusco G, Colaianni ML, Vincifori G, Camarda A, Parisi A, Sgroi G, Elia G, Veneziano V, Buonavoglia C, Decaro N. Circulation of diverse protoparvoviruses in wild carnivores, Italy. Transbound Emerg Dis 2020; 68:2489-2502. [PMID: 33176056 DOI: 10.1111/tbed.13917] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/13/2020] [Accepted: 11/06/2020] [Indexed: 12/15/2022]
Abstract
Protoparvovirus is a monophyletic viral genus that includes the species Carnivore protoparvovirus-1 infecting domestic and wild carnivores. In this paper, the results of an epidemiological survey for Carnivore protoparvovirus-1 in wild carnivores in Italy are reported. Overall, 34 (11.4%) out of 297 tested animals were positive for Carnivore protoparvovirus-1, but the frequency of detection was much higher in intestine (54%) than in spleen samples (2.8%), thus suggesting that the intestine is the best sample to collect from wild animals for parvovirus detection. Feline panleukopenia virus (FPV) was detected in red foxes (Vulpes vulpes) (2.8%, 7/252) and Eurasian badgers (Meles meles) (10%, 1/10), whilst canine parvovirus (CPV) was found in wolves (54.3%, 19/35), Eurasian badgers (60%, 6/10) and one beech marten (Martes foina) (100%, 1/1), with more than one parvovirus type detected in some animals. Protoparvoviral DNA sequences from this study were found to be related to CPV/FPV strains detected in Asia and Europe, displaying some amino acid changes in the main capsid protein VP2 in comparison with other parvovirus strains from wildlife. In particular, the two most common mutations were Ile418Thr and Ala371Gly, which were observed in 6/12 (50%) and 5/12 (41.7%) of the CPV sequences from this study. Continuous surveillance for parvoviruses in wild carnivores and genetic analysis of the detected strains may help obtain new insight into the role of these animals in the evolution and epidemiology of carnivore parvoviruses.
Collapse
Affiliation(s)
- Linda A Ndiana
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
| | - Gianvito Lanave
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
| | - Costantina Desario
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
| | - Shadia Berjaoui
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise 'G. Caporale', Teramo, Italy
| | - Flora Alfano
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Italy
| | - Ilaria Puglia
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise 'G. Caporale', Teramo, Italy
| | - Giovanna Fusco
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Italy
| | | | - Giacomo Vincifori
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise 'G. Caporale', Teramo, Italy
| | - Antonio Camarda
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
| | - Antonio Parisi
- Istituto Zooprofilattico Sperimentale di Puglia e Basilicata, Foggia, Italy
| | - Giovanni Sgroi
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
| | - Gabriella Elia
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
| | - Vincenzo Veneziano
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Canio Buonavoglia
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
| | - Nicola Decaro
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
| |
Collapse
|
39
|
Detection and molecular epidemiology of canine parvovirus type 2 (CPV-2) circulating in Jilin Province, Northeast China. Comp Immunol Microbiol Infect Dis 2020; 74:101602. [PMID: 33296799 DOI: 10.1016/j.cimid.2020.101602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 12/31/2022]
Abstract
Canine parvovirus (CPV) is highly contagious and can cause haemorrhagic enteritis and myocarditis in dogs. To understand the current epidemic situation of CPV in Jilin Province, China, a total of 44 fecal or intestinal tissue samples of pet dogs suspected of being infected with CPV from February 2018 to November 2019 in Changchun and Liaoyuan City, Jilin Province were collected.All of the 44 collected samples were tested positive to CPV-2 by a PCR assay. The sequencing and analyzing of complete VP2 genes showed that CPV-2c was the most prevalent variant (n = 31;70.4 %), followed by new-CPV-2a (n = 8;18.2 %), new-CPV-2b (n = 4; 9.1 %) and CPV-2 (n = 1; 2.3 %). Phylogenetic analysis revealed that the 31 CPV-2c strains in our study are closely related to local CPV-2c isolates in cluster I. The VP2 protein of the acquired CPV 2c strains all possessed the substitutions Ala5Gly, Phe267Tyr, Tyr324Ile, and Gln370Arg only one with a novel Arg481Lys mutation. These findings demonstrate that CPV-2c was the most prominent type of CPV circulating in Jilin in 2018-2019, clustered in a separate group that is far from the vaccine strains and suggest that further and extensive epidemiological investigation among pet dogs are warranted to provide information for usage and research of current vaccines.
Collapse
|
40
|
Ogbu KI, Chukwudi IC, Mira F, Eze UU, Di Bella S, Olaolu OS, Tion MT, Purpari G, Cannella V, Nwosuh IC, Guercio A, Anene BM. Current status and risk factors of canine parvovirus type 2 in North Central Nigeria. Comp Immunol Microbiol Infect Dis 2020; 74:101578. [PMID: 33246241 DOI: 10.1016/j.cimid.2020.101578] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/22/2020] [Accepted: 11/03/2020] [Indexed: 01/01/2023]
Abstract
Since its emergence in Nigeria, canine parvovirus type 2 (CPV-2) infection has posed problems to dog breeding and requires constant awareness and monitoring. In this study, the status, the assessment of extrinsic risk factors of parvoviral infection in dog kennels in North Central Nigeria, and isolation of the CPV-2 were carried out. Potential risk factors were considered during sampling: age, breed, sex, location, vaccination and health status, using well-structured questionnaires on dog owners with experience of CPV-2 infection. There was high prevalence which depended on age, breed, location, clinical status of the dog while vaccination status of the dogs did not influence the prevalence. CPV-2 vaccination compliance by the breeders and management system of the kennels were also observed as risk factors. Isolation of CPV-2a and -2c strains from Nigeria for further study has been reported. The spread of CPV-2 in Nigeria is increasing, hence needs for continual epidemiological monitoring and review.
Collapse
Affiliation(s)
- Kenneth Ikejiofor Ogbu
- Department of Animal Health, Federal College of Animal Health and Production Technology, National Veterinary Research Institute Vom, Plateau State, Nigeria; Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Nigeria Nsukka, Enugu State, Nigeria.
| | - Ijeoma Chekwube Chukwudi
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Nigeria Nsukka, Enugu State, Nigeria.
| | - Francesco Mira
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, 90129 Palermo, Italy.
| | - Ukamaka Uchenna Eze
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Nigeria Nsukka, Enugu State, Nigeria.
| | - Santina Di Bella
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, 90129 Palermo, Italy.
| | - Olushola Samuel Olaolu
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Ahmadu Bello University Zaria, Kaduna State, Nigeria.
| | - Matthew Terzungwe Tion
- Department of Veterinary Medicine, College of Veterinary Medicine, Federal University of Agriculture Makurdi, Benue State, Nigeria.
| | - Giuseppa Purpari
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, 90129 Palermo, Italy.
| | - Vincenza Cannella
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, 90129 Palermo, Italy.
| | - Ignatius Chika Nwosuh
- Viral Research Division, National Veterinary Research Institute Vom, Plateau State, Nigeria.
| | - Annalisa Guercio
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, 90129 Palermo, Italy.
| | - Boniface Maduka Anene
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Nigeria Nsukka, Enugu State, Nigeria.
| |
Collapse
|
41
|
Shima FK, Omobowale TO, Adesina RD, Nottidge HO, Fagbohun OA. Molecular characterisation of canine parvoviruses from clinical samples and vaccines in Nigeria. INFECTION GENETICS AND EVOLUTION 2020; 85:104553. [PMID: 32927118 DOI: 10.1016/j.meegid.2020.104553] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/13/2020] [Accepted: 09/08/2020] [Indexed: 11/18/2022]
Abstract
Canine parvovirus (CPV) the causative agent of canine parvovirus enteritis is an intractable pathogen of dogs characterised by mutations, evolutionary changes and eventual vaccine failure. The disease is a serious problem in dogs with limited studies conducted in Nigeria. Therefore, this study was designed to characterise the subtypes of CPV isolates in six commonly used vaccines and 157 clinical samples collected from seven states in Nigeria from June 2016 to March 2018. Faecal samples collected from the clinical cases were subjected to in-clinic immunoassay to detect viral antigens. Polymerase chain reaction (PCR) was used to amplify viral VP2 gene in the samples and commonly used vaccines in Nigeria. Thereafter, PCR products were sequenced and analysed. The result showed that 93.0% of the dogs tested positive for CPV in both assays; 72.8% were puppies less than six months old, with 58.3% of them vaccinated. Partial VP2 gene sequence and phylogenetic analysis of 11 random clinical samples showed that CPV-2c 7(63.6%) and CPV-2a 4(36.4%) were the predominant subtypes in Nigeria; with genetic signatures that are 98.7% to 99.9% closely related to Asian and European strains, respectively. No CPV-2b was detected. Amino acid mutation analysis divulged some imperative transmutation sites: D305Y, Y324I, Q370R, N375D, T440A, Y444S, I447M and Y451C in the isolates. The viruses in the vaccines were characterised as the wild-type CPV. The genetic variability, viral population heterogeneity and phylogenetic linkage with isolates from other countries probably suggest transboundary migrations and local differentiations are contributing to continuous CPV evolution and vaccine failure in Nigeria.
Collapse
Affiliation(s)
- Felix Kundu Shima
- Department of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | | | | | | | | |
Collapse
|
42
|
Alfano F, Fusco G, Mari V, Occhiogrosso L, Miletti G, Brunetti R, Galiero G, Desario C, Cirilli M, Decaro N. Circulation of pantropic canine coronavirus in autochthonous and imported dogs, Italy. Transbound Emerg Dis 2020; 67:1991-1999. [PMID: 32163663 PMCID: PMC7228320 DOI: 10.1111/tbed.13542] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/14/2020] [Accepted: 03/05/2020] [Indexed: 01/19/2023]
Abstract
Canine coronavirus (CCoV) strains with the ability to spread to internal organs, also known as pantropic CCoVs (pCCoVs), have been detected in domestic dogs and wild carnivores. Our study focused on the detection and molecular characterization of pCCoV strains circulating in Italy during the period 2014-2017 in autochthonous dogs, in dogs imported from eastern Europe or illegally imported from an unknown country. Samples from the gut and internal organs of 352 dogs were screened for CCoV; putative pCCoV strains, belonging to subtype CCoV-IIa, were identified in the internal organs of 35 of the examined dogs. Fifteen pCCoV strains were subjected to sequence and phylogenetic analyses, showing that three strains (98960-1/2016, 98960-3/2016, 98960-4/2016) did not cluster either with Italian or European CCoVs, being more closely related to alphacoronaviruses circulating in Asia with which they displayed a 94%-96% nucleotide identity in partial spike protein gene sequences. The pCCoV-positive samples were also tested for other canine viruses, showing co-infections mainly with canine parvovirus.
Collapse
Affiliation(s)
- Flora Alfano
- Istituto Zooprofilattico Sperimentale del MezzogiornoPortici (Napoli)Italy
| | - Giovanna Fusco
- Istituto Zooprofilattico Sperimentale del MezzogiornoPortici (Napoli)Italy
| | - Viviana Mari
- Dipartimento di Medicina VeterinariaUniversità degli Studi di BariValenzano (Bari)Italy
| | - Leonardo Occhiogrosso
- Dipartimento di Medicina VeterinariaUniversità degli Studi di BariValenzano (Bari)Italy
| | - Gianluca Miletti
- Istituto Zooprofilattico Sperimentale del MezzogiornoPortici (Napoli)Italy
| | - Roberta Brunetti
- Istituto Zooprofilattico Sperimentale del MezzogiornoPortici (Napoli)Italy
| | - Giorgio Galiero
- Istituto Zooprofilattico Sperimentale del MezzogiornoPortici (Napoli)Italy
| | - Costantina Desario
- Dipartimento di Medicina VeterinariaUniversità degli Studi di BariValenzano (Bari)Italy
| | - Margie Cirilli
- Dipartimento di Medicina VeterinariaUniversità degli Studi di BariValenzano (Bari)Italy
| | - Nicola Decaro
- Dipartimento di Medicina VeterinariaUniversità degli Studi di BariValenzano (Bari)Italy
| |
Collapse
|
43
|
Kwan E, Carrai M, Lanave G, Hill J, Parry K, Kelman M, Meers J, Decaro N, Beatty JA, Martella V, Barrs VR. Analysis of canine parvoviruses circulating in Australia reveals predominance of variant 2b and identifies feline parvovirus-like mutations in the capsid proteins. Transbound Emerg Dis 2020; 68:656-666. [PMID: 32657506 DOI: 10.1111/tbed.13727] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/16/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022]
Abstract
Canine parvovirus (CPV) is a major enteric pathogen of dogs worldwide that emerged in the late 1970s from a feline parvovirus (FPV)-like ancestral virus. Shortly after its emergence, variant CPVs acquired amino acid (aa) mutations in key capsid residues, associated with biological and/or antigenic changes. This study aimed to identify and analyse CPV variants and their capsid mutations amongst Australian dogs, to gain insights into the evolution of CPV in Australia and to investigate relationships between the disease and vaccination status of dogs from which viruses were detected. CPV VP2 sequences were amplified from 79 faecal samples collected from dogs with parvoviral enteritis at 20 veterinary practices in five Australian states. The median age at diagnosis was 4 months (range 1-96 months). Only 3.7% of dogs with vaccination histories had completed recommended vaccination schedules, while 49% were incompletely vaccinated and 47.2% were unvaccinated. For the first time, CPV-2b has emerged as the dominant antigenic CPV variant circulating in dogs with parvoviral enteritis in Australia, comprising 54.4% of viruses, while CPV-2a and CPV-2 comprised 43.1% and 2.5%, respectively. The antigenic variant CPV-2c was not identified. Analysis of translated VP2 sequences revealed a vast repertoire of amino acid (aa) mutations. Several Australian CPV strains displayed signatures in the VP2 protein typical of Asian CPVs, suggesting possible introduction of CPV strains from Asia, and/or CPV circulation between Asia and Australia. Canine parvoviruses were identified containing aa residues typical of FPV at key capsid (VP2) positions, representing reverse mutations or residual mutations retained from CPV-2 during adaptation from an FPV-like ancestor, suggesting that evolutionary intermediates between CPV-2 and FPV are circulating in the field. Similarly, intermediates between CPV-2a-like viruses and CPV-2 were also identified. These findings help inform a better understanding of the evolution of CPV in dogs.
Collapse
Affiliation(s)
- Emily Kwan
- Faculty of Science, Sydney School of Veterinary Science, University of Sydney, Camperdown, NSW, Australia
| | - Maura Carrai
- Faculty of Science, Sydney School of Veterinary Science, University of Sydney, Camperdown, NSW, Australia
| | - Gianvito Lanave
- Department of Veterinary Medicine, University of Bari, Valenzano (Bari), Italy
| | | | | | - Mark Kelman
- Faculty of Science, Sydney School of Veterinary Science, University of Sydney, Camperdown, NSW, Australia
| | - Joanne Meers
- School of Veterinary Science, The University of Queensland, Saint Lucia, QLD, Australia
| | - Nicola Decaro
- Department of Veterinary Medicine, University of Bari, Valenzano (Bari), Italy
| | - Julia A Beatty
- Faculty of Science, Sydney School of Veterinary Science, University of Sydney, Camperdown, NSW, Australia.,Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Vito Martella
- Department of Veterinary Medicine, University of Bari, Valenzano (Bari), Italy
| | - Vanessa R Barrs
- Faculty of Science, Sydney School of Veterinary Science, University of Sydney, Camperdown, NSW, Australia.,Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| |
Collapse
|
44
|
Chang D, Liu Y, Chen Y, Hu X, Burov A, Puzyr A, Bondar V, Yao L. Study of the immunogenicity of the VP2 protein of canine parvovirus produced using an improved Baculovirus expression system. BMC Vet Res 2020; 16:202. [PMID: 32552679 PMCID: PMC7301529 DOI: 10.1186/s12917-020-02422-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/09/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Canine parvovirus (CPV) is now recognized as a serious threat to the dog breeding industry worldwide. Currently used CPV vaccines all have their specific drawbacks, prompting a search for alternative safe and effective vaccination strategies such as subunit vaccine. VP2 protein is the major antigen targeted for developing CPV subunit vaccine, however, its production in baculovirus expression system remains challenging due to the insufficient yield. Therefore, our study aims to increase the VP2 protein production by using an improved baculovirus expression system and to evaluate the immunogenicity of the purified VP2 protein in mice. RESULTS The results showed that high-level expression of the full length VP2 protein was achieved using our modified baculovirus expression system. The recombinant virus carrying two copies of VP2 gene showed the highest expression level, with a productivity of 186 mg/L, which is about 1.4-1.6 fold that of the recombinant viruses carrying only one copy. The purified protein reacted with Mouse anti-His tag monoclonal antibody and Rabbit anti-VP2 polyclonal antibody. BALB/c mice were intramuscularly immunized with purified VP2 protein twice at 2 week intervals. After vaccination, VP2 protein could induce the mice produce high level of hemagglutination inhibition antibodies. CONCLUSIONS Full length CPV VP2 protein was expressed at high level and purified efficiently. Moreover, it stimulated mice to produce high level of antibodies with hemmaglutination inhibition properties. The VP2 protein expressed in this study could be used as a putative economic and efficient subunit vaccine against CPV infection.
Collapse
Affiliation(s)
- Dao Chang
- Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry; Key Laboratory of Ecological Security and Collaborative Innovation Centre of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, School of Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Yangkun Liu
- Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry; Key Laboratory of Ecological Security and Collaborative Innovation Centre of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, School of Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Yangyang Chen
- Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry; Key Laboratory of Ecological Security and Collaborative Innovation Centre of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, School of Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Xiaomin Hu
- Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry; Key Laboratory of Ecological Security and Collaborative Innovation Centre of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, School of Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Andrey Burov
- Institute of Biophysics, Siberian Branch of Russian Academy of Science, Federal Research Center "Krasnoyarsk Science Center SB RAS", 660036, Krasnoyarsk, Russia
| | - Alexey Puzyr
- Institute of Biophysics, Siberian Branch of Russian Academy of Science, Federal Research Center "Krasnoyarsk Science Center SB RAS", 660036, Krasnoyarsk, Russia
| | - Vladimir Bondar
- Institute of Biophysics, Siberian Branch of Russian Academy of Science, Federal Research Center "Krasnoyarsk Science Center SB RAS", 660036, Krasnoyarsk, Russia
| | - Lunguang Yao
- Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry; Key Laboratory of Ecological Security and Collaborative Innovation Centre of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, School of Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China.
| |
Collapse
|
45
|
Giraldo-Ramirez S, Rendon-Marin S, Ruiz-Saenz J. Phylogenetic, Evolutionary and Structural Analysis of Canine Parvovirus (CPV-2) Antigenic Variants Circulating in Colombia. Viruses 2020; 12:v12050500. [PMID: 32366040 PMCID: PMC7290427 DOI: 10.3390/v12050500] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023] Open
Abstract
Canine parvovirus (CPV-2) is the causative agent of haemorrhagic gastroenteritis in canids. Three antigenic variants—CPV-2a, CPV-2b and CPV-2c—have been described, which are determined by variations at residue 426 of the VP2 capsid protein. In Colombia, the CPV-2a and CPV-2b antigenic variants have previously been reported through partial VP2 sequencing. Mutations at residues Asn428Asp and Ala514Ser of variant CPV-2a were detected, implying the appearance of a possible new CPV-2a variant in Colombia. The purpose of the present study was to characterise the full VP2 capsid protein in samples from Antioquia, Colombia. We conducted a cross-sectional study with 56 stool samples from dogs showing clinical symptoms of parvoviral disease. Following DNA extraction from the samples, VP2 amplification was performed using PCR and positive samples were sequenced. Sequence and phylogenetic analyses were performed by comparison with the VP2 gene sequences of the different CPV-2 worldwide. VP2 was amplified in 51.8% of the analysed samples. Sequencing and sequence alignment showed that 93.1% of the amplified samples belonged to the new CPV-2a antigenic variant previously. Analysing the amino acid sequences revealed that all CPV-2a contain Ala297Asn mutations, which are related to the South America I clade, and the Ala514Ser mutation, which allows characterization as a new CPV-2a sub-variant. The Colombian CPV-2b variant presented Phe267Tyr, Tyr324Ile and Thr440Ala, which are related to the Asia-I clade variants. The CPV-2c was not detected in the samples. In conclusion, two antigenic CPV-2 variants of two geographically distant origins are circulating in Colombia. It is crucial to continue characterising CPV-2 to elucidate the molecular dynamics of the virus and to detect new CPV-2 variants that could be becoming highly prevalent in the region.
Collapse
|
46
|
Moon BY, Jang J, Kim SH, Kim YH, Lee HK, So B, Park CK, Lee KK. Genetic characterization of canine parvovirus type 2c from domestic dogs in Korea. Transbound Emerg Dis 2020; 67:1645-1653. [PMID: 32009300 PMCID: PMC7228216 DOI: 10.1111/tbed.13501] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 01/01/2023]
Abstract
Canine parvovirus type 2 (CPV‐2) is an aetiological agent that causes acute haemorrhagic enteritis and fatal myocarditis in dogs. Since CPV‐2 first emerged in the late 1970s, its rapid evolution has resulted in three antigenic variants: CPV‐2a, CPV‐2b and CPV‐2c. Here, we report, for the first time in Korea, two cases of CPV‐2c infection in two dogs with severe diarrhoea. The complete open reading frame (4,269nt) of CPV‐2, encoding both non‐structural (NS) and structural (VP) proteins, was sequenced. Based on the amino acid Gln present at residue 426 of the VP2 gene, these strains were typed as CPV‐2c, and were named Korea CPV‐2c_1 and Korea CPV‐2c_2. These strains shared 99.48% reciprocal nucleotide sequence identity and had the highest nucleotide identity (99.77%–99.34%) with Asian CPV strains isolated in China, Italy (found in a dog imported from Thailand), and Vietnam from 2013 to 2017. Phylogenetic analysis based on the non‐structural (NS1) and capsid (VP2) genes revealed that Korean CPV‐2c strains clustered closely to Asian CPV strains, and separately from strains isolated in Europe, South America and North America. Amino acid changes never reported before were observed in NS1 (Thr70Pro, Cys287Tyr), VP1 (Lys17Arg, Phe33Leu) and VP2 (Gln365His, Ala516Val). Additional observed mutations, including Phe267Tyr, Tyr324Ile and Gln370Arg, have been previously reported in the recent CPV‐2c strains with Asian origins. These results suggest that the Korean CPV‐2c strains were potentially introduced via neighbouring Asian countries.
Collapse
Affiliation(s)
- Bo-Youn Moon
- Animal Disease Diagnosis Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Jiung Jang
- Animal Disease Diagnosis Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea.,College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu, Republic of Korea
| | - Seong-Hee Kim
- Animal Disease Diagnosis Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Yeon-Hee Kim
- Animal Disease Diagnosis Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | | | - ByungJae So
- Animal Disease Diagnosis Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Choi-Kyu Park
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu, Republic of Korea
| | - Kyoung-Ki Lee
- Animal Disease Diagnosis Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| |
Collapse
|
47
|
Gogone ICVP, de Barros FRO, Possatti F, Alfieri AA, Takiuchi E. Detection of canine parvovirus types 2b and 2c in canine faecal samples contaminating urban thoroughfares in Brazil. Can J Microbiol 2019; 66:138-143. [PMID: 31714839 DOI: 10.1139/cjm-2019-0137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Canine parvovirus type 2 (CPV-2) is a highly contagious virus that causes acute gastroenteritis in dogs all over the world. Because of its stability in the environment, CPV-2 can remain infective for a long time, especially if protected in organic matter. To demonstrate CPV-2's potential as an environmental hazard for nonimmunized susceptible hosts, we investigated 50 faecal samples collected from public areas in a municipality of Paraná state, Brazil. Seven samples tested positive for CPV by a PCR assay targeting the partial VP2 gene, with three strains being confirmed as CPV-2b variant and one as CPV-2c variant by sequence analysis. These findings were supported by phylogenetic analysis, and the species identity of faecal samples source was confirmed by canine mitochondrial DNA amplification and sequencing. Our results demonstrate the presence of CPV in canine faeces contaminating urban thoroughfares and reinforce the importance of environmental control to reduce the potential exposure risks to susceptible hosts.
Collapse
Affiliation(s)
| | | | - Flavia Possatti
- Department of Preventive Veterinary Medicine, State University of Londrina, P.O. Box 6001, 86051-990, Londrina, Paraná, Brazil
| | - Amauri Alcindo Alfieri
- Department of Preventive Veterinary Medicine, State University of Londrina, P.O. Box 6001, 86051-990, Londrina, Paraná, Brazil
| | - Elisabete Takiuchi
- Department of Veterinary Sciences, Federal University of Paraná, 85950-000, Palotina, PR, Brazil
| |
Collapse
|
48
|
Kelman M, Barrs VR, Norris JM, Ward MP. Canine parvovirus prevention and prevalence: Veterinarian perceptions and behaviors. Prev Vet Med 2019; 174:104817. [PMID: 31731035 DOI: 10.1016/j.prevetmed.2019.104817] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/19/2019] [Accepted: 10/25/2019] [Indexed: 12/27/2022]
Abstract
Canine Parvovirus (CPV) causes severe morbidity and mortality in dogs, particularly puppies, worldwide. Although vaccination is highly efficacious in preventing disease, cases continue to occur and vaccination failures are well documented. Maternally derived antibody interference is the leading cause of vaccination failure and age at vaccine administration is a significant risk factor for failure. However, no studies have been performed on practicing veterinarians' usage of and compliance with published vaccination guidelines and label recommendations. Likewise, there are no published studies of veterinarian perceptions on CPV occurrence and mortality and its influence on case outcome. We report a study in which all Australian small companion animal (canine and feline) veterinary hospitals were surveyed, yielding a response rate of 23.5% (534 unique veterinary hospitals). Respondents overall perceived national CPV occurrence ten-times lower (median 2000 cases) than the estimated national caseload (20,000 cases). Respondents from hospitals that did not diagnose CPV perceived national occurrence twenty-times lower (median 1000 cases) than the estimated rate (p < 0.0001). Perceived disease mortality (50%) was 2.74 times higher than that reported (18.2%). In addition, 26.7% of veterinarians reported using serological titer testing to some degree, which some practitioners use in lieu of vaccination if a titer is perceived to reflect sufficient immunity. Based on this study veterinarians appear to be aware of the disease risk in their region but unaware of the burden of CPV disease nationally, and perceive mortality risk higher than it actually is. This might lead to an overestimation of cost to treat, and over-recommendation of euthanasia. Nearly half (48.7%) of respondents recommended final puppy vaccination earlier than guidelines recommend, while 2.8% of respondents recommended a puppy re-vaccination interval longer than supported by vaccine labels and guidelines. Both of these practices may put puppies at risk of CPV infection.
Collapse
Affiliation(s)
- M Kelman
- The University of Sydney, Sydney School of Veterinary Science, NSW 2006, Australia.
| | - V R Barrs
- The University of Sydney, Sydney School of Veterinary Science, NSW 2006, Australia
| | - J M Norris
- The University of Sydney, Sydney School of Veterinary Science, NSW 2006, Australia
| | - M P Ward
- The University of Sydney, Sydney School of Veterinary Science, NSW 2006, Australia
| |
Collapse
|
49
|
Ogbu KI, Mira F, Purpari G, Nwosuh C, Loria GR, Schirò G, Chiaramonte G, Tion MT, Di Bella S, Ventriglia G, Decaro N, Anene BM, Guercio A. Nearly full-length genome characterization of canine parvovirus strains circulating in Nigeria. Transbound Emerg Dis 2019; 67:635-647. [PMID: 31580520 PMCID: PMC7168533 DOI: 10.1111/tbed.13379] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 01/03/2023]
Abstract
Canine parvovirus type 2 (CPV‐2) emerged suddenly in the late 1970s as pathogen of dogs, causing a severe and often fatal gastroenteric disease. The original CPV‐2 was replaced by three antigenic variants, CPV‐2a, CPV‐2b and CPV‐2c, which to date have gained a worldwide distribution with different relative proportions. All previous studies conducted in Africa were based on partial VP2 gene sequences. The aim of this study was to provide a genome analysis to characterize the CPV strains collected in Nigeria, Africa. Rectal swab samples (n = 320) were collected in 2018 and tested by means of an immunochromatographic assay. Among the 144 positive samples, 59 were selected for further analyses using different molecular assays. The results revealed a high prevalence of CPV‐2c (91.5%) compared to the CPV‐2a variant (8.5%). The VP2 gene sequences showed a divergence from the strains analysed in 2010 in Nigeria and a closer connection with CPV strains of Asian origin. The non‐structural gene analysis evidenced amino acid changes never previously reported. The molecular analysis based on genomic sequences evidenced a geographical pattern of distribution of the analysed strains, suggesting a potential common evolutionary origin with CPV of Asian origin. This study represents the first CPV molecular characterization including all the encoding gene sequences conducted in the African continent and contributes to define the current geographical spread of the CPV variants worldwide.
Collapse
Affiliation(s)
- Kenneth Ikejiofor Ogbu
- Department of Animal Health, Federal College of Animal Health and Production Technology, National Veterinary Research Institute, Vom, Nigeria.,Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Nigeria
| | - Francesco Mira
- Istituto Zooprofilattico Sperimentale della Sicilia 'A.Mirri', Palermo, Italy
| | - Giuseppa Purpari
- Istituto Zooprofilattico Sperimentale della Sicilia 'A.Mirri', Palermo, Italy
| | - Chika Nwosuh
- Viral Research Division, National Veterinary Research Institute, Vom, Nigeria
| | - Guido Ruggero Loria
- Istituto Zooprofilattico Sperimentale della Sicilia 'A.Mirri', Palermo, Italy
| | - Giorgia Schirò
- Istituto Zooprofilattico Sperimentale della Sicilia 'A.Mirri', Palermo, Italy
| | | | - Metthew Terzungwe Tion
- Department of Veterinary Medicine, College of Veterinary Medicine, Federal University of Agriculture, Makurdi, Nigeria
| | - Santina Di Bella
- Istituto Zooprofilattico Sperimentale della Sicilia 'A.Mirri', Palermo, Italy
| | | | - Nicola Decaro
- Department of Veterinary Medicine, University of Bari, Bari, Italy
| | - Boniface Maduka Anene
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Nigeria
| | - Annalisa Guercio
- Istituto Zooprofilattico Sperimentale della Sicilia 'A.Mirri', Palermo, Italy
| |
Collapse
|
50
|
Polat PF, Şahan A, Aksoy G, Timurkan MO, Dinçer E. Molecular and restriction fragment length polymorphism analysis of canine parvovirus 2 (CPV-2) in dogs in southeast Anatolia, Turkey. ACTA ACUST UNITED AC 2019; 86:e1-e8. [PMID: 31478735 PMCID: PMC6739549 DOI: 10.4102/ojvr.v86i1.1734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 11/04/2022]
Abstract
Canine parvovirus-2 (CPV-2) is the aetiological agent of an infectious viral disease of dogs, characterised by diarrhoea and vomiting. Mutations of the CPV-2 genome have generated new variants circulating worldwide. This article reports the molecular analysis of CPV-2 variants collected in the dog population in southeast Anatolia, Turkey. Twenty blood samples previously taken for the laboratory diagnosis of dogs with suspected parvovirus were screened for CPV-2 by polymerase chain reaction (PCR). Of the 20 samples, 18 tested positive for CPV-2. Partial VP2 gene sequencing and restriction fragment length polymorphism (RFLP) analysis revealed CPV-2a (n = 1), CPV-2b (n = 16) and CPV-2c (n = 1) variants. Phylogenetic analysis based on the partial length VP2 gene showed that CPV-2b (n = 15) variants showed sequences clustering separately in the phylogenetic tree. The CPV-2c sample was phylogenetically related to Chinese strains and Indonesia strain, whereas the CPV-2a sample was phylogenetically related to the Portuguese strain. These results, which are the first to demonstrate the presence of CPV-2c in the dog population of southeast Anatolia, Turkey, indicate that CPV-2a/2b/2c variants co-exist in Turkey’s dog population.
Collapse
Affiliation(s)
- Pelin F Polat
- Department of Internal Medicine, Faculty of Veterinary Medicine, Harran University, Sanliurfa.
| | | | | | | | | |
Collapse
|