1
|
Herrera S, Aguado JM, Candel FJ, Cordero E, Domínguez-Gil B, Fernández-Ruiz M, Los Arcos I, Len Ò, Marcos MÁ, Muñez E, Muñoz P, Rodríguez-Goncer I, Sánchez-Céspedes J, Valerio M, Bodro M. Executive summary of the consensus statement of the group for the study of infection in transplantation and other immunocompromised host (GESITRA-IC) of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC) on the treatment of SARS-CoV-2 infection in solid organ transplant recipients. Transplant Rev (Orlando) 2023; 37:100788. [PMID: 37591117 DOI: 10.1016/j.trre.2023.100788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/19/2023]
Affiliation(s)
- Sabina Herrera
- Department of Infectious Diseases, Hospital Clínic, IDIBAPS (Institut D'Investigacions Biomèdiques Agust Pi I Sunyer), Universitat de Barcelona, Barcelona, Spain
| | - Jose M Aguado
- Infectious Diseases Unit, Hospital Universitario 12 de Octubre (Madrid), Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Francisco Javier Candel
- Clinical Microbiology & Infectious Diseases, Transplant Coordination, Hospital Clínico Universitario San Carlos, Madrid 28040, Spain; Department of Clinical Microbiology and Infectious Diseases, Hospital Clínico San Carlos, Madrid, Spain
| | - Elisa Cordero
- Infectious Diseases Unit, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina Sevilla, Sevilla, Spain
| | | | - Mario Fernández-Ruiz
- Infectious Diseases Unit, Hospital Universitario 12 de Octubre (Madrid), Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Ibai Los Arcos
- Infectious Diseases Department, Hospital Universitari Vall D'Hebron, Barcelona, Spain
| | - Òscar Len
- Infectious Diseases Department, Hospital Universitari Vall D'Hebron, Barcelona, Spain
| | | | - Elena Muñez
- Infectious Diseases Unit, Internal Medicine Department, University Hospital Puerta de Hierro, Majadahonda, Madrid, Spain
| | - Patricia Muñoz
- Department of Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, 9 Madrid, Spain
| | - Isabel Rodríguez-Goncer
- Infectious Diseases Unit, Hospital Universitario 12 de Octubre (Madrid), Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Javier Sánchez-Céspedes
- Infectious Diseases Unit, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina Sevilla, Sevilla, Spain
| | - Maricela Valerio
- Department of Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, 9 Madrid, Spain
| | - Marta Bodro
- Department of Infectious Diseases, Hospital Clínic, IDIBAPS (Institut D'Investigacions Biomèdiques Agust Pi I Sunyer), Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
2
|
Convalescent Plasma Treatment of Patients Previously Treated with B-Cell-Depleting Monoclonal Antibodies Suffering COVID-19 Is Associated with Reduced Re-Admission Rates. Viruses 2023; 15:v15030756. [PMID: 36992465 PMCID: PMC10059055 DOI: 10.3390/v15030756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/12/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
Patients receiving treatment with B-cell-depleting monoclonal antibodies, such as anti-CD20 monoclonal antibodies, such as rituximab and obinutuzumab, either for hematological disease or another diagnosis, such as a rheumatological disease, are at an increased risk for medical complications and mortality from COVID-19. Since inconsistencies persist regarding the use of convalescent plasma (CP), especially in the vulnerable patient population that has received previous treatment with B-cell-depleting monoclonal antibodies, further studies should be performed in thisdirection. The aim of the present study was to describe the characteristics of patients with previous use of B-cell-depleting monoclonal antibodies and describe the potential beneficial effects of CP use in terms of mortality, ICU admission and disease relapse. In this retrospective cohort study, 39 patients with previous use of B-cell-depleting monoclonal antibodies hospitalized in the COVID-19 department of a tertiary hospital in Greece were recorded and evaluated. The mean age was 66.3 years and 51.3% were male. Regarding treatment for COVID-19, remdesivir was used in 89.7%, corticosteroids in 94.9% and CP in 53.8%. In-hospital mortality was 15.4%. Patients who died were more likely to need ICU admission and also had a trend towards a longer hospital stay, even though the last did not reach statistical significance. Patients treated with CP had a lower re-admission rate for COVID-19 after discharge. Further studies should be performed to identify the role of CP in patients with treatment with B-cell-depleting monoclonal antibodies suffering from COVID-19.
Collapse
|
3
|
Kandula UR, Tuji TS, Gudeta DB, Bulbula KL, Mohammad AA, Wari KD, Abbas A. Effectiveness of COVID-19 Convalescent Plasma (CCP) During the Pandemic Era: A Literature Review. J Blood Med 2023; 14:159-187. [PMID: 36855559 PMCID: PMC9968437 DOI: 10.2147/jbm.s397722] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/08/2023] [Indexed: 02/25/2023] Open
Abstract
Worldwide pandemic with coronavirus disease-2019 (COVID-19) was caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). As November 2, 2022, World Health Organization (WHO) received 628,035,553 reported incidents on COVID-19, with 6,572,800 mortalities and, with a total 12,850,970,971 vaccine doses have been delivered as of October 31, 2022. The infection can cause mild or self-limiting symptoms of pulmonary and severe infections or death may be caused by SARS-CoV-2 infection. Simultaneously, antivirals, corticosteroids, immunological treatments, antibiotics, and anticoagulants have been proposed as potential medicines to cure COVID-19 affected patients. Among these initial treatments, COVID-19 convalescent plasma (CCP), which was retrieved from COVID-19 recovered patients to be used as passive immune therapy, in which antibodies from cured patients were given to infected patients to prevent illness. Such treatment has yielded the best results in earlier with preventative or early stages of illness. Convalescent plasma (CP) is the first treatment available when infectious disease initially appears, although few randomized controlled trials (RCTs) were conducted to evaluate its effectiveness. The historical record suggests with potential benefit for other respiratory infections, as coronaviruses like Severe Acute Respiratory Syndrome-CoV-I (SARS-CoV-I) and Middle Eastern Respiratory Syndrome (MERS), though the analysis of such research is constrained by some non-randomized experiments (NREs). Rigorous studies on CP are made more demanding by the following with the immediacy of the epidemics, CP use may restrict the ability to utilize it for clinical testing, non-homogenous nature of product, highly decentralized manufacturing process; constraints with capacity to measure biologic function, ultimate availability of substitute therapies, as antivirals, purified immune globulins, or monoclonal antibodies. Though, it is still not clear how effectively CCP works among hospitalized COVID-19 patients. The current review tries to focus on its efficiency and usage in clinical scenarios and identifying existing benefits of implementation during pandemic or how it may assist with future pandemic preventions.
Collapse
Affiliation(s)
- Usha Rani Kandula
- Department of Nursing, College of Health Sciences, Arsi University, Asella, Ethiopia
| | - Techane Sisay Tuji
- Department of Nursing, College of Health Sciences, Arsi University, Asella, Ethiopia
| | | | - Kassech Leta Bulbula
- Department of Nursing, College of Health Sciences, Arsi University, Asella, Ethiopia
| | | | - Ketema Diriba Wari
- Department of Nursing, College of Health Sciences, Arsi University, Asella, Ethiopia
| | - Ahmad Abbas
- Department of Nursing, College of Health Sciences, Arsi University, Asella, Ethiopia
| |
Collapse
|
4
|
Laurenge A, Ursu R, Tabouret E, Harlay V, Ahle G, Choquet S, Soussain C, Moluçon-Chabrot C, Mathon B, Mokhtari K, Pourcher V, Nichelli L, Marot S, Touat M, Hoang-Xuan K, Houillier C. SARS-CoV-2 infection in patients with primary central nervous system lymphoma in the vaccination era. Leuk Lymphoma 2023; 64:221-224. [PMID: 36318828 DOI: 10.1080/10428194.2022.2131420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alice Laurenge
- Inserm, CNRS, UMR S 1127, Institut du Cerveau, ICM, Service de Neurologie 2-Mazarin, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Sorbonne Université, Paris, France
| | - Renata Ursu
- Service de Neurologie, AP-HP, Hôpital Saint Louis, Université de Paris, Paris, France
| | - Emeline Tabouret
- APHM, CNRS, INP, Inst Neurophysiopathol, CHU Timone, Service de Neurooncologie, Aix-Marseille University, Marseille, France
| | - Vincent Harlay
- APHM, CNRS, INP, Inst Neurophysiopathol, CHU Timone, Service de Neurooncologie, Aix-Marseille University, Marseille, France
| | - Guido Ahle
- Service de Neurologie, Hôpitaux Civils de Colmar, Colmar, France
| | - Sylvain Choquet
- Service d'Hématologie Clinique, Groupe Hospitalier Pitié-Salpêtrière, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France
| | - Carole Soussain
- Service d'Hématologie, Institut Curie, site de Saint-Cloud et INSERM U932 Institut Curie, PSL Research University, Paris.,LOC Network, Paris, France
| | - Cécile Moluçon-Chabrot
- Service de Thérapie Cellulaire et Hématologie Clinique, CHU de Clermont-Ferrand - Hôpital d'Estaing, Clermont-Ferrand, France
| | - Bertrand Mathon
- Service de Neurochirurgie, Groupe Hospitalier Pitié-Salpêtrière, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France
| | - Karima Mokhtari
- Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Service de Neuropathologie Laboratoire Escourolle, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Sorbonne Université, Paris, France
| | - Valérie Pourcher
- INSERM 1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Service de Maladies Infectieuses et Tropicales, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Sorbonne Université, Paris, France
| | - Lucia Nichelli
- Service de Neuroradiologie, Groupe Hospitalier Pitié-Salpêtrière, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France
| | - Stéphane Marot
- INSERM 1136, Institut Pierre Louis D'Epidémiologie Et de Santé Publique, Département de Virologie, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Sorbonne Université, Paris, France
| | - Mehdi Touat
- Inserm, CNRS, UMR S 1127, Institut du Cerveau, ICM, Service de Neurologie 2-Mazarin, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Sorbonne Université, Paris, France
| | - Khê Hoang-Xuan
- Inserm, CNRS, UMR S 1127, Institut du Cerveau, ICM, Service de Neurologie 2-Mazarin, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Sorbonne Université, Paris, France.,LOC Network, Paris, France
| | - Caroline Houillier
- Inserm, CNRS, UMR S 1127, Institut du Cerveau, ICM, Service de Neurologie 2-Mazarin, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Sorbonne Université, Paris, France.,LOC Network, Paris, France
| |
Collapse
|
5
|
Evaluation of a COVID-19 convalescent plasma program at a U.S. academic medical center. PLoS One 2022; 17:e0277707. [PMID: 36480499 PMCID: PMC9731422 DOI: 10.1371/journal.pone.0277707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 11/01/2022] [Indexed: 12/13/2022] Open
Abstract
Amidst the therapeutic void at the onset of the COVID-19 pandemic, a critical mass of scientific and clinical interest coalesced around COVID-19 convalescent plasma (CCP). To date, the CCP literature has focused largely on safety and efficacy outcomes, but little on implementation outcomes or experience. Expert opinion suggests that if CCP has a role in COVID-19 treatment, it is early in the disease course, and it must deliver a sufficiently high titer of neutralizing antibodies (nAb). Missing in the literature are comprehensive evaluations of how local CCP programs were implemented as part of pandemic preparedness and response, including considerations of the core components and personnel required to meet demand with adequately qualified CCP in a timely and sustained manner. To address this gap, we conducted an evaluation of a local CCP program at a large U.S. academic medical center, the University of North Carolina Medical Center (UNCMC), and patterned our evaluation around the dimensions of the Reach, Effectiveness, Adoption, Implementation, and Maintenance (RE-AIM) framework to systematically describe key implementation-relevant metrics. We aligned our evaluation with program goals of reaching the target population with severe or critical COVID-19, integrating into the structure of the hospital-wide pandemic response, adapting to shifting landscapes, and sustaining the program over time during a compassionate use expanded access program (EAP) era and a randomized controlled trial (RCT) era. During the EAP era, the UNCMC CCP program was associated with faster CCP infusion after admission compared with contemporaneous affiliate hospitals without a local program: median 29.6 hours (interquartile range, IQR: 21.2-48.1) for the UNCMC CCP program versus 47.6 hours (IQR 32.6-71.6) for affiliate hospitals; (P<0.0001). Sixty-eight of 87 CCP recipients in the EAP (78.2%) received CCP containing the FDA recommended minimum nAb titer of ≥1:160. CCP delivery to hospitalized patients operated with equal efficiency regardless of receiving treatment via a RCT or a compassionate-use mechanism. It was found that in a highly resourced academic medical center, rapid implementation of a local CCP collection, treatment, and clinical trial program could be achieved through re-deployment of highly trained laboratory and clinical personnel. These data provide important pragmatic considerations critical for health systems considering the use of CCP as part of an integrated pandemic response.
Collapse
|
6
|
Sharun K, Tiwari R, Yatoo MI, Natesan S, Megawati D, Singh KP, Michalak I, Dhama K. A comprehensive review on pharmacologic agents, immunotherapies and supportive therapeutics for COVID-19. NARRA J 2022; 2:e92. [PMID: 38449903 PMCID: PMC10914132 DOI: 10.52225/narra.v2i3.92] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/06/2022] [Indexed: 03/08/2024]
Abstract
The emergence of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has affected many countries throughout the world. As urgency is a necessity, most efforts have focused on identifying small molecule drugs that can be repurposed for use as anti-SARS-CoV-2 agents. Although several drug candidates have been identified using in silico method and in vitro studies, most of these drugs require the support of in vivo data before they can be considered for clinical trials. Several drugs are considered promising therapeutic agents for COVID-19. In addition to the direct-acting antiviral drugs, supportive therapies including traditional Chinese medicine, immunotherapies, immunomodulators, and nutritional therapy could contribute a major role in treating COVID-19 patients. Some of these drugs have already been included in the treatment guidelines, recommendations, and standard operating procedures. In this article, we comprehensively review the approved and potential therapeutic drugs, immune cells-based therapies, immunomodulatory agents/drugs, herbs and plant metabolites, nutritional and dietary for COVID-19.
Collapse
Affiliation(s)
- Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, India
| | - Mohd I. Yatoo
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Alusteng Srinagar, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Jammu and Kashmir, India
| | - Senthilkumar Natesan
- Department of Infectious Diseases, Indian Institute of Public Health Gandhinagar, Opp to Airforce station HQ, Gandhinagar, India
| | - Dewi Megawati
- Department of Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Warmadewa University, Denpasar, Indonesia
- Department of Medical Microbiology and Immunology, University of California, Davis, California, USA
| | - Karam P. Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Izabela Michalak
- Faculty of Chemistry, Department of Advanced Material Technologies, Wrocław University of Science and Technology, Wrocław, Poland
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| |
Collapse
|
7
|
Grubovic Rastvorceva RM, Useini S, Stevanovic M, Demiri I, Petkovic E, Franchini M, Focosi D. Efficacy and Safety of COVID-19 Convalescent Plasma in Hospitalized Patients-An Open-Label Phase II Clinical Trial. Life (Basel) 2022; 12:1565. [PMID: 36295001 PMCID: PMC9605182 DOI: 10.3390/life12101565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/14/2022] [Accepted: 09/27/2022] [Indexed: 01/24/2023] Open
Abstract
Background: COVID-19 convalescent plasma (CCP) is an important antiviral option for selected patients with COVID-19. Materials and Methods: In this open-label, phase 2, clinical trial conducted from 30 April 2020 till 10 May 2021 in the Republic of North Macedonia, we evaluated the efficacy and safety of CCP in hospitalized patients. Treatment was with a single unit of CCP having an anti-RBD IgG concentration higher than 5 AU/mL. Results: There were 189 patients that completed the study, of which 65 (34.4%) had WHO 8-point clinical progression scale score of 3 (requiring hospital care but not oxygen support), 65 (34.4%) had a score of 4 (hospitalized and requiring supplemental oxygen by mask or nasal prongs), and 59 (31.2%) had a score of 5 (hospitalized and requiring supplemental oxygen by non-invasive ventilation or high-flow oxygen). Mean age was 57 years (range 22−94), 78.5% were males, 80.4% had elevated body mass index, and 70.9% had comorbidity. Following CCP transfusion, we observed clinical improvement with increase rates in oxygenation-free days of 32.3% and 58.5% at 24 h and seven days after CCP transfusion, a decline in WHO scores, and reduced progression to severe disease (only one patient was admitted to ICU after CCP transfusion). Mortality in the entire cohort was 11.6% (22/189). We recorded 0% mortality in WHO score 3 (0/65) and in patients that received CCP transfusion in the first seven days of disease, 4.6% mortality in WHO score 4 (3/65), and 30.5% mortality in WHO score 5 (18/59). Mortality correlated with WHO score (Chi-square 19.3, p < 0.001) and with stay in the ICU (Chi-square 55.526, p ≤ 0.001). No severe adverse events were reported. Conclusions: This study showed that early administration of CCP to patients with moderate disease was a safe and potentially effective treatment for hospitalized COVID-19 patients. The trial was registered at clinicaltrials.gov (NCT04397523).
Collapse
Affiliation(s)
- Rada M. Grubovic Rastvorceva
- Institute for Transfusion Medicine of RNM, 1000 Skopje, North Macedonia
- Faculty of Medical Sciences, University Goce Delcev, 2000 Stip, North Macedonia
| | - Sedula Useini
- Institute for Transfusion Medicine of RNM, 1000 Skopje, North Macedonia
| | - Milena Stevanovic
- University Clinic for Infectious Diseases, 1000 Skopje, North Macedonia
| | - Ilir Demiri
- University Clinic for Infectious Diseases, 1000 Skopje, North Macedonia
| | - Elena Petkovic
- Institute for Transfusion Medicine of RNM, 1000 Skopje, North Macedonia
| | | | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy
| |
Collapse
|
8
|
Della Pia A, Zhao C, Jandir P, Gupta A, Batistick M, Kim GY(G, Xia Y, Ahn J, Magarelli G, Lukasik B, Leslie LA, Goy AH, Ip A, Feldman TA. Improved Survival of Lymphoma Patients with COVID-19 in the Modern Treatment and Vaccination Era. Cancers (Basel) 2022; 14:cancers14174252. [PMID: 36077782 PMCID: PMC9454633 DOI: 10.3390/cancers14174252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Patients with lymphoma are at greater risk of complications from COVID-19 infection. However, limited data exists on COVID-19-related outcomes in lymphoma patients since the use of COVID-19 vaccines and treatments began. Our study reports the real-world outcomes of 68 lymphoma or CLL patients who developed COVID-19 infection during the omicron surge in the US. We found that 34% of patients were hospitalized due to COVID-19 infection. The COVID-19-associated death rate was 9% (6/68) in all patients and 26% (6/23) in hospitalized patients, which was much lower compared to rates earlier in the pandemic prior to the introduction of COVID-19 vaccines and treatments. In 30 patients with data available, 60% did not make antibodies after COVID-19 vaccination. Most patients (74%, 17/23) who were hospitalized did not receive COVID-19 monoclonal antibody treatment. Our results pointed to important differences and the need for a new approach to treating cancer patients with COVID-19 infection. Abstract Lymphoma patients are at greater risk of severe consequences from COVID-19 infection, yet most reports of COVID-19-associated outcomes were published before the advent of COVID-19 vaccinations and monoclonal antibodies (mAbs). In this retrospective study, we report the real-world outcomes of 68 lymphoma or CLL patients who developed COVID-19 infection during the omicron surge in the US. We found that 34% of patients were hospitalized as a result of COVID-19 infection. The death rate due to COVID-19 was 9% (6/68) in the overall population and 26% (6/23) in hospitalized patients. During the preintervention COVID-19 era, the mortality rate reported in cancer patients was 34%, which increased to 60.2% in hospitalized patients. Thus, the death rates in our study were much lower when compared to those in cancer patients earlier in the pandemic, and may be attributed to modern interventions. In our study, 60% (18/30) of patients with serology data available did not develop anti-COVID-19 spike protein antibodies following vaccination. Most patients (74%, 17/23) who were hospitalized due to COVID-19 infection did not receive COVID-19 mAb treatment. Our results pointed to the importance of humoral immunity and the protective effect of COVID-19 mAbs in improving outcomes in lymphoma patients.
Collapse
Affiliation(s)
- Alexandra Della Pia
- Hackensack University Medical Center, Hackensack, NJ 07601, USA
- Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Charles Zhao
- Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA
| | - Parul Jandir
- Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA
| | - Amolika Gupta
- Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA
| | - Mark Batistick
- Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA
| | - Gee Youn (Geeny) Kim
- Hackensack University Medical Center, Hackensack, NJ 07601, USA
- Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Yi Xia
- Department of Biostatistics, Bioninformatics, and Biomathematics, Georgetown University, Washington, DC 20057, USA
| | - Jaeil Ahn
- Department of Biostatistics, Bioninformatics, and Biomathematics, Georgetown University, Washington, DC 20057, USA
| | - Gabriella Magarelli
- Hackensack University Medical Center, Hackensack, NJ 07601, USA
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ 07601, USA
| | | | - Lori A. Leslie
- Hackensack University Medical Center, Hackensack, NJ 07601, USA
- Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ 07601, USA
| | - Andre H. Goy
- Hackensack University Medical Center, Hackensack, NJ 07601, USA
- Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ 07601, USA
| | - Andrew Ip
- Hackensack University Medical Center, Hackensack, NJ 07601, USA
- Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ 07601, USA
| | - Tatyana A. Feldman
- Hackensack University Medical Center, Hackensack, NJ 07601, USA
- Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ 07601, USA
- Correspondence:
| |
Collapse
|
9
|
Hajissa K, Mussa A, Karobari MI, Abbas MA, Ibrahim IK, Assiry AA, Iqbal A, Alhumaid S, Mutair AA, Rabaan AA, Messina P, Scardina GA. The SARS-CoV-2 Antibodies, Their Diagnostic Utility, and Their Potential for Vaccine Development. Vaccines (Basel) 2022; 10:1346. [PMID: 36016233 PMCID: PMC9412318 DOI: 10.3390/vaccines10081346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022] Open
Abstract
Antibodies (Abs) are important immune mediators and powerful diagnostic markers in a wide range of infectious diseases. Understanding the humoral immunity or the development of effective antibodies against SARS-CoV-2 is a prerequisite for limiting disease burden in the community and aids in the development of new diagnostic, therapeutic, and vaccination options. Accordingly, the role of antiviral antibodies in the resistance to and diagnosis of SARS-CoV-2 infection was explored. Antibody testing showed the potential in adding important diagnostic value to the routine diagnosis and clinical management of COVID-19. They could also play a critical role in COVID-19 surveillance, allowing for a better understanding of the full scope of the disease. The development of several vaccines and the success of passive immunotherapy suggest that anti-SARS-CoV-2 antibodies have the potential to be used in the treatment and prevention of SARS-CoV-2 infection. In this review, we highlight the role of antibodies in the diagnosis of SARS-CoV-2 infection and provide an update on their protective roles in controlling SARS-CoV-2 infection as well as vaccine development.
Collapse
Affiliation(s)
- Khalid Hajissa
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Kelantan, Malaysia
- Department of Zoology, Faculty of Science and Technology, Omdurman Islamic University, Omdurman P.O. Box 382, Sudan
| | - Ali Mussa
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Kelantan, Malaysia
- Department of Biology, Faculty of Education, Omdurman Islamic University, Omdurman P.O. Box 382, Sudan
| | - Mohmed Isaqali Karobari
- Conservative Dentistry Unit, School of Dental Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kota Bharu 16150, Kelantan, Malaysia
- Department of Conservative Dentistry & Endodontics, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences University, Chennai 600077, Tamil Nadu, India
- Department of Restorative Dentistry & Endodontics, Faculty of Dentistry, University of Puthisastra, Phnom Penh 12211, Cambodia
| | - Muhammad Adamu Abbas
- Department of Medical Microbiology and Parasitology, College of Health Sciences, Bayero University Kano, Kano 3011, Nigeria
| | - Ibrahim Khider Ibrahim
- Department of Haematology, Faculty of Medical Laboratory Sciences, Al Neelain University, Khartoum 11111, Sudan
| | - Ali A Assiry
- Preventive Dental Science Department, Faculty of Dentistry, Najran University, Najran 55461, Saudi Arabia
| | - Azhar Iqbal
- Department of Restorative Dentistry, College of Dentistry, Jouf University, Sakaka 72345, Saudi Arabia
| | - Saad Alhumaid
- Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Al-Ahsa 31982, Saudi Arabia
| | - Abbas Al Mutair
- Research Center, Almoosa Specialist Hospital, Al-Ahsa 36342, Saudi Arabia
- College of Nursing, Princess Norah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia
- School of Nursing, Wollongong University, Wollongong, NSW 2522, Australia
- Nursing Department, Prince Sultan Military College of Health Sciences, Dhahran 33048, Saudi Arabia
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Pietro Messina
- Department of Surgical, Oncological and Stomatological Disciplines, University of Palermo, 90133 Palermo, Italy
| | | |
Collapse
|
10
|
Avery RK. Update on COVID-19 Therapeutics for Solid Organ Transplant Recipients, Including the Omicron Surge. Transplantation 2022; 106:1528-1537. [PMID: 35700481 PMCID: PMC9311293 DOI: 10.1097/tp.0000000000004200] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 12/15/2022]
Abstract
Major changes have occurred in therapeutics for coronavirus-19 (COVID-19) infection over the past 12-18 mo, most notably in early outpatient therapy. In most cases, solid organ transplant recipients were not included in the original clinical trials of these agents, so studies of real-world outcomes have been important in building our understanding of their utility. This review examines what is known about clinical outcomes in solid organ transplant recipients with newer therapies. SARS-CoV-2 monoclonal antibodies for early treatment or prophylaxis have likely prevented many hospitalizations and deaths. In addition, convalescent plasma, the oral drugs nirmatrelvir/ritonavir and molnupiravir, remdesivir for early outpatient treatment, anti-inflammatory therapy, and investigational virus-specific T-cell therapy will be discussed. Finally, the later consequences of COVID-19, such as secondary infections, long COVID symptoms, and persistent active infection, are identified as areas for future research.
Collapse
Affiliation(s)
- Robin Kimiko Avery
- Division of Infectious Diseases, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
11
|
Rahimi-Levene N, Shapira J, Tzur I, Shiloah E, Peer V, Levin E, Izak M, Shinar E, Ziv-Baran T, Weinberger M, Zimhony O, Chen J, Maor Y. Predictors of mortality in COVID-19 patients treated with convalescent plasma therapy. PLoS One 2022; 17:e0271036. [PMID: 35852992 PMCID: PMC9295964 DOI: 10.1371/journal.pone.0271036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/22/2022] [Indexed: 11/18/2022] Open
Abstract
Several options to treat hospitalized severe COVID-19 patients have been suggested. The study aimed to describe survival in patients treated with convalescent COVID plasma (CCP) and to identify in-hospital mortality predictors. This prospective cohort study examined data from 112 severe COVID-19 patients hospitalized in the Corona Departments in an acute care hospital who received two units of CCP (at least one of them high-titer). Demographic and medical data was retrieved from the patients’ electronic health records (EHR). Possible predictors for in-hospital mortality were analyzed in a univariate analysis and those found to be clinically significant were further analyzed in a multivariable analysis. Median age was 67 years (IQR 55–74) and 66 (58.9%) of them were males. Of them, 20 (17.9%) died in hospital. On multivariable analysis diabetes mellitus (p = 0.004, OR 91.54), mechanical ventilation (p = 0.001, OR 59.07) and lower albumin levels at treatment (p = 0.027, OR 0.74) were significantly associated with increased in-hospital mortality. In our study, in-hospital mortality in patients receiving CCP is similar to that reported for the general population, however certain variables mentioned above were associated with increased in-hospital mortality. In the literature, these variables were also associated with a worse outcome in patients with COVID-19 who did not receive CCP. As evidence points toward a benefit from CCP treatment in immunocompromised patients, we believe the above risk factors can further define COVID-19 patients at increased risk for mortality, enabling the selection of candidates for early treatment in an outpatient setting if possible.
Collapse
Affiliation(s)
| | - Jonathan Shapira
- Internal Medicine Department H, Shamir Medical Center, Zerifin, Israel
| | - Irma Tzur
- Internal Medicine Department F, Shamir Medical Center, Zerifin, Israel
| | - Eli Shiloah
- Internal Medicine Department E, Shamir Medical Center, Zerifin, Israel
| | | | - Ella Levin
- Blood Bank, Shamir Medical Center, Zerifin, Israel
| | - Marina Izak
- National Blood Services, Magen David Adom, Ramat Gan, Israel
| | - Eilat Shinar
- National Blood Services, Magen David Adom, Ramat Gan, Israel
| | - Tomer Ziv-Baran
- Department of Epidemiological Studies, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Miriam Weinberger
- Department of Infectious Diseases, Shamir Medical Center, Zerifin, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Oren Zimhony
- Infectious Diseases Unit, Kaplan Medical Center, Rehovot, Israel
| | - Jacob Chen
- Hospital Management, Meir Medical Center, Kfar Saba, Israel
- Trauma and Combat Medicine Branch, Israel Defense Forces, Medical Corps, Tel Hashomer, Ramat Gan, Israel
| | - Yasmin Maor
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Infectious Diseases, Wolfson Medical Center, Holon, Israel
| |
Collapse
|
12
|
Focosi D, Franchini M. Potential use of convalescent plasma for SARS-CoV-2 prophylaxis and treatment in immunocompromised and vulnerable populations. Expert Rev Vaccines 2022; 21:877-884. [PMID: 34015243 PMCID: PMC8171015 DOI: 10.1080/14760584.2021.1932475] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/17/2021] [Indexed: 12/21/2022]
Abstract
INTRODUCTION : The ongoing SARS-CoV-2 pandemic is a serious threat for the health of immunocompromised patients. Among neutralizing antibody-based therapeutics, convalescent plasma containing polyclonal anti-SARS-CoV-2 immunoglobulins has promising results in both congenital and iatrogenic immunodeficiencies in oncohematological and transplant patients. AREAS COVERED : This article discusses case reports, case series and controlled studies detailing the efficacy of convalescent plasma in immunocompromised patients. EXPERT OPINION : Convalescent plasma, when administered at high neutralizing antibody titers, is a safe and effective treatment for frail immunocompromised patients. Genetic monitoring of refractory patients is recommended to intercept intra-host emergence of SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Massimo Franchini
- Department of Hematology and Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| |
Collapse
|
13
|
Mohapatra S, Ayash Kumar P, Farooq U, Jain P, Khan R, Hassan N, Shamim A, Javed Ansari M, Alalaiwe AS, Aldawsari MF, Aamir Mirza M, Iqbal Z. COVID 19 pandemic challenges and their management: A review of medicines, vaccines, patents and clinical trials with emphasis on psychological health issues. Saudi Pharm J 2022; 30:879-905. [PMID: 35645588 PMCID: PMC9128298 DOI: 10.1016/j.jsps.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/20/2022] [Indexed: 12/15/2022] Open
Abstract
The SARS-CoV-2 (COVID 19) paroxysm is a dominant health exigency that caused significant distress, affecting physical and mental health. Increased mortality, a stressed healthcare system, financial crisis, isolation, and new living and working styles enhanced societal commiseration leading to poor health outcomes. Though people try to maintain good physical health but unfortunately the mental affliction is still ignored. Poor psychological health has emerged as a burgeoning social issue and demands attention. Henceforth, the fundamental objective of this review article is to collate information about COVID-linked physical and psychological agony in diverse population groups with related symptoms and accessible diagnosis techniques. Recent studies have unraveled the fragile mental states of people who have either contracted COVID 19 or had near and dear ones falling prey to it. The impact of the epidemic on the human mind both in short and long-term, with possible risk and preventive factors together with suggested solutions for maintaining good health have also been discussed here. It also enlists the available medications, vaccines and investigational research in the form of patents and clinical trials. This article can be taken as an updated information sheet for COVID 19, accompanied by its management techniques with special emphasis on coping strategies for mental health. Further, it may also assist the policymakers to devise approaches that could enable the public to overcome the pandemic-driven adversity not only in the given situation but also futuristically.
Collapse
Affiliation(s)
- Sradhanjali Mohapatra
- Nanotechnology Lab, School of Pharmaceutics Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - P. Ayash Kumar
- Sun Pharmaceutical Industry Limited, R& D Centre, Gurugram, India
| | - Uzma Farooq
- Nanotechnology Lab, School of Pharmaceutics Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Pooja Jain
- Nanotechnology Lab, School of Pharmaceutics Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Rahmuddin Khan
- Nanotechnology Lab, School of Pharmaceutics Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Nazia Hassan
- Nanotechnology Lab, School of Pharmaceutics Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Athar Shamim
- Nanotechnology Lab, School of Pharmaceutics Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Ahmed S. Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Mohammed F. Aldawsari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Mohd Aamir Mirza
- Nanotechnology Lab, School of Pharmaceutics Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Zeenat Iqbal
- Nanotechnology Lab, School of Pharmaceutics Education and Research (SPER), Jamia Hamdard, New Delhi, India
| |
Collapse
|
14
|
Rojas M, Rodríguez Y, Hernández JC, Díaz-Coronado JC, Vergara JAD, Vélez VP, Mancilla JP, Araujo I, Yepes JT, Ricaurte OB, Pardo-Oviedo JM, Monsalve DM, Acosta-Ampudia Y, Ramírez-Santana C, García PG, Landinez LA, Correales LD, Grass JS, Pérez CR, López GS, Mateus N, Mancera L, Devia RR, Orjuela JE, Parra-Moreno CR, Buitrago AA, Ordoñez IE, Osorio CF, Ballesteros N, Patiño LH, Castañeda S, Muñoz M, Ramírez JD, Bastard P, Gervais A, Bizien L, Casanova JL, Camacho B, Gallo JE, Gómez O, Rojas-Villarraga A, Pérez CE, Manrique R, Mantilla RD, Anaya JM. Safety and efficacy of convalescent plasma for severe COVID-19: a randomized, single blinded, parallel, controlled clinical study. BMC Infect Dis 2022; 22:575. [PMID: 35761219 PMCID: PMC9235185 DOI: 10.1186/s12879-022-07560-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/25/2022] [Indexed: 11/23/2022] Open
Abstract
Background Convalescent plasma (CP) has been widely used to treat COVID-19 and is under study. However, the variability in the current clinical trials has averted its wide use in the current pandemic. We aimed to evaluate the safety and efficacy of CP in severe coronavirus disease 2019 (COVID-19) in the early stages of the disease. Methods A randomized controlled clinical study was conducted on 101 patients admitted to the hospital with confirmed severe COVID-19. Most participants had less than 14 days from symptoms onset and less than seven days from hospitalization. Fifty patients were assigned to receive CP plus standard therapy (ST), and 51 were assigned to receive ST alone. Participants in the CP arm received two doses of 250 mL each, transfused 24 h apart. All transfused plasma was obtained from "super donors" that fulfilled the following criteria: titers of anti-SARS-CoV-2 S1 IgG ≥ 1:3200 and IgA ≥ 1:800 antibodies. The effect of transfused anti-IFN antibodies and the SARS-CoV-2 variants at the entry of the study on the overall CP efficacy was evaluated. The primary outcomes were the reduction in viral load and the increase in IgG and IgA antibodies at 28 days of follow-up. The per-protocol analysis included 91 patients. Results An early but transient increase in IgG anti-S1-SARS-CoV-2 antibody levels at day 4 post-transfusion was observed (Estimated difference [ED], − 1.36; 95% CI, − 2.33 to − 0.39; P = 0.04). However, CP was not associated with viral load reduction in any of the points evaluated. Analysis of secondary outcomes revealed that those patients in the CP arm disclosed a shorter time to discharge (ED adjusted for mortality, 3.1 days; 95% CI, 0.20 to 5.94; P = 0.0361) or a reduction of 2 points on the WHO scale when compared with the ST group (HR adjusted for mortality, 1.6; 95% CI, 1.03 to 2.5; P = 0.0376). There were no benefits from CP on the rates of intensive care unit admission (HR, 0.82; 95% CI, 0.35 to 1.9; P = 0.6399), mechanical ventilation (HR, 0.66; 95% CI, 0.25 to 1.7; P = 0.4039), or mortality (HR, 3.2; 95% CI, 0.64 to 16; P = 0.1584). Anti-IFN antibodies and SARS-CoV-2 variants did not influence these results. Conclusion CP was not associated with viral load reduction, despite the early increase in IgG anti-SARS-CoV-2 antibodies. However, CP is safe and could be a therapeutic option to reduce the hospital length of stay. Trial registration NCT04332835
Supplementary Information The online version contains supplementary material available at 10.1186/s12879-022-07560-7.
Collapse
|
15
|
Beraud M, Goodhue Meyer E, Lozano M, Bah A, Vassallo R, Brown BL. Lessons learned from the use of convalescent plasma for the treatment of COVID-19 and specific considerations for immunocompromised patients. Transfus Apher Sci 2022; 61:103355. [PMID: 35063360 PMCID: PMC8757642 DOI: 10.1016/j.transci.2022.103355] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/10/2022] [Indexed: 12/11/2022]
Abstract
Coronavirus disease 2019 (COVID-19) convalescent plasma (CovCP) infusions have been widely used for the treatment of hospitalized patients with COVID-19. The aims of this narrative review were to analyze the safety and efficacy of CovCP infusions in the overall population and in immunocompromised patients with COVID-19 and to identify the lessons learned concerning the use of convalescent plasma (CP) to fill treatment gaps for emerging viruses. Systematic searches (PubMed, Scopus, and COVID-19 Research) were conducted to identify peer-reviewed articles and pre-prints published between March 1, 2020 and May 1, 2021 on the use of CovCP for the treatment of patients with COVID-19. From 261 retrieved articles, 37 articles reporting robust controlled studies in the overall population of patients with COVID-19 and 9 articles in immunocompromised patients with COVID-19 were selected. While CovCP infusions are well tolerated in both populations, they do not seem to improve clinical outcomes in critically-ill patients with COVID-19 and no conclusion could be drawn concerning their potential benefits in immunocompromised patients with COVID-19. To be better prepared for future epidemics/pandemics and to evaluate potential benefits of CP treatment, only CP units with high neutralizing antibodies (NAbs) titers should be infused in patients with low NAb titers, patient eligibility criteria should be based on the disease pathophysiology, and measured clinical outcomes and methods should be comparable across studies. Even if CovCP infusions did not improve clinical outcomes in patients with COVID-19, NAb-containing CP infusions remain a safe, widely available and potentially beneficial treatment option for future epidemics/pandemics.
Collapse
Affiliation(s)
- Mickael Beraud
- Terumo Blood and Cell Technologies Europe NV, Ikaroslaan 41, 1930, Zaventem, Belgium.
| | - Erin Goodhue Meyer
- Terumo Blood and Cell Technologies, 10811 W Collins Ave, Lakewood, CO, 80215, United States.
| | - Miquel Lozano
- Department of Hemotherapy and Hemostasis, ICMHO, University Clinic Hospital, IDIBAPS, University of Barcelona, Villarroel 170, 08036, Barcelona, Catalonia, Spain.
| | - Aicha Bah
- Terumo Blood and Cell Technologies Europe NV, Ikaroslaan 41, 1930, Zaventem, Belgium.
| | - Ralph Vassallo
- Vitalant, 6210 E Oak St, Scottsdale, AZ, 85257, United States.
| | - Bethany L Brown
- American Red Cross, Biomedical Services, Holland Laboratory for the Biomedical Sciences, 15601 Crabbs Branch Way, Rockville, MD, 20855, United States.
| |
Collapse
|
16
|
Jakharia N, Subramanian AK, Shapiro AE. COVID-19 in the Immunocompromised Host, Including People with Human Immunodeficiency Virus. Infect Dis Clin North Am 2022; 36:397-421. [PMID: 35636907 PMCID: PMC8806148 DOI: 10.1016/j.idc.2022.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This review describes the incidence, epidemiology, and risk factors for mortality of COVID-19 in immunocompromised patients, including persons with human immunodeficiency virus. It describes various preventive measures, including vaccines and their effectiveness and the role of monoclonal antibodies for pre-exposure prophylaxis. It also reviews the different treatment options for immunocompromised individuals, including antivirals, monoclonal antibodies, and immunomodulators. Lastly, it describes the impact of COVID-19 on transplantation and continuity care of this population.
Collapse
Affiliation(s)
- Niyati Jakharia
- Department of Medicine, Division of Infectious Disease, Stanford University School of Medicine, 300 Pasteur Drive, Lane L134, Stanford, CA 94305, USA.
| | - Aruna K Subramanian
- Department of Medicine, Division of Infectious Disease, Stanford University School of Medicine, 300 Pasteur Drive, Lane L134, Stanford, CA 94305, USA
| | - Adrienne E Shapiro
- Department of Global Health, University of Washington, 325 Ninth Avenue, Box 359927, Seattle, WA 98104, USA; Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, USA
| |
Collapse
|
17
|
Bansal N, Raturi M, Bansal Y. SARS-CoV-2 variants in immunocompromised COVID-19 patients: The underlying causes and the way forward. Transfus Clin Biol 2022; 29:161-163. [PMID: 34973463 PMCID: PMC8714679 DOI: 10.1016/j.tracli.2021.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/20/2021] [Accepted: 12/26/2021] [Indexed: 01/25/2023]
Affiliation(s)
- N. Bansal
- Department of Transfusion Medicine, VCSG Government Institute of Medical Science and Research, Srinagar, Uttarakhand, India,Corresponding author
| | - M. Raturi
- Department of Immunohematology and Blood Transfusion, Himalayan Institute of Medical Sciences, Swami Rama Himalayan University, Jolly Grant, Dehradun, Uttarakhand, India
| | - Y. Bansal
- Department of Microbiology, VCSG Government Institute of Medical Science and Research, Srinagar, Uttarakhand, India
| |
Collapse
|
18
|
Tharmalingam T, Han X, Wozniak A, Saward L. Polyclonal hyper immunoglobulin: A proven treatment and prophylaxis platform for passive immunization to address existing and emerging diseases. Hum Vaccin Immunother 2022; 18:1886560. [PMID: 34010089 PMCID: PMC9090292 DOI: 10.1080/21645515.2021.1886560] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022] Open
Abstract
Passive immunization with polyclonal hyper immunoglobulin (HIG) therapy represents a proven strategy by transferring immunoglobulins to patients to confer immediate protection against a range of pathogens including infectious agents and toxins. Distinct from active immunization, the protection is passive and the immunoglobulins will clear from the system; therefore, administration of an effective dose must be maintained for prophylaxis or treatment until a natural adaptive immune response is mounted or the pathogen/agent is cleared. The current review provides an overview of this technology, key considerations to address different pathogens, and suggested improvements. The review will reflect on key learnings from development of HIGs in the response to public health threats due to Zika, influenza, and severe acute respiratory syndrome coronavirus 2.
Collapse
Affiliation(s)
- Tharmala Tharmalingam
- Therapeutics Business Unit, Emergent BioSolutions Incorporated, Winnipeg, MB, Canada
| | - Xiaobing Han
- Therapeutics Business Unit, Emergent BioSolutions Incorporated, Winnipeg, MB, Canada
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Ashley Wozniak
- Therapeutics Business Unit, Emergent BioSolutions Incorporated, Winnipeg, MB, Canada
| | - Laura Saward
- Therapeutics Business Unit, Emergent BioSolutions Incorporated, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
19
|
Ljungquist O, Lundgren M, Iliachenko E, Månsson F, Böttiger B, Landin-Olsson M, Wikén C, Rosendal E, Överby AK, Wigren BJ, Forsell MNE, Kjeldsen-Kragh J, Rasmussen M, Kahn F, Holm K. Convalescent plasma treatment in severely immunosuppressed patients hospitalized with COVID-19: an observational study of 28 cases. Infect Dis (Lond) 2022; 54:283-291. [PMID: 34878955 PMCID: PMC8726003 DOI: 10.1080/23744235.2021.2013528] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/25/2021] [Accepted: 11/28/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Immunosuppressed patients are particularly vulnerable to severe infection from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), risking prolonged viremia and symptom duration. In this study we describe clinical and virological treatment outcomes in a heterogeneous group of patients with severe immunosuppression due to various causes suffering from COVID-19 infection, who were all treated with convalescent plasma (CCP) along with standard treatment. METHODS We performed an observational, retrospective case series between May 2020 to March 2021 at three sites in Skåne, Sweden, with a population of nearly 1.4 million people. All patients hospitalized for COVID-19 who received CCP with the indication severe immunosuppression as defined by the treating physician were included in the study (n = 28). RESULTS In total, 28 severely immunocompromised patients, half of which previously had been treated with rituximab, who had received in-hospital convalescent plasma treatment of COVID-19 were identified. One week after CCP treatment, 13 of 28 (46%) patients had improved clinically defined as a decrease of at least one point at the WHO-scale. Three patients had increased score points of whom two had died. For 12 patients, the WHO-scale was unchanged. CONCLUSION As one of only few studies on CCP treatment of COVID-19 in hospitalized patients with severe immunosuppression, this study adds descriptive data. The study design prohibits conclusions on safety and efficacy, and the results should be interpreted with caution. Prospective, randomized trials are needed to investigate this further.
Collapse
Affiliation(s)
- Oskar Ljungquist
- Department of Translational Medicine, Clinical Infection Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
- Department of Infectious Diseases, Helsingborg Hospital, Helsingborg, Sweden
| | - Maria Lundgren
- Department of Clinical Immunology and Transfusion Medicine, Office of Medical Services, Lund, Sweden
| | - Elena Iliachenko
- Department of Clinical Immunology and Transfusion Medicine, Office of Medical Services, Lund, Sweden
| | - Fredrik Månsson
- Department of Translational Medicine, Clinical Infection Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
- Skåne University Hospital, Malmö, Sweden
| | - Blenda Böttiger
- Department of Clinical Microbiology, University and Regional Laboratories, Lund, Sweden
| | - Mona Landin-Olsson
- Skåne University Hospital, Malmö, Sweden
- Department of Clinical Science, Division of Internal Medicine, Lund University, Lund, Sweden
| | - Christian Wikén
- Skåne University Hospital, Malmö, Sweden
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Ebba Rosendal
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Anna K. Överby
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | | | | | - Jens Kjeldsen-Kragh
- Department of Clinical Immunology and Transfusion Medicine, Office of Medical Services, Lund, Sweden
| | - Magnus Rasmussen
- Skåne University Hospital, Malmö, Sweden
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Fredrik Kahn
- Skåne University Hospital, Malmö, Sweden
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Karin Holm
- Skåne University Hospital, Malmö, Sweden
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| |
Collapse
|
20
|
Taşlı NP, Gönen ZB, Kırbaş OK, Gökdemir NS, Bozkurt BT, Bayrakcı B, Sağraç D, Taşkan E, Demir S, Ekimci Gürcan N, Bayındır Bilgiç M, Bayrak ÖF, Yetişkin H, Kaplan B, Pavel STI, Dinç G, Serhatlı M, Çakırca G, Eken A, Aslan V, Yay M, Karakukcu M, Unal E, Gül F, Basaran KE, Ozkul Y, Şahin F, Jones OY, Tekin Ş, Özdarendeli A, Cetin M. Preclinical Studies on Convalescent Human Immune Plasma-Derived Exosome: Omics and Antiviral Properties to SARS-CoV-2. Front Immunol 2022; 13:824378. [PMID: 35401544 PMCID: PMC8987587 DOI: 10.3389/fimmu.2022.824378] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/16/2022] [Indexed: 02/05/2023] Open
Abstract
The scale of the COVID-19 pandemic forced urgent measures for the development of new therapeutics. One of these strategies is the use of convalescent plasma (CP) as a conventional source for passive immunity. Recently, there has been interest in CP-derived exosomes. In this report, we present a structural, biochemical, and biological characterization of our proprietary product, convalescent human immune plasma-derived exosome (ChipEXO), following the guidelines set forth by the Turkish Ministry of Health and the Turkish Red Crescent, the Good Manufacturing Practice, the International Society for Extracellular Vesicles, and the Gene Ontology Consortium. The data support the safety and efficacy of this product against SARS-CoV-2 infections in preclinical models.
Collapse
Affiliation(s)
| | - Zeynep Burçin Gönen
- Oral and Maxillofacial Surgery, Genome and Stem Cell Centre, Erciyes University, Kayseri, Turkey
| | | | - Nur Seda Gökdemir
- Oral and Maxillofacial Surgery, Genome and Stem Cell Centre, Erciyes University, Kayseri, Turkey
| | | | - Buse Bayrakcı
- Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Derya Sağraç
- Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Ezgi Taşkan
- Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Sevda Demir
- Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | | | | | | | - Hazel Yetişkin
- Faculty of Medicine, Erciyes University, Kayseri, Turkey
- Vaccine Research and Development Application and Research Center, Erciyes University, Kayseri, Turkey
| | - Büşra Kaplan
- Faculty of Medicine, Erciyes University, Kayseri, Turkey
- Vaccine Research and Development Application and Research Center, Erciyes University, Kayseri, Turkey
| | - Shaikh Terkıs Islam Pavel
- Faculty of Medicine, Erciyes University, Kayseri, Turkey
- Vaccine Research and Development Application and Research Center, Erciyes University, Kayseri, Turkey
| | - Gökçen Dinç
- Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Müge Serhatlı
- The Scientific and Technological Research Council of Turkey (TÜBITAK) Marmara Research Centre Energy Institute, Kocaeli, Turkey
| | - Gamze Çakırca
- The Scientific and Technological Research Council of Turkey (TÜBITAK) Marmara Research Centre Energy Institute, Kocaeli, Turkey
- Department of Molecular Biology and Genetics, Faculty of Science, Gebze Technical University, Kocaeli, Turkey
| | - Ahmet Eken
- Department of Biology, Faculty of Science, Erciyes University, Kayseri, Turkey
- Gevher Nesibe Genome and Stem Cell Institute, Erciyes University, Kayseri, Turkey
| | - Vedat Aslan
- Antalya Training and Research Hospital, Antalya, Turkey
| | - Mehmet Yay
- Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Musa Karakukcu
- Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Ekrem Unal
- Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Fethi Gül
- Department of Anesthesiology and Reanimation, School of Medicine, Marmara University, Istanbul, Turkey
| | - Kemal Erdem Basaran
- Faculty of Medicine, Erciyes University, Kayseri, Turkey
- Gevher Nesibe Genome and Stem Cell Institute, Erciyes University, Kayseri, Turkey
| | - Yusuf Ozkul
- Faculty of Medicine, Erciyes University, Kayseri, Turkey
- Gevher Nesibe Genome and Stem Cell Institute, Erciyes University, Kayseri, Turkey
| | - Fikrettin Şahin
- Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Olcay Y Jones
- Division of Rheumatology, Department of Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Şaban Tekin
- The Scientific and Technological Research Council of Turkey (TÜBITAK) Marmara Research Centre Energy Institute, Kocaeli, Turkey
- Medical Biology, Department of Basic Medical Sciences, University of Health Sciences, Istanbul, Turkey
| | - Aykut Özdarendeli
- Faculty of Medicine, Erciyes University, Kayseri, Turkey
- Vaccine Research and Development Application and Research Center, Erciyes University, Kayseri, Turkey
| | - Mustafa Cetin
- Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
21
|
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global healthcare crisis. Kidney transplant (KTx) patients and the patients with chronic kidney disease are two of the most vulnerable populations to the risks of coronavirus disease 2019 (COVID-19). A systematic literature search on PubMed and Web of Science was conducted. We analyzed published case reports, case series and articles on COVID-19’s clinical presentation, management, outcomes and vaccination among kidney transplant recipients. A total of 33 studies were included in the study, which included 1676 KTx recipients and 108 waiting list patients infected with COVID-19. These studies reported the clinical presentation, management and immunosuppressive adjustment among the KTx recipients. The remaining studies focused on other aspects, such as vaccination and transplantation, during the COVID-19 pandemic. Mortality due to COVID-19 was observed to be the highest for KTx recipients, followed by patients on hemodialysis, and lowest in the general population. There is no definitive treatment of COVID-19 yet, and managing transplant patients is enigmatic of this: the treatment is based on symptom management. There is an urgent need for guidelines on managing kidney transplant recipients and immunosuppressive adjustments for the course of COVID-19 treatment.
Collapse
|
22
|
Crisan D, Avram L, Grapa C, Dragan A, Radulescu D, Crisan S, Grosu A, Militaru V, Buzdugan E, Stoicescu L, Radulescu L, Ciovicescu F, Jivanescu DB, Mocan O, Micu B, Donca V, Marinescu L, Macarie A, Rosu M, Nemes A, Craciun R. Liver Injury and Elevated FIB-4 Define a High-Risk Group in Patients with COVID-19. J Clin Med 2021; 11:153. [PMID: 35011894 PMCID: PMC8745798 DOI: 10.3390/jcm11010153] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/16/2021] [Accepted: 12/24/2021] [Indexed: 02/07/2023] Open
Abstract
Liver involvement in Coronavirus Disease 2019 (COVID-19) has been widely documented. However, data regarding liver-related prognosis are scarce and heterogeneous. The current study aims to evaluate the role of abnormal liver tests and incidental elevations of non-invasive fibrosis estimators on the prognosis of hospitalized COVID-19 patients. We conducted a retrospective cohort study to investigate the impact of elevated liver tests, non-invasive fibrosis estimators (the Fibrosis-4 (FIB-4), Forns, APRI scores, and aspartate aminotransferase/alanine aminotransferase (AST/ALT) ratio), and the presence of computed tomography (CT)-documented liver steatosis on mortality in patients with moderate and severe COVID-19, with no prior liver disease history. A total of 370 consecutive patients were included, of which 289 patients (72.9%) had abnormal liver biochemistry on admission. Non-survivors had significantly higher FIB-4, Forns, APRI scores, and a higher AST/ALT ratio. On multivariate analysis, severe FIB-4 (exceeding 3.25) and elevated AST were independently associated with mortality. Severe FIB-4 had an area under the receiver operating characteristic (AUROC) of 0.73 for predicting survival. The presence of steatosis was not associated with a worse outcome. Patients with abnormal liver biochemistry on arrival might be susceptible to a worse disease outcome. An FIB-4 score above the threshold of 3.25, suggestive of the presence of fibrosis, is associated with higher mortality in hospitalized COVID-19 patients.
Collapse
Affiliation(s)
- Dana Crisan
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (D.C.); (A.D.); (D.R.); (S.C.); (A.G.); (V.M.); (E.B.); (L.S.); (L.R.); (F.C.); (D.B.J.); (O.M.); (B.M.); (V.D.); (L.M.); (A.M.); (M.R.); (R.C.)
- Department of Internal Medicine, Clinical Municipal Hospital Cluj-Napoca, 400139 Cluj-Napoca, Romania
| | - Lucretia Avram
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (D.C.); (A.D.); (D.R.); (S.C.); (A.G.); (V.M.); (E.B.); (L.S.); (L.R.); (F.C.); (D.B.J.); (O.M.); (B.M.); (V.D.); (L.M.); (A.M.); (M.R.); (R.C.)
- Department of Internal Medicine, Clinical Municipal Hospital Cluj-Napoca, 400139 Cluj-Napoca, Romania
| | - Cristiana Grapa
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (D.C.); (A.D.); (D.R.); (S.C.); (A.G.); (V.M.); (E.B.); (L.S.); (L.R.); (F.C.); (D.B.J.); (O.M.); (B.M.); (V.D.); (L.M.); (A.M.); (M.R.); (R.C.)
| | - Alexandra Dragan
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (D.C.); (A.D.); (D.R.); (S.C.); (A.G.); (V.M.); (E.B.); (L.S.); (L.R.); (F.C.); (D.B.J.); (O.M.); (B.M.); (V.D.); (L.M.); (A.M.); (M.R.); (R.C.)
| | - Dan Radulescu
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (D.C.); (A.D.); (D.R.); (S.C.); (A.G.); (V.M.); (E.B.); (L.S.); (L.R.); (F.C.); (D.B.J.); (O.M.); (B.M.); (V.D.); (L.M.); (A.M.); (M.R.); (R.C.)
- Department of Internal Medicine, Clinical Municipal Hospital Cluj-Napoca, 400139 Cluj-Napoca, Romania
| | - Sorin Crisan
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (D.C.); (A.D.); (D.R.); (S.C.); (A.G.); (V.M.); (E.B.); (L.S.); (L.R.); (F.C.); (D.B.J.); (O.M.); (B.M.); (V.D.); (L.M.); (A.M.); (M.R.); (R.C.)
- Department of Internal Medicine, Clinical Municipal Hospital Cluj-Napoca, 400139 Cluj-Napoca, Romania
| | - Alin Grosu
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (D.C.); (A.D.); (D.R.); (S.C.); (A.G.); (V.M.); (E.B.); (L.S.); (L.R.); (F.C.); (D.B.J.); (O.M.); (B.M.); (V.D.); (L.M.); (A.M.); (M.R.); (R.C.)
- Department of Internal Medicine, Clinical Municipal Hospital Cluj-Napoca, 400139 Cluj-Napoca, Romania
| | - Valentin Militaru
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (D.C.); (A.D.); (D.R.); (S.C.); (A.G.); (V.M.); (E.B.); (L.S.); (L.R.); (F.C.); (D.B.J.); (O.M.); (B.M.); (V.D.); (L.M.); (A.M.); (M.R.); (R.C.)
- Department of Internal Medicine, Clinical Municipal Hospital Cluj-Napoca, 400139 Cluj-Napoca, Romania
| | - Elena Buzdugan
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (D.C.); (A.D.); (D.R.); (S.C.); (A.G.); (V.M.); (E.B.); (L.S.); (L.R.); (F.C.); (D.B.J.); (O.M.); (B.M.); (V.D.); (L.M.); (A.M.); (M.R.); (R.C.)
- Department of Internal Medicine, Clinical Municipal Hospital Cluj-Napoca, 400139 Cluj-Napoca, Romania
| | - Laurentiu Stoicescu
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (D.C.); (A.D.); (D.R.); (S.C.); (A.G.); (V.M.); (E.B.); (L.S.); (L.R.); (F.C.); (D.B.J.); (O.M.); (B.M.); (V.D.); (L.M.); (A.M.); (M.R.); (R.C.)
- Department of Internal Medicine, Clinical Municipal Hospital Cluj-Napoca, 400139 Cluj-Napoca, Romania
| | - Liliana Radulescu
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (D.C.); (A.D.); (D.R.); (S.C.); (A.G.); (V.M.); (E.B.); (L.S.); (L.R.); (F.C.); (D.B.J.); (O.M.); (B.M.); (V.D.); (L.M.); (A.M.); (M.R.); (R.C.)
- Department of Internal Medicine, Clinical Municipal Hospital Cluj-Napoca, 400139 Cluj-Napoca, Romania
| | - Felix Ciovicescu
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (D.C.); (A.D.); (D.R.); (S.C.); (A.G.); (V.M.); (E.B.); (L.S.); (L.R.); (F.C.); (D.B.J.); (O.M.); (B.M.); (V.D.); (L.M.); (A.M.); (M.R.); (R.C.)
- Department of Internal Medicine, Clinical Municipal Hospital Cluj-Napoca, 400139 Cluj-Napoca, Romania
| | - Delia Bunea Jivanescu
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (D.C.); (A.D.); (D.R.); (S.C.); (A.G.); (V.M.); (E.B.); (L.S.); (L.R.); (F.C.); (D.B.J.); (O.M.); (B.M.); (V.D.); (L.M.); (A.M.); (M.R.); (R.C.)
- Department of Internal Medicine, Clinical Municipal Hospital Cluj-Napoca, 400139 Cluj-Napoca, Romania
| | - Oana Mocan
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (D.C.); (A.D.); (D.R.); (S.C.); (A.G.); (V.M.); (E.B.); (L.S.); (L.R.); (F.C.); (D.B.J.); (O.M.); (B.M.); (V.D.); (L.M.); (A.M.); (M.R.); (R.C.)
- Department of Internal Medicine, Clinical Municipal Hospital Cluj-Napoca, 400139 Cluj-Napoca, Romania
| | - Bogdan Micu
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (D.C.); (A.D.); (D.R.); (S.C.); (A.G.); (V.M.); (E.B.); (L.S.); (L.R.); (F.C.); (D.B.J.); (O.M.); (B.M.); (V.D.); (L.M.); (A.M.); (M.R.); (R.C.)
- Department of General Surgery, Clinical Municipal Hospital Cluj-Napoca, 400139 Cluj-Napoca, Romania
| | - Valer Donca
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (D.C.); (A.D.); (D.R.); (S.C.); (A.G.); (V.M.); (E.B.); (L.S.); (L.R.); (F.C.); (D.B.J.); (O.M.); (B.M.); (V.D.); (L.M.); (A.M.); (M.R.); (R.C.)
- Department of Internal Medicine, Clinical Municipal Hospital Cluj-Napoca, 400139 Cluj-Napoca, Romania
| | - Luminita Marinescu
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (D.C.); (A.D.); (D.R.); (S.C.); (A.G.); (V.M.); (E.B.); (L.S.); (L.R.); (F.C.); (D.B.J.); (O.M.); (B.M.); (V.D.); (L.M.); (A.M.); (M.R.); (R.C.)
- Department of Internal Medicine, Clinical Municipal Hospital Cluj-Napoca, 400139 Cluj-Napoca, Romania
| | - Antonia Macarie
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (D.C.); (A.D.); (D.R.); (S.C.); (A.G.); (V.M.); (E.B.); (L.S.); (L.R.); (F.C.); (D.B.J.); (O.M.); (B.M.); (V.D.); (L.M.); (A.M.); (M.R.); (R.C.)
- Department of Internal Medicine, Clinical Municipal Hospital Cluj-Napoca, 400139 Cluj-Napoca, Romania
| | - Marina Rosu
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (D.C.); (A.D.); (D.R.); (S.C.); (A.G.); (V.M.); (E.B.); (L.S.); (L.R.); (F.C.); (D.B.J.); (O.M.); (B.M.); (V.D.); (L.M.); (A.M.); (M.R.); (R.C.)
- Department of Internal Medicine, Clinical Municipal Hospital Cluj-Napoca, 400139 Cluj-Napoca, Romania
| | - Andrada Nemes
- Intensive Care Unit I, Cluj County Emergency Hospital, 400006 Cluj-Napoca, Romania;
| | - Rares Craciun
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (D.C.); (A.D.); (D.R.); (S.C.); (A.G.); (V.M.); (E.B.); (L.S.); (L.R.); (F.C.); (D.B.J.); (O.M.); (B.M.); (V.D.); (L.M.); (A.M.); (M.R.); (R.C.)
| |
Collapse
|
23
|
Filippidis P, Vionnet J, Manuel O, Mombelli M. Prevention of viral infections in solid organ transplant recipients in the era of COVID-19: a narrative review. Expert Rev Anti Infect Ther 2021; 20:663-680. [PMID: 34854329 DOI: 10.1080/14787210.2022.2013808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION In solid organ transplant (SOT) recipients, viral infections are associated with direct morbidity and mortality and may influence long-term allograft outcomes. Prevention of viral infections by vaccination, antiviral prophylaxis, and behavioral measures is therefore of paramount importance. AREAS COVERED We searched Pubmed to select publications to review current preventive strategies against the most important viral infections in SOT recipients, including SARS-CoV-2, influenza, CMV, and other herpesvirus, viral hepatitis, measles, mumps, rubella, and BK virus. EXPERT OPINION The clinical significance of the reduced humoral response following mRNA SARS-CoV-2 vaccines in SOT recipients still needs to be better clarified, in particular with regard to the vaccines' efficacy in preventing severe disease. Although a third dose improves immunogenicity and is already integrated into routine practice in several countries, further research is still needed to explore additional interventions. In the upcoming years, further data are expected to better delineate the role of virus-specific cell mediated immune monitoring for the prevention of CMV and potentially other viral diseases, and the role of the letermovir in the prevention of CMV in SOT recipients. Future studies including clinical endpoints will hopefully facilitate the integration of successful new influenza vaccination strategies into clinical practice.
Collapse
Affiliation(s)
| | - Julien Vionnet
- Transplantation Center, Lausanne University Hospital, Lausanne, Switzerland.,Service of Gastroenterology and Hepatology, Lausanne University Hospital, Lausanne, Switzerland
| | - Oriol Manuel
- Service of Infectious Diseases, Lausanne University Hospital, Lausanne, Switzerland.,Transplantation Center, Lausanne University Hospital, Lausanne, Switzerland
| | - Matteo Mombelli
- Service of Infectious Diseases, Lausanne University Hospital, Lausanne, Switzerland.,Transplantation Center, Lausanne University Hospital, Lausanne, Switzerland.,Service of Internal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
24
|
Khandker SS, Godman B, Jawad MI, Meghla BA, Tisha TA, Khondoker MU, Haq MA, Charan J, Talukder AA, Azmuda N, Sharmin S, Jamiruddin MR, Haque M, Adnan N. A Systematic Review on COVID-19 Vaccine Strategies, Their Effectiveness, and Issues. Vaccines (Basel) 2021; 9:1387. [PMID: 34960133 PMCID: PMC8708628 DOI: 10.3390/vaccines9121387] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
COVID-19 vaccines are indispensable, with the number of cases and mortality still rising, and currently no medicines are routinely available for reducing morbidity and mortality, apart from dexamethasone, although others are being trialed and launched. To date, only a limited number of vaccines have been given emergency use authorization by the US Food and Drug Administration and the European Medicines Agency. There is a need to systematically review the existing vaccine candidates and investigate their safety, efficacy, immunogenicity, unwanted events, and limitations. The review was undertaken by searching online databases, i.e., Google Scholar, PubMed, and ScienceDirect, with finally 59 studies selected. Our findings showed several types of vaccine candidates with different strategies against SARS-CoV-2, including inactivated, mRNA-based, recombinant, and nanoparticle-based vaccines, are being developed and launched. We have compared these vaccines in terms of their efficacy, side effects, and seroconversion based on data reported in the literature. We found mRNA vaccines appeared to have better efficacy, and inactivated ones had fewer side effects and similar seroconversion in all types of vaccines. Overall, global variant surveillance and systematic tweaking of vaccines, coupled with the evaluation and administering vaccines with the same or different technology in successive doses along with homologous and heterologous prime-booster strategy, have become essential to impede the pandemic. Their effectiveness appreciably outweighs any concerns with any adverse events.
Collapse
Affiliation(s)
- Shahad Saif Khandker
- Gonoshasthaya-RNA Molecular Diagnostic & Research Center, Dhanmondi, Dhaka 1205, Bangladesh; (S.S.K.); (M.U.K.); (M.A.H.); (M.R.J.)
| | - Brian Godman
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G1 1XQ, UK;
- Division of Public Health Pharmacy and Management, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Md. Irfan Jawad
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (M.I.J.); (B.A.M.); (T.A.T.); (A.A.T.); (N.A.)
| | - Bushra Ayat Meghla
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (M.I.J.); (B.A.M.); (T.A.T.); (A.A.T.); (N.A.)
| | - Taslima Akter Tisha
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (M.I.J.); (B.A.M.); (T.A.T.); (A.A.T.); (N.A.)
| | - Mohib Ullah Khondoker
- Gonoshasthaya-RNA Molecular Diagnostic & Research Center, Dhanmondi, Dhaka 1205, Bangladesh; (S.S.K.); (M.U.K.); (M.A.H.); (M.R.J.)
- Department of Community Medicine, Gonoshasthaya Samaj Vittik Medical College, Savar 1344, Bangladesh
| | - Md. Ahsanul Haq
- Gonoshasthaya-RNA Molecular Diagnostic & Research Center, Dhanmondi, Dhaka 1205, Bangladesh; (S.S.K.); (M.U.K.); (M.A.H.); (M.R.J.)
| | - Jaykaran Charan
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur 342005, India;
| | - Ali Azam Talukder
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (M.I.J.); (B.A.M.); (T.A.T.); (A.A.T.); (N.A.)
| | - Nafisa Azmuda
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (M.I.J.); (B.A.M.); (T.A.T.); (A.A.T.); (N.A.)
| | - Shahana Sharmin
- Department of Pharmacy, BRAC University, Dhaka 1212, Bangladesh;
| | - Mohd. Raeed Jamiruddin
- Gonoshasthaya-RNA Molecular Diagnostic & Research Center, Dhanmondi, Dhaka 1205, Bangladesh; (S.S.K.); (M.U.K.); (M.A.H.); (M.R.J.)
- Department of Pharmacy, BRAC University, Dhaka 1212, Bangladesh;
| | - Mainul Haque
- The Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kem Perdana Sugai Besi, Kuala Lumpur 57000, Malaysia
| | - Nihad Adnan
- Gonoshasthaya-RNA Molecular Diagnostic & Research Center, Dhanmondi, Dhaka 1205, Bangladesh; (S.S.K.); (M.U.K.); (M.A.H.); (M.R.J.)
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (M.I.J.); (B.A.M.); (T.A.T.); (A.A.T.); (N.A.)
| |
Collapse
|
25
|
Wirz OF, Röltgen K, Stevens BA, Pandey S, Sahoo MK, Tolentino L, Verghese M, Nguyen K, Hunter M, Snow TT, Singh AR, Blish CA, Cochran JR, Zehnder JL, Nadeau KC, Pinsky BA, Pham TD, Boyd SD. Use of Outpatient-Derived COVID-19 Convalescent Plasma in COVID-19 Patients Before Seroconversion. Front Immunol 2021; 12:739037. [PMID: 34594341 PMCID: PMC8477649 DOI: 10.3389/fimmu.2021.739037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/24/2021] [Indexed: 11/13/2022] Open
Abstract
Background Transfusion of COVID-19 convalescent plasma (CCP) containing high titers of anti-SARS-CoV-2 antibodies serves as therapy for COVID-19 patients. Transfusions early during disease course was found to be beneficial. Lessons from the SARS-CoV-2 pandemic could inform early responses to future pandemics and may continue to be relevant in lower resource settings. We sought to identify factors correlating to high antibody titers in convalescent plasma donors and understand the magnitude and pharmacokinetic time course of both transfused antibody titers and the endogenous antibody titers in transfused recipients. Methods Plasma samples were collected up to 174 days after convalescence from 93 CCP donors with mild disease, and from 16 COVID-19 patients before and after transfusion. Using ELISA, anti-SARS-CoV-2 Spike RBD, S1, and N-protein antibodies, as well as capacity of antibodies to block ACE2 from binding to RBD was measured in an in vitro assay. As an estimate for viral load, viral RNA and N-protein plasma levels were assessed in COVID-19 patients. Results Anti-SARS-CoV-2 antibody levels and RBD-ACE2 blocking capacity were highest within the first 60 days after symptom resolution and markedly decreased after 120 days. Highest antibody titers were found in CCP donors that experienced fever. Effect of transfused CCP was detectable in COVID-19 patients who received high-titer CCP and had not seroconverted at the time of transfusion. Decrease in viral RNA was seen in two of these patients. Conclusion Our results suggest that high titer CCP should be collected within 60 days after recovery from donors with past fever. The much lower titers conferred by transfused antibodies compared to endogenous production in the patient underscore the importance of providing CCP prior to endogenous seroconversion.
Collapse
Affiliation(s)
- Oliver F. Wirz
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Katharina Röltgen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Bryan A. Stevens
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Suchitra Pandey
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Blood Center, Palo Alto, CA, United States
| | - Malaya K. Sahoo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | | | - Michelle Verghese
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Khoa Nguyen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | | | - Theo Thomas Snow
- Sean N. Parker Center for Allergy and Asthma Research, Stanford, CA, United States
| | - Abhay Raj Singh
- Sean N. Parker Center for Allergy and Asthma Research, Stanford, CA, United States
| | - Catherine A. Blish
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, United States
- Chan Zuckerberg Biohub, San Francisco, CA, United States
| | - Jennifer R. Cochran
- Department of Bioengineering, Stanford University, Stanford, CA, United States
| | - James L. Zehnder
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Kari C. Nadeau
- Sean N. Parker Center for Allergy and Asthma Research, Stanford, CA, United States
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, CA, United States
| | - Benjamin A. Pinsky
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, United States
| | - Tho D. Pham
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Blood Center, Palo Alto, CA, United States
| | - Scott D. Boyd
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
- Sean N. Parker Center for Allergy and Asthma Research, Stanford, CA, United States
| |
Collapse
|
26
|
Phipps MM, Verna EC. Coronavirus Disease 2019 and Liver Transplantation: Lessons from the First Year of the Pandemic. Liver Transpl 2021; 27:1312-1325. [PMID: 34096188 PMCID: PMC8242435 DOI: 10.1002/lt.26194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/20/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023]
Abstract
Over the last year, the novel coronavirus disease 2019 (COVID-19) has continued to spread across the globe, causing significant morbidity and mortality among transplantation candidates and recipients. Patients with end-stage liver disease awaiting liver transplantation and patients with a history of liver transplantation represent vulnerable populations, especially given the high rates of associated medical comorbidities in these groups and their immunosuppressed status. In addition, concerns surrounding COVID-19 risk in this patient population have affected rates of transplantation and general transplantation practices. Here, we explore what we have learned about the impact of COVID-19 on liver transplantation candidates and recipients as well as the many key knowledge gaps that remain.
Collapse
Affiliation(s)
- Meaghan M. Phipps
- Division of Digestive and Liver DiseasesDepartment of MedicineColumbia UniversityNew YorkNY
| | - Elizabeth C. Verna
- Division of Digestive and Liver DiseasesDepartment of MedicineColumbia UniversityNew YorkNY
| |
Collapse
|
27
|
Cimolai N. Passive Immunity Should and Will Work for COVID-19 for Some Patients. Clin Hematol Int 2021; 3:47-68. [PMID: 34595467 PMCID: PMC8432400 DOI: 10.2991/chi.k.210328.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
In the absence of effective antiviral chemotherapy and still in the context of emerging vaccines for severe acute respiratory syndrome-CoV-2 infections, passive immunotherapy remains a key treatment and possible prevention strategy. What might initially be conceived as a simplified donor-recipient process, the intricacies of donor plasma, IV immunoglobulins, and monoclonal antibody modality applications are becoming more apparent. Key targets of such treatment have largely focused on virus neutralization and the specific viral components of the attachment Spike protein and its constituents (e.g., receptor binding domain, N-terminal domain). The cumulative laboratory and clinical experience suggests that beneficial protective and treatment outcomes are possible. Both a dose- and a time-dependency emerge. Lesser understood are the concepts of bioavailability and distribution. Apart from direct antigen binding from protective immunoglobulins, antibody effector functions have potential roles in outcome. In attempting to mimic the natural but variable response to infection or vaccination, a strong functional polyclonal approach attracts the potential benefits of attacking antigen diversity, high antibody avidity, antibody persistence, and protection against escape viral mutation. The availability and ease of administration for any passive immunotherapy product must be considered in the current climate of need. There is never a perfect product, but yet there is considerable room for improving patient outcomes. Given the variability of human genetics, immunity, and disease, and given the nuances of the virus and its potential for change, passive immunotherapy can be developed that will be effective for some but not all patients. An understanding of such patient variability and limitations is just as important as the understanding of the direct interactions between immunotherapy and virus.
Collapse
Affiliation(s)
- Nevio Cimolai
- Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, Children’s and Women’s Health Centre of British Columbia, 4480 Oak Street, Vancouver, BC, Canada V6H 3V4
| |
Collapse
|
28
|
Clinical Management of COVID-19: A Review of Pharmacological Treatment Options. Pharmaceuticals (Basel) 2021; 14:ph14060520. [PMID: 34071185 PMCID: PMC8229327 DOI: 10.3390/ph14060520] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
Since the outbreak and subsequent declaration of COVID-19 as a global pandemic in March 2020, concerted efforts have been applied by the scientific community to curtail the spread of the disease and find a cure. While vaccines constitute a vital part of the public health strategy to reduce the burden of COVID-19, the management of this disease will continue to rely heavily on pharmacotherapy. This study aims to provide an updated review of pharmacological agents that have been developed and/or repurposed for the treatment of COVID-19. To this end, a comprehensive literature search was conducted using the PubMed, Google Scholar, and LitCovid databases. Relevant clinical studies on drugs used in the management of COVID-19 were identified and evaluated in terms of evidence of efficacy and safety. To date, the FDA has approved three therapies for the treatment of COVID-19 Emergency Use Authorization: convalescent plasma, remdesivir, and casirivimab/imdevimab (REGN-COV2). Drugs such as lopinavir/ritonavir, umifenovir, favipiravir, anakinra, chloroquine, hydroxychloroquine, tocilizumab, interferons, tissue plasminogen activator, intravenous immunoglobulins, and nafamosat have been used off-label with mixed therapeutic results. Adjunctive administration of corticosteroids is also very common. The clinical experience with these approved and repurposed drugs is limited, and data on efficacy for the new indication are not strong. Overall, the response of the global scientific community to the COVID-19 pandemic has been impressive, as evident from the volume of scientific literature elucidating the molecular biology and pathophysiology of SARS-CoV-2 and the approval of three new drugs for clinical management. Reviewed studies have shown mixed data on efficacy and safety of the currently utilized drugs. The lack of standard treatment for COVID-19 has made it difficult to interpret results from most of the published studies due to the risk of attribution error. The long-term effects of drugs can only be assessed after several years of clinical experience; therefore, the efficacy and safety of current COVID-19 therapeutics should continue to be rigorously monitored as part of post-marketing studies.
Collapse
|
29
|
Klassen SA, Senefeld JW, Johnson PW, Carter RE, Wiggins CC, Shoham S, Grossman BJ, Henderson JP, Musser J, Salazar E, Hartman WR, Bouvier NM, Liu STH, Pirofski LA, Baker SE, van Helmond N, Wright RS, Fairweather D, Bruno KA, Wang Z, Paneth NS, Casadevall A, Joyner MJ. The Effect of Convalescent Plasma Therapy on Mortality Among Patients With COVID-19: Systematic Review and Meta-analysis. Mayo Clin Proc 2021; 96:1262-1275. [PMID: 33958057 PMCID: PMC7888247 DOI: 10.1016/j.mayocp.2021.02.008] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/01/2021] [Accepted: 02/11/2021] [Indexed: 02/07/2023]
Abstract
To determine the effect of COVID-19 convalescent plasma on mortality, we aggregated patient outcome data from 10 randomized clinical trials, 20 matched control studies, 2 dose-response studies, and 96 case reports or case series. Studies published between January 1, 2020, and January 16, 2021, were identified through a systematic search of online PubMed and MEDLINE databases. Random effects analyses of randomized clinical trials and matched control data demonstrated that patients with COVID-19 transfused with convalescent plasma exhibited a lower mortality rate compared with patients receiving standard treatments. Additional analyses showed that early transfusion (within 3 days of hospital admission) of higher titer plasma is associated with lower patient mortality. These data provide evidence favoring the efficacy of human convalescent plasma as a therapeutic agent in hospitalized patients with COVID-19.
Collapse
Affiliation(s)
- Stephen A Klassen
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Jonathon W Senefeld
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Patrick W Johnson
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL
| | - Rickey E Carter
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL
| | - Chad C Wiggins
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Shmuel Shoham
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Brenda J Grossman
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Jeffrey P Henderson
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO; Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - James Musser
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX; Center for Molecular and Translational Human Infectious Diseases, Houston Methodist Research Institute, Houston, TX; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Eric Salazar
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - William R Hartman
- Department of Anesthesiology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Nicole M Bouvier
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Sean T H Liu
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Liise-Anne Pirofski
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY
| | - Sarah E Baker
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Noud van Helmond
- Department of Anesthesiology, Cooper Medical School of Rowan University, Cooper University Health Care, Camden, NJ
| | - R Scott Wright
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN; Director, Human Research Protection Program, Mayo Clinic, Rochester, MN
| | | | - Katelyn A Bruno
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL
| | - Zhen Wang
- Evidence-Based Practice Center, Robert D. and Patricia E. Kern Center for Science of Health Care Delivery, Mayo Clinic, Rochester, MN
| | - Nigel S Paneth
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing; Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Michael J Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN.
| |
Collapse
|
30
|
Peng HT, Rhind SG, Beckett A. Convalescent Plasma for the Prevention and Treatment of COVID-19: A Systematic Review and Quantitative Analysis. JMIR Public Health Surveill 2021; 7:e25500. [PMID: 33825689 PMCID: PMC8245055 DOI: 10.2196/25500] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/19/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The COVID-19 pandemic, caused by a novel coronavirus termed SARS-CoV-2, has spread quickly worldwide. Convalescent plasma (CP) obtained from patients following recovery from COVID-19 infection and development of antibodies against the virus is an attractive option for either prophylactic or therapeutic treatment, since antibodies may have direct or indirect antiviral activities and immunotherapy has proven effective in principle and in many clinical reports. OBJECTIVE We seek to characterize the latest advances and evidence in the use of CP for COVID-19 through a systematic review and quantitative analysis, identify knowledge gaps in this setting, and offer recommendations and directives for future research. METHODS PubMed, Web of Science, and Embase were continuously searched for studies assessing the use of CP for COVID-19, including clinical studies, commentaries, reviews, guidelines or protocols, and in vitro testing of CP antibodies. The screening process and data extraction were performed according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Quality appraisal of all clinical studies was conducted using a universal tool independent of study designs. A meta-analysis of case-control and randomized controlled trials (RCTs) was conducted using a random-effects model. RESULTS Substantial literature has been published covering various aspects of CP therapy for COVID-19. Of the references included in this review, a total of 243 eligible studies including 64 clinical studies, 79 commentary articles, 46 reviews, 19 guidance and protocols, and 35 in vitro testing of CP antibodies matched the criteria. Positive results have been mostly observed so far when using CP for the treatment of COVID-19. There were remarkable heterogeneities in the CP therapy with respect to patient demographics, donor antibody titers, and time and dose of CP administration. The studies assessing the safety of CP treatment reported low incidence of adverse events. Most clinical studies, in particular case reports and case series, had poor quality. Only 1 RCT was of high quality. Randomized and nonrandomized data were found in 2 and 11 studies, respectively, and were included for meta-analysis, suggesting that CP could reduce mortality and increase viral clearance. Despite promising pilot studies, the benefits of CP treatment can only be clearly established through carefully designed RCTs. CONCLUSIONS There is developing support for CP therapy, particularly for patients who are critically ill or mechanically ventilated and resistant to antivirals and supportive care. These studies provide important lessons that should inform the planning of well-designed RCTs to generate more robust knowledge for the efficacy of CP in patients with COVID-19. Future research is necessary to fill the knowledge gap regarding prevention and treatment for patients with COVID-19 with CP while other therapeutics are being developed.
Collapse
Affiliation(s)
- Henry T Peng
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
| | - Shawn G Rhind
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
| | - Andrew Beckett
- St. Michael's Hospital, Toronto, ON, Canada
- Royal Canadian Medical Services, Ottawa, ON, Canada
| |
Collapse
|
31
|
Khairallah P, Aggarwal N, Awan AA, Vangala C, Airy M, Pan JS, Murthy BVR, Winkelmayer WC, Ramanathan V. The impact of COVID-19 on kidney transplantation and the kidney transplant recipient - One year into the pandemic. Transpl Int 2021; 34:612-621. [PMID: 33545741 PMCID: PMC8013003 DOI: 10.1111/tri.13840] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/18/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022]
Abstract
The COVID-19 pandemic has significantly changed the landscape of kidney transplantation in the United States and worldwide. In addition to adversely impacting allograft and patient survival in postkidney transplant recipients, the current pandemic has affected all aspects of transplant care, including transplant referrals and listing, organ donation rates, organ procurement and shipping, and waitlist mortality. Critical decisions were made during this period by transplant centers and individual transplant physicians taking into consideration patient safety and resource utilization. As countries have begun administering the COVID vaccines, new and important considerations pertinent to our transplant population have arisen. This comprehensive review focuses on the impact of COVID-19 on kidney transplantation rates, mortality, policy decisions, and the clinical management of transplanted patients infected with COVID-19.
Collapse
Affiliation(s)
- Pascale Khairallah
- Section of Nephrology and Selzman Institute for Kidney HealthBaylor College of MedicineHoustonTXUSA
| | - Nidhi Aggarwal
- Section of Nephrology and Selzman Institute for Kidney HealthBaylor College of MedicineHoustonTXUSA
- Division of Nephrology and Solid‐Organ TransplantationMichael E. DeBakey VA Medical CenterHoustonTXUSA
| | - Ahmed A. Awan
- Section of Nephrology and Selzman Institute for Kidney HealthBaylor College of MedicineHoustonTXUSA
| | - Chandan Vangala
- Section of Nephrology and Selzman Institute for Kidney HealthBaylor College of MedicineHoustonTXUSA
- Division of Nephrology and Solid‐Organ TransplantationMichael E. DeBakey VA Medical CenterHoustonTXUSA
| | - Medha Airy
- Section of Nephrology and Selzman Institute for Kidney HealthBaylor College of MedicineHoustonTXUSA
| | - Jenny S. Pan
- Section of Nephrology and Selzman Institute for Kidney HealthBaylor College of MedicineHoustonTXUSA
- Division of Nephrology and Solid‐Organ TransplantationMichael E. DeBakey VA Medical CenterHoustonTXUSA
| | - Bhamidipati V. R. Murthy
- Section of Nephrology and Selzman Institute for Kidney HealthBaylor College of MedicineHoustonTXUSA
| | - Wolfgang C. Winkelmayer
- Section of Nephrology and Selzman Institute for Kidney HealthBaylor College of MedicineHoustonTXUSA
| | - Venkat Ramanathan
- Section of Nephrology and Selzman Institute for Kidney HealthBaylor College of MedicineHoustonTXUSA
- Division of Nephrology and Solid‐Organ TransplantationMichael E. DeBakey VA Medical CenterHoustonTXUSA
| |
Collapse
|
32
|
Abstract
Vaccines are urgently needed to control the coronavirus disease 2019 (COVID-19) pandemic and to help the return to pre-pandemic normalcy. A great many vaccine candidates are being developed, several of which have completed late-stage clinical trials and are reporting positive results. In this Progress article, we discuss which viral elements are used in COVID-19 vaccine candidates, why they might act as good targets for the immune system and the implications for protective immunity.
Collapse
Affiliation(s)
- Lianpan Dai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
33
|
Hong J, Jhun H, Choi YO, Taitt AS, Bae S, Lee Y, Song CS, Yeom SC, Kim S. Structure of SARS-CoV-2 Spike Glycoprotein for Therapeutic and Preventive Target. Immune Netw 2021; 21:e8. [PMID: 33728101 PMCID: PMC7937506 DOI: 10.4110/in.2021.21.e8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/08/2021] [Accepted: 02/14/2021] [Indexed: 12/14/2022] Open
Abstract
The global crisis caused by the coronavirus disease 2019 (COVID-19) led to the most significant economic loss and human deaths after World War II. The pathogen causing this disease is a novel virus called the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As of December 2020, there have been 80.2 million confirmed patients, and the mortality rate is known as 2.16% globally. A strategy to protect a host from SARS-CoV-2 is by suppressing intracellular viral replication or preventing viral entry. We focused on the spike glycoprotein that is responsible for the entry of SARS-CoV-2 into the host cell. Recently, the US Food and Drug Administration/EU Medicines Agency authorized a vaccine and antibody to treat COVID-19 patients by emergency use approval in the absence of long-term clinical trials. Both commercial and academic efforts to develop preventive and therapeutic agents continue all over the world. In this review, we present a perspective on current reports about the spike glycoprotein of SARS-CoV-2 as a therapeutic target.
Collapse
Affiliation(s)
- Jaewoo Hong
- Department of Physiology, Daegu Catholic University School of Medicine, Daegu 42472, Korea
- Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Hyunjhung Jhun
- Technical Assistance Center, Korea Food Research Institute, Wanju 55365, Korea
| | - Yeo-Ok Choi
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea
| | - Afeisha S. Taitt
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea
| | - Suyoung Bae
- Department of Bioequivalence Division for Drug Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Korea
| | - Youngmin Lee
- Department of Medicine, Pusan Paik Hospital, College of Medicine, Inje University, Busan 47392, Korea
| | - Chang-seon Song
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Su Cheong Yeom
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Soohyun Kim
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
- Veterinary Science Research Institute, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
34
|
Raja MA, Mendoza MA, Villavicencio A, Anjan S, Reynolds JM, Kittipibul V, Fernandez A, Guerra G, Camargo JF, Simkins J, Morris MI, Abbo LA, Natori Y. COVID-19 in solid organ transplant recipients: A systematic review and meta-analysis of current literature. Transplant Rev (Orlando) 2021; 35:100588. [PMID: 33246166 PMCID: PMC7666542 DOI: 10.1016/j.trre.2020.100588] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/07/2020] [Accepted: 11/09/2020] [Indexed: 02/08/2023]
Abstract
Severe acute respiratory virus syndrome 2 (SARS-CoV-2) has led to a worldwide pandemic. Early studies in solid organ transplant (SOT) recipients suggested a wide variety of presentations, however, there remains a paucity of robust data in this population. We conducted a systematic review and meta-analysis of SOT recipients with SARS-CoV-2 infection from January 1st t October 9th, 2020. Pooled incidence of symptoms, treatments and outcomes were assessed. Two hundred and fifteen studies were included for systematic review and 60 for meta-analysis. We identified 2,772 unique SOT recipients including 1,500 kidney, 505 liver, 141 heart and 97 lung. Most common presenting symptoms were fever and cough in 70.2% and 63.8% respectively. Majority (81%) required hospital admission. Immunosuppressive medications, especially antimetabolites, were decreased in 76.2%. Hydroxychloroquine and interleukin six antagonists were administered in59.5% and 14.9% respectively, while only few patients received remdesivir and convalescent plasma. Intensive care unit admission was 29% from amongst hospitalized patients. Only few studies reported secondary infections. Overall mortality was 18.6%. Our analysis shows a high incidence of hospital admission in SOT recipients with SARS-CoV-2 infection. As management of SARS-CoV-2 continues to evolve, long-term outcomes among SOT recipients should be assessed in future studies.
Collapse
Affiliation(s)
- Mohammed A Raja
- Department of Medicine, Division of Infectious Disease, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Maria A Mendoza
- Department of Medicine, Division of Internal Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Aasith Villavicencio
- Department of Medicine, Division of Internal Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Shweta Anjan
- Department of Medicine, Division of Infectious Disease, University of Miami Miller School of Medicine, Miami, FL, USA; Miami Transplant Institute, Jackson Health System, Miami, FL, USA
| | - John M Reynolds
- Department of Health Informatics, Calder Memorial Library, University of Miami Miller School of Medicine Miami, FL, USA
| | - Veraprapas Kittipibul
- Department of Medicine, Division of Internal Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Anmary Fernandez
- Department of Medicine, Division of Infectious Disease, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Giselle Guerra
- Miami Transplant Institute, Jackson Health System, Miami, FL, USA; Department of Medicine, Division of Nephrology, University of Miami Miller School of Medicine Miami, FL, USA
| | - Jose F Camargo
- Department of Medicine, Division of Infectious Disease, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jacques Simkins
- Department of Medicine, Division of Infectious Disease, University of Miami Miller School of Medicine, Miami, FL, USA; Miami Transplant Institute, Jackson Health System, Miami, FL, USA
| | - Michele I Morris
- Department of Medicine, Division of Infectious Disease, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Lilian A Abbo
- Department of Medicine, Division of Infectious Disease, University of Miami Miller School of Medicine, Miami, FL, USA; Miami Transplant Institute, Jackson Health System, Miami, FL, USA
| | - Yoichiro Natori
- Department of Medicine, Division of Infectious Disease, University of Miami Miller School of Medicine, Miami, FL, USA; Miami Transplant Institute, Jackson Health System, Miami, FL, USA.
| |
Collapse
|