1
|
van Aubel G, Van Cutsem E, Emond A, Métillon G, Cordier É, Van Cutsem P. Dual Transcriptomic and Metabolomic Analysis of Elicited Flax Sheds Light on the Kinetics of Immune Defense Activation Against the Biotrophic Pathogen Oidium lini. PHYTOPATHOLOGY 2024; 114:1904-1916. [PMID: 38748518 DOI: 10.1094/phyto-02-24-0070-kc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Flax (Linum usitatissimum) grown under controlled conditions displayed genotype-dependent resistance to powdery mildew (Oidium lini) following COS-OGA (comprising chitosan- and pectin-derived oligomers) elicitor application. The present study reveals a two-step immune response in plants preventively challenged with the elicitor: an initial, rapid response characterized by the transcription of defense genes whose protein products act in contact with or within the cell wall, where biotrophic pathogens initially thrive, followed by a prolonged activation of cell wall peroxidases and accumulation of secondary metabolites. Thus, dozens of genes encoding membrane receptors, pathogenesis-related proteins, and wall peroxidases were initially overexpressed. Repeated COS-OGA treatments had a transient effect on the transcriptome response while cumulatively remodeling the metabolome over time, with a minimum of two applications required for maximal metabolomic shifts. Secondary metabolites, in particular terpenoids and phenylpropanoids, emerged as major components of this secondary defense response alongside pathogenesis-related proteins and wall peroxidases. The sustained accumulation of secondary metabolites, even after cessation of elicitation, contrasted with the short-lived transcriptomic response. Wall peroxidase enzyme activity also exhibited cumulative effects, increasing strongly for weeks after a third elicitor treatment. This underscores the plasticity of the plant immune response in the face of a potential infection, and the need for repeated preventive applications to achieve the full protective potential of the elicitor.
Collapse
Affiliation(s)
- Géraldine van Aubel
- Biology Department, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
- FytoFend S.A., 5032 Isnes, Belgium
| | | | - Amélie Emond
- Biology Department, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
| | | | - Émilie Cordier
- Biology Department, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Pierre Van Cutsem
- Biology Department, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
- FytoFend S.A., 5032 Isnes, Belgium
| |
Collapse
|
2
|
Moll L, Giralt N, Planas M, Feliu L, Montesinos E, Bonaterra A, Badosa E. Prunus dulcis response to novel defense elicitor peptides and control of Xylella fastidiosa infections. PLANT CELL REPORTS 2024; 43:190. [PMID: 38976088 PMCID: PMC11231009 DOI: 10.1007/s00299-024-03276-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/27/2024] [Indexed: 07/09/2024]
Abstract
KEY MESSAGE New defense elicitor peptides have been identified which control Xylella fastidiosa infections in almond. Xylella fastidiosa is a plant pathogenic bacterium that has been introduced in the European Union (EU), threatening the agricultural economy of relevant Mediterranean crops such as almond (Prunus dulcis). Plant defense elicitor peptides would be promising to manage diseases such as almond leaf scorch, but their effect on the host has not been fully studied. In this work, the response of almond plants to the defense elicitor peptide flg22-NH2 was studied in depth using RNA-seq, confirming the activation of the salicylic acid and abscisic acid pathways. Marker genes related to the response triggered by flg22-NH2 were used to study the effect of the application strategy of the peptide on almond plants and to depict its time course. The application of flg22-NH2 by endotherapy triggered the highest number of upregulated genes, especially at 6 h after the treatment. A library of peptides that includes BP100-flg15, HpaG23, FV7, RIJK2, PIP-1, Pep13, BP16-Pep13, flg15-BP100 and BP16 triggered a stronger defense response in almond plants than flg22-NH2. The best candidate, FV7, when applied by endotherapy on almond plants inoculated with X. fastidiosa, significantly reduced levels of the pathogen and decreased disease symptoms. Therefore, these novel plant defense elicitors are suitable candidates to manage diseases caused by X. fastidiosa, in particular almond leaf scorch.
Collapse
Affiliation(s)
- Luis Moll
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Núria Giralt
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Marta Planas
- LIPPSO, Department of Chemistry, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Lidia Feliu
- LIPPSO, Department of Chemistry, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Emilio Montesinos
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Anna Bonaterra
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Esther Badosa
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV, University of Girona, Campus Montilivi, 17003, Girona, Spain.
| |
Collapse
|
3
|
Khan K, Tran HC, Mansuroglu B, Önsell P, Buratti S, Schwarzländer M, Costa A, Rasmusson AG, Van Aken O. Mitochondria-derived reactive oxygen species are the likely primary trigger of mitochondrial retrograde signaling in Arabidopsis. Curr Biol 2024; 34:327-342.e4. [PMID: 38176418 DOI: 10.1016/j.cub.2023.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/28/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024]
Abstract
Besides their central function in respiration, plant mitochondria play a crucial role in maintaining cellular homeostasis during stress by providing "retrograde" feedback to the nucleus. Despite the growing understanding of this signaling network, the nature of the signals that initiate mitochondrial retrograde regulation (MRR) in plants remains unknown. Here, we investigated the dynamics and causative relationship of a wide range of mitochondria-related parameters for MRR, using a combination of Arabidopsis fluorescent protein biosensor lines, in vitro assays, and genetic and pharmacological approaches. We show that previously linked physiological parameters, including changes in cytosolic ATP, NADH/NAD+ ratio, cytosolic reactive oxygen species (ROS), pH, free Ca2+, and mitochondrial membrane potential, may often be correlated with-but are not the primary drivers of-MRR induction in plants. However, we demonstrate that the induced production of mitochondrial ROS is the likely primary trigger for MRR induction in Arabidopsis. Furthermore, we demonstrate that mitochondrial ROS-mediated signaling uses the ER-localized ANAC017-pathway to induce MRR response. Finally, our data suggest that mitochondrially generated ROS can induce MRR without substantially leaking into other cellular compartments such as the cytosol or ER lumen, as previously proposed. Overall, our results offer compelling evidence that mitochondrial ROS elevation is the likely trigger of MRR.
Collapse
Affiliation(s)
- Kasim Khan
- Department of Biology, Lund University, Sölvegatan 35, Lund 223 62, Sweden
| | - Huy Cuong Tran
- Department of Biology, Lund University, Sölvegatan 35, Lund 223 62, Sweden
| | - Berivan Mansuroglu
- Department of Biology, Lund University, Sölvegatan 35, Lund 223 62, Sweden
| | - Pinar Önsell
- Department of Biology, Lund University, Sölvegatan 35, Lund 223 62, Sweden
| | - Stefano Buratti
- Department of Biosciences, University of Milan, Via G. Celoria 26, Milan 20133, Italy
| | - Markus Schwarzländer
- Plant Energy Biology Lab, Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany
| | - Alex Costa
- Department of Biosciences, University of Milan, Via G. Celoria 26, Milan 20133, Italy; Institute of Biophysics, Consiglio Nazionale delle Ricerche, Via G. Celoria 26, 20133 Milan, Italy
| | - Allan G Rasmusson
- Department of Biology, Lund University, Sölvegatan 35, Lund 223 62, Sweden
| | - Olivier Van Aken
- Department of Biology, Lund University, Sölvegatan 35, Lund 223 62, Sweden.
| |
Collapse
|
4
|
Barghahn S, Saridis G, Mantz M, Meyer U, Mellüh JC, Misas Villamil JC, Huesgen PF, Doehlemann G. Combination of transcriptomic, proteomic, and degradomic profiling reveals common and distinct patterns of pathogen-induced cell death in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:574-596. [PMID: 37339931 DOI: 10.1111/tpj.16356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/28/2023] [Accepted: 06/06/2023] [Indexed: 06/22/2023]
Abstract
Regulated cell death (RCD) is crucial for plant development, as well as in decision-making in plant-microbe interactions. Previous studies revealed components of the molecular network controlling RCD, including different proteases. However, the identity, the proteolytic network as well as molecular components involved in the initiation and execution of distinct plant RCD processes, still remain largely elusive. In this study, we analyzed the transcriptome, proteome, and N-terminome of Zea mays leaves treated with the Xanthomonas effector avrRxo1, the mycotoxin Fumonisin B1 (FB1), or the phytohormone salicylic acid (SA) to dissect plant cellular processes related to cell death and plant immunity. We found highly distinct and time-dependent biological processes being activated on transcriptional and proteome levels in response to avrRxo1, FB1, and SA. Correlation analysis of the transcriptome and proteome identified general, as well as trigger-specific markers for cell death in Zea mays. We found that proteases, particularly papain-like cysteine proteases, are specifically regulated during RCD. Collectively, this study characterizes distinct RCD responses in Z. mays and provides a framework for the mechanistic exploration of components involved in the initiation and execution of cell death.
Collapse
Affiliation(s)
- Sina Barghahn
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Georgios Saridis
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Melissa Mantz
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
| | - Ute Meyer
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | | | - Johana C Misas Villamil
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
- Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Gunther Doehlemann
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| |
Collapse
|
5
|
López-Bucio J, Ortiz-Castro R, Magaña-Dueñas V, García-Cárdenas E, Jiménez-Vázquez KR, Raya-González J, Pelagio-Flores R, Ibarra-Laclette E, Herrera-Estrella L. Pseudomonas aeruginosa LasI-dependent plant growth promotion requires the host nitrate transceptor AtNRT1.1/CHL1 and the nitrate reductases NIA1 and NIA2. PLANTA 2023; 258:80. [PMID: 37715847 DOI: 10.1007/s00425-023-04236-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 09/04/2023] [Indexed: 09/18/2023]
Abstract
MAIN CONCLUSION In P. aeruginosa, mutation of the gene encoding N-acyl-L-homoserine lactone synthase LasI drives defense and plant growth promotion, and this latter trait requires adequate nitrate nutrition. Cross-kingdom communication with bacteria is crucial for plant growth and productivity. Here, we show a strong induction of genes for nitrate uptake and assimilation in Arabidopsis seedlings co-cultivated with P. aeruginosa WT (PAO1) or ΔlasI mutants defective on the synthesis of the quorum-sensing signaling molecule N-(3-oxododecanoyl)-L-homoserine lactone. Along with differential induction of defense-related genes, the change from plant growth repression to growth promotion upon bacterial QS disruption, correlated with upregulation of the dual-affinity nitrate transceptor CHL1/AtNRT1/NPF6.3 and the nitrate reductases NIA1 and NIA2. CHL1-GUS was induced in Arabidopsis primary root tips after transfer onto P. aeruginosa ΔlasI streaks at low and high N availability, whereas this bacterium required high concentrations of nitrogen to potentiate root and shoot biomass production and to improve root branching. Arabidopsis chl1-5 and chl1-12 mutants and double mutants in NIA1 and NIA2 nitrate reductases showed compromised growth under low nitrogen availability and failed to mount an effective growth promotion and root branching response even at high NH4NO3. WT P. aeruginosa PAO1 and P. aeruginosa ΔlasI mutant promoted the accumulation of nitric oxide (NO) in roots of both the WT and nia1nia2 double mutants, whereas NO donors SNP or SNAP did not improve growth or root branching in nia1nia2 double mutants with or without bacterial cocultivation. Thus, inoculation of Arabidopsis roots with P. aeruginosa drives gene expression for improved nitrogen acquisition and this macronutrient is critical for the plant growth-promoting effects upon disruption of the LasI quorum-sensing system.
Collapse
Affiliation(s)
- José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, 58030, Morelia, Michoacán, Mexico.
| | - Randy Ortiz-Castro
- Red de estudios moleculares avanzados, Instituto de Ecología A. C., Carretera Antigua a Coatepec 351, El Haya, 91070, Xalapa, Veracruz, Mexico
| | - Viridiana Magaña-Dueñas
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, 58030, Morelia, Michoacán, Mexico
| | - Elizabeth García-Cárdenas
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, 58030, Morelia, Michoacán, Mexico
| | - Kirán Rubí Jiménez-Vázquez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, 58030, Morelia, Michoacán, Mexico
| | - Javier Raya-González
- Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Avenida Tzintzunzan 173, Col. Matamoros, 58240, Morelia, Michoacán, Mexico
| | - Ramón Pelagio-Flores
- Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Avenida Tzintzunzan 173, Col. Matamoros, 58240, Morelia, Michoacán, Mexico
| | - Enrique Ibarra-Laclette
- Red de estudios moleculares avanzados, Instituto de Ecología A. C., Carretera Antigua a Coatepec 351, El Haya, 91070, Xalapa, Veracruz, Mexico
| | - Luis Herrera-Estrella
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Campus Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-León, 36821, Irapuato, Guanajuato, Mexico
| |
Collapse
|
6
|
Burke R, McCabe A, Sonawane NR, Rathod MH, Whelan CV, McCabe PF, Kacprzyk J. Arabidopsis cell suspension culture and RNA sequencing reveal regulatory networks underlying plant-programmed cell death. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1465-1485. [PMID: 37531399 DOI: 10.1111/tpj.16407] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/27/2023] [Accepted: 07/20/2023] [Indexed: 08/04/2023]
Abstract
Programmed cell death (PCD) facilitates selective, genetically controlled elimination of redundant, damaged, or infected cells. In plants, PCD is often an essential component of normal development and can mediate responses to abiotic and biotic stress stimuli. However, studying the transcriptional regulation of PCD is hindered by difficulties in sampling small groups of dying cells that are often buried within the bulk of living plant tissue. We addressed this challenge by using RNA sequencing and Arabidopsis thaliana suspension cells, a model system that allows precise monitoring of PCD rates. The use of three PCD-inducing treatments (salicylic acid, heat, and critical dilution), in combination with three cell death modulators (3-methyladenine, lanthanum chloride, and conditioned medium), enabled isolation of candidate core- and stimuli-specific PCD genes, inference of underlying regulatory networks and identification of putative transcriptional regulators of PCD in plants. This analysis underscored a disturbance of the cell cycle and mitochondrial retrograde signaling, and repression of pro-survival stress responses, as key elements of the PCD-associated transcriptional signature. Further, phenotyping of Arabidopsis T-DNA insertion mutants in selected candidate genes validated the potential of generated resources to identify novel genes involved in plant PCD pathways and/or stress tolerance.
Collapse
Affiliation(s)
- Rory Burke
- School of Biology and Environmental Science, University College Dublin, Dublin 4, Ireland
| | - Aideen McCabe
- School of Biology and Environmental Science, University College Dublin, Dublin 4, Ireland
| | - Neetu Ramesh Sonawane
- School of Biology and Environmental Science, University College Dublin, Dublin 4, Ireland
| | - Meet Hasmukh Rathod
- School of Biology and Environmental Science, University College Dublin, Dublin 4, Ireland
| | - Conor V Whelan
- School of Biology and Environmental Science, University College Dublin, Dublin 4, Ireland
| | - Paul F McCabe
- School of Biology and Environmental Science, University College Dublin, Dublin 4, Ireland
| | - Joanna Kacprzyk
- School of Biology and Environmental Science, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
7
|
Philosoph AM, Dombrovsky A, Luria N, Sela N, Elad Y, Frenkel O. Rapid defense mechanism suppression during viral- oomycete disease complex formation. FRONTIERS IN PLANT SCIENCE 2023; 14:1124911. [PMID: 37360707 PMCID: PMC10288809 DOI: 10.3389/fpls.2023.1124911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/02/2023] [Indexed: 06/28/2023]
Abstract
Combined infection of the host plant with pathogens involving different parasitic lifestyles may result in synergistic effects that intensify disease symptoms. Understanding the molecular dynamics during concurrent infection provides essential insight into the host response. The transcriptomic pattern of cucumber plants infected with a necrotrophic pathogen, Pythium spinosum, and a biotrophic pathogen, Cucumber green mottle mosaic virus (CGMMV) was studied at different time points, under regimes of single and co-infection. Analysis of CGMMV infection alone revealed a mild influence on host gene expression at the stem base, while the infection by P. spinosum is associated with drastic changes in gene expression. Comparing P. spinosum as a single infecting pathogen with a later co-infection by CGMMV revealed a rapid host response as early as 24 hours post-CGMMV inoculation with a sharp downregulation of genes related to the host defense mechanism against the necrotrophic pathogen. Suppression of the defense mechanism of co-infected plants was followed by severe stress, including 30% plants mortality and an increase of the P. spinosum hyphae. The first evidence of defense recovery against the necrotrophic pathogen only occurred 13 days post-viral infection. These results support the hypothesis that the viral infection of the Pythium pre-infected plants subverted the host defense system and changed the equilibrium obtained with P. spinosum. It also implies a time window in which the plants are most susceptible to P. spinosum after CGMMV infection.
Collapse
Affiliation(s)
- Amit M. Philosoph
- Department of Plant Pathology and Weed Science, The Volcani Institute, Agricultural Research Organization, Bet Dagan, Israel
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Levi Eshkol School of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Aviv Dombrovsky
- Department of Plant Pathology and Weed Science, The Volcani Institute, Agricultural Research Organization, Bet Dagan, Israel
| | - Neta Luria
- Department of Plant Pathology and Weed Science, The Volcani Institute, Agricultural Research Organization, Bet Dagan, Israel
| | - Noa Sela
- Department of Plant Pathology and Weed Science, The Volcani Institute, Agricultural Research Organization, Bet Dagan, Israel
| | - Yigal Elad
- Department of Plant Pathology and Weed Science, The Volcani Institute, Agricultural Research Organization, Bet Dagan, Israel
| | - Omer Frenkel
- Department of Plant Pathology and Weed Science, The Volcani Institute, Agricultural Research Organization, Bet Dagan, Israel
| |
Collapse
|
8
|
Arjmand MP, Lahiji HS, Golfazani MM, Biglouei MH. New insights on the regulatory network of drought-responsive key genes in Arabidopsis thaliana. Genetica 2023; 151:29-45. [PMID: 36474134 DOI: 10.1007/s10709-022-00177-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
Drought stress is complex abiotic stress that seriously affects crop productivity and yield. Many genes with various functions are induced in response to drought stress. The present study aimed to identify drought-responsive hub genes and their related regulation network in Arabidopsis thaliana under drought stress. In this study, RNA-sequencing data of well-watered and drought treatment samples of Arabidopsis were analyzed, and differential expression genes were identified. The gene ontology enrichment and protein-protein interaction network analyses were performed for differential expression genes. Then, the most important hub genes, gene ontology enrichment, co-expression network, and prediction of related miRNAs of hub genes were investigated by in silico approaches. A total of 2462 genes were expressed differentially, of which 1926 transcripts were up-regulated under drought stress, and the rest were down-regulated. WRKY33, WRKY40, AT1G19020, STZ, SYP122, CNI1, CML37, BCS1, AT3G02840, and AT5G54490 were identified as hub genes in drought stress. The gene ontology analysis showed that hub genes significantly enriched in response to hypoxia, chitin, wounding, and salicylic acid-mediated signaling pathway. The hub genes were co-expressed with important drought-responsive genes such as WRKY46, WRKY60, CML38, ERF6, ERF104, and ERF1A. They were regulated by many stress-responsive miRNAs, such as ath-miR5021, miR413, miR5998, and miR162, that could be used as candidate miRNAs for regulating key genes under drought stress. It seems that the regulation network was involved in signaling pathways and protein degradation under drought stress, and it consists of several important genes and miRNAs that are potential candidates for plant improvement and breeding programs.
Collapse
Affiliation(s)
- Maryam Pasandideh Arjmand
- Department of Plant Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | | | | | - Mohammad Hassan Biglouei
- Department of Water Engineering, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
9
|
Decsi K, Kutasy B, Hegedűs G, Alföldi ZP, Kálmán N, Nagy Á, Virág E. Natural immunity stimulation using ELICE16INDURES® plant conditioner in field culture of soybean. Heliyon 2023; 9:e12907. [PMID: 36691550 PMCID: PMC9860300 DOI: 10.1016/j.heliyon.2023.e12907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Recently, climate change has had an increasing impact on the world. Innate defense mechanisms operating in plants - such as PAMP-triggered Immunity (PTI) - help to reduce the adverse effects caused by various abiotic and biotic stressors. In this study, the effects of ELICE16INDURES® plant conditioner for organic farming, developed by the Research Institute for Medicinal Plants and Herbs Ltd. Budakalász Hungary, were studied in a soybean population in Northern Hungary. The active compounds and ingredients of this product were selected in such a way as to facilitate the triggering of general plant immunity without the presence and harmful effects of pathogens, thereby strengthening the healthy plant population and preparing it for possible stress effects. In practice, treatments of this agent were applied at two different time points and two concentrations. The conditioning effect was well demonstrated by using agro-drone and ENDVI determination in the soybean field. The genetic background of healthier plants was investigated by NGS sequencing, and by the expression levels of genes encoding enzymes involved in the catalysis of metabolic pathways regulating PTI. The genome-wide transcriptional profiling resulted in 13 contigs related to PAMP-triggered immunity and activated as a result of the treatments. Further analyses showed 16 additional PTI-related contigs whose gene expression changed positively as a result of the treatments. The gene expression values of genes encoded in these contigs were determined by in silico mRNA quantification and validated by RT-qPCR. Both - relatively low and high treatments - showed an increase in gene expression of key genes involving AOC, IFS, MAPK4, MEKK, and GST. Transcriptomic results indicated that the biosyntheses of jasmonic acid (JA), salicylic acid (SA), phenylpropanoid, flavonoid, phytoalexin, and cellular detoxification processes were triggered in the appropriate molecular steps and suggested that plant immune reactions may be activated also artificially, and innate immunity can be enhanced with proper plant biostimulants.
Collapse
Affiliation(s)
- Kincső Decsi
- Department of Plant Physiology and Plant Ecology, Campus Keszthely, Hungarian University of Agriculture and Life Sciences Georgikon, Keszthely, Hungary
| | - Barbara Kutasy
- Department of Plant Physiology and Plant Ecology, Campus Keszthely, Hungarian University of Agriculture and Life Sciences Georgikon, Keszthely, Hungary
| | - Géza Hegedűs
- EduCoMat Ltd., Keszthely, Hungary
- Department of Information Technology and Its Applications, Faculty of Information Technology, University of Pannonia, Zalaegerszeg, Hungary
- Institute of Metagenomics, University of Debrecen, Debrecen, Hungary
| | - Zoltán Péter Alföldi
- Department of Environmental Biology, Campus Keszthely, Hungarian University of Agriculture and Life Sciences Georgikon, Keszthely, Hungary
| | - Nikoletta Kálmán
- Department of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs, Hungary
| | - Ágnes Nagy
- Research Institute for Medicinal Plants and Herbs Ltd., Budakalász, Hungary
| | - Eszter Virág
- EduCoMat Ltd., Keszthely, Hungary
- Institute of Metagenomics, University of Debrecen, Debrecen, Hungary
- Research Institute for Medicinal Plants and Herbs Ltd., Budakalász, Hungary
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
10
|
Khan K, Van Aken O. The colonization of land was a likely driving force for the evolution of mitochondrial retrograde signalling in plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7182-7197. [PMID: 36055768 PMCID: PMC9675596 DOI: 10.1093/jxb/erac351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Most retrograde signalling research in plants was performed using Arabidopsis, so an evolutionary perspective on mitochondrial retrograde regulation (MRR) is largely missing. Here, we used phylogenetics to track the evolutionary origins of factors involved in plant MRR. In all cases, the gene families can be traced to ancestral green algae or earlier. However, the specific subfamilies containing factors involved in plant MRR in many cases arose during the transition to land. NAC transcription factors with C-terminal transmembrane domains, as observed in the key regulator ANAC017, can first be observed in non-vascular mosses, and close homologs to ANAC017 can be found in seed plants. Cyclin-dependent kinases (CDKs) are common to eukaryotes, but E-type CDKs that control MRR also diverged in conjunction with plant colonization of land. AtWRKY15 can be traced to the earliest land plants, while AtWRKY40 only arose in angiosperms and AtWRKY63 even more recently in Brassicaceae. Apetala 2 (AP2) transcription factors are traceable to algae, but the ABI4 type again only appeared in seed plants. This strongly suggests that the transition to land was a major driver for developing plant MRR pathways, while additional fine-tuning events have appeared in seed plants or later. Finally, we discuss how MRR may have contributed to meeting the specific challenges that early land plants faced during terrestrialization.
Collapse
Affiliation(s)
- Kasim Khan
- Department of Biology, Lund University, Lund, Sweden
| | | |
Collapse
|
11
|
Ruberti C, Feitosa-Araujo E, Xu Z, Wagner S, Grenzi M, Darwish E, Lichtenauer S, Fuchs P, Parmagnani AS, Balcerowicz D, Schoenaers S, de la Torre C, Mekkaoui K, Nunes-Nesi A, Wirtz M, Vissenberg K, Van Aken O, Hause B, Costa A, Schwarzländer M. MCU proteins dominate in vivo mitochondrial Ca2+ uptake in Arabidopsis roots. THE PLANT CELL 2022; 34:4428-4452. [PMID: 35938694 PMCID: PMC9614509 DOI: 10.1093/plcell/koac242] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Ca2+ signaling is central to plant development and acclimation. While Ca2+-responsive proteins have been investigated intensely in plants, only a few Ca2+-permeable channels have been identified, and our understanding of how intracellular Ca2+ fluxes is facilitated remains limited. Arabidopsis thaliana homologs of the mammalian channel-forming mitochondrial calcium uniporter (MCU) protein showed Ca2+ transport activity in vitro. Yet, the evolutionary complexity of MCU proteins, as well as reports about alternative systems and unperturbed mitochondrial Ca2+ uptake in knockout lines of MCU genes, leave critical questions about the in vivo functions of the MCU protein family in plants unanswered. Here, we demonstrate that MCU proteins mediate mitochondrial Ca2+ transport in planta and that this mechanism is the major route for fast Ca2+ uptake. Guided by the subcellular localization, expression, and conservation of MCU proteins, we generated an mcu triple knockout line. Using Ca2+ imaging in living root tips and the stimulation of Ca2+ transients of different amplitudes, we demonstrated that mitochondrial Ca2+ uptake became limiting in the triple mutant. The drastic cell physiological phenotype of impaired subcellular Ca2+ transport coincided with deregulated jasmonic acid-related signaling and thigmomorphogenesis. Our findings establish MCUs as a major mitochondrial Ca2+ entry route in planta and link mitochondrial Ca2+ transport with phytohormone signaling.
Collapse
Affiliation(s)
| | - Elias Feitosa-Araujo
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, D-48143, Germany
| | - Zhaolong Xu
- Department of Biosciences, University of Milano, Milan, I-20133, Italy
- Jiangsu Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | | | - Matteo Grenzi
- Department of Biosciences, University of Milano, Milan, I-20133, Italy
| | - Essam Darwish
- Department of Biology, Lund University, Lund, 22362, Sweden
- Agricultural Botany Department, Faculty of Agriculture, Plant Physiology Section, Cairo University, Giza, 12613, Egypt
| | - Sophie Lichtenauer
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, D-48143, Germany
| | | | | | - Daria Balcerowicz
- Integrated Molecular Plant Physiology Research, University of Antwerp, Antwerp, B-2020, Belgium
| | - Sébastjen Schoenaers
- Integrated Molecular Plant Physiology Research, University of Antwerp, Antwerp, B-2020, Belgium
| | - Carolina de la Torre
- NGS Core Facility, Medical Faculty Mannheim, University of Heidelberg, Mannheim, D-68167, Germany
| | - Khansa Mekkaoui
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry (IPB), Halle (Saale), D-06120, Germany
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, 36570-900, Brazil
| | - Markus Wirtz
- Centre for Organismal Studies (COS) Heidelberg, University of Heidelberg, Heidelberg, D-69120, Germany
| | - Kris Vissenberg
- Integrated Molecular Plant Physiology Research, University of Antwerp, Antwerp, B-2020, Belgium
- Department of Agriculture, Plant Biochemistry and Biotechnology Lab, Hellenic Mediterranean University, Heraklion, 71410, Greece
| | | | - Bettina Hause
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry (IPB), Halle (Saale), D-06120, Germany
| | - Alex Costa
- Authors for correspondence: (A.C); (M.S.)
| | | |
Collapse
|
12
|
Le Boulch P, Poëssel JL, Roux D, Lugan R. Molecular mechanisms of resistance to Myzus persicae conferred by the peach Rm2 gene: A multi-omics view. FRONTIERS IN PLANT SCIENCE 2022; 13:992544. [PMID: 36275570 PMCID: PMC9581297 DOI: 10.3389/fpls.2022.992544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
The transcriptomic and metabolomic responses of peach to Myzus persicae infestation were studied in Rubira, an accession carrying the major resistance gene Rm2 causing antixenosis, and GF305, a susceptible accession. Transcriptome and metabolome showed both a massive reconfiguration in Rubira 48 hours after infestation while GF305 displayed very limited changes. The Rubira immune system was massively stimulated, with simultaneous activation of genes encoding cell surface receptors involved in pattern-triggered immunity and cytoplasmic NLRs (nucleotide-binding domain, leucine-rich repeat containing proteins) involved in effector-triggered immunity. Hypersensitive reaction featured by necrotic lesions surrounding stylet punctures was supported by the induction of cell death stimulating NLRs/helpers couples, as well as the activation of H2O2-generating metabolic pathways: photorespiratory glyoxylate synthesis and activation of the futile P5C/proline cycle. The triggering of systemic acquired resistance was suggested by the activation of pipecolate pathway and accumulation of this defense hormone together with salicylate. Important reduction in carbon, nitrogen and sulphur metabolic pools and the repression of many genes related to cell division and growth, consistent with reduced apices elongation, suggested a decline in the nutritional value of apices. Finally, the accumulation of caffeic acid conjugates pointed toward their contribution as deterrent and/or toxic compounds in the mechanisms of resistance.
Collapse
Affiliation(s)
| | | | - David Roux
- UMR Qualisud, Avignon Université, Avignon, France
| | | |
Collapse
|
13
|
Wang J, Xu G, Ning Y, Wang X, Wang GL. Mitochondrial functions in plant immunity. TRENDS IN PLANT SCIENCE 2022; 27:1063-1076. [PMID: 35659746 DOI: 10.1016/j.tplants.2022.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/21/2022] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
Mitochondria are energy factories of cells and are important for intracellular interactions with other organelles. Emerging evidence indicates that mitochondria play essential roles in the response to pathogen infection. During infection, pathogens deliver numerous enzymes and effectors into host cells, and some of these effectors target mitochondria, altering mitochondrial morphology, metabolism, and functions. To defend against pathogen attack, mitochondria are actively involved in changing intracellular metabolism, hormone-mediated signaling, and signal transduction, producing reactive oxygen species and reactive nitrogen species and triggering programmed cell death. Additionally, mitochondria coordinate with other organelles to integrate and amplify diverse immune signals. In this review, we summarize recent advances in understanding how mitochondria function in plant immunity and how pathogens target mitochondria for host defense suppression.
Collapse
Affiliation(s)
- Jiyang Wang
- Department of Plant Pathology, Ohio State University, Columbus, OH 43210, USA; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guojuan Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xuli Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Guo-Liang Wang
- Department of Plant Pathology, Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
14
|
Wang M, Wang M, Zhao M, Wang M, Liu S, Tian Y, Moon B, Liang C, Li C, Shi W, Bai MY, Liu S, Zhang W, Hwang I, Xia G. TaSRO1 plays a dual role in suppressing TaSIP1 to fine tune mitochondrial retrograde signalling and enhance salinity stress tolerance. THE NEW PHYTOLOGIST 2022; 236:495-511. [PMID: 35751377 DOI: 10.1111/nph.18340] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
Initially discovered in yeast, mitochondrial retrograde signalling has long been recognised as an essential in the perception of stress by eukaryotes. However, how to maintain the optimal amplitude and duration of its activation under natural stress conditions remains elusive in plants. Here, we show that TaSRO1, a major contributor to the agronomic performance of bread wheat plants exposed to salinity stress, interacted with a transmembrane domain-containing NAC transcription factor TaSIP1, which could translocate from the endoplasmic reticulum (ER) into the nucleus and activate some mitochondrial dysfunction stimulon (MDS) genes. Overexpression of TaSIP1 and TaSIP1-∆C (a form lacking the transmembrane domain) in wheat both compromised the plants' tolerance of salinity stress, highlighting the importance of precise regulation of this signal cascade during salinity stress. The interaction of TaSRO1/TaSIP1, in the cytoplasm, arrested more TaSIP1 on the membrane of ER, and in the nucleus, attenuated the trans-activation activity of TaSIP1, therefore reducing the TaSIP1-mediated activation of MDS genes. Moreover, the overexpression of TaSRO1 rescued the inferior phenotype induced by TaSIP1 overexpression. Our study provides an orchestrating mechanism executed by the TaSRO1-TaSIP1 module that balances the growth and stress response via fine tuning the level of mitochondria retrograde signalling.
Collapse
Affiliation(s)
- Mei Wang
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Meng Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Min Zhao
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Mengcheng Wang
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Shupeng Liu
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Yanchen Tian
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Byeongho Moon
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 790-784, South Korea
| | - Chaochao Liang
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Chunlong Li
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Ming-Yi Bai
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Shuwei Liu
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Wei Zhang
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Inhwan Hwang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 790-784, South Korea
| | - Guangmin Xia
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| |
Collapse
|
15
|
Viñegra de la Torre N, Vayssières A, Obeng-Hinneh E, Neumann U, Zhou Y, Lázaro A, Roggen A, Sun H, Stolze SC, Nakagami H, Schneeberger K, Timmers T, Albani MC. FLOWERING REPRESSOR AAA + ATPase 1 is a novel regulator of perennial flowering in Arabis alpina. THE NEW PHYTOLOGIST 2022; 236:729-744. [PMID: 35832005 DOI: 10.1111/nph.18374] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Arabis alpina is a polycarpic perennial, in which PERPETUAL FLOWERING1 (PEP1) regulates flowering and perennial traits in a vernalization-dependent manner. Mutagenesis screens of the pep1 mutant established the role of other flowering time regulators in PEP1-parallel pathways. Here we characterized three allelic enhancers of pep1 (eop002, 085 and 091) which flower early. We mapped the causal mutations and complemented mutants with the identified gene. Using quantitative reverse transcriptase PCR and reporter lines, we determined the protein spatiotemporal expression patterns and localization within the cell. We also characterized its role in Arabidopsis thaliana using CRISPR and in A. alpina by introgressing mutant alleles into a wild-type background. These mutants carried lesions in an AAA+ ATPase of unknown function, FLOWERING REPRESSOR AAA+ ATPase 1 (AaFRAT1). AaFRAT1 was detected in the vasculature of young leaf primordia and the rib zone of flowering shoot apical meristems. At the subcellular level, AaFRAT1 was localized at the interphase between the endoplasmic reticulum and peroxisomes. Introgression lines carrying Aafrat1 alleles required less vernalization to flower and reduced number of vegetative axillary branches. By contrast, A. thaliana CRISPR lines showed weak flowering phenotypes. AaFRAT1 contributes to flowering time regulation and the perennial growth habit of A. alpina.
Collapse
Affiliation(s)
- Natanael Viñegra de la Torre
- Institute for Plant Sciences, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
- Cluster of Excellence on Plant Sciences "From Complex Traits towards Synthetic Modules", 40225, Düsseldorf, Germany
| | - Alice Vayssières
- Institute for Plant Sciences, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
- Cluster of Excellence on Plant Sciences "From Complex Traits towards Synthetic Modules", 40225, Düsseldorf, Germany
| | - Evelyn Obeng-Hinneh
- Institute for Plant Sciences, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
- Cluster of Excellence on Plant Sciences "From Complex Traits towards Synthetic Modules", 40225, Düsseldorf, Germany
| | - Ulla Neumann
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Yanhao Zhou
- Institute for Plant Sciences, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
- Cluster of Excellence on Plant Sciences "From Complex Traits towards Synthetic Modules", 40225, Düsseldorf, Germany
| | - Ana Lázaro
- Institute for Plant Sciences, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
- Cluster of Excellence on Plant Sciences "From Complex Traits towards Synthetic Modules", 40225, Düsseldorf, Germany
| | - Adrian Roggen
- Institute for Plant Sciences, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Hequan Sun
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Sara C Stolze
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Hirofumi Nakagami
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Korbinian Schneeberger
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Ton Timmers
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Maria C Albani
- Institute for Plant Sciences, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
- Cluster of Excellence on Plant Sciences "From Complex Traits towards Synthetic Modules", 40225, Düsseldorf, Germany
| |
Collapse
|
16
|
Lv S, Yang Y, Yu G, Peng L, Zheng S, Singh SK, Vílchez JI, Kaushal R, Zi H, Yi D, Wang Y, Luo S, Wu X, Zuo Z, Huang W, Liu R, Du J, Macho AP, Tang K, Zhang H. Dysfunction of histone demethylase IBM1 in Arabidopsis causes autoimmunity and reshapes the root microbiome. THE ISME JOURNAL 2022; 16:2513-2524. [PMID: 35908110 PMCID: PMC9561531 DOI: 10.1038/s41396-022-01297-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/09/2022] [Accepted: 07/13/2022] [Indexed: 11/25/2022]
Abstract
Root microbiota is important for plant growth and fitness. Little is known about whether and how the assembly of root microbiota may be controlled by epigenetic regulation, which is crucial for gene transcription and genome stability. Here we show that dysfunction of the histone demethylase IBM1 (INCREASE IN BONSAI METHYLATION 1) in Arabidopsis thaliana substantially reshaped the root microbiota, with the majority of the significant amplicon sequence variants (ASVs) being decreased. Transcriptome analyses of plants grown in soil and in sterile growth medium jointly disclosed salicylic acid (SA)-mediated autoimmunity and production of the defense metabolite camalexin in the ibm1 mutants. Analyses of genome-wide histone modifications and DNA methylation highlighted epigenetic modifications permissive for transcription at several important defense regulators. Consistently, ibm1 mutants showed increased resistance to the pathogen Pseudomonas syringae DC3000 with stronger immune responses. In addition, ibm1 showed substantially impaired plant growth promotion in response to beneficial bacteria; the impairment was partially mimicked by exogenous application of SA to wild-type plants, and by a null mutation of AGP19 that is important for cell expansion and that is repressed with DNA hypermethylation in ibm1. IBM1-dependent epigenetic regulation imposes strong and broad impacts on plant-microbe interactions and thereby shapes the assembly of root microbiota.
Collapse
|
17
|
Grover S, Cardona JB, Zogli P, Alvarez S, Naldrett MJ, Sattler SE, Louis J. Reprogramming of sorghum proteome in response to sugarcane aphid infestation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 320:111289. [PMID: 35643611 DOI: 10.1016/j.plantsci.2022.111289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 06/15/2023]
Abstract
Sugarcane aphid (SCA; Melanaphis sacchari Zehntner) is a key piercing-sucking pest of sorghum (Sorghum bicolor) that cause significant yield losses. While feeding on host plants, complex signaling networks are invoked from recognition of insect attack to induction of plant defenses. Consequently, these signaling networks lead to the production of insecticidal compounds or limited access of nutrients to insects. Previously, several studies were published on the transcriptomics analysis of sorghum in response to SCA infestation, but no information is available on the physiological changes of sorghum at the proteome level. We used the SCA resistant sorghum genotype SC265 for the global proteomics analysis after 1 and 7 days of SCA infestation using the TMT-plex technique. Peptides matching a total of 4211 proteins were identified and 158 proteins were differentially expressed at day 1 and 7. Overall, proteome profiling of SC265 after SCA infestation at days 1 and 7 revealed the suppression of plant defense-related proteins and upregulation of plant defense and signaling-related proteins, respectively. The plant defense responses based on proteome data were validated using electrical penetration graph (EPG) technique to observe changes in aphid feeding. Feeding behavior analyses revealed that SCA spent significantly longer time in phloem phase on SCA infested plants for day 1 and lesser time in day 7 SCA infested sorghum plants, compared to their respective control plants. Overall, our study provides insights into underlying mechanisms that contribute to sorghum resistance to SCA.
Collapse
Affiliation(s)
- Sajjan Grover
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | | | - Prince Zogli
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Sophie Alvarez
- Proteomics and Metabolomics Facility, Nebraska Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Michael J Naldrett
- Proteomics and Metabolomics Facility, Nebraska Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Scott E Sattler
- Wheat, Sorghum, and Forage Research Unit, US Department of Agriculture-Agricultural Research Service, Lincoln, NE 68583, USA
| | - Joe Louis
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Department of Biochemistry, University of Nebraska-Lincoln, Lincoln NE 68583, USA.
| |
Collapse
|
18
|
Qing D, Deng G, Pan Y, Gao L, Liang H, Zhou W, Chen W, Li J, Huang J, Gao J, Lu C, Wu H, Liu K, Dai G. ITRAQ-based quantitative proteomic analysis of japonica rice seedling during cold stress. BREEDING SCIENCE 2022; 72:150-168. [PMID: 36275934 PMCID: PMC9522529 DOI: 10.1270/jsbbs.21081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/11/2021] [Indexed: 06/16/2023]
Abstract
Low temperature is one of the important environmental factors that affect rice growth and yield. To better understand the japonica rice responses to cold stress, isobaric tags for a relative and absolute quantification (iTRAQ) labeling-based quantitative proteomics approach was used to detected changes in protein levels. Two-week-old seedlings of the cold tolerant rice variety Kongyu131 were treated at 8°C for 24, 48 and 72 h, then the total proteins were extracted from tissues and used for quantitative proteomics analysis. A total of 5082 proteins were detected for quantitative analysis, of which 289 proteins were significantly regulated, consisting of 169 uniquely up-regulated proteins and 125 uniquely down-regulated proteins in cold stress groups relative to the control group. Functional analysis revealed that most of the regulated proteins are involved in photosynthesis, metabolic pathway, biosynthesis of secondary metabolites and carbon metabolism. Western blot analysis showed that protein regulation was consistent with the iTRAQ data. The corresponding genes of 25 regulated proteins were used for quantitative real time PCR analysis, and the results showed that the mRNA level was not always parallel to the corresponding protein level. The importance of our study is that it provides new insights into cold stress responses in rice with respect to proteomics and provides candidate genes for cold-tolerance rice breeding.
Collapse
Affiliation(s)
- Dongjin Qing
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, China
| | - Guofu Deng
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Yinghua Pan
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Lijun Gao
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, China
| | - Haifu Liang
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Weiyong Zhou
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Weiwei Chen
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Jingcheng Li
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Juan Huang
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, China
| | - Ju Gao
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, China
| | - Chunju Lu
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Hao Wu
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, China
| | - Kaiqiang Liu
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Gaoxing Dai
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| |
Collapse
|
19
|
Hartmann A, Berkowitz O, Whelan J, Narsai R. Cross-species transcriptomic analyses reveals common and opposite responses in Arabidopsis, rice and barley following oxidative stress and hormone treatment. BMC PLANT BIOLOGY 2022; 22:62. [PMID: 35120438 PMCID: PMC8815143 DOI: 10.1186/s12870-021-03406-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 12/14/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND For translational genomics, a roadmap is needed to know the molecular similarities or differences between species, such as model species and crop species. This knowledge is invaluable for the selection of target genes and pathways to alter downstream in response to the same stimuli. Here, the transcriptomic responses to six treatments including hormones (abscisic acid - ABA and salicylic acid - SA); treatments that cause oxidative stress (3-amino-1,2,4-triazole - 3AT, methyl viologen - MV); inhibit respiration (antimycin A - AA) or induce genetic damage (ultraviolet radiation -UV) were analysed and compared between Arabidopsis (Arabidopsis thaliana), barley (Hordeum vulgare) and rice (Oryza sativa). RESULTS Common and opposite responses were identified between species, with the number of differentially expressed genes (DEGs) varying greatly between treatments and species. At least 70% of DEGs overlapped with at least one other treatment within a species, indicating overlapping response networks. Remarkably, 15 to 34% of orthologous DEGs showed opposite responses between species, indicating diversity in responses, despite orthology. Orthologous DEGs with common responses to multiple treatments across the three species were correlated with experimental data showing the functional importance of these genes in biotic/abiotic stress responses. The mitochondrial dysfunction response was revealed to be highly conserved in all three species in terms of responsive genes and regulation via the mitochondrial dysfunction element. CONCLUSIONS The orthologous DEGs that showed a common response between species indicate conserved transcriptomic responses of these pathways between species. However, many genes, including prominent salt-stress responsive genes, were oppositely responsive in multiple-stresses, highlighting fundamental differences in the responses and regulation of these genes between species. This work provides a resource for translation of knowledge or functions between species.
Collapse
Affiliation(s)
- Andreas Hartmann
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe Institute for Agriculture and Food (LIAF), La Trobe University, 5 Ring Road Bundoora, Victoria, 3083, Australia
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe Institute for Agriculture and Food (LIAF), La Trobe University, 5 Ring Road Bundoora, Victoria, 3083, Australia
| | - James Whelan
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe Institute for Agriculture and Food (LIAF), La Trobe University, 5 Ring Road Bundoora, Victoria, 3083, Australia
| | - Reena Narsai
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe Institute for Agriculture and Food (LIAF), La Trobe University, 5 Ring Road Bundoora, Victoria, 3083, Australia.
| |
Collapse
|
20
|
Yao J, Li R, Cheng Y, Li Z. A combined transcriptomic and proteomic analysis of chrysanthemum provides new insights into petal senescence. PLANTA 2021; 255:22. [PMID: 34918180 DOI: 10.1007/s00425-021-03808-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Numerous transcription factor genes and methylation-related genes were differentially expressed in senescent petals compared with control petals. Studying petal senescence is crucial for extending the postharvest longevity of cut flowers, but petal senescence remains relatively unexplored compared to well-studied leaf senescence. In this study, a combined transcriptomic and proteomic analysis of senescent (22 days after cutting) and control (0 day after cutting) petals was performed to investigate the molecular processes underlying petal senescence of chrysanthemum (Chrysanthemum morifolium Ramat.), an important cut flower crop worldwide. A total of 11,324 differentially expressed genes (DEGs), including 4888 up-regulated and 6436 down-regulated genes, and 403 differentially expressed proteins (DEPs), including 210 up-regulated and 193 down-regulated proteins, were identified at transcript and protein levels, respectively. A cross-comparison of transcriptomic and proteomic data identified 257 consistent DEGs/DEPs, including 122 up-regulated and 135 down-regulated DEGs/DEPs. Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis showed that "cutin, suberine and wax biosynthesis" is a main pathway for both DEGs and DEPs, especially for down-regulated DEGs/DEPs. Functional analysis indicated that chrysanthemum genes mainly encoding putative cytochrome P450s, non-specific lipid-transfer proteins, subtilisin-like proteases, AAA-ATPases, proteins essential for cuticular wax biosynthesis, and proteins in hormone signal transduction or ubiquitination were differentially expressed at both transcript and protein levels. In addition, numerous transcription factor genes and methylation-related genes were also differentially expressed, inferring an involvement of transcriptional and epigenetic regulation in petal senescence. These results provide a valuable resource of studying chrysanthemum senescence and significant insights into petal senescence.
Collapse
Affiliation(s)
- Juanni Yao
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Rui Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Yulin Cheng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China.
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China.
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| |
Collapse
|
21
|
Møller IM, Rasmusson AG, Van Aken O. Plant mitochondria - past, present and future. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:912-959. [PMID: 34528296 DOI: 10.1111/tpj.15495] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
The study of plant mitochondria started in earnest around 1950 with the first isolations of mitochondria from animal and plant tissues. The first 35 years were spent establishing the basic properties of plant mitochondria and plant respiration using biochemical and physiological approaches. A number of unique properties (compared to mammalian mitochondria) were observed: (i) the ability to oxidize malate, glycine and cytosolic NAD(P)H at high rates; (ii) the partial insensitivity to rotenone, which turned out to be due to the presence of a second NADH dehydrogenase on the inner surface of the inner mitochondrial membrane in addition to the classical Complex I NADH dehydrogenase; and (iii) the partial insensitivity to cyanide, which turned out to be due to an alternative oxidase, which is also located on the inner surface of the inner mitochondrial membrane, in addition to the classical Complex IV, cytochrome oxidase. With the appearance of molecular biology methods around 1985, followed by genomics, further unique properties were discovered: (iv) plant mitochondrial DNA (mtDNA) is 10-600 times larger than the mammalian mtDNA, yet it only contains approximately 50% more genes; (v) plant mtDNA has kept the standard genetic code, and it has a low divergence rate with respect to point mutations, but a high recombinatorial activity; (vi) mitochondrial mRNA maturation includes a uniquely complex set of activities for processing, splicing and editing (at hundreds of sites); (vii) recombination in mtDNA creates novel reading frames that can produce male sterility; and (viii) plant mitochondria have a large proteome with 2000-3000 different proteins containing many unique proteins such as 200-300 pentatricopeptide repeat proteins. We describe the present and fairly detailed picture of the structure and function of plant mitochondria and how the unique properties make their metabolism more flexible allowing them to be involved in many diverse processes in the plant cell, such as photosynthesis, photorespiration, CAM and C4 metabolism, heat production, temperature control, stress resistance mechanisms, programmed cell death and genomic evolution. However, it is still a challenge to understand how the regulation of metabolism and mtDNA expression works at the cellular level and how retrograde signaling from the mitochondria coordinates all those processes.
Collapse
Affiliation(s)
- Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, DK-4200, Slagelse, Denmark
| | | | | |
Collapse
|
22
|
Karia P, Yoshioka K, Moeder W. Multiple phosphorylation events of the mitochondrial membrane protein TTM1 regulate cell death during senescence. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:766-780. [PMID: 34409658 DOI: 10.1111/tpj.15470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
The role of mitochondria in programmed cell death (PCD) during animal growth and development is well documented, but much less is known for plants. We previously showed that the Arabidopsis thaliana triphosphate tunnel metalloenzyme (TTM) proteins TTM1 and TTM2 are tail-anchored proteins that localize in the mitochondrial outer membrane and participate in PCD during senescence and immunity, respectively. Here, we show that TTM1 is specifically involved in senescence induced by abscisic acid (ABA). Moreover, phosphorylation of TTM1 by multiple mitogen-activated protein (MAP) kinases regulates its function and turnover. A combination of proteomics and in vitro kinase assays revealed three major phosphorylation sites of TTM1 (Ser10, Ser437, and Ser490). Ser437, which is phosphorylated upon perception of senescence cues such as ABA and prolonged darkness, is phosphorylated by the MAP kinases MPK3 and MPK4, and Ser437 phosphorylation is essential for TTM1 function in senescence. These MPKs, together with three additional MAP kinases (MPK1, MPK7, and MPK6), also phosphorylate Ser10 and Ser490, marking TTM1 for protein turnover, which likely prevents uncontrolled cell death. Taken together, our results show that multiple MPKs regulate the function and turnover of the mitochondrial protein TTM1 during senescence-associated cell death, revealing a novel link between mitochondria and PCD.
Collapse
Affiliation(s)
- Purva Karia
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Keiko Yoshioka
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
- Center for the Analysis of Genome Evolution and Function (CAGEF), University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Wolfgang Moeder
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
23
|
Welchen E, Gonzalez DH. Breaking boundaries: exploring short- and long-distance mitochondrial signalling in plants. THE NEW PHYTOLOGIST 2021; 232:494-501. [PMID: 34255867 DOI: 10.1111/nph.17614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/29/2021] [Indexed: 05/20/2023]
Abstract
Communication of mitochondria with other cell compartments is essential for the coordination of cellular functions. Mitochondria send retrograde signals through metabolites, redox changes, direct organelle contacts and protein trafficking. Accumulating evidence indicates that, in animal systems, changes in mitochondrial function also trigger responses in other, either neighbouring or distantly located, cells. Although not clearly established, there are indications that this type of communication may also be operative in plants. Grafting experiments suggested that the translocation of entire mitochondria or submitochondrial vesicles between neighbouring cells is possible in plants, as already documented in animals. Changes in mitochondrial function also regulate cell-to-cell communication via plasmodesmata and may be transmitted over long distances through plant hormones acting as mitokines to relay mitochondrial signals to distant tissues. Long-distance movement of transcripts encoding mitochondrial proteins involved in crucial aspects of metabolism and retrograde signalling was also described. Finally, changes in mitochondrial reactive species (ROS) production may affect the 'ROS wave' that triggers systemic acquired acclimation throughout the plant. In this review, we summarise available evidence suggesting that mitochondria establish sophisticated communications not only within the cell but also with neighbouring cells and distant tissues to coordinate plant growth and stress responses in a cell nonautonomous manner.
Collapse
Affiliation(s)
- Elina Welchen
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Universidad Nacional del Litoral, Santa Fe, 3000, Argentina
| | - Daniel H Gonzalez
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Universidad Nacional del Litoral, Santa Fe, 3000, Argentina
| |
Collapse
|
24
|
A novel ATPase gene, Ab-atps, plays an important role in the interaction of rice and white tip nematode, Aphelenchoides besseyi. Sci Rep 2021; 11:18521. [PMID: 34531469 PMCID: PMC8446066 DOI: 10.1038/s41598-021-97981-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 08/06/2021] [Indexed: 11/09/2022] Open
Abstract
Plant kinases containing the LysM domain play important roles in pathogen recognition and self-defense reactions. And it could recognize microbe-associated molecules including chitin and other polypeptides. The white tip nematode Aphelenchoides besseyi is a migratory parasitic nematode that infects plant shoots. It is distributed over almost all rice-producing areas and causes up to 50% economic losses. The rice OsRLK3 gene was a defense-related LysM kinase gene of rice. This study showed that the rice LysM kinase OsRLK3 could be induced by flg22, jasmonic acid, salicylic acid, and chitin. An interaction gene, Ab-atps from A. besseyi, was identified by screening the interaction between the rice gene OsRLK3 and an A. besseyi cDNA library using yeast two-hybrid screening. Ab-atps is a novel ATP synthase gene with a full length of 1341 bp, coding for 183 amino acids. The mRNA of Ab-atps was located in the esophagus and reproductive system of A. besseyi. The expression of Ab-atps was assessed at different developmental stages of the nematode and found to be the highest in the juvenile, followed by the egg, female, and male. Reproduction was significantly decreased in nematodes treated with Ab-atps double-stranded RNA (dsRNA) (p < 0.05). Transient expression experiments showed that Ab-ATPS-GFP was distributed in the nucleus, cytoplasm, and cell membrane, and Ab-ATPS-GFP triggered plant cell death. OsRLK3 was expressed significantly higher at 0.5 day and 1 day (p < 0.05) in rice plants inoculated with nematodes treated with Ab-atps dsRNA and gfp dsRNA for 0.5-7 days, respectively. Further, OsRLK3 expression under Ab-atps dsRNA treatment was significantly lower than with gfp dsRNA treatment at 0.5 day (p < 0.05) and significantly higher than with gfp dsRNA treatment at 1 day (p < 0.05). These results suggest that rice OsRLK3 could interact with A. besseyi Ab-atps, which plays an important role in growth, reproduction, and infection of the nematode. Our findings provide a theoretical basis to further understand the parasitic strategy of A. besseyi and its interaction mechanism with host plants, suggesting new ideas and targets for controlling A. besseyi.
Collapse
|
25
|
Liu T, Arsenault J, Vierling E, Kim M. Mitochondrial ATP synthase subunit d, a component of the peripheral stalk, is essential for growth and heat stress tolerance in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:713-726. [PMID: 33974298 DOI: 10.1111/tpj.15317] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/19/2021] [Accepted: 05/03/2021] [Indexed: 05/11/2023]
Abstract
As rapid changes in climate threaten global crop yields, an understanding of plant heat stress tolerance is increasingly relevant. Heat stress tolerance involves the coordinated action of many cellular processes and is particularly energy demanding. We acquired a knockout mutant and generated knockdown lines in Arabidopsis thaliana of the d subunit of mitochondrial ATP synthase (gene name: ATPQ, AT3G52300, referred to hereafter as ATPd), a subunit of the peripheral stalk, and used these to investigate the phenotypic significance of this subunit in normal growth and heat stress tolerance. Homozygous knockout mutants for ATPd could not be obtained due to gametophytic defects, while heterozygotes possess no visible phenotype. Therefore, we used RNA interference to create knockdown plant lines for further studies. Proteomic analysis and blue native gels revealed that ATPd downregulation impairs only subunits of the mitochondrial ATP synthase (complex V). Knockdown plants were more sensitive to heat stress, had abnormal leaf morphology, and were severely slow growing compared to wild type. These results indicate that ATPd plays a crucial role in proper function of the mitochondrial ATP synthase holoenzyme, which, when reduced, leads to wide-ranging defects in energy-demanding cellular processes. In knockdown plants, more hydrogen peroxide accumulated and mitochondrial dysfunction stimulon (MDS) genes were activated. These data establish the essential structural role of ATPd and support the importance of complex V in normal plant growth, and provide new information about its requirement for heat stress tolerance.
Collapse
Affiliation(s)
- Tianxiang Liu
- University of Massachusetts Amherst, Amherst, MA, 01003, USA
- Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Jesse Arsenault
- University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | | | - Minsoo Kim
- University of Massachusetts Amherst, Amherst, MA, 01003, USA
| |
Collapse
|
26
|
Van Aken O. Mitochondrial redox systems as central hubs in plant metabolism and signaling. PLANT PHYSIOLOGY 2021; 186:36-52. [PMID: 33624829 PMCID: PMC8154082 DOI: 10.1093/plphys/kiab101] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/11/2021] [Indexed: 05/06/2023]
Abstract
Plant mitochondria are indispensable for plant metabolism and are tightly integrated into cellular homeostasis. This review provides an update on the latest research concerning the organization and operation of plant mitochondrial redox systems, and how they affect cellular metabolism and signaling, plant development, and stress responses. New insights into the organization and operation of mitochondrial energy systems such as the tricarboxylic acid cycle and mitochondrial electron transport chain (mtETC) are discussed. The mtETC produces reactive oxygen and nitrogen species, which can act as signals or lead to cellular damage, and are thus efficiently removed by mitochondrial antioxidant systems, including Mn-superoxide dismutase, ascorbate-glutathione cycle, and thioredoxin-dependent peroxidases. Plant mitochondria are tightly connected with photosynthesis, photorespiration, and cytosolic metabolism, thereby providing redox-balancing. Mitochondrial proteins are targets of extensive post-translational modifications, but their functional significance and how they are added or removed remains unclear. To operate in sync with the whole cell, mitochondria can communicate their functional status via mitochondrial retrograde signaling to change nuclear gene expression, and several recent breakthroughs here are discussed. At a whole organism level, plant mitochondria thus play crucial roles from the first minutes after seed imbibition, supporting meristem activity, growth, and fertility, until senescence of darkened and aged tissue. Finally, plant mitochondria are tightly integrated with cellular and organismal responses to environmental challenges such as drought, salinity, heat, and submergence, but also threats posed by pathogens. Both the major recent advances and outstanding questions are reviewed, which may help future research efforts on plant mitochondria.
Collapse
Affiliation(s)
- Olivier Van Aken
- Department of Biology, Lund University, Lund, Sweden
- Author for communication:
| |
Collapse
|
27
|
Welchen E, Canal MV, Gras DE, Gonzalez DH. Cross-talk between mitochondrial function, growth, and stress signalling pathways in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4102-4118. [PMID: 33369668 DOI: 10.1093/jxb/eraa608] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/22/2020] [Indexed: 05/16/2023]
Abstract
Plant mitochondria harbour complex metabolic routes that are interconnected with those of other cell compartments, and changes in mitochondrial function remotely influence processes in different parts of the cell. This implies the existence of signals that convey information about mitochondrial function to the rest of the cell. Increasing evidence indicates that metabolic and redox signals are important for this process, but changes in ion fluxes, protein relocalization, and physical contacts with other organelles are probably also involved. Besides possible direct effects of these signalling molecules on cellular functions, changes in mitochondrial physiology also affect the activity of different signalling pathways that modulate plant growth and stress responses. As a consequence, mitochondria influence the responses to internal and external factors that modify the activity of these pathways and associated biological processes. Acting through the activity of hormonal signalling pathways, mitochondria may also exert remote control over distant organs or plant tissues. In addition, an intimate cross-talk of mitochondria with energy signalling pathways, such as those represented by TARGET OF RAPAMYCIN and SUCROSE NON-FERMENTING1-RELATED PROTEIN KINASE 1, can be envisaged. This review discusses available evidence on the role of mitochondria in shaping plant growth and stress responses through various signalling pathways.
Collapse
Affiliation(s)
- Elina Welchen
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - María Victoria Canal
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Diana E Gras
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Daniel H Gonzalez
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| |
Collapse
|
28
|
Villalobos-Escobedo JM, Esparza-Reynoso S, Pelagio-Flores R, López-Ramírez F, Ruiz-Herrera LF, López-Bucio J, Herrera-Estrella A. The fungal NADPH oxidase is an essential element for the molecular dialog between Trichoderma and Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:2178-2192. [PMID: 32578269 DOI: 10.1111/tpj.14891] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Members of the fungal genus Trichoderma stimulate growth and reinforce plant immunity. Nevertheless, how fungal signaling elements mediate the establishment of a successful Trichoderma-plant interaction is largely unknown. In this work, we analyzed growth, root architecture and defense in an Arabidopsis-Trichoderma co-cultivation system, including the wild-type (WT) strain of the fungus and mutants affected in NADPH oxidase. Global gene expression profiles were assessed in both the plant and the fungus during the establishment of the interaction. Trichoderma atroviride WT improved root branching and growth of seedling as previously reported. This effect diminished in co-cultivation with the ∆nox1, ∆nox2 and ∆noxR null mutants. The data gathered of the Arabidopsis interaction with the ∆noxR strain showed that the seedlings had a heightened immune response linked to jasmonic acid in roots and shoots. In the fungus, we observed repression of genes involved in complex carbohydrate degradation in the presence of the plant before contact. However, in the absence of NoxR, such repression was lost, apparently due to a poor ability to adequately utilize simple carbon sources such as sucrose, a typical plant exudate. Our results unveiled the critical role played by the Trichoderma NoxR in the establishment of a fine-tuned communication between the plant and the fungus even before physical contact. In this dialog, the fungus appears to respond to the plant by adjusting its metabolism, while in the plant, fungal perception determines a delicate growth-defense balance.
Collapse
Affiliation(s)
- José M Villalobos-Escobedo
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del IPN, Km. 9.6 libramiento Norte Carretera Irapuato-León, Irapuato, C. P. 36824, México
| | - Saraí Esparza-Reynoso
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, Morelia, C. P. 58030, México
| | - Ramón Pelagio-Flores
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del IPN, Km. 9.6 libramiento Norte Carretera Irapuato-León, Irapuato, C. P. 36824, México
- Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, C. P. 58240, México
| | - Fabiola López-Ramírez
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del IPN, Km. 9.6 libramiento Norte Carretera Irapuato-León, Irapuato, C. P. 36824, México
| | - León F Ruiz-Herrera
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, Morelia, C. P. 58030, México
| | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, Morelia, C. P. 58030, México
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del IPN, Km. 9.6 libramiento Norte Carretera Irapuato-León, Irapuato, C. P. 36824, México
| |
Collapse
|
29
|
Zavaliev R, Mohan R, Chen T, Dong X. Formation of NPR1 Condensates Promotes Cell Survival during the Plant Immune Response. Cell 2020; 182:1093-1108.e18. [PMID: 32810437 DOI: 10.1016/j.cell.2020.07.016] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 04/20/2020] [Accepted: 07/13/2020] [Indexed: 01/07/2023]
Abstract
In plants, pathogen effector-triggered immunity (ETI) often leads to programmed cell death, which is restricted by NPR1, an activator of systemic acquired resistance. However, the biochemical activities of NPR1 enabling it to promote defense and restrict cell death remain unclear. Here we show that NPR1 promotes cell survival by targeting substrates for ubiquitination and degradation through formation of salicylic acid-induced NPR1 condensates (SINCs). SINCs are enriched with stress response proteins, including nucleotide-binding leucine-rich repeat immune receptors, oxidative and DNA damage response proteins, and protein quality control machineries. Transition of NPR1 into condensates is required for formation of the NPR1-Cullin 3 E3 ligase complex to ubiquitinate SINC-localized substrates, such as EDS1 and specific WRKY transcription factors, and promote cell survival during ETI. Our analysis of SINCs suggests that NPR1 is centrally integrated into the cell death or survival decisions in plant immunity by modulating multiple stress-responsive processes in this quasi-organelle.
Collapse
Affiliation(s)
- Raul Zavaliev
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; Department of Biology, Duke University, Durham, NC 27708, USA
| | | | - Tianyuan Chen
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; Department of Biology, Duke University, Durham, NC 27708, USA
| | - Xinnian Dong
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; Department of Biology, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
30
|
Burke R, Schwarze J, Sherwood OL, Jnaid Y, McCabe PF, Kacprzyk J. Stressed to Death: The Role of Transcription Factors in Plant Programmed Cell Death Induced by Abiotic and Biotic Stimuli. FRONTIERS IN PLANT SCIENCE 2020; 11:1235. [PMID: 32903426 PMCID: PMC7434935 DOI: 10.3389/fpls.2020.01235] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/28/2020] [Indexed: 05/20/2023]
Abstract
Programmed cell death (PCD) is a genetically controlled pathway that plants can use to selectively eliminate redundant or damaged cells. In addition to its fundamental role in plant development, PCD can often be activated as an essential defense response when dealing with biotic and abiotic stresses. For example, localized, tightly controlled PCD can promote plant survival by restricting pathogen growth, driving the development of morphological traits for stress tolerance such as aerenchyma, or triggering systemic pro-survival responses. Relatively little is known about the molecular control of this essential process in plants, especially in comparison to well-described cell death models in animals. However, the networks orchestrating transcriptional regulation of plant PCD are emerging. Transcription factors (TFs) regulate the clusters of stimuli inducible genes and play a fundamental role in plant responses, such as PCD, to abiotic and biotic stresses. Here, we discuss the roles of different classes of transcription factors, including members of NAC, ERF and WRKY families, in cell fate regulation in response to environmental stresses. The role of TFs in stress-induced mitochondrial retrograde signaling is also reviewed in the context of life-and-death decisions of the plant cell and future research directions for further elucidation of TF-mediated control of stress-induced PCD events are proposed. An increased understanding of these complex signaling networks will inform and facilitate future breeding strategies to increase crop tolerance to disease and/or abiotic stresses.
Collapse
Affiliation(s)
| | | | | | | | | | - Joanna Kacprzyk
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
31
|
Yang J, Wang Q, Luo H, He C, An B. HbWRKY40 plays an important role in the regulation of pathogen resistance in Hevea brasiliensis. PLANT CELL REPORTS 2020; 39:1095-1107. [PMID: 32399673 DOI: 10.1007/s00299-020-02551-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 05/02/2020] [Indexed: 05/22/2023]
Abstract
KEY MESSAGE Overexpression of HbWRKY40 induces ROS burst in tobacco and increases disease resistance in Arabidopsis; RNA-seq and ChIP assays revealed the regulatory network of HbWRKY40 in plant defense. WRKY, a family of plant transcription factors, are involved in the regulation of numerous biological processes. In rubber tree Hevea brasiliensis, the roles of WRKYs remain poorly understood. In the present study, a total of 111 genes encoding putative HbWRKY proteins were identified in the H. brasiliensis genome. Among these genes, HbWRKY40 transcripts were significantly induced by Colletotrichum gloeosporioides and salicylic acid. To assess its roles in plant defense, HbWRKY40 was over-expressed in Nicotiana benthamiana and Arabidopsis thaliana. The results showed that HbWRKY40 significantly induced reactive oxygen species burst in N. benthamiana and increased resistance of Arabidopsis against Botrytis cinerea. Transient expression in mesophyll cell protoplasts of H. brasiliensis showed that HbWRKY40 localizes at nuclei. In addition, transcripts of 145 genes were significantly up-regulated and 6 genes were down-regulated in the protoplasts over-expressing HbWRKY40 based on the RNA-seq analysis. Among these potential downstream targets, 12 genes contain potential WRKY-binding sites at the promoter regions. Further analysis through chromatin immunoprecipitation revealed that 10 of these 12 genes were the downstream targets of HbWRKY40. Taken together, our findings indicate that HbWRKY40 plays an important role in the disease resistance by regulating defense-associated genes in H. brasiliensis.
Collapse
Affiliation(s)
- Jie Yang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Qiannan Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Hongli Luo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Chaozu He
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Bang An
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, People's Republic of China.
| |
Collapse
|
32
|
Wang D, Xu H, Huang J, Kong Y, AbuQamar S, Yu D, Liu S, Zhou G, Chai G. The Arabidopsis CCCH protein C3H14 contributes to basal defense against Botrytis cinerea mainly through the WRKY33-dependent pathway. PLANT, CELL & ENVIRONMENT 2020; 43:1792-1806. [PMID: 32279333 DOI: 10.1111/pce.13771] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/15/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
Necrotrophic pathogens such as Botrytis cinerea cause significant crop yield losses. Plant CCCH proteins play important roles in pathogen resistance responses. However, the CCCH-mediated defense mechanisms against necrotrophic pathogens are unclear. Here, we report that the Arabidopsis CCCH protein C3H14 positively regulates basal defense against B. cinerea mainly by WRKY33 signaling. Simultaneous mutation of C3H14 and its paralog C3H15 resulted in enhanced susceptibility to B. cinerea, while C3H14 or C3H15 overexpression lines exhibited reduced susceptibility. A large number of differentially expressed genes (DEGs) were present in the c3h14c3h15 double mutant and C3H14 overexpression plants compared with wild-type plants at 24 hr post infection. These DEGs covered over one third of B. cinerea-responsive WRKY33 targets, including genes involved in jasmonic acid (JA)/ethylene (ET) signaling, and camalexin biosynthesis. Genetic analysis indicated that C3H14 mainly depended on WRKY33 to modulate defense against B. cinerea. Moreover, C3H14 activated the WRKY33-ORA59 and -PAD3 cascades to correspondingly control JA/ET- and camalexin-mediated defense responses. However, C3H14 was essential for B. cinerea-induced production of 12-oxo-phytodienoic acid and it also directly mediated ORA59-dependent JA/ET signaling after infection. Therefore, C3H14 may act as a novel transcriptional regulator of the WRKY33-mediated defense pathway.
Collapse
Affiliation(s)
- Dian Wang
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Hua Xu
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Junyan Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yingzhen Kong
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Synan AbuQamar
- Department of Biology, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Diqiu Yu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Shengyi Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Gongke Zhou
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Guohua Chai
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
33
|
Adamowicz-Skrzypkowska A, Kwasniak-Owczarek M, Van Aken O, Kazmierczak U, Janska H. Joint inhibition of mitochondrial complex IV and alternative oxidase by genetic or chemical means represses chloroplast transcription in Arabidopsis. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190409. [PMID: 32362248 PMCID: PMC7209957 DOI: 10.1098/rstb.2019.0409] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2020] [Indexed: 12/14/2022] Open
Abstract
Changes in the functional state of mitochondria have profound effects on other cellular compartments. Genome-wide expression analysis of Arabidopsisrps10 mutants with an RNAi-silenced expression of mitoribosomal S10 protein has revealed extensive transcriptional reprogramming. A meta-analysis comparing expression datasets of 25 mitochondrial perturbations showed a high similarity of the aox1a:rpoTmp mutant, which is defective in the alternative oxidase (AOX1a) and dual-targeted mitochondrial and plastid RNA polymerase (RPOTmp), to rps10. Both rps10 and aox1a:rpoTmp showed a significantly decreased electron flux through both the cytochrome and the alternative respiratory pathways, and a markedly decreased the expression of nuclear-encoded components of the chloroplast transcription machinery. In line with this, a decreased level of plastid transcripts was observed in rps10 and aox1a:rpoTmp, which was reflected in a reduced rate of chloroplast transcription. Chemical treatment of wild-type seedlings with respiratory inhibitors showed that only simultaneous and direct inhibition of complex IV and AOX activity decreased the level of plastid transcripts. Taken together, both chemical and genetic studies show that the limitation of the activity of two mitochondrial terminal oxidases, complex IV and AOX, negatively impacts chloroplast transcription. Salicylic acid and oxygen are discussed as putative mediators of the signalling pathway between mitochondria, nucleus and chloroplasts. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.
Collapse
Affiliation(s)
| | | | - Olivier Van Aken
- Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden
| | - Urszula Kazmierczak
- Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Hanna Janska
- Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| |
Collapse
|
34
|
Wang Y, Selinski J, Mao C, Zhu Y, Berkowitz O, Whelan J. Linking mitochondrial and chloroplast retrograde signalling in plants. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190410. [PMID: 32362265 PMCID: PMC7209950 DOI: 10.1098/rstb.2019.0410] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Retrograde signalling refers to the regulation of nuclear gene expression in response to functional changes in organelles. In plants, the two energy-converting organelles, mitochondria and chloroplasts, are tightly coordinated to balance their activities. Although our understanding of components involved in retrograde signalling has greatly increased in the last decade, studies on the regulation of the two organelle signalling pathways have been largely independent. Thus, the mechanism of how mitochondrial and chloroplastic retrograde signals are integrated is largely unknown. Here, we summarize recent findings on the function of mitochondrial signalling components and their links to chloroplast retrograde responses. From this, a picture emerges showing that the major regulators are integrators of both organellar retrograde signalling pathways. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.
Collapse
Affiliation(s)
- Yan Wang
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Jennifer Selinski
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Chunli Mao
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia.,Department of Animal Science and Technology, Grassland Science, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yanqiao Zhu
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia.,Department of Animal Science and Technology, Grassland Science, China Agricultural University, Beijing 100193, People's Republic of China
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - James Whelan
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
35
|
Cooper B, Beard HS, Garrett WM, Campbell KB. Benzothiadiazole Conditions the Bean Proteome for Immunity to Bean Rust. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:600-611. [PMID: 31999214 DOI: 10.1094/mpmi-09-19-0250-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The common bean rust fungus reduces harvests of the dry, edible common bean. Natural resistance genes in the plant can provide protection until a fungal strain that breaks resistance emerges. In this study, we demonstrate that benzo(1,2,3)thiadiazole-7-carbothioic acid S-methyl ester (BTH) sprayed on susceptible beans induces resistance to common bean rust. Protection occurred as soon as 72 h after treatment and resulted in no signs of disease 10 days after inoculation with rust spores. By contrast, the susceptible control plants sustained heavy infections and died. To understand the effect BTH has on the bean proteome, we measured the changes of accumulation for 3,973 proteins using mass spectrometry. The set of 409 proteins with significantly increased accumulation in BTH-treated leaves included receptor-like kinases SOBIR1, CERK1, and LYK5, which perceive pathogens, and EDS1, a regulator of the salicylic acid defense pathway. Other proteins that likely contributed to resistance included pathogenesis-related proteins, a full complement of enzymes that catalyze phenylpropanoid biosynthesis, and protein receptors, transporters, and enzymes that modulate other defense responses controlled by jasmonic acid, ethylene, brassinosteroid, abscisic acid, and auxin. Increases in the accumulation of proteins required for vesicle-mediated protein secretion and RNA splicing occurred as well. By contrast, more than half of the 168 decreases belonged to chloroplast proteins and proteins involved in cell expansion. These results reveal a set of proteins needed for rust resistance and reaffirm the utility of BTH to control disease by amplifying the natural immune system of the bean plant.
Collapse
Affiliation(s)
- Bret Cooper
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD, U.S.A
| | - Hunter S Beard
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD, U.S.A
| | - Wesley M Garrett
- Animal Biosciences and Biotechnology Laboratory, USDA-ARS, Beltsville, MD, U.S.A
| | - Kimberly B Campbell
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD, U.S.A
| |
Collapse
|
36
|
Liu X, Inoue H, Tang X, Tan Y, Xu X, Wang C, Jiang CJ. Rice OsAAA-ATPase1 is Induced during Blast Infection in a Salicylic Acid-Dependent Manner, and Promotes Blast Fungus Resistance. Int J Mol Sci 2020; 21:ijms21041443. [PMID: 32093321 PMCID: PMC7073101 DOI: 10.3390/ijms21041443] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 01/10/2023] Open
Abstract
Fatty acids (FAs) have been implicated in signaling roles in plant defense responses. We previously reported that mutation or RNAi-knockdown (OsSSI2-kd) of the rice OsSSI2 gene, encoding a stearoyl acyl carrier protein FA desaturase (SACPD), remarkably enhanced resistance to blast fungus Magnaporthe oryzae and the leaf-blight bacterium Xanthomonas oryzae pv. oryzae (Xoo). Transcriptomic analysis identified six AAA-ATPase family genes (hereafter OsAAA-ATPase1–6) upregulated in the OsSSI2-kd plants, in addition to other well-known defense-related genes. Here, we report the functional analysis of OsAAA-ATPase1 in rice’s defense response to M. oryzae. Recombinant OsAAA-ATPase1 synthesized in Escherichia coli showed ATPase activity. OsAAA-ATPase1 transcription was induced by exogenous treatment with a functional analogue of salicylic acid (SA), benzothiadiazole (BTH), but not by other plant hormones tested. The transcription of OsAAA-ATPase1 was also highly induced in response to M. oryzae infection in an SA-dependent manner, as gene induction was significantly attenuated in a transgenic rice line expressing a bacterial gene (nahG) encoding salicylate hydroxylase. Overexpression of OsAAA-ATPase1 significantly enhanced pathogenesis-related gene expression and the resistance to M. oryzae; conversely, RNAi-mediated suppression of this gene compromised this resistance. These results suggest that OsAAA-APTase1 plays an important role in SA-mediated defense responses against blast fungus M. oryzae.
Collapse
Affiliation(s)
- Xinqiong Liu
- College of Life Science, South-Central University for Nationalities, Wuhan 430074, China
- Correspondence: (X.L.); (C.-J.J.); Tel.: +86-189-7122-9082 (X.L.); +81-298-838-8385(C.-J.J.)
| | - Haruhiko Inoue
- Institute of Agrobiological Sciences (NIAS), National Agriculture and Food Research Organization (NARO), Tsukuba 305-8602, Japan
| | - Xianying Tang
- College of Life Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Yanping Tan
- College of Life Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Xin Xu
- College of Life Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Chuntai Wang
- College of Life Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Chang-Jie Jiang
- Institute of Agrobiological Sciences (NIAS), National Agriculture and Food Research Organization (NARO), Tsukuba 305-8602, Japan
- Correspondence: (X.L.); (C.-J.J.); Tel.: +86-189-7122-9082 (X.L.); +81-298-838-8385(C.-J.J.)
| |
Collapse
|
37
|
Piya S, Liu J, Burch-Smith T, Baum TJ, Hewezi T. A role for Arabidopsis growth-regulating factors 1 and 3 in growth-stress antagonism. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1402-1417. [PMID: 31701146 PMCID: PMC7031083 DOI: 10.1093/jxb/erz502] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/05/2019] [Indexed: 05/21/2023]
Abstract
Growth-regulating factors (GRFs) belong to a small family of transcription factors that are highly conserved in plants. GRFs regulate many developmental processes and plant responses to biotic and abiotic stimuli. Despite the importance of GRFs, a detailed mechanistic understanding of their regulatory functions is still lacking. In this study, we used ChIP sequencing (ChIP-seq) to identify genome-wide binding sites of Arabidopsis GRF1 and GRF3, and correspondingly their direct downstream target genes. RNA-sequencing (RNA-seq) analysis revealed that GRF1 and GRF3 regulate the expression of a significant number of the identified direct targets. The target genes unveiled broad regulatory functions of GRF1 and GRF3 in plant growth and development, phytohormone biosynthesis and signaling, and the cell cycle. Our analyses also revealed that clock core genes and genes with stress- and defense-related functions are most predominant among the GRF1- and GRF3-bound targets, providing insights into a possible role for these transcription factors in mediating growth-defense antagonism and integrating environmental stimuli into developmental programs. Additionally, GRF1 and GRF3 target molecular nodes of growth-defense antagonism and modulate the levels of defense- and development-related hormones in opposite directions. Taken together, our results point to GRF1 and GRF3 as potential key determinants of plant fitness under stress conditions.
Collapse
Affiliation(s)
- Sarbottam Piya
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Jinyi Liu
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
- Present address: College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Tessa Burch-Smith
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | - Thomas J Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
- Correspondence:
| |
Collapse
|
38
|
Gupta A, Sinha R, Fernandes JL, Abdelrahman M, Burritt DJ, Tran LSP. Phytohormones regulate convergent and divergent responses between individual and combined drought and pathogen infection. Crit Rev Biotechnol 2020; 40:320-340. [DOI: 10.1080/07388551.2019.1710459] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Aarti Gupta
- Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | | | - Joel Lars Fernandes
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Mostafa Abdelrahman
- Arid Land Research Center, Tottori University, Tottori, Japan
- Botany Department, Faculty of Science, Aswan University, Aswan, Egypt
| | | | - Lam-Son Phan Tran
- Plant Stress Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
39
|
Colombatti F, Mencia R, Garcia L, Mansilla N, Alemano S, Andrade AM, Gonzalez DH, Welchen E. The mitochondrial oxidation resistance protein AtOXR2 increases plant biomass and tolerance to oxidative stress. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3177-3195. [PMID: 30945737 DOI: 10.1093/jxb/erz147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/20/2019] [Indexed: 06/09/2023]
Abstract
This study demonstrates the existence of the oxidation resistance (OXR) protein family in plants. There are six OXR members in Arabidopsis that contain the highly conserved TLDc domain that is characteristic of this eukaryotic protein family. AtOXR2 is a mitochondrial protein able to alleviate the stress sensitivity of a yeast oxr1 mutant. It was induced by oxidative stress and its overexpression in Arabidopsis (oeOXR2) increased leaf ascorbate, photosynthesis, biomass, and seed production, as well as conferring tolerance to methyl viologen, antimycin A, and high light intensities. The oeOXR2 plants also showed higher ABA content, changes in ABA sensitivity, and modified expression of ABA- and stress-regulated genes. While the oxr2 mutants had a similar shoot phenotype to the wild-type, they exhibited increased sensitivity to stress. We propose that by influencing the levels of reactive oxygen species (ROS), AtOXR2 improves the efficiency of photosynthesis and elicits basal tolerance to environmental challenges that increase oxidative stress, allowing improved plant growth and biomass production.
Collapse
Affiliation(s)
- Francisco Colombatti
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Regina Mencia
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Lucila Garcia
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Rosario, Argentina
| | - Natanael Mansilla
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Sergio Alemano
- Laboratorio de Fisiología Vegetal, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Andrea M Andrade
- Laboratorio de Fisiología Vegetal, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Daniel H Gonzalez
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Elina Welchen
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
40
|
Niu C, Jiang M, Li N, Cao J, Hou M, Ni DA, Chu Z. Integrated bioinformatics analysis of As, Au, Cd, Pb and Cu heavy metal responsive marker genes through Arabidopsis thaliana GEO datasets. PeerJ 2019; 7:e6495. [PMID: 30918749 PMCID: PMC6428040 DOI: 10.7717/peerj.6495] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/19/2019] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Current environmental pollution factors, particularly the distribution and diffusion of heavy metals in soil and water, are a high risk to local environments and humans. Despite striking advances in methods to detect contaminants by a variety of chemical and physical solutions, these methods have inherent limitations such as small dimensions and very low coverage. Therefore, identifying novel contaminant biomarkers are urgently needed. METHODS To better track heavy metal contaminations in soil and water, integrated bioinformatics analysis to identify biomarkers of relevant heavy metal, such as As, Cd, Pb and Cu, is a suitable method for long-term and large-scale surveys of such heavy metal pollutants. Subsequently, the accuracy and stability of the results screened were experimentally validated by quantitative PCR experiment. RESULTS We obtained 168 differentially expressed genes (DEGs) which contained 59 up-regulated genes and 109 down-regulated genes through comparative bioinformatics analyses. Subsequently, the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichments of these DEGs were performed, respectively. GO analyses found that these DEGs were mainly related to responses to chemicals, responses to stimulus, responses to stress, responses to abiotic stimulus, and so on. KEGG pathway analyses of DEGs were mainly involved in the protein degradation process and other biologic process, such as the phenylpropanoid biosynthesis pathways and nitrogen metabolism. Moreover, we also speculated that nine candidate core biomarker genes (namely, NILR1, PGPS1, WRKY33, BCS1, AR781, CYP81D8, NR1, EAP1 and MYB15) might be tightly correlated with the response or transport of heavy metals. Finally, experimental results displayed that these genes had the same expression trend response to different stresses as mentioned above (Cd, Pb and Cu) and no mentioned above (Zn and Cr). CONCLUSION In general, the identified biomarker genes could help us understand the potential molecular mechanisms or signaling pathways responsive to heavy metal stress in plants, and could be applied as marker genes to track heavy metal pollution in soil and water through detecting their expression in plants growing in those environments.
Collapse
Affiliation(s)
- Chao Niu
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, Shanghai, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, Shanghai, China
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, Shanghai, China
| | - Min Jiang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, Shanghai, China
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, Shanghai, China
| | - Na Li
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, Shanghai, China
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, Shanghai, China
- College of Life Sciences, Shanghai Normal University, Shanghai, Shanghai, China
| | - Jianguo Cao
- College of Life Sciences, Shanghai Normal University, Shanghai, Shanghai, China
| | - Meifang Hou
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, Shanghai, China
| | - Di-an Ni
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, Shanghai, China
| | - Zhaoqing Chu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, Shanghai, China
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, Shanghai, China
| |
Collapse
|
41
|
Nidumukkala S, Tayi L, Chittela RK, Vudem DR, Khareedu VR. DEAD box helicases as promising molecular tools for engineering abiotic stress tolerance in plants. Crit Rev Biotechnol 2019; 39:395-407. [DOI: 10.1080/07388551.2019.1566204] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Lavanya Tayi
- Centre for Plant Molecular Biology, Osmania University, Hyderabad, India
| | | | | | | |
Collapse
|
42
|
Xu Y, Berkowitz O, Narsai R, De Clercq I, Hooi M, Bulone V, Van Breusegem F, Whelan J, Wang Y. Mitochondrial function modulates touch signalling in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:623-645. [PMID: 30537160 DOI: 10.1111/tpj.14183] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/16/2018] [Accepted: 11/21/2018] [Indexed: 05/28/2023]
Abstract
Plants respond to short- and long-term mechanical stimuli, via altered transcript abundance and growth respectively. Jasmonate, gibberellic acid and calcium have been implicated in mediating responses to mechanical stimuli. Previously it has been shown that the transcript abundance for the outer mitochondrial membrane protein of 66 kDa (OM66), is induced several fold after 30 min in response to touch. Therefore, the effect of mitochondrial function on the response to mechanical stimulation by touch at 30 min was investigated. Twenty-five mutants targeting mitochondrial function or regulators revealed that all affected the touch transcriptome. Double and triple mutants revealed synergistic or antagonistic effects following the observed responses in the single mutants. Changes in the touch-responsive transcriptome were localised, recurring with repeated rounds of stimulus. The gene expression kinetics after repeated touch were complex, displaying five distinct patterns. These transcriptomic responses were altered by some regulators of mitochondrial retrograde signalling, such as cyclic dependent protein kinase E1, a kinase protein in the mediator complex, and KIN10 (SnRK1 - sucrose non-fermenting related protein kinase 1), revealing an overlap between the touch response and mitochondrial stress signalling and alternative mitochondrial metabolic pathways. Regulatory network analyses revealed touch-induced stress responses and suppressed growth and biosynthetic processes. Interaction with the phytohormone signalling pathways indicated that ethylene and gibberellic acid had the greatest effect. Hormone measurements revealed that mutations of genes that encoded mitochondrial proteins altered hormone concentrations. Mitochondrial function modulates touch-induced changes in gene expression directly through altered regulatory networks, and indirectly via altering hormonal levels.
Collapse
Affiliation(s)
- Yue Xu
- Department of Animal, Plant and Soil Sciences, School of Life Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, La Trobe University, 5 Ring Road, Bundoora, 3086, Victoria, Australia
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Sciences, School of Life Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, La Trobe University, 5 Ring Road, Bundoora, 3086, Victoria, Australia
| | - Reena Narsai
- Department of Animal, Plant and Soil Sciences, School of Life Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, La Trobe University, 5 Ring Road, Bundoora, 3086, Victoria, Australia
| | - Inge De Clercq
- Department of Plant Biotechnology and Bioinformatics, Ghent University, (Technologiepark 71), 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, (Technologiepark 71), 9052, Ghent, Belgium
| | - Michelle Hooi
- ARC Centre of Excellence in Plant Cell Walls and Adelaide Glycomics, School of Agriculture Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, Australia
| | - Vincent Bulone
- ARC Centre of Excellence in Plant Cell Walls and Adelaide Glycomics, School of Agriculture Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, Australia
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, (Technologiepark 71), 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, (Technologiepark 71), 9052, Ghent, Belgium
| | - James Whelan
- Department of Animal, Plant and Soil Sciences, School of Life Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, La Trobe University, 5 Ring Road, Bundoora, 3086, Victoria, Australia
| | - Yan Wang
- Department of Animal, Plant and Soil Sciences, School of Life Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, La Trobe University, 5 Ring Road, Bundoora, 3086, Victoria, Australia
| |
Collapse
|
43
|
Zhu T, Zou L, Li Y, Yao X, Xu F, Deng X, Zhang D, Lin H. Mitochondrial alternative oxidase-dependent autophagy involved in ethylene-mediated drought tolerance in Solanum lycopersicum. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:2063-2076. [PMID: 29729068 PMCID: PMC6230944 DOI: 10.1111/pbi.12939] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 04/01/2018] [Accepted: 04/04/2018] [Indexed: 05/02/2023]
Abstract
Mitochondrial alternative oxidase (AOX) is involved in a large number of plant physiological processes, such as growth, development and stress responses; however, the exact role of AOX in response to drought remains unclear. In our study, we provide solid evidences that the activated AOX capacity positively involved in ethylene-induced drought tolerance, in tomato (Solanum lycopersicum), accompanied by the changing level of hydrogen peroxide (H2 O2 ) and autophagy. In AOX1a-RNAi plants, the ethylene-induced drought tolerance was aggravated and associated with decreasing level of autophagy. The H2 O2 level was relatively higher in AOX1a-RNAi plants, whereas it was lower in AOX1a-overexpressing (35S-AOX1a-OE) plants after 1-(aminocarbonyl)-1-cyclopropanecarboxylic acid (ACC) pretreatment in the 14th day under drought stress. Interestingly, the accumulation of autophagosome was accompanied by the changing level of reactive oxygen species (ROS) in AOX transgenic tomato under drought stress whether or not pretreated with ACC. Pharmacological scavenging of H2 O2 accumulation in AOX1a-RNAi (aox19) stimulated autophagy acceleration under drought stress, and it seems that AOX-dependent ROS signalling is critical in triggering autophagy. Lower levels of ROS signalling positively induce autophagy activity, whereas higher ROS level would lead to rapid programmed cell death (PCD), especially in ethylene-mediated drought tolerance. Moreover, ethylene-induced autophagy during drought stress also can be through ERF5 binding to the promoters of ATG8d and ATG18h. These results demonstrated that AOX plays an essential role in ethylene-induced drought tolerance and also played important roles in mediating autophagy generation via balancing ROS level.
Collapse
Affiliation(s)
- Tong Zhu
- Key Laboratory of Bio‐Resources and Eco‐Environment of Ministry of EducationCollege of Life SciencesSichuan UniversityChengduSichuanChina
| | - Lijuan Zou
- Life Science and Technology College and Ecological Security and Protection Key Laboratory of Sichuan ProvinceMianyang Normal UniversityMianyangChina
| | - Yan Li
- Key Laboratory of Bio‐Resources and Eco‐Environment of Ministry of EducationCollege of Life SciencesSichuan UniversityChengduSichuanChina
| | - Xiuhong Yao
- Key Laboratory of Bio‐Resources and Eco‐Environment of Ministry of EducationCollege of Life SciencesSichuan UniversityChengduSichuanChina
| | - Fei Xu
- Life Science and BiotechnologyWuhan Bioengineering InstituteWuhanChina
| | - Xingguang Deng
- Key Laboratory of Bio‐Resources and Eco‐Environment of Ministry of EducationCollege of Life SciencesSichuan UniversityChengduSichuanChina
| | - Dawei Zhang
- Key Laboratory of Bio‐Resources and Eco‐Environment of Ministry of EducationCollege of Life SciencesSichuan UniversityChengduSichuanChina
| | - Honghui Lin
- Key Laboratory of Bio‐Resources and Eco‐Environment of Ministry of EducationCollege of Life SciencesSichuan UniversityChengduSichuanChina
| |
Collapse
|
44
|
The Arabidopsis RNA Polymerase II Carboxyl Terminal Domain (CTD) Phosphatase-Like1 (CPL1) is a biotic stress susceptibility gene. Sci Rep 2018; 8:13454. [PMID: 30194343 PMCID: PMC6128934 DOI: 10.1038/s41598-018-31837-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/28/2018] [Indexed: 11/09/2022] Open
Abstract
Crop breeding for improved disease resistance may be achieved through the manipulation of host susceptibility genes. Previously we identified multiple Arabidopsis mutants known as enhanced stress response1 (esr1) that have defects in a KH-domain RNA-binding protein and conferred increased resistance to the root fungal pathogen Fusarium oxysporum. Here, screening the same mutagenized population we discovered two further enhanced stress response mutants that also conferred enhanced resistance to F. oxysporum. These mutants also have enhanced resistance to a leaf fungal pathogen (Alternaria brassicicola) and an aphid pest (Myzus persicae), but not to the bacterial leaf pathogen Pseudomonas syringae. The causal alleles in these mutants were found to have defects in the ESR1 interacting protein partner RNA Polymerase II Carboxyl Terminal Domain (CTD) Phosphatase-Like1 (CPL1) and subsequently given the allele symbols cpl1-7 and cpl1-8. These results define a new role for CPL1 as a pathogen and pest susceptibility gene. Global transcriptome analysis and oxidative stress assays showed these cpl1 mutants have increased tolerance to oxidative stress. In particular, components of biotic stress responsive pathways were enriched in cpl1 over wild-type up-regulated gene expression datasets including genes related to defence, heat shock proteins and oxidative stress/redox state processes.
Collapse
|
45
|
Balmer A, Pastor V, Glauser G, Mauch-Mani B. Tricarboxylates Induce Defense Priming Against Bacteria in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2018; 9:1221. [PMID: 30177948 PMCID: PMC6110165 DOI: 10.3389/fpls.2018.01221] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/31/2018] [Indexed: 05/24/2023]
Abstract
Exposure of plants to biotic stress results in an effective induction of numerous defense mechanisms that involve a vast redistribution within both primary and secondary metabolisms. For instance, an alteration of tricarboxylic acid (TCA) levels can accompany the increase of plant resistance stimulated by various synthetic and natural inducers. Moreover, components of the TCA flux may play a role during the set-up of plant defenses. In this study, we show that citrate and fumarate, two major components of the TCA cycle, are able to induce priming in Arabidopsis against the bacterial pathogen Pseudomonas syringae pv. tomato DC3000. Both citrate and fumarate show no direct antimicrobial effect and therefore enhanced bacterial resistance found in planta is solely based on the induction of the plant defense system. During the priming phase, both TCA intermediates did not induce any changes in transcript abundances of a set of defense genes, and in phytohormones and camalexin levels. However, at early time points of bacterial challenge, citrate induced a stronger salicylic acid and camalexin accumulation followed later by a boost of the jasmonic acid pathway. On the other hand, adaptations of hormonal pathways in fumarate-treated plants were more complex. While jasmonic acid was not induced, mutants impaired in jasmonic acid perception failed to mount a proper priming response induced by fumarate. Our results suggest that changes in carboxylic acid abundances can enhance Arabidopsis defense through complex signaling pathways. This highlights a promising feature of TCAs as novel defense priming agents and calls for further exploration in other pathosystems and stress situations.
Collapse
Affiliation(s)
- Andrea Balmer
- Laboratory of Molecular and Cell Biology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Victoria Pastor
- Metabolic Integration and Cell Signaling Group, Plant Physiology Section, Department of CAMN, Universitat Jaume I, Castellon, Spain
| | - Gaetan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel, Switzerland
| | - Brigitte Mauch-Mani
- Laboratory of Molecular and Cell Biology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
46
|
Wang Y, Berkowitz O, Selinski J, Xu Y, Hartmann A, Whelan J. Stress responsive mitochondrial proteins in Arabidopsis thaliana. Free Radic Biol Med 2018; 122:28-39. [PMID: 29555593 DOI: 10.1016/j.freeradbiomed.2018.03.031] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 03/05/2018] [Accepted: 03/16/2018] [Indexed: 12/27/2022]
Abstract
In the last decade plant mitochondria have emerged as a target, sensor and initiator of signalling cascades to a variety of stress and adverse growth conditions. A combination of various 'omic profiling approaches combined with forward and reverse genetic studies have defined how mitochondria respond to stress and the signalling pathways and regulators of these responses. Reactive oxygen species (ROS)-dependent and -independent pathways, specific metabolites, complex I dysfunction, and the mitochondrial unfolded protein response (UPR) pathway have been proposed to date. These pathways are regulated by kinases (sucrose non-fermenting response like kinase; cyclin dependent protein kinase E 1) and transcription factors from the abscisic acid-related, WRKY and NAC families. A number of independent studies have revealed that these mitochondrial signalling pathways interact with a variety of phytohormone signalling pathways. While this represents significant progress in the last decade there are more pathways to be uncovered. Post-transcriptional/translational regulation is also a likely determinant of the mitochondrial stress response. Unbiased analyses of the expression of genes encoding mitochondrial proteins in a variety of stress conditions reveal a modular network exerting a high degree of anterograde control. As abiotic and biotic stresses have significant impact on the yield of important crops such as rice, wheat and barley we will give an outlook of how knowledge gained in Arabidopsis may help to increase crop production and how emerging technologies may contribute.
Collapse
Affiliation(s)
- Yan Wang
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia.
| | - Jennifer Selinski
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Yue Xu
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Andreas Hartmann
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - James Whelan
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
47
|
Xu X, Ji J, Xu Q, Qi X, Weng Y, Chen X. The major-effect quantitative trait locus CsARN6.1 encodes an AAA ATPase domain-containing protein that is associated with waterlogging stress tolerance by promoting adventitious root formation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:917-930. [PMID: 29315927 DOI: 10.1111/tpj.13819] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/07/2017] [Accepted: 12/15/2017] [Indexed: 05/21/2023]
Abstract
In plants, the formation of hypocotyl-derived adventitious roots (ARs) is an important morphological acclimation to waterlogging stress; however, its genetic basis remains fragmentary. Here, through combined use of bulked segregant analysis-based whole-genome sequencing, SNP haplotyping and fine genetic mapping, we identified a candidate gene for a major-effect QTL, ARN6.1, that was responsible for waterlogging tolerance due to increased AR formation in the cucumber line Zaoer-N. Through multiple lines of evidence, we show that CsARN6.1 is the most possible candidate for ARN6.1 which encodes an AAA ATPase. The increased formation of ARs under waterlogging in Zaoer-N could be attributed to a non-synonymous SNP in the coiled-coil domain region of this gene. CsARN6.1 increases the number of ARs via its ATPase activity. Ectopic expression of CsARN6.1 in Arabidopsis resulted in better rooting ability and lateral root development in transgenic plants. Transgenic cucumber expressing the CsARN6.1Asp allele from Zaoer-N exhibited a significant increase in number of ARs compared with the wild type expressing the allele from Pepino under waterlogging conditions. Taken together, these data support that the AAA ATPase gene CsARN6.1 has an important role in increasing cucumber AR formation and waterlogging tolerance.
Collapse
Affiliation(s)
- Xuewen Xu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, 225009, China
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
| | - Jing Ji
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Qiang Xu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Xiaohua Qi
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Yiqun Weng
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
- USDA-ARS Vegetable Crops Research Unit, 1575 Linden Drive, Madison, WI, 53706, USA
| | - Xuehao Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
48
|
Mansilla N, Racca S, Gras DE, Gonzalez DH, Welchen E. The Complexity of Mitochondrial Complex IV: An Update of Cytochrome c Oxidase Biogenesis in Plants. Int J Mol Sci 2018; 19:ijms19030662. [PMID: 29495437 PMCID: PMC5877523 DOI: 10.3390/ijms19030662] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial respiration is an energy producing process that involves the coordinated action of several protein complexes embedded in the inner membrane to finally produce ATP. Complex IV or Cytochrome c Oxidase (COX) is the last electron acceptor of the respiratory chain, involved in the reduction of O2 to H2O. COX is a multimeric complex formed by multiple structural subunits encoded in two different genomes, prosthetic groups (heme a and heme a3), and metallic centers (CuA and CuB). Tens of accessory proteins are required for mitochondrial RNA processing, synthesis and delivery of prosthetic groups and metallic centers, and for the final assembly of subunits to build a functional complex. In this review, we perform a comparative analysis of COX composition and biogenesis factors in yeast, mammals and plants. We also describe possible external and internal factors controlling the expression of structural proteins and assembly factors at the transcriptional and post-translational levels, and the effect of deficiencies in different steps of COX biogenesis to infer the role of COX in different aspects of plant development. We conclude that COX assembly in plants has conserved and specific features, probably due to the incorporation of a different set of subunits during evolution.
Collapse
Affiliation(s)
- Natanael Mansilla
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina.
| | - Sofia Racca
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina.
| | - Diana E Gras
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina.
| | - Daniel H Gonzalez
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina.
| | - Elina Welchen
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina.
| |
Collapse
|
49
|
Kolli R, Soll J, Carrie C. Plant Mitochondrial Inner Membrane Protein Insertion. Int J Mol Sci 2018; 19:E641. [PMID: 29495281 PMCID: PMC5855863 DOI: 10.3390/ijms19020641] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 02/20/2018] [Accepted: 02/22/2018] [Indexed: 02/06/2023] Open
Abstract
During the biogenesis of the mitochondrial inner membrane, most nuclear-encoded inner membrane proteins are laterally released into the membrane by the TIM23 and the TIM22 machinery during their import into mitochondria. A subset of nuclear-encoded mitochondrial inner membrane proteins and all the mitochondrial-encoded inner membrane proteins use the Oxa machinery-which is evolutionarily conserved from the endosymbiotic bacterial ancestor of mitochondria-for membrane insertion. Compared to the mitochondria from other eukaryotes, plant mitochondria have several unique features, such as a larger genome and a branched electron transport pathway, and are also involved in additional cellular functions such as photorespiration and stress perception. This review focuses on the unique aspects of plant mitochondrial inner membrane protein insertion machinery, which differs from that in yeast and humans, and includes a case study on the biogenesis of Cox2 in yeast, humans, two plant species, and an algal species to highlight lineage-specific similarities and differences. Interestingly, unlike mitochondria of other eukaryotes but similar to bacteria and chloroplasts, plant mitochondria appear to use the Tat machinery for membrane insertion of the Rieske Fe/S protein.
Collapse
Affiliation(s)
- Renuka Kolli
- Department of Biology I, Botany, Ludwig-Maximilians-Universität München, Großhaderner Strasse 2-4, D-82152 Planegg-Martinsried, Germany.
| | - Jürgen Soll
- Department of Biology I, Botany, Ludwig-Maximilians-Universität München, Großhaderner Strasse 2-4, D-82152 Planegg-Martinsried, Germany.
- Munich Center for Integrated Protein Science, CiPSM, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, D-81377 Munich, Germany.
| | - Chris Carrie
- Department of Biology I, Botany, Ludwig-Maximilians-Universität München, Großhaderner Strasse 2-4, D-82152 Planegg-Martinsried, Germany.
| |
Collapse
|
50
|
Convergence of mitochondrial and chloroplastic ANAC017/PAP-dependent retrograde signalling pathways and suppression of programmed cell death. Cell Death Differ 2017; 24:955-960. [PMID: 28498364 DOI: 10.1038/cdd.2017.68] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 03/04/2017] [Accepted: 04/03/2017] [Indexed: 12/23/2022] Open
Abstract
The energy-converting organelles mitochondria and chloroplasts are tightly embedded in cellular metabolism and stress response. To appropriately control organelle function, extensive regulatory mechanisms are at play that involve two-way exchange between the nucleus and mitochondria/chloroplasts. In recent years, our understanding of how mitochondria and chloroplasts provide 'retrograde' feedback to the nucleus, resulting in targeted transcriptional changes, has greatly increased. Nevertheless, mitochondrial and chloroplast retrograde signalling have largely been studied independently, and only few points of interaction have been found or proposed. Through reassessment of recent publications, this perspective proposes that two of the most well-studied retrograde signalling pathways in plants, those mediated by ANAC017 and those mediated by phosphoadenosine phosphate (PAP), are most likely convergent and can direct overlapping genes. Furthermore, at least part of this common retrograde response appears targeted towards suppression of programmed cell death (PCD) triggered by organellar defects. The identified target genes are discussed in light of their roles in PCD suppression and amplifying the signalling cascade via positive-feedback loops. Finally, a mechanism is proposed that may explain why the convergence of PAP/ANAC017-dependent signalling appears capable of suppressing some types of PCD lesions, but not others, based on the subcellular location of the initial PCD-inducing dysfunction.
Collapse
|