1
|
Xie SY, Fang B, Chen J, Zhao N, Lin S, Ma T, Huang L. Comparative analyses of RNA-seq and phytohormone data of sweetpotatoes inoculated with Dickeya dadantii causing bacterial stem and root rot of sweetpotato. BMC PLANT BIOLOGY 2024; 24:1082. [PMID: 39543491 PMCID: PMC11566469 DOI: 10.1186/s12870-024-05774-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024]
Abstract
Bacterial stem and root rot (BSRR) in sweetpotato caused by Dickeya dadantii is one of the ten major diseases of sweetpotatoes in China. However, the molecular mechanism underlying the resistance of sweetpotato to D. dadantii remains unclear. This study adopted a resistance identification assay that conformed Guangshu87 (GS87) as BSRR-resistant and Xinxiang (XX) as susceptible. Compared to XX, GS87 effectively prevented the invasion and dissemination of D. dadantii in planta. An RNA sequencing (RNA-seq) analysis identified 54,844 expressed unigenes between GS87 and XX at four different stages. Further, it revealed that GS87 was more able to regulate the expressions of more unigenes after the inoculation with D. dadantii, including resistance (R) and transcription factors (TF) genes. Moreover, content measurements of disease resistance-related phytohormones showed that both jasmonic acids (JAs) and salicylic acids (SAs) accumulated in D. dadantii-inoculated sweetpotatoes, and JAs may negatively regulate sweetpotato resistance against D. dadantii and accumulated faster than SAs. Meanwhile, determinations of ROS production rate and relevant enzymatic/non-enzymatic activity highlighted the vital roles of reactive oxygen species (ROS) and superoxide dismutase (SOD) in confering GS87 resistance against D. dadantii. Additionally, several hub genes with high connectivity were highlighted through Protein-Protein interaction (PPI) network analysis. In summary, the findings in this study contribute to the understanding of the different responses of resistant and susceptible sweetpotato cultivars to D. dadantii infection, and it also provide the first insight into the relevant candidate genes and phytohormones involved in the resistance of sweetpotato to D. dadantii.
Collapse
Affiliation(s)
- Shu-Yan Xie
- Crops Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Crops Genetics & Improvement of Guangdong Province, Guangzhou, 510640, China
- Present address: Shu-Yan Xie, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences &Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China
| | - Boping Fang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Crops Genetics & Improvement of Guangdong Province, Guangzhou, 510640, China
| | - Jingyi Chen
- Crops Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Crops Genetics & Improvement of Guangdong Province, Guangzhou, 510640, China
| | - Nan Zhao
- Crops Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Crops Genetics & Improvement of Guangdong Province, Guangzhou, 510640, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510000, China
| | - Shuyun Lin
- Crops Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Crops Genetics & Improvement of Guangdong Province, Guangzhou, 510640, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510000, China
| | - Tingting Ma
- Crops Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Crops Genetics & Improvement of Guangdong Province, Guangzhou, 510640, China
- College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Lifei Huang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Crops Genetics & Improvement of Guangdong Province, Guangzhou, 510640, China.
| |
Collapse
|
2
|
Sun Y, Utpal H, Wu Y, Sun Q, Feng Z, Shen Y, Zhang R, Zhou X, Wu J. Comparative genomic and transcriptome analyses of two Pectobacterium brasiliense strains revealed distinct virulence determinants and phenotypic features. Front Microbiol 2024; 15:1362283. [PMID: 38800750 PMCID: PMC11116658 DOI: 10.3389/fmicb.2024.1362283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Potato soft rot caused by Pectobacterium spp. are devastating diseases of potato which cause severe economic losses worldwide. Pectobacterium brasiliense is considered as one of the most virulent species. However, the virulence mechanisms and pathogenicity factors of this strain have not been fully elucidated. Here, through pathogenicity screening, we identified two Pectobacterium brasiliense isolates, SM and DQ, with distinct pathogenicity levels. SM exhibits higher virulence compared to DQ in inducing aerial stem rot, blackleg and tuber soft rot. Our genomic and transcriptomic analyses revealed that SM encodes strain specific genes with regard to plant cell wall degradation and express higher level of genes associated with bacterial motility and secretion systems. Our plate assays verified higher pectinase, cellulase, and protease activities, as well as fast swimming and swarming motility in SM. Importantly, a unique endoglucanase S specific to SM was identified. Expression of this cellulase in DQ greatly enhances its virulence compared to wild type strain. Our study sheds light on possible determinants causing different pathogenicity of Pectobacterium brasiliense species with close evolutionary distance and provides new insight into the direction of genome evolution in response to host variation and environmental stimuli.
Collapse
Affiliation(s)
- Yue Sun
- Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Handique Utpal
- Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Yajuan Wu
- Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Qinghua Sun
- Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Zhiwen Feng
- Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | | | - Ruofang Zhang
- Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Xiaofeng Zhou
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, China
| | - Jian Wu
- Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot, Inner Mongolia, China
| |
Collapse
|
3
|
Zhu J, Moreno-Pérez A, Coaker G. Understanding plant pathogen interactions using spatial and single-cell technologies. Commun Biol 2023; 6:814. [PMID: 37542114 PMCID: PMC10403533 DOI: 10.1038/s42003-023-05156-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/18/2023] [Indexed: 08/06/2023] Open
Abstract
Plants are in contact with diverse pathogens and microorganisms. Intense investigation over the last 30 years has resulted in the identification of multiple immune receptors in model and crop species as well as signaling overlap in surface-localized and intracellular immune receptors. However, scientists still have a limited understanding of how plants respond to diverse pathogens with spatial and cellular resolution. Recent advancements in single-cell, single-nucleus and spatial technologies can now be applied to plant-pathogen interactions. Here, we outline the current state of these technologies and highlight outstanding biological questions that can be addressed in the future.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Plant Pathology, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Alba Moreno-Pérez
- Department of Plant Pathology, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
4
|
Borodušķe A, Ķibilds J, Fridmanis D, Gudrā D, Ustinova M, Seņkovs M, Nikolajeva V. Does peptide-nucleic acid (PNA) clamping of host plant DNA benefit ITS1 amplicon-based characterization of the fungal endophyte community? FUNGAL ECOL 2023. [DOI: 10.1016/j.funeco.2022.101181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
5
|
Nobori T, Cao Y, Entila F, Dahms E, Tsuda Y, Garrido‐Oter R, Tsuda K. Dissecting the cotranscriptome landscape of plants and their microbiota. EMBO Rep 2022; 23:e55380. [PMID: 36219690 PMCID: PMC9724666 DOI: 10.15252/embr.202255380] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/07/2022] Open
Abstract
Interactions between plants and neighboring microbial species are fundamental elements that collectively determine the structure and function of the plant microbiota. However, the molecular basis of such interactions is poorly characterized. Here, we colonize Arabidopsis leaves with nine plant-associated bacteria from all major phyla of the plant microbiota and profile cotranscriptomes of plants and bacteria six hours after inoculation. We detect both common and distinct cotranscriptome signatures among plant-commensal pairs. In planta responses of commensals are similar to those of a disarmed pathogen characterized by the suppression of genes involved in general metabolism in contrast to a virulent pathogen. We identify genes that are enriched in the genome of plant-associated bacteria and induced in planta, which may be instrumental for bacterial adaptation to the host environment and niche separation. This study provides insights into how plants discriminate among bacterial strains and lays the foundation for in-depth mechanistic dissection of plant-microbiota interactions.
Collapse
Affiliation(s)
- Tatsuya Nobori
- Department of Plant Microbe InteractionsMax Planck Institute for Plant Breeding ResearchCologneGermany
- Salk Institute for Biological StudiesLa JollaCAUSA
| | - Yu Cao
- Department of Plant Microbe InteractionsMax Planck Institute for Plant Breeding ResearchCologneGermany
| | - Frederickson Entila
- Department of Plant Microbe InteractionsMax Planck Institute for Plant Breeding ResearchCologneGermany
| | - Eik Dahms
- Department of Plant Microbe InteractionsMax Planck Institute for Plant Breeding ResearchCologneGermany
| | - Yayoi Tsuda
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Lab of Plant Pathology, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Shenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityWuhanChina
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
- Department of Plant Microbe InteractionsMax Planck Institute for Plant Breeding ResearchCologneGermany
| | - Ruben Garrido‐Oter
- Department of Plant Microbe InteractionsMax Planck Institute for Plant Breeding ResearchCologneGermany
- Cluster of Excellence on Plant SciencesDüsseldorfGermany
| | - Kenichi Tsuda
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Lab of Plant Pathology, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Shenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityWuhanChina
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
- Department of Plant Microbe InteractionsMax Planck Institute for Plant Breeding ResearchCologneGermany
| |
Collapse
|
6
|
González-Plaza JJ, Furlan C, Rijavec T, Lapanje A, Barros R, Tamayo-Ramos JA, Suarez-Diez M. Advances in experimental and computational methodologies for the study of microbial-surface interactions at different omics levels. Front Microbiol 2022; 13:1006946. [PMID: 36519168 PMCID: PMC9744117 DOI: 10.3389/fmicb.2022.1006946] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/02/2022] [Indexed: 08/31/2023] Open
Abstract
The study of the biological response of microbial cells interacting with natural and synthetic interfaces has acquired a new dimension with the development and constant progress of advanced omics technologies. New methods allow the isolation and analysis of nucleic acids, proteins and metabolites from complex samples, of interest in diverse research areas, such as materials sciences, biomedical sciences, forensic sciences, biotechnology and archeology, among others. The study of the bacterial recognition and response to surface contact or the diagnosis and evolution of ancient pathogens contained in archeological tissues require, in many cases, the availability of specialized methods and tools. The current review describes advances in in vitro and in silico approaches to tackle existing challenges (e.g., low-quality sample, low amount, presence of inhibitors, chelators, etc.) in the isolation of high-quality samples and in the analysis of microbial cells at genomic, transcriptomic, proteomic and metabolomic levels, when present in complex interfaces. From the experimental point of view, tailored manual and automatized methodologies, commercial and in-house developed protocols, are described. The computational level focuses on the discussion of novel tools and approaches designed to solve associated issues, such as sample contamination, low quality reads, low coverage, etc. Finally, approaches to obtain a systems level understanding of these complex interactions by integrating multi omics datasets are presented.
Collapse
Affiliation(s)
- Juan José González-Plaza
- International Research Centre in Critical Raw Materials-ICCRAM, University of Burgos, Burgos, Spain
| | - Cristina Furlan
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, Netherlands
| | - Tomaž Rijavec
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Aleš Lapanje
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Rocío Barros
- International Research Centre in Critical Raw Materials-ICCRAM, University of Burgos, Burgos, Spain
| | | | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
7
|
Liu YH, Song YH, Ruan YL. Sugar conundrum in plant-pathogen interactions: roles of invertase and sugar transporters depend on pathosystems. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1910-1925. [PMID: 35104311 PMCID: PMC8982439 DOI: 10.1093/jxb/erab562] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/25/2021] [Indexed: 06/12/2023]
Abstract
It has been increasingly recognized that CWIN (cell wall invertase) and sugar transporters including STP (sugar transport protein) and SWEET (sugar will eventually be exported transporters) play important roles in plant-pathogen interactions. However, the information available in the literature comes from diverse systems and often yields contradictory findings and conclusions. To solve this puzzle, we provide here a comprehensive assessment of the topic. Our analyses revealed that the regulation of plant-microbe interactions by CWIN, SWEET, and STP is conditioned by the specific pathosystems involved. The roles of CWINs in plant resistance are largely determined by the lifestyle of pathogens (biotrophs versus necrotrophs or hemibiotrophs), possibly through CWIN-mediated salicylic acid or jasmonic acid signaling and programmed cell death pathways. The up-regulation of SWEETs and STPs may enhance or reduce plant resistance, depending on the cellular sites from which pathogens acquire sugars from the host cells. Finally, plants employ unique mechanisms to defend against viral infection, in part through a sugar-based regulation of plasmodesmatal development or aperture. Our appraisal further calls for attention to be paid to the involvement of microbial sugar metabolism and transport in plant-pathogen interactions, which is an integrated but overlooked component of such interactions.
Collapse
Affiliation(s)
- Yong-Hua Liu
- School of Horticulture, Hainan University, Haikou, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Haikou, China
| | - You-Hong Song
- Innovation Cluster of Crop Molecular Biology and Breeding, Anhui Agricultural University, Hefei, China
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Yong-Ling Ruan
- Innovation Cluster of Crop Molecular Biology and Breeding, Anhui Agricultural University, Hefei, China
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
8
|
Hawkes CV, Kjøller R, Raaijmakers JM, Riber L, Christensen S, Rasmussen S, Christensen JH, Dahl AB, Westergaard JC, Nielsen M, Brown-Guedira G, Hestbjerg Hansen L. Extension of Plant Phenotypes by the Foliar Microbiome. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:823-846. [PMID: 34143648 DOI: 10.1146/annurev-arplant-080620-114342] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The foliar microbiome can extend the host plant phenotype by expanding its genomic and metabolic capabilities. Despite increasing recognition of the importance of the foliar microbiome for plant fitness, stress physiology, and yield, the diversity, function, and contribution of foliar microbiomes to plant phenotypic traits remain largely elusive. The recent adoption of high-throughput technologies is helping to unravel the diversityand spatiotemporal dynamics of foliar microbiomes, but we have yet to resolve their functional importance for plant growth, development, and ecology. Here, we focus on the processes that govern the assembly of the foliar microbiome and the potential mechanisms involved in extended plant phenotypes. We highlight knowledge gaps and provide suggestions for new research directions that can propel the field forward. These efforts will be instrumental in maximizing the functional potential of the foliar microbiome for sustainable crop production.
Collapse
Affiliation(s)
- Christine V Hawkes
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA;
| | - Rasmus Kjøller
- Department of Biology, University of Copenhagen, 2100 Copenhagen Ø, Denmark;
| | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology, 6708 PB Wageningen, The Netherlands;
| | - Leise Riber
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark; , , , ,
| | - Svend Christensen
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark; , , , ,
| | - Simon Rasmussen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark;
| | - Jan H Christensen
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark; , , , ,
| | - Anders Bjorholm Dahl
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Lyngby, Denmark;
| | - Jesper Cairo Westergaard
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark; , , , ,
| | - Mads Nielsen
- Department of Computer Science, University of Copenhagen, 2100 Copenhagen Ø, Denmark;
| | - Gina Brown-Guedira
- Plant Science Research Unit, USDA Agricultural Research Service and Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA;
| | - Lars Hestbjerg Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark; , , , ,
| |
Collapse
|
9
|
Bradyrhizobium diazoefficiens USDA110 Nodulation of Aeschynomene afraspera Is Associated with Atypical Terminal Bacteroid Differentiation and Suboptimal Symbiotic Efficiency. mSystems 2021; 6:6/3/e01237-20. [PMID: 33975972 PMCID: PMC8125078 DOI: 10.1128/msystems.01237-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Legume-rhizobium symbiosis is a major ecological process in the nitrogen cycle, responsible for the main input of fixed nitrogen into the biosphere. The efficiency of this symbiosis relies on the coevolution of the partners. Legume plants can form root organs called nodules where they house intracellular symbiotic rhizobium bacteria. Within nodule cells, rhizobia differentiate into bacteroids, which fix nitrogen for the benefit of the plant. Depending on the combination of host plants and rhizobial strains, the output of rhizobium-legume interactions varies from nonfixing associations to symbioses that are highly beneficial for the plant. Bradyrhizobium diazoefficiens USDA110 was isolated as a soybean symbiont, but it can also establish a functional symbiotic interaction with Aeschynomene afraspera. In contrast to soybean, A. afraspera triggers terminal bacteroid differentiation, a process involving bacterial cell elongation, polyploidy, and increased membrane permeability, leading to a loss of bacterial viability while plants increase their symbiotic benefit. A combination of plant metabolomics, bacterial proteomics, and transcriptomics along with cytological analyses were used to study the physiology of USDA110 bacteroids in these two host plants. We show that USDA110 establishes a poorly efficient symbiosis with A. afraspera despite the full activation of the bacterial symbiotic program. We found molecular signatures of high levels of stress in A. afraspera bacteroids, whereas those of terminal bacteroid differentiation were only partially activated. Finally, we show that in A. afraspera, USDA110 bacteroids undergo atypical terminal differentiation hallmarked by the disconnection of the canonical features of this process. This study pinpoints how a rhizobium strain can adapt its physiology to a new host and cope with terminal differentiation when it did not coevolve with such a host. IMPORTANCE Legume-rhizobium symbiosis is a major ecological process in the nitrogen cycle, responsible for the main input of fixed nitrogen into the biosphere. The efficiency of this symbiosis relies on the coevolution of the partners. Some, but not all, legume plants optimize their return on investment in the symbiosis by imposing on their microsymbionts a terminal differentiation program that increases their symbiotic efficiency but imposes a high level of stress and drastically reduces their viability. We combined multi-omics with physiological analyses to show that the symbiotic couple formed by Bradyrhizobium diazoefficiens USDA110 and Aeschynomene afraspera, in which the host and symbiont did not evolve together, is functional but displays a low symbiotic efficiency associated with a disconnection of terminal bacteroid differentiation features.
Collapse
|
10
|
Aghdam SA, Brown AMV. Deep learning approaches for natural product discovery from plant endophytic microbiomes. ENVIRONMENTAL MICROBIOME 2021; 16:6. [PMID: 33758794 PMCID: PMC7972023 DOI: 10.1186/s40793-021-00375-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/21/2021] [Indexed: 05/10/2023]
Abstract
Plant microbiomes are not only diverse, but also appear to host a vast pool of secondary metabolites holding great promise for bioactive natural products and drug discovery. Yet, most microbes within plants appear to be uncultivable, and for those that can be cultivated, their metabolic potential lies largely hidden through regulatory silencing of biosynthetic genes. The recent explosion of powerful interdisciplinary approaches, including multi-omics methods to address multi-trophic interactions and artificial intelligence-based computational approaches to infer distribution of function, together present a paradigm shift in high-throughput approaches to natural product discovery from plant-associated microbes. Arguably, the key to characterizing and harnessing this biochemical capacity depends on a novel, systematic approach to characterize the triggers that turn on secondary metabolite biosynthesis through molecular or genetic signals from the host plant, members of the rich 'in planta' community, or from the environment. This review explores breakthrough approaches for natural product discovery from plant microbiomes, emphasizing the promise of deep learning as a tool for endophyte bioprospecting, endophyte biochemical novelty prediction, and endophyte regulatory control. It concludes with a proposed pipeline to harness global databases (genomic, metabolomic, regulomic, and chemical) to uncover and unsilence desirable natural products. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1186/s40793-021-00375-0.
Collapse
Affiliation(s)
- Shiva Abdollahi Aghdam
- Department of Biological Sciences, Texas Tech University, 2901 Main St, Lubbock, TX 79409 USA
| | - Amanda May Vivian Brown
- Department of Biological Sciences, Texas Tech University, 2901 Main St, Lubbock, TX 79409 USA
| |
Collapse
|
11
|
Liu Y, Kong D, Wu HL, Ling HQ. Iron in plant-pathogen interactions. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2114-2124. [PMID: 33161430 DOI: 10.1093/jxb/eraa516] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/31/2020] [Indexed: 06/11/2023]
Abstract
Iron is an essential element for most organisms. As an indispensable co-factor of many enzymes, iron is involved in various crucial metabolic processes that are required for the survival of plants and pathogens. Conversely, excessive iron produces highly active reactive oxygen species, which are toxic to the cells of plants and pathogens. Therefore, plants and pathogens have evolved sophisticated mechanisms to modulate iron status at a moderate level for maintaining their fitness. Over the past decades, many efforts have been made to reveal these mechanisms, and some progress has been made. In this review, we describe recent advances in understanding the roles of iron in plant-pathogen interactions and propose prospects for future studies.
Collapse
Affiliation(s)
- Yi Liu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Danyu Kong
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
| | - Hui-Lan Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Hong-Qing Ling
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Czajkowski R, Fikowicz-Krosko J, Maciag T, Rabalski L, Czaplewska P, Jafra S, Richert M, Krychowiak-Maśnicka M, Hugouvieux-Cotte-Pattat N. Genome-Wide Identification of Dickeya solani Transcriptional Units Up-Regulated in Response to Plant Tissues From a Crop-Host Solanum tuberosum and a Weed-Host Solanum dulcamara. FRONTIERS IN PLANT SCIENCE 2020; 11:580330. [PMID: 32983224 PMCID: PMC7492773 DOI: 10.3389/fpls.2020.580330] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 08/18/2020] [Indexed: 05/25/2023]
Abstract
Dickeya solani is a Gram-negative bacterium able to cause disease symptoms on a variety of crop and ornamental plants worldwide. Weeds including Solanum dulcamara (bittersweet nightshade) growing near agricultural fields have been reported to support populations of soft rot bacteria in natural settings. However, little is known about the specific interaction of D. solani with such weed plants that may contribute to its success as an agricultural pathogen. The aim of this work was to assess the interaction of D. solani with its crop plant (Solanum tuberosum) and an alternative (S. dulcamara) host plant. From a collection of 10,000 Tn5 transposon mutants of D. solani IPO2222 carrying an inducible, promotorless gusA reporter gene, 210 were identified that exhibited plant tissue-dependent expression of the gene/operon into which the Tn5 insertion had occurred. Thirteen Tn5 mutants exhibiting the greatest plant tissue induction of such transcriptional units in S. tuberosum or S. dulcamara as measured by qRT-PCR were assessed for plant host colonization, virulence, and ability to macerate plant tissue, as well as phenotypes likely to contribute to the ecological fitness of D. solani, including growth rate, carbon and nitrogen source utilization, motility, chemotaxis toward plant extracts, biofilm formation, growth under anaerobic conditions and quorum sensing. These 13 transcriptional units encode proteins involved in bacterial interactions with plants, with functions linked to cell envelope structure, chemotaxis and carbon metabolism. The selected 13 genes/operons were differentially expressed in, and thus contributed preferentially to D. solani fitness in potato and/or S. dulcamara stem, leaf, and root tissues.
Collapse
Affiliation(s)
- Robert Czajkowski
- Division of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Gdansk, Poland
| | - Jakub Fikowicz-Krosko
- Division of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Gdansk, Poland
| | - Tomasz Maciag
- Division of Biological Plant Protection, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Gdansk, Poland
| | - Lukasz Rabalski
- Division of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Gdansk, Poland
| | - Paulina Czaplewska
- Laboratory of Mass Spectrometry - Core Facility Laboratories, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Gdansk, Poland
| | - Sylwia Jafra
- Division of Biological Plant Protection, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Gdansk, Poland
| | - Malwina Richert
- Laboratory of Electron Microscopy, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Marta Krychowiak-Maśnicka
- Division of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Gdansk, Poland
| | - Nicole Hugouvieux-Cotte-Pattat
- Microbiology Adaptation and Pathogenesis, CNRS UMR5240, University of Lyon, University Claude Bernard Lyon 1, INSA Lyon, Villeurbanne, France
| |
Collapse
|
13
|
Carrión VJ, Perez-Jaramillo J, Cordovez V, Tracanna V, de Hollander M, Ruiz-Buck D, Mendes LW, van Ijcken WFJ, Gomez-Exposito R, Elsayed SS, Mohanraju P, Arifah A, van der Oost J, Paulson JN, Mendes R, van Wezel GP, Medema MH, Raaijmakers JM. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. Science 2020; 366:606-612. [PMID: 31672892 DOI: 10.1126/science.aaw9285] [Citation(s) in RCA: 476] [Impact Index Per Article: 95.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 07/21/2019] [Accepted: 09/17/2019] [Indexed: 01/20/2023]
Abstract
Microorganisms living inside plants can promote plant growth and health, but their genomic and functional diversity remain largely elusive. Here, metagenomics and network inference show that fungal infection of plant roots enriched for Chitinophagaceae and Flavobacteriaceae in the root endosphere and for chitinase genes and various unknown biosynthetic gene clusters encoding the production of nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs). After strain-level genome reconstruction, a consortium of Chitinophaga and Flavobacterium was designed that consistently suppressed fungal root disease. Site-directed mutagenesis then revealed that a previously unidentified NRPS-PKS gene cluster from Flavobacterium was essential for disease suppression by the endophytic consortium. Our results highlight that endophytic root microbiomes harbor a wealth of as yet unknown functional traits that, in concert, can protect the plant inside out.
Collapse
Affiliation(s)
- Víctor J Carrión
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, Netherlands.,Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, Netherlands
| | - Juan Perez-Jaramillo
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, Netherlands.,PECET, University of Antioquia, Medellín, Antioquia 050010, Colombia
| | - Viviane Cordovez
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, Netherlands.,Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, Netherlands
| | - Vittorio Tracanna
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, Netherlands
| | - Mattias de Hollander
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, Netherlands
| | - Daniel Ruiz-Buck
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, Netherlands
| | - Lucas W Mendes
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture (CENA), University of Sao Paulo (USP), Piracicaba, Brazil
| | - Wilfred F J van Ijcken
- Erasmus MC, University Medical Center Rotterdam, Department of Cell Biology, Center for Biomics, 3025 CN Rotterdam, Netherlands
| | - Ruth Gomez-Exposito
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, Netherlands.,Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, Netherlands
| | - Somayah S Elsayed
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, Netherlands
| | - Prarthana Mohanraju
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, Netherlands
| | - Adini Arifah
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, Netherlands
| | - Joseph N Paulson
- Department of Biostatistics, Product Development, Genentech Inc., South San Francisco, CA 94080, USA
| | - Rodrigo Mendes
- Laboratory of Environmental Microbiology, Brazilian Agricultural Research Corporation, Embrapa Environment, Rodovia SP 340, Km 127.5, 13820-000 Jaguariúna, Brazil
| | - Gilles P van Wezel
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, Netherlands.,Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, Netherlands
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, Netherlands.
| | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, Netherlands. .,Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, Netherlands
| |
Collapse
|
14
|
Liu L, Gueguen-Chaignon V, Gonçalves IR, Rascle C, Rigault M, Dellagi A, Loisel E, Poussereau N, Rodrigue A, Terradot L, Condemine G. A secreted metal-binding protein protects necrotrophic phytopathogens from reactive oxygen species. Nat Commun 2019; 10:4853. [PMID: 31649262 PMCID: PMC6813330 DOI: 10.1038/s41467-019-12826-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/27/2019] [Indexed: 11/13/2022] Open
Abstract
Few secreted proteins involved in plant infection common to necrotrophic bacteria, fungi and oomycetes have been identified except for plant cell wall-degrading enzymes. Here we study a family of iron-binding proteins that is present in Gram-negative and Gram-positive bacteria, fungi, oomycetes and some animals. Homolog proteins in the phytopathogenic bacterium Dickeya dadantii (IbpS) and the fungal necrotroph Botrytis cinerea (BcIbp) are involved in plant infection. IbpS is secreted, can bind iron and copper, and protects the bacteria against H2O2-induced death. Its 1.7 Å crystal structure reveals a classical Venus Fly trap fold that forms dimers in solution and in the crystal. We propose that secreted Ibp proteins binds exogenous metals and thus limit intracellular metal accumulation and ROS formation in the microorganisms. The authors identify a family of iron-binding proteins that is present in phytopathogenic bacteria, fungi and oomycetes. Some of these proteins are secreted, bind metals, protect the pathogen from H2O2-induced death, and are involved in plant infection.
Collapse
Affiliation(s)
- Lulu Liu
- Microbiologie Adaptation et Pathogénie, UMR 5240 CNRS, Université de Lyon, INSA de Lyon, 69622, Villeurbanne, France
| | | | - Isabelle R Gonçalves
- Microbiologie Adaptation et Pathogénie, UMR 5240 CNRS, Université de Lyon, INSA de Lyon, 69622, Villeurbanne, France
| | - Christine Rascle
- Microbiologie Adaptation et Pathogénie, UMR 5240 CNRS, Université de Lyon, INSA de Lyon, 69622, Villeurbanne, France
| | - Martine Rigault
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, 78026, Versailles, France
| | - Alia Dellagi
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, 78026, Versailles, France
| | - Elise Loisel
- Microbiologie Adaptation et Pathogénie, UMR 5240 CNRS, Université de Lyon, INSA de Lyon, 69622, Villeurbanne, France
| | - Nathalie Poussereau
- Microbiologie Adaptation et Pathogénie, UMR 5240 CNRS, Université de Lyon, INSA de Lyon, 69622, Villeurbanne, France
| | - Agnès Rodrigue
- Microbiologie Adaptation et Pathogénie, UMR 5240 CNRS, Université de Lyon, INSA de Lyon, 69622, Villeurbanne, France
| | - Laurent Terradot
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS, Institut de Biologie et Chimie des Protéines, Université de Lyon, 69367, Lyon, France.
| | - Guy Condemine
- Microbiologie Adaptation et Pathogénie, UMR 5240 CNRS, Université de Lyon, INSA de Lyon, 69622, Villeurbanne, France.
| |
Collapse
|
15
|
From Intracellular Bacteria to Differentiated Bacteroids: Transcriptome and Metabolome Analysis in Aeschynomene Nodules Using the Bradyrhizobium sp. Strain ORS285 bclA Mutant. J Bacteriol 2019; 201:JB.00191-19. [PMID: 31182497 DOI: 10.1128/jb.00191-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/31/2019] [Indexed: 01/08/2023] Open
Abstract
Soil bacteria called rhizobia trigger the formation of root nodules on legume plants. The rhizobia infect these symbiotic organs and adopt an intracellular lifestyle within the nodule cells, where they differentiate into nitrogen-fixing bacteroids. Several legume lineages force their symbionts into an extreme cellular differentiation, comprising cell enlargement and genome endoreduplication. The antimicrobial peptide transporter BclA is a major determinant of this process in Bradyrhizobium sp. strain ORS285, a symbiont of Aeschynomene spp. In the absence of BclA, the bacteria proceed until the intracellular infection of nodule cells, but they cannot differentiate into enlarged polyploid and functional bacteroids. Thus, the bclA nodule bacteria constitute an intermediate stage between the free-living soil bacteria and the nitrogen-fixing bacteroids. Metabolomics on whole nodules of Aeschynomene afraspera and Aeschynomene indica infected with the wild type or the bclA mutant revealed 47 metabolites that differentially accumulated concomitantly with bacteroid differentiation. Bacterial transcriptome analysis of these nodules demonstrated that the intracellular settling of the rhizobia in the symbiotic nodule cells is accompanied by a first transcriptome switch involving several hundred upregulated and downregulated genes and a second switch accompanying the bacteroid differentiation, involving fewer genes but ones that are expressed to extremely elevated levels. The transcriptomes further suggested a dynamic role for oxygen and redox regulation of gene expression during nodule formation and a nonsymbiotic function of BclA. Together, our data uncover the metabolic and gene expression changes that accompany the transition from intracellular bacteria into differentiated nitrogen-fixing bacteroids.IMPORTANCE Legume-rhizobium symbiosis is a major ecological process, fueling the biogeochemical nitrogen cycle with reduced nitrogen. It also represents a promising strategy to reduce the use of chemical nitrogen fertilizers in agriculture, thereby improving its sustainability. This interaction leads to the intracellular accommodation of rhizobia within plant cells of symbiotic organs, where they differentiate into nitrogen-fixing bacteroids. In specific legume clades, this differentiation process requires the bacterial transporter BclA to counteract antimicrobial peptides produced by the host. Transcriptome analysis of Bradyrhizobium wild-type and bclA mutant bacteria in culture and in symbiosis with Aeschynomene host plants dissected the bacterial transcriptional response in distinct phases and highlighted functions of the transporter in the free-living stage of the bacterial life cycle.
Collapse
|
16
|
Royet K, Parisot N, Rodrigue A, Gueguen E, Condemine G. Identification by Tn-seq of Dickeya dadantii genes required for survival in chicory plants. MOLECULAR PLANT PATHOLOGY 2019; 20:287-306. [PMID: 30267562 PMCID: PMC6637903 DOI: 10.1111/mpp.12754] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The identification of the virulence factors of plant-pathogenic bacteria has relied on the testing of individual mutants on plants, a time-consuming process. Transposon sequencing (Tn-seq) is a very powerful method for the identification of the genes required for bacterial growth in their host. We used this method in a soft-rot pathogenic bacterium to identify the genes required for the multiplication of Dickeya dadantii in chicory. About 100 genes were identified showing decreased or increased fitness in the plant. Most had no previously attributed role in plant-bacterium interactions. Following our screening, in planta competition assays confirmed that the uridine monophosphate biosynthesis pathway and the purine biosynthesis pathway were essential to the survival of D. dadantii in the plant, as the mutants ∆carA, ∆purF, ∆purL, ∆guaB and ∆pyrE were unable to survive in the plant in contrast with the wild-type (WT) bacterium. This study also demonstrated that the biosynthetic pathways of leucine, cysteine and lysine were essential for bacterial survival in the plant and that RsmC and GcpA were important in the regulation of the infection process, as the mutants ∆rsmC and ∆gcpA were hypervirulent. Finally, our study showed that D. dadantii flagellin was glycosylated and that this modification conferred fitness to the bacterium during plant infection. Assay by this method of the large collections of environmental pathogenic strains now available will allow an easy and rapid identification of new virulence factors.
Collapse
Affiliation(s)
- Kévin Royet
- University of LyonUniversité Lyon 1, INSA de Lyon, CNRS UMR 5240 Microbiologie Adaptation et PathogénieF‐69622VilleurbanneFrance
| | - Nicolas Parisot
- University of LyonINSA‐Lyon, INRA, BF2I, UMR0203F‐69621VilleurbanneFrance
| | - Agnès Rodrigue
- University of LyonUniversité Lyon 1, INSA de Lyon, CNRS UMR 5240 Microbiologie Adaptation et PathogénieF‐69622VilleurbanneFrance
| | - Erwan Gueguen
- University of LyonUniversité Lyon 1, INSA de Lyon, CNRS UMR 5240 Microbiologie Adaptation et PathogénieF‐69622VilleurbanneFrance
| | - Guy Condemine
- University of LyonUniversité Lyon 1, INSA de Lyon, CNRS UMR 5240 Microbiologie Adaptation et PathogénieF‐69622VilleurbanneFrance
| |
Collapse
|
17
|
Raoul des Essarts Y, Pédron J, Blin P, Van Dijk E, Faure D, Van Gijsegem F. Common and distinctive adaptive traits expressed in
Dickeya dianthicola
and
Dickeya solani
pathogens when exploiting potato plant host. Environ Microbiol 2019; 21:1004-1018. [DOI: 10.1111/1462-2920.14519] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 12/19/2018] [Accepted: 12/26/2018] [Indexed: 01/31/2023]
Affiliation(s)
- Yannick Raoul des Essarts
- Institut for Integrative Biology of the Cell (I2BC)CNRS CEA Univ. Paris‐Sud, Université Paris‐Saclay Avenue de la Terrasse, 91198, Gif‐sur‐Yvette Cedex France
- Research & DevelopmentPromotion of Seed Potatoes ‐ French Federation of Seed Potato Growers (RD3PT‐FN3PT) 43‐45 Rue de Naples, 75008, Paris France
| | - Jacques Pédron
- Sorbonne Université, INRA, Institute of Ecology and Environmental sciences‐Paris 4 place Jussieu, F‐75252, Paris France
| | - Pauline Blin
- Institut for Integrative Biology of the Cell (I2BC)CNRS CEA Univ. Paris‐Sud, Université Paris‐Saclay Avenue de la Terrasse, 91198, Gif‐sur‐Yvette Cedex France
| | - Erwin Van Dijk
- Institut for Integrative Biology of the Cell (I2BC)CNRS CEA Univ. Paris‐Sud, Université Paris‐Saclay Avenue de la Terrasse, 91198, Gif‐sur‐Yvette Cedex France
| | - Denis Faure
- Institut for Integrative Biology of the Cell (I2BC)CNRS CEA Univ. Paris‐Sud, Université Paris‐Saclay Avenue de la Terrasse, 91198, Gif‐sur‐Yvette Cedex France
| | - Frédérique Van Gijsegem
- Sorbonne Université, INRA, Institute of Ecology and Environmental sciences‐Paris 4 place Jussieu, F‐75252, Paris France
| |
Collapse
|
18
|
Lovelace AH, Smith A, Kvitko BH. Pattern-Triggered Immunity Alters the Transcriptional Regulation of Virulence-Associated Genes and Induces the Sulfur Starvation Response in Pseudomonas syringae pv. tomato DC3000. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:750-765. [PMID: 29460676 DOI: 10.1094/mpmi-01-18-0008-r] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Pattern-triggered immunity (PTI) can confer broad defense against diverse microbes and pathogens with disparate lifestyles through the detection of microbial extracellular signatures by surface-exposed pattern recognition receptors. However, unlike recognition of pathogen effectors by cytosolic resistance proteins, PTI is typically not associated with a host-cell programmed cell death response. Although host PTI signaling has been extensively studied, the mechanisms by which it restricts microbial colonization are poorly understood. We sought to gain insight into the mechanisms of PTI action by using bacterial transcriptomics analysis during exposure to PTI. Here, we describe a method for bacterial cell extraction from inoculated leaves that was used to analyze a time course of genome-wide transcriptional responses in the pathogen Pseudomonas syringae pv. tomato DC3000 during early naïve host infection and exposure to pre-induced PTI in Arabidopsis thaliana. Our analysis revealed early transcriptional regulation of important bacterial metabolic processes and host interaction pathways. We observed peak induction of P. syringae virulence genes at 3 h postinoculation and that exposure to PTI was associated with significant reductions in the expression of virulence genes. We also observed the induction of P. syringae sulfur starvation response genes such as sulfate and sulfonate importers only during exposure to PTI.
Collapse
Affiliation(s)
- Amelia H Lovelace
- 1 Department of Plant Pathology, University of Georgia, Athens, GA, U.S.A.; and
| | - Amy Smith
- 1 Department of Plant Pathology, University of Georgia, Athens, GA, U.S.A.; and
| | - Brian H Kvitko
- 1 Department of Plant Pathology, University of Georgia, Athens, GA, U.S.A.; and
- 2 The Plant Center, University of Georgia
| |
Collapse
|
19
|
Nobori T, Mine A, Tsuda K. Molecular networks in plant-pathogen holobiont. FEBS Lett 2018; 592:1937-1953. [PMID: 29714033 DOI: 10.1002/1873-3468.13071] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/13/2018] [Accepted: 04/23/2018] [Indexed: 12/31/2022]
Abstract
Plant immune receptors enable detection of a multitude of microbes including pathogens. The recognition of microbes activates various plant signaling pathways, such as those mediated by phytohormones. Over the course of coevolution with microbes, plants have expanded their repertoire of immune receptors and signaling components, resulting in highly interconnected plant immune networks. These immune networks enable plants to appropriately respond to different types of microbes and to coordinate immune responses with developmental programs and environmental stress responses. However, the interconnectivity in plant immune networks is exploited by microbial pathogens to promote pathogen fitness in plants. Analogous to plant immune networks, virulence-related pathways in bacterial pathogens are also interconnected. Accumulating evidence implies that some plant-derived compounds target bacterial virulence networks. Thus, the plant immune and bacterial virulence networks intimately interact with each other. Here, we highlight recent insights into the structures of the plant immune and bacterial virulence networks and the interactions between them. We propose that small molecules derived from plants and/or bacterial pathogens connect the two molecular networks, forming supernetworks in the plant-bacterial pathogen holobiont.
Collapse
Affiliation(s)
- Tatsuya Nobori
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Akira Mine
- Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Kusatsu, Japan.,JST, PRESTO, Kawaguchi-shi, Japan
| | - Kenichi Tsuda
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|
20
|
Abstract
Plant pathogens can cause serious diseases that impact global agriculture. The plant innate immunity, when fully activated, can halt pathogen growth in plants. Despite extensive studies into the molecular and genetic bases of plant immunity against pathogens, the influence of plant immunity in global pathogen metabolism to restrict pathogen growth is poorly understood. Here, we developed RNA sequencing pipelines for analyzing bacterial transcriptomes in planta and determined high-resolution transcriptome patterns of the foliar bacterial pathogen Pseudomonas syringae in Arabidopsis thaliana with a total of 27 combinations of plant immunity mutants and bacterial strains. Bacterial transcriptomes were analyzed at 6 h post infection to capture early effects of plant immunity on bacterial processes and to avoid secondary effects caused by different bacterial population densities in planta We identified specific "immune-responsive" bacterial genes and processes, including those that are activated in susceptible plants and suppressed by plant immune activation. Expression patterns of immune-responsive bacterial genes at the early time point were tightly linked to later bacterial growth levels in different host genotypes. Moreover, we found that a bacterial iron acquisition pathway is commonly suppressed by multiple plant immune-signaling pathways. Overexpression of a P. syringae sigma factor gene involved in iron regulation and other processes partially countered bacterial growth restriction during the plant immune response triggered by AvrRpt2. Collectively, this study defines the effects of plant immunity on the transcriptome of a bacterial pathogen and sheds light on the enigmatic mechanisms of bacterial growth inhibition during the plant immune response.
Collapse
|
21
|
Pédron J, Chapelle E, Alunni B, Van Gijsegem F. Transcriptome analysis of the Dickeya dadantii PecS regulon during the early stages of interaction with Arabidopsis thaliana. MOLECULAR PLANT PATHOLOGY 2018; 19:647-663. [PMID: 28295994 PMCID: PMC6638149 DOI: 10.1111/mpp.12549] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 02/21/2017] [Accepted: 03/13/2017] [Indexed: 05/10/2023]
Abstract
PecS is one of the major global regulators controlling the virulence of Dickeya dadantii, a broad-host-range phytopathogenic bacterium causing soft rot on several plant families. To define the PecS regulon during plant colonization, we analysed the global transcriptome profiles in wild-type and pecS mutant strains during the early colonization of the leaf surfaces and in leaf tissue just before the onset of symptoms, and found that the PecS regulon consists of more than 600 genes. About one-half of these genes are down-regulated in the pecS mutant; therefore, PecS has both positive and negative regulatory roles that may be direct or indirect. Indeed, PecS also controls the regulation of a few dozen regulatory genes, demonstrating that this global regulator is at or near the top of a major regulatory cascade governing adaptation to growth in planta. Notably, PecS acts mainly at the very beginning of infection, not only to prevent virulence gene induction, but also playing an active role in the adaptation of the bacterium to the epiphytic habitat. Comparison of the patterns of gene expression inside leaf tissues and during early colonization of leaf surfaces in the wild-type bacterium revealed 637 genes modulated between these two environments. More than 40% of these modulated genes are part of the PecS regulon, emphasizing the prominent role of PecS during plant colonization.
Collapse
Affiliation(s)
- Jacques Pédron
- Interactions Plantes Pathogènes, AgroParisTech, INRA, UPMC Université Paris 06, Paris, 75005, France
- iEES (Institut d'Ecologie et des Sciences de l'Environnement de Paris), Sorbonne Universités, UPMC Université Paris 06, Diderot Université Paris 07, UPEC Université Paris 12, CNRS, INRA, IRD, Paris, 75005, France
| | - Emilie Chapelle
- Interactions Plantes Pathogènes, AgroParisTech, INRA, UPMC Université Paris 06, Paris, 75005, France
| | - Benoît Alunni
- Interactions Plantes Pathogènes, AgroParisTech, INRA, UPMC Université Paris 06, Paris, 75005, France
- Institute for Integrative Biology of the Cell, UMR 9198, CNRS/Universite Paris-Sud/CEA, Gif-sur-Yvette, 91198, France
| | - Frédérique Van Gijsegem
- Interactions Plantes Pathogènes, AgroParisTech, INRA, UPMC Université Paris 06, Paris, 75005, France
- iEES (Institut d'Ecologie et des Sciences de l'Environnement de Paris), Sorbonne Universités, UPMC Université Paris 06, Diderot Université Paris 07, UPEC Université Paris 12, CNRS, INRA, IRD, Paris, 75005, France
| |
Collapse
|
22
|
Gervais J, Plissonneau C, Linglin J, Meyer M, Labadie K, Cruaud C, Fudal I, Rouxel T, Balesdent M. Different waves of effector genes with contrasted genomic location are expressed by Leptosphaeria maculans during cotyledon and stem colonization of oilseed rape. MOLECULAR PLANT PATHOLOGY 2017; 18:1113-1126. [PMID: 27474899 PMCID: PMC6638281 DOI: 10.1111/mpp.12464] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Leptosphaeria maculans, the causal agent of stem canker disease, colonizes oilseed rape (Brassica napus) in two stages: a short and early colonization stage corresponding to cotyledon or leaf colonization, and a late colonization stage during which the fungus colonizes systemically and symptomlessly the plant during several months before stem canker appears. To date, the determinants of the late colonization stage are poorly understood; L. maculans may either successfully escape plant defences, leading to stem canker development, or the plant may develop an 'adult-stage' resistance reducing canker incidence. To obtain an insight into these determinants, we performed an RNA-sequencing (RNA-seq) pilot project comparing fungal gene expression in infected cotyledons and in symptomless or necrotic stems. Despite the low fraction of fungal material in infected stems, sufficient fungal transcripts were detected and a large number of fungal genes were expressed, thus validating the feasibility of the approach. Our analysis showed that all avirulence genes previously identified are under-expressed during stem colonization compared with cotyledon colonization. A validation RNA-seq experiment was then performed to investigate the expression of candidate effector genes during systemic colonization. Three hundred and seven 'late' effector candidates, under-expressed in the early colonization stage and over-expressed in the infected stems, were identified. Finally, our analysis revealed a link between the regulation of expression of effectors and their genomic location: the 'late' effector candidates, putatively involved in systemic colonization, are located in gene-rich genomic regions, whereas the 'early' effector genes, over-expressed in the early colonization stage, are located in gene-poor regions of the genome.
Collapse
Affiliation(s)
- Julie Gervais
- UMR BIOGER, INRA, AgroParisTech, Université Paris‐Saclay, Avenue Lucien Brétignières, BP 01Thiverval‐GrignonF‐78850France
| | - Clémence Plissonneau
- UMR BIOGER, INRA, AgroParisTech, Université Paris‐Saclay, Avenue Lucien Brétignières, BP 01Thiverval‐GrignonF‐78850France
| | - Juliette Linglin
- UMR BIOGER, INRA, AgroParisTech, Université Paris‐Saclay, Avenue Lucien Brétignières, BP 01Thiverval‐GrignonF‐78850France
| | - Michel Meyer
- UMR BIOGER, INRA, AgroParisTech, Université Paris‐Saclay, Avenue Lucien Brétignières, BP 01Thiverval‐GrignonF‐78850France
| | - Karine Labadie
- CEA‐Institut de Génomique, GENOSCOPECentre National de SéquençageEvry CedexFrance
| | - Corinne Cruaud
- CEA‐Institut de Génomique, GENOSCOPECentre National de SéquençageEvry CedexFrance
| | - Isabelle Fudal
- UMR BIOGER, INRA, AgroParisTech, Université Paris‐Saclay, Avenue Lucien Brétignières, BP 01Thiverval‐GrignonF‐78850France
| | - Thierry Rouxel
- UMR BIOGER, INRA, AgroParisTech, Université Paris‐Saclay, Avenue Lucien Brétignières, BP 01Thiverval‐GrignonF‐78850France
| | - Marie‐Hélène Balesdent
- UMR BIOGER, INRA, AgroParisTech, Université Paris‐Saclay, Avenue Lucien Brétignières, BP 01Thiverval‐GrignonF‐78850France
| |
Collapse
|
23
|
Rigault M, Buellet A, Masclaux-Daubresse C, Fagard M, Chardon F, Dellagi A. Quantitative Methods to Assess Differential Susceptibility of Arabidopsis thaliana Natural Accessions to Dickeya dadantii. FRONTIERS IN PLANT SCIENCE 2017; 8:394. [PMID: 28400777 PMCID: PMC5368239 DOI: 10.3389/fpls.2017.00394] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/07/2017] [Indexed: 05/29/2023]
Abstract
Among the most devastating bacterial diseases of plants, soft rot provoked by Dickeya spp. cause crop yield losses on a large range of species with potato being the most economically important. The use of antibiotics being prohibited in most countries in the field, identifying tolerance genes is expected to be one of the most effective alternate disease control approaches. A prerequisite for the identification of tolerance genes is to develop robust disease quantification methods and to identify tolerant plant genotypes. In this work, we investigate the feasibility of the exploitation of Arabidopsis thaliana natural variation to find tolerant genotypes and to develop robust quantification methods. We compared different quantification methods that score either symptom development or bacterial populations in planta. An easy to set up and reliable bacterial quantification method based on qPCR amplification of bacterial DNA was validated. This study demonstrates that it is possible to conduct a robust phenotyping of soft rot disease, and that Arabidopsis natural accessions are a relevant source of tolerance genes.
Collapse
|
24
|
Leonard S, Hommais F, Nasser W, Reverchon S. Plant-phytopathogen interactions: bacterial responses to environmental and plant stimuli. Environ Microbiol 2017; 19:1689-1716. [DOI: 10.1111/1462-2920.13611] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 11/09/2016] [Accepted: 11/16/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Simon Leonard
- University of Lyon, Université Claude Bernard Lyon 1; INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, 10 rue Raphaël Dubois Villeurbanne F-69622 France
| | - Florence Hommais
- University of Lyon, Université Claude Bernard Lyon 1; INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, 10 rue Raphaël Dubois Villeurbanne F-69622 France
| | - William Nasser
- University of Lyon, Université Claude Bernard Lyon 1; INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, 10 rue Raphaël Dubois Villeurbanne F-69622 France
| | - Sylvie Reverchon
- University of Lyon, Université Claude Bernard Lyon 1; INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, 10 rue Raphaël Dubois Villeurbanne F-69622 France
| |
Collapse
|
25
|
Van Gijsegem F, Pédron J, Patrit O, Simond-Côte E, Maia-Grondard A, Pétriacq P, Gonzalez R, Blottière L, Kraepiel Y. Manipulation of ABA Content in Arabidopsis thaliana Modifies Sensitivity and Oxidative Stress Response to Dickeya dadantii and Influences Peroxidase Activity. FRONTIERS IN PLANT SCIENCE 2017; 8:456. [PMID: 28421092 PMCID: PMC5376553 DOI: 10.3389/fpls.2017.00456] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/15/2017] [Indexed: 05/06/2023]
Abstract
The production of reactive oxygen species (ROS) is one of the first defense reactions induced in Arabidopsis in response to infection by the pectinolytic enterobacterium Dickeya dadantii. Previous results also suggest that abscisic acid (ABA) favors D. dadantii multiplication and spread into its hosts. Here, we confirm this hypothesis using ABA-deficient and ABA-overproducer Arabidopsis plants. We investigated the relationships between ABA status and ROS production in Arabidopsis after D. dadantii infection and showed that ABA status modulates the capacity of the plant to produce ROS in response to infection by decreasing the production of class III peroxidases. This mechanism takes place independently of the well-described oxidative stress related to the RBOHD NADPH oxidase. In addition to this weakening of plant defense, ABA content in the plant correlates positively with the production of some bacterial virulence factors during the first stages of infection. Both processes should enhance disease progression in presence of high ABA content. Given that infection increases transcript abundance for the ABA biosynthesis genes AAO3 and ABA3 and triggers ABA accumulation in leaves, we propose that D. dadantii manipulates ABA homeostasis as part of its virulence strategy.
Collapse
Affiliation(s)
- Frédérique Van Gijsegem
- Interactions Plantes-Pathogènes, AgroParisTech, Institut National de la Recherche Agronomique, Université Pierre et Marie Curie – Université Paris 06Paris, France
- Institut d’Ecologie et des Sciences de l’Environnement de Paris, Sorbonne Universités, Université Pierre et Marie Curie – Université Paris 06, Diderot Université Paris 07, Université Paris-Est Créteil – Université Paris 12, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Institut de Recherche pour le DéveloppementParis, France
| | - Jacques Pédron
- Interactions Plantes-Pathogènes, AgroParisTech, Institut National de la Recherche Agronomique, Université Pierre et Marie Curie – Université Paris 06Paris, France
- Institut d’Ecologie et des Sciences de l’Environnement de Paris, Sorbonne Universités, Université Pierre et Marie Curie – Université Paris 06, Diderot Université Paris 07, Université Paris-Est Créteil – Université Paris 12, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Institut de Recherche pour le DéveloppementParis, France
| | - Oriane Patrit
- Interactions Plantes-Pathogènes, AgroParisTech, Institut National de la Recherche Agronomique, Université Pierre et Marie Curie – Université Paris 06Paris, France
| | - Elizabeth Simond-Côte
- Interactions Plantes-Pathogènes, AgroParisTech, Institut National de la Recherche Agronomique, Université Pierre et Marie Curie – Université Paris 06Paris, France
| | - Alessandra Maia-Grondard
- Institut Jean-Pierre Bourgin, AgroParisTech, Institut National de la Recherche AgronomiqueVersailles, France
| | - Pierre Pétriacq
- Interactions Plantes-Pathogènes, AgroParisTech, Institut National de la Recherche Agronomique, Université Pierre et Marie Curie – Université Paris 06Paris, France
| | - Raphaël Gonzalez
- Interactions Plantes-Pathogènes, AgroParisTech, Institut National de la Recherche Agronomique, Université Pierre et Marie Curie – Université Paris 06Paris, France
| | - Lydie Blottière
- Institut d’Ecologie et des Sciences de l’Environnement de Paris, Sorbonne Universités, Université Pierre et Marie Curie – Université Paris 06, Diderot Université Paris 07, Université Paris-Est Créteil – Université Paris 12, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Institut de Recherche pour le DéveloppementParis, France
| | - Yvan Kraepiel
- Interactions Plantes-Pathogènes, AgroParisTech, Institut National de la Recherche Agronomique, Université Pierre et Marie Curie – Université Paris 06Paris, France
- Institut d’Ecologie et des Sciences de l’Environnement de Paris, Sorbonne Universités, Université Pierre et Marie Curie – Université Paris 06, Diderot Université Paris 07, Université Paris-Est Créteil – Université Paris 12, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Institut de Recherche pour le DéveloppementParis, France
- *Correspondence: Yvan Kraepiel,
| |
Collapse
|
26
|
Hugouvieux-Cotte-Pattat N. Metabolism and Virulence Strategies in Dickeya-Host Interactions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 142:93-129. [PMID: 27571693 DOI: 10.1016/bs.pmbts.2016.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Dickeya, a genus of the Enterobacteriaceae family, all cause plant diseases. They are aggressive necrotrophs that have both a wide geographic distribution and a wide host range. As a plant pathogen, Dickeya has had to adapt to a vegetarian diet. Plants constitute a large storage of carbohydrates; they contain substantial amounts of soluble sugars and the plant cell wall is composed of long polysaccharides. Metabolic functions used by Dickeya in order to multiply during infection are essential aspects of pathogenesis. Dickeya is able to catabolize a large range of oligosaccharides and glycosides of plant origin. Glucose, fructose, and sucrose are all efficiently metabolized by the bacteria. To avoid the formation of acidic products, their final catabolism involves the butanediol pathway, a nonacidifying fermentative pathway. The assimilation of plant polysaccharides necessitates their prior cleavage into oligomers. Notably, the Dickeya virulence strategy is based on its capacity to dissociate the plant cell wall and, for this, the bacteria secrete an extensive set of polysaccharide degrading enzymes, composed mostly of pectinases. Since pectic polymers have a major role in plant tissue cohesion, pectinase action results in plant rot. The pectate lyases secreted by Dickeya play a double role as virulence factors and as nutrient providers. This dual function implies that the pel gene expression is regulated by both metabolic and virulence regulators. The control of sugar assimilation by specific or global regulators enables Dickeya to link its nutritional status to virulence, a coupling that optimizes the different phases of infection.
Collapse
Affiliation(s)
- N Hugouvieux-Cotte-Pattat
- Microbiology Adaptation and Pathogenesis, CNRS, University of Lyon, University Claude Bernard Lyon 1, INSA Lyon, Villeurbanne, France.
| |
Collapse
|
27
|
Reverchon S, Muskhelisvili G, Nasser W. Virulence Program of a Bacterial Plant Pathogen: The Dickeya Model. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 142:51-92. [PMID: 27571692 DOI: 10.1016/bs.pmbts.2016.05.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The pectinolytic Dickeya spp. are Gram-negative bacteria causing severe disease in a wide range of plant species. Although the Dickeya genus was initially restricted to tropical and subtropical areas, two Dickeya species (D. dianthicola and D. solani) emerged recently in potato cultures in Europe. Soft-rot, the visible symptoms, is caused by plant cell wall degrading enzymes, mainly pectate lyases (Pels) that cleave the pectin polymer. However, an efficient colonization of the host requires many additional elements including early factors (eg, flagella, lipopolysaccharide, and exopolysaccharide) that allow adhesion of the bacteria and intermediate factors involved in adaptation to new growth conditions encountered in the host (eg, oxidative stress, iron starvation, and toxic compounds). To facilitate this adaptation, Dickeya have developed complex regulatory networks ensuring appropriate expression of virulence genes. This review presents recent advances in our understanding of the signals and genetic circuits impacting the expression of virulence determinants. Special attention is paid to integrated control of virulence functions by variations in the superhelical density of chromosomal DNA, and the global and specific regulators, making the regulation of Dickeya virulence an especially attractive model for those interested in relationships between the chromosomal dynamics and gene regulatory networks.
Collapse
Affiliation(s)
- S Reverchon
- Department of Biology, University of Lyon, INSA-Lyon, Villeurbanne, Lyon, France.
| | - G Muskhelisvili
- Department of Biology, University of Lyon, INSA-Lyon, Villeurbanne, Lyon, France
| | - W Nasser
- Department of Biology, University of Lyon, INSA-Lyon, Villeurbanne, Lyon, France
| |
Collapse
|
28
|
Jiang X, Zghidi-Abouzid O, Oger-Desfeux C, Hommais F, Greliche N, Muskhelishvili G, Nasser W, Reverchon S. Global transcriptional response of Dickeya dadantii to environmental stimuli relevant to the plant infection. Environ Microbiol 2016; 18:3651-3672. [PMID: 26940633 DOI: 10.1111/1462-2920.13267] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 02/14/2016] [Indexed: 11/28/2022]
Abstract
Dickeya species are soft rot disease-causing bacterial plant pathogens and an emerging agricultural threat in Europe. Environmental modulation of gene expression is critical for Dickeya dadantii pathogenesis. While the bacterium uses various environmental cues to distinguish between its habitats, an intricate transcriptional control system coordinating the expression of virulence genes ensures efficient infection. Understanding of this behaviour requires a detailed knowledge of expression patterns under a wide range of environmental conditions, which is currently lacking. To obtain a comprehensive picture of this adaptive response, we devised a strategy to examine the D. dadantii transcriptome in a series of 32 infection-relevant conditions encountered in the hosts. We propose a temporal map of the bacterial response to various stress conditions and show that D. dadantii elicits complex genetic behaviour combining common stress-response genes with distinct sets of genes specifically induced under each particular stress. Comparison of our dataset with an in planta expression profile reveals the combined impact of stress factors and enables us to predict the major stress confronting D. dadantii at a particular stage of infection. We provide a comprehensive catalog of D. dadantii genomic responses to environmentally relevant stimuli, thus facilitating future studies of this important plant pathogen.
Collapse
Affiliation(s)
- Xuejiao Jiang
- Univ Lyon, Université Lyon 1, INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, Département Biologie, F-69622, Villeurbanne, France
| | - Ouafa Zghidi-Abouzid
- Univ Lyon, Université Lyon 1, INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, Département Biologie, F-69622, Villeurbanne, France
| | - Christine Oger-Desfeux
- Univ Lyon, Université Lyon 1, Pôle Rhône-Alpes de Bioinformatique, Département Biologie, F-69622, Villeurbanne, France
| | - Florence Hommais
- Univ Lyon, Université Lyon 1, INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, Département Biologie, F-69622, Villeurbanne, France
| | - Nicolas Greliche
- Univ Lyon, Université Lyon 1, INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, Département Biologie, F-69622, Villeurbanne, France
| | - Georgi Muskhelishvili
- Univ Lyon, Université Lyon 1, INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, Département Biologie, F-69622, Villeurbanne, France
| | - William Nasser
- Univ Lyon, Université Lyon 1, INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, Département Biologie, F-69622, Villeurbanne, France
| | - Sylvie Reverchon
- Univ Lyon, Université Lyon 1, INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, Département Biologie, F-69622, Villeurbanne, France
| |
Collapse
|