1
|
Zhang W, Zhang L, Jiang W, Yang H, Yang T, Zhao Y, Zhang Z, Ma Y. DNA methylation regulates somatic stress memory and mediates plasticity during acclimation to repeated sulfide stress in Urechis unicinctus. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137264. [PMID: 39842111 DOI: 10.1016/j.jhazmat.2025.137264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/08/2025] [Accepted: 01/16/2025] [Indexed: 01/24/2025]
Abstract
Stress memory is an adaptive mechanism that enables organisms to develop resilience in response to environmental changes. Among them, somatic stress memory is an important means for organisms to cope with contemporary repeated stress, and is accompanied by transcription memory. Sulfide is a common environmental pollutant; however, some organisms have adapted to survive in sulfur-rich environments. Urechis unicinctus is a sulfur-tolerant organism that enhances sulfide stress tolerance by establishing a somatic sulfide stress memory mechanism. However, the molecular mechanisms that regulate sulfide stress memory remain unclear. To explore whether epigenetics, which plays a role in the response of organisms to environmental stress, is involved in regulating somatic sulfide stress memory, we performed a combined analysis of DNA methylation and transcriptome data. We found that elevated levels of DNA methylation under repetitive sulfide stress regulated gene expression and resulted in enhanced sulfide stress tolerance in U. unicinctus, a phenomenon verified using DNA methylase inhibitors. Transcriptional memory can be induced in genes related to oxidative stress, regulation of autophagy, and maintenance of protein homeostasis by altering the level of DNA methylation to facilitate sulfide stress acclimation. Our results provide new insights into adaptive mechanisms to cope with environmental fluctuations.
Collapse
Affiliation(s)
- Wenqing Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Long Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Wenwen Jiang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Heran Yang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Tianya Yang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yongzheng Zhao
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhifeng Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China.
| | - Yubin Ma
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
2
|
Kessler A, Mueller MB. Induced resistance to herbivory and the intelligent plant. PLANT SIGNALING & BEHAVIOR 2024; 19:2345985. [PMID: 38687704 PMCID: PMC11062368 DOI: 10.1080/15592324.2024.2345985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
Plant induced responses to environmental stressors are increasingly studied in a behavioral ecology context. This is particularly true for plant induced responses to herbivory that mediate direct and indirect defenses, and tolerance. These seemingly adaptive alterations of plant defense phenotypes in the context of other environmental conditions have led to the discussion of such responses as intelligent behavior. Here we consider the concept of plant intelligence and some of its predictions for chemical information transfer in plant interaction with other organisms. Within this framework, the flow, perception, integration, and storage of environmental information are considered tunable dials that allow plants to respond adaptively to attacking herbivores while integrating past experiences and environmental cues that are predictive of future conditions. The predictive value of environmental information and the costs of acting on false information are important drivers of the evolution of plant responses to herbivory. We identify integrative priming of defense responses as a mechanism that allows plants to mitigate potential costs associated with acting on false information. The priming mechanisms provide short- and long-term memory that facilitates the integration of environmental cues without imposing significant costs. Finally, we discuss the ecological and evolutionary prediction of the plant intelligence hypothesis.
Collapse
Affiliation(s)
- André Kessler
- Cornell University, Department of Ecology and Evolutionary Biology, Ithaca, NY, USA
| | - Michael B. Mueller
- Cornell University, Department of Ecology and Evolutionary Biology, Ithaca, NY, USA
| |
Collapse
|
3
|
Farkas D, Dobránszki J. Vegetal memory through the lens of transcriptomic changes - recent progress and future practical prospects for exploiting plant transcriptional memory. PLANT SIGNALING & BEHAVIOR 2024; 19:2383515. [PMID: 39077764 PMCID: PMC11290777 DOI: 10.1080/15592324.2024.2383515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024]
Abstract
Plant memory plays an important role in the efficient and rapid acclimation to a swiftly changing environment. In addition, since plant memory can be inherited, it is also of adaptive and evolutionary importance. The ability of a plant to store, retain, retrieve and delete information on acquired experience is based on cellular, biochemical and molecular networks in the plants. This review offers an up-to-date overview on the formation, types, checkpoints of plant memory based on our current knowledge and focusing on its transcriptional aspects, the transcriptional memory. Roles of long and small non-coding RNAs are summarized in the regulation, formation and the cooperation between the different layers of the plant memory, i.e. in the establishment of epigenetic changes associated with memory formation in plants. The RNA interference mechanisms at the RNA and DNA level and the interplays between them are also presented. Furthermore, this review gives an insight of how exploitation of plant transcriptional memory may provide new opportunities for elaborating promising cost-efficient, and effective strategies to cope with the ever-changing environmental perturbations, caused by climate change. The potentials of plant memory-based methods, such as crop priming, cross acclimatization, memory modification by miRNAs and associative use of plant memory, in the future's agriculture are also discussed.
Collapse
Affiliation(s)
- Dóra Farkas
- Centre for Agricultural Genomics and Biotechnology, Faculty of the Agricultural and Food Science and Environmental Management, University of Debrecen, Nyíregyháza, Hungary
| | - Judit Dobránszki
- Centre for Agricultural Genomics and Biotechnology, Faculty of the Agricultural and Food Science and Environmental Management, University of Debrecen, Nyíregyháza, Hungary
| |
Collapse
|
4
|
Mazurek M, Tobiasz-Salach R, Stadnik B, Migut D. Silicon-Mitigated Effect on Zinc-Induced Stress Conditions: Epigenetic, Morphological, and Physiological Screening of Barley Plants. Int J Mol Sci 2024; 26:104. [PMID: 39795961 PMCID: PMC11720124 DOI: 10.3390/ijms26010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/18/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Plants are increasingly exposed to stress-induced factors, including heavy metals. Zinc, although it is a microelement, at high concentrations can be phytotoxic to plants by limiting their growth and development. The presented research confirmed the inhibition effect of Zn on morphological and physiological parameters in barley plants. However, the effect was Zn dose dependent (50 µM, 100 µM, and 200 µM), as well as part of the plants (above ground or roots). To mitigate the negative effects of Zn, plants were sprayed with 0.1% silicon. Silicon was proven to have a positive effect on mitigating the inhibitory effects of Zn-induced stress. In most cases, an increase in both morphological (length, elongation, fresh and dry weights, and weather content) and physiological (relative chlorophyll content and fluorescence) parameters was observed. This occurrence was dependent on the Zn dose. Epigenetic analyses confirmed differences in the DNA methylation level, both between plants subjected to stress at different strengths (50 µM, 100 µM, and 200 µM Zn) and between plants sprayed with Si or not. The differences indicate that silicon affects the epigenome of barley plants, thereby modifying the response of plants to stress factors. This modification may be the basis for plants to acquire resistance as "epigenetic memory".
Collapse
Affiliation(s)
- Marzena Mazurek
- Department of Physiology and Plant Biotechnology, University of Rzeszow, Ćwiklińskiej 2, 35-601 Rzeszow, Poland
| | - Renata Tobiasz-Salach
- Department of Crop Production, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland; (R.T.-S.); (B.S.); (D.M.)
| | - Barbara Stadnik
- Department of Crop Production, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland; (R.T.-S.); (B.S.); (D.M.)
- Doctoral School, University of Rzeszow, Rejtana 16C, 35-959 Rzeszow, Poland
| | - Dagmara Migut
- Department of Crop Production, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland; (R.T.-S.); (B.S.); (D.M.)
| |
Collapse
|
5
|
Bulgakov VP. Chromatin modifications and memory in regulation of stress-related polyphenols: finding new ways to control flavonoid biosynthesis. Crit Rev Biotechnol 2024; 44:1478-1494. [PMID: 38697923 DOI: 10.1080/07388551.2024.2336529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/10/2024] [Accepted: 03/18/2024] [Indexed: 05/05/2024]
Abstract
The influence of epigenetic factors on plant defense responses and the balance between growth and defense is becoming a central area in plant biology. It is believed that the biosynthesis of secondary metabolites can be regulated by epigenetic factors, but this is not associated with the formation of a "memory" to the previous biosynthetic status. This review shows that some epigenetic effects can result in epigenetic memory, which opens up new areas of research in secondary metabolites, in particular flavonoids. Plant-controlled chromatin modifications can lead to the generation of stress memory, a phenomenon through which information regarding past stress cues is retained, resulting in a modified response to recurring stress. How deeply are the mechanisms of chromatin modification and memory generation involved in the control of flavonoid biosynthesis? This article collects available information from the literature and interactome databases to address this issue. Visualization of the interaction of chromatin-modifying proteins with the flavonoid biosynthetic machinery is presented. Chromatin modifiers and "bookmarks" that may be involved in the regulation of flavonoid biosynthesis through memory have been identified. Through different mechanisms of chromatin modification, plants can harmonize flavonoid metabolism with: stress responses, developmental programs, light-dependent processes, flowering, and longevity programs. The available information points to the possibility of developing chromatin-modifying technologies to control flavonoid biosynthesis.
Collapse
Affiliation(s)
- Victor P Bulgakov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
6
|
Bulgakov VP, Fialko AV, Yugay YA. Involvement of epigenetic factors in flavonoid accumulation during plant cold adaptation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109096. [PMID: 39250844 DOI: 10.1016/j.plaphy.2024.109096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024]
Abstract
Plant responses to cold stress include either induction of flavonoid biosynthesis as part of defense responses or initially elevated levels of these substances to mitigate sudden temperature fluctuations. The role of chromatin modifying factors and, in general, epigenetic variability in these processes is not entirely clear. In this work, we review the literature to establish the relationship between flavonoids, cold and chromatin modifications. We demonstrate the relationship between cold acclimation and flavonoid accumulation, and then describe the cold adaptation signaling pathways and their relationship with chromatin modifying factors. Particular attention was paid to the cold signaling module OST1-HOS1-ICE1 and the novel function of the E3 ubiquitin protein ligase HOS1 (a protein involved in chromatin modification during cold stress) in flavonoid regulation.
Collapse
Affiliation(s)
- Victor P Bulgakov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 159 Stoletija Str., Vladivostok, 690022, Russia; Institute of Automation and Control Processes, Far Eastern Branch of the Russian Academy of Sciences, 5 Radio Str., Vladivostok, 690041, Russia.
| | - Alexandra V Fialko
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 159 Stoletija Str., Vladivostok, 690022, Russia; Institute of Automation and Control Processes, Far Eastern Branch of the Russian Academy of Sciences, 5 Radio Str., Vladivostok, 690041, Russia
| | - Yulia A Yugay
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 159 Stoletija Str., Vladivostok, 690022, Russia
| |
Collapse
|
7
|
Diao H, Lan C, Huang H, Xu F, Dong D, Dong W, Qiu Y, Chen J, Ren Y. Effects of the recovery period after particulate matter pollution events on the dust retention capacity and physiological characteristics of Nerium oleander. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174990. [PMID: 39094640 DOI: 10.1016/j.scitotenv.2024.174990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/06/2024] [Accepted: 07/21/2024] [Indexed: 08/04/2024]
Abstract
Plants are known for their significant dust retention capacity and are widely used to alleviate atmospheric pollution. Urban green plants are exposed to periodic particulate matter pollution stress, and the time intervals between periods of pollution exposure are often inconsistent. The impact of stress memory and pollution intervals on plant dust retention capacity and physiological characteristics during periodic stress is not yet clear. In this study, the common urban landscaping species Nerium oleander L. was selected as the test plant, and stable isotope (15NH4Cl) tracing technology and aerosol generators were used to simulate periodic PM2.5 pollution. This study included two particulate pollution periods (each lasting 14 days) and one recovery period with three different durations (7, 14, and 21 days). The results indicated that periodic particulate matter pollution-induced stress decreased the dust retention capacity of N. oleander leaf surfaces, but particle adsorption to the wax layer was more stable. As the duration of the recovery period increased, leaf particle absorption, which accounted for the greatest proportion of total dust retention, increased, indicating that leaves are the primary organ for dust retention in Nerium oleander L. Root absorption also increased with increasing recovery periods. Prior pollution stress increased oleander physiological and morphological responses, and the plant's air pollution tolerance significantly improved after a recovery period of >14 days.
Collapse
Affiliation(s)
- Haichen Diao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Lin'an 311300, China
| | - Chenqiyu Lan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, China
| | - Hanhan Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, China
| | - Feifei Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, China
| | - Dubin Dong
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, China
| | - Wen Dong
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, China
| | - Yingying Qiu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, China
| | - Jian Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, China
| | - Yuan Ren
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Lin'an 311300, China.
| |
Collapse
|
8
|
Li J, Yang P, Fu H, Li J, Wang Y, Zhu K, Yu J, Li J. Transcriptome analysis reveals key regulatory networks and genes involved in the acquisition of cold stress memory in pepper seedlings. BMC PLANT BIOLOGY 2024; 24:959. [PMID: 39396950 PMCID: PMC11479542 DOI: 10.1186/s12870-024-05660-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024]
Abstract
Temperature is an important limiting factor in the counter-seasonal cultivation of pepper. Currently, there are no studies on transcriptomic analysis of 'cold stress memory' in pepper. In this study, in order to understand the mechanism of 'cold stress memory' in pepper (Capsicum annuum L.), seedlings were subjected to the following treatments: normal temperature treatment (P0), the first cold treatment for 3 days (P3), the recovery temperature treatment for 3 days (R3), and another cold treatment for 3 days (RP3). The results showed that P3 plants wilted the most, RP3 the second and R3 the least. Leaf reactive oxygen species (ROS) and electrolyte leakage were the most in P3, the second in RP3 and the least in R3. In addition, RP3 had the highest accumulation of zeaxanthin, violaxanthin and β-cryptoxanthin, followed by P3, and R3 had the least. These results suggest that pepper seedlings are characterized by 'cold stress memory'. Transcriptomics was used to analyze the key genes and transcription factors involved in the biosynthesis of zeaxanthin, violaxanthin and β-cryptoxanthin during the formation of 'cold stress memory'. This study provides candidate genes and transcription factors for an in-depth study of the cold tolerance mechanism in pepper.
Collapse
Affiliation(s)
- Jian Li
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070, China
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, 661100, China
| | - Ping Yang
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, 661100, China
| | - Hongbo Fu
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, 661100, China
| | - Juan Li
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, 661100, China
- College of Horticulture and Forestry, Tarim University, Alar, 843300, China
| | - Yanzhuang Wang
- College of Horticulture and Forestry, Tarim University, Alar, 843300, China
| | - Keyan Zhu
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070, China
| | - Jihua Yu
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070, China.
| | - Jie Li
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, 661100, China.
| |
Collapse
|
9
|
Cheng Q, Zeng Y, Huang S, Yang C, Xie Y, Shen WH, Li L. PHYTOCHROME-INTERACTING FACTOR 7 and RELATIVE OF EARLY FLOWERING 6 act in shade avoidance memory in Arabidopsis. Nat Commun 2024; 15:8032. [PMID: 39271649 PMCID: PMC11399251 DOI: 10.1038/s41467-024-51834-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 08/08/2024] [Indexed: 09/15/2024] Open
Abstract
Shade avoidance helps plants maximize their access to light for growth under crowding. It is unknown, however, whether a priming shade avoidance mechanism exists that allows plants to respond more effectively to successive shade conditions. Here, we show that the shade-intolerant plant Arabidopsis can remember a first experienced shade event and respond more efficiently to the next event on hypocotyl elongation. The transcriptional regulator PHYTOCHROME-INTERACTING FACTOR 7 (PIF7) and the histone H3K27-demethylase RELATIVE OF EARLY FLOWERING 6 (REF6) are identified as being required for this shade avoidance memory. RNA-sequencing analysis reveals that shade induction of shade-memory-related genes is impaired in the pif7 and ref6 mutants. Based on the analyses of enrichments of H3K27me3, REF6 and PIF7, we find that priming shade treatment induces PIF7 accumulation, which further recruits REF6 to demethylate H3K27me3 on the chromatin of certain shade-memory-related genes, leading to a state poised for their transcription. Upon a second shade treatment, enhanced shade-mediated inductions of these genes result in stronger hypocotyl growth responses. We conclude that the transcriptional memory mediated by epigenetic modification plays a key role in the ability of primed plants to remember previously experienced shade and acquire enhanced responses to recurring shade conditions.
Collapse
Affiliation(s)
- Qican Cheng
- State Key Laboratory of Genetic Engineering, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| | - Yue Zeng
- State Key Laboratory of Genetic Engineering, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| | - Sha Huang
- State Key Laboratory of Genetic Engineering, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| | - Chuanwei Yang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Yu Xie
- State Key Laboratory of Genetic Engineering, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| | - Wen-Hui Shen
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Lin Li
- State Key Laboratory of Genetic Engineering, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
10
|
Zheng S, Zhao W, Liu Z, Geng Z, Li Q, Liu B, Li B, Bai J. Establishment and Maintenance of Heat-Stress Memory in Plants. Int J Mol Sci 2024; 25:8976. [PMID: 39201662 PMCID: PMC11354667 DOI: 10.3390/ijms25168976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Among the rich repertoire of strategies that allow plants to adapt to high-temperature stress is heat-stress memory. The mechanisms underlying the establishment and maintenance of heat-stress memory are poorly understood, although the chromatin opening state appears to be an important structural basis for maintaining heat-stress memory. The chromatin opening state is influenced by epigenetic modifications, making DNA and histone modifications important entry points for understanding heat-shock memory. Current research suggests that traditional heat-stress signaling pathway components might be involved in chromatin opening, thereby promoting the establishment of heat-stress memory in plants. In this review, we discuss the relationship between chromatin structure-based maintenance and the establishment of heat-stress memory. We also discuss the association between traditional heat-stress signals and epigenetic modifications. Finally, we discuss potential research ideas for exploring plant adaptation to high-temperature stress in the future.
Collapse
Affiliation(s)
- Shuzhi Zheng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Basic Research Center of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Weishuang Zhao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Basic Research Center of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Zimeng Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Basic Research Center of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Ziyue Geng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Basic Research Center of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Qiang Li
- Dryland Farming Institute of Hebei Academy of Agricultural and Forestry Science, Key Laboratory of Crop Drought Tolerance Research of Hebei Province, Hengshui 053000, China
| | - Binhui Liu
- Dryland Farming Institute of Hebei Academy of Agricultural and Forestry Science, Key Laboratory of Crop Drought Tolerance Research of Hebei Province, Hengshui 053000, China
| | - Bing Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Basic Research Center of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Jiaoteng Bai
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Basic Research Center of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
11
|
Rao X, Yang S, Lü S, Yang P. DNA Methylation Dynamics in Response to Drought Stress in Crops. PLANTS (BASEL, SWITZERLAND) 2024; 13:1977. [PMID: 39065503 PMCID: PMC11280950 DOI: 10.3390/plants13141977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Drought is one of the most hazardous environmental factors due to its severe damage on plant growth, development and productivity. Plants have evolved complex regulatory networks and resistance strategies for adaptation to drought stress. As a conserved epigenetic regulation, DNA methylation dynamically alters gene expression and chromosome interactions in plants' response to abiotic stresses. The development of omics technologies on genomics, epigenomics and transcriptomics has led to a rapid increase in research on epigenetic variation in non-model crop species. In this review, we summarize the most recent findings on the roles of DNA methylation under drought stress in crops, including methylating and demethylating enzymes, the global methylation dynamics, the dual regulation of DNA methylation on gene expression, the RNA-dependent DNA methylation (RdDM) pathway, alternative splicing (AS) events and long non-coding RNAs (lnc RNAs). We also discuss drought-induced stress memory. These epigenomic findings provide valuable potential for developing strategies to improve crop drought tolerance.
Collapse
Affiliation(s)
| | | | | | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (X.R.); (S.Y.); (S.L.)
| |
Collapse
|
12
|
Kerckhofs E, Schubert D. Conserved functions of chromatin regulators in basal Archaeplastida. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1301-1311. [PMID: 37680033 DOI: 10.1111/tpj.16446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023]
Abstract
Chromatin is a dynamic network that regulates genome organization and gene expression. Different types of chromatin regulators are highly conserved among Archaeplastida, including unicellular algae, while some chromatin genes are only present in land plant genomes. Here, we review recent advances in understanding the function of conserved chromatin factors in basal land plants and algae. We focus on the role of Polycomb-group genes which mediate H3K27me3-based silencing and play a role in balancing gene dosage and regulating haploid-to-diploid transitions by tissue-specific repression of the transcription factors KNOX and BELL in many representatives of the green lineage. Moreover, H3K27me3 predominantly occupies repetitive elements which can lead to their silencing in a unicellular alga and basal land plants, while it covers mostly protein-coding genes in higher land plants. In addition, we discuss the role of nuclear matrix constituent proteins as putative functional lamin analogs that are highly conserved among land plants and might have an ancestral function in stress response regulation. In summary, our review highlights the importance of studying chromatin regulation in a wide range of organisms in the Archaeplastida.
Collapse
Affiliation(s)
- Elise Kerckhofs
- Epigenetics of Plants, Institute for Biology, Freie Universität Berlin, Berlin, Germany
| | - Daniel Schubert
- Epigenetics of Plants, Institute for Biology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
13
|
DeHaro-Arbona FJ, Roussos C, Baloul S, Townson J, Gómez Lamarca MJ, Bray S. Dynamic modes of Notch transcription hubs conferring memory and stochastic activation revealed by live imaging the co-activator Mastermind. eLife 2024; 12:RP92083. [PMID: 38727722 PMCID: PMC11087053 DOI: 10.7554/elife.92083] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024] Open
Abstract
Developmental programming involves the accurate conversion of signalling levels and dynamics to transcriptional outputs. The transcriptional relay in the Notch pathway relies on nuclear complexes containing the co-activator Mastermind (Mam). By tracking these complexes in real time, we reveal that they promote the formation of a dynamic transcription hub in Notch ON nuclei which concentrates key factors including the Mediator CDK module. The composition of the hub is labile and persists after Notch withdrawal conferring a memory that enables rapid reformation. Surprisingly, only a third of Notch ON hubs progress to a state with nascent transcription, which correlates with polymerase II and core Mediator recruitment. This probability is increased by a second signal. The discovery that target-gene transcription is probabilistic has far-reaching implications because it implies that stochastic differences in Notch pathway output can arise downstream of receptor activation.
Collapse
Affiliation(s)
- F Javier DeHaro-Arbona
- Department of Physiology Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| | - Charalambos Roussos
- Department of Physiology Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| | - Sarah Baloul
- Department of Physiology Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| | - Jonathan Townson
- Department of Physiology Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| | - María J Gómez Lamarca
- Department of Physiology Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocıo/CSIC/Universidad de Sevilla, Departamento de Biologıa CelularSevilleSpain
| | - Sarah Bray
- Department of Physiology Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
14
|
Li H, Huang X, Zhan A. Context-dependent antioxidant defense system (ADS)-based stress memory in response to recurrent environmental challenges in congeneric invasive species. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:315-330. [PMID: 38827126 PMCID: PMC11136907 DOI: 10.1007/s42995-024-00228-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 04/01/2024] [Indexed: 06/04/2024]
Abstract
Marine ecosystems are facing escalating environmental fluctuations owing to climate change and human activities, imposing pressures on marine species. To withstand recurring environmental challenges, marine organisms, especially benthic species lacking behavioral choices to select optimal habitats, have to utilize well-established strategies such as the antioxidant defense system (ADS) to ensure their survival. Therefore, understanding of the mechanisms governing the ADS-based response is essential for gaining insights into adaptive strategies for managing environmental challenges. Here we conducted a comparative analysis of the physiological and transcriptional responses based on the ADS during two rounds of 'hypersalinity-recovery' challenges in two model congeneric invasive ascidians, Ciona robusta and C. savignyi. Our results demonstrated that C. savignyi exhibited higher tolerance and resistance to salinity stresses at the physiological level, while C. robusta demonstrated heightened responses at the transcriptional level. We observed distinct transcriptional responses, particularly in the utilization of two superoxide dismutase (SOD) isoforms. Both Ciona species developed physiological stress memory with elevated total SOD (T-SOD) and glutathione (GSH) responses, while only C. robusta demonstrated transcriptional stress memory. The regulatory distinctions within the Nrf2-Keap1 signalling pathway likely explain the formation disparity of transcriptional stress memory between both Ciona species. These findings support the 'context-dependent stress memory hypothesis', emphasizing the emergence of species-specific stress memory at diverse regulatory levels in response to recurrent environmental challenges. Our results enhance our understanding of the mechanisms of environmental challenge management in marine species, particularly those related to the ADS. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-024-00228-y.
Collapse
Affiliation(s)
- Hanxi Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xuena Huang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
15
|
Kashyap S, Agarwala N, Sunkar R. Understanding plant stress memory traits can provide a way for sustainable agriculture. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 340:111954. [PMID: 38092267 DOI: 10.1016/j.plantsci.2023.111954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 01/01/2024]
Abstract
Being sessile, plants encounter various biotic and abiotic threats in their life cycle. To minimize the damages caused by such threats, plants have acquired sophisticated response mechanisms. One major such response includes memorizing the encountered stimuli in the form of a metabolite, hormone, protein, or epigenetic marks. All of these individually as well as together, facilitate effective transcriptional and post-transcriptional responses upon encountering the stress episode for a second time during the life cycle and in some instances even in the future generations. This review attempts to highlight the recent advances in the area of plant memory. A detailed understanding of plant memory has the potential to offer solutions for developing climate-resilient crops for sustainable agriculture.
Collapse
Affiliation(s)
- Sampurna Kashyap
- Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati, Assam, 781014, India
| | - Niraj Agarwala
- Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati, Assam, 781014, India.
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
16
|
Tian Z, Li K, Sun Y, Chen B, Pan Z, Wang Z, Pang B, He S, Miao Y, Du X. Physiological and transcriptional analyses reveal formation of memory under recurring drought stresses in seedlings of cotton (Gossypium hirsutum). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111920. [PMID: 37944705 DOI: 10.1016/j.plantsci.2023.111920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/03/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Plants are frequently subjected to a range of environmental stresses, including drought, salinity, cold, pathogens, and herbivore attacks. To survive in such conditions, plants have evolved a novel adaptive mechanism known as 'stress memory'. The formation of stress memories necessitates coordinated responses at the cellular, genetic/genomic, and epigenetic levels, involving altered physiological responses, gene activation, hyper-induction and chromatin modification. Cotton (Gossypium spp.) is an important economic crop with numerous applications and high economic value. In this study, we establish G. hirsutum drought memory following cycles of mild drought and re-watering treatments and analyzed memory gene expression patterns. Our findings reveal the physiological, biochemical, and molecular mechanisms underlying drought stress memory formation in G. hirsutum. Specifically, H3K4me3, a histone modification, plays a crucial role in regulating [+ /+ ] transcriptional memory. Moreover, we investigated the intergenerational inheritance of drought stress memory in G. hirsutum. Collectively, our data provides theoretical guidance for cotton breeding.
Collapse
Affiliation(s)
- Zailong Tian
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Jinming Road, Kaifeng 475004, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan 572024, China
| | - Kun Li
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Jinming Road, Kaifeng 475004, China
| | - Yaru Sun
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Jinming Road, Kaifeng 475004, China
| | - Baojun Chen
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Zhaoe Pan
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Zhenzhen Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Baoyin Pang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Shoupu He
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Yuchen Miao
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Jinming Road, Kaifeng 475004, China.
| | - Xiongming Du
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan 572024, China.
| |
Collapse
|
17
|
Zhang X, Bradford B, Baweja S, Tan T, Lee HW, Jose CC, Kim N, Katari M, Cuddapah S. Nickel-induced transcriptional memory in lung epithelial cells promotes interferon signaling upon nicotine exposure. Toxicol Appl Pharmacol 2023; 481:116753. [PMID: 37951547 PMCID: PMC11065478 DOI: 10.1016/j.taap.2023.116753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Exposure to nickel, an environmental respiratory toxicant, is associated with lung diseases including asthma, pulmonary fibrosis, bronchitis and cancers. Our previous studies have shown that a majority of the nickel-induced transcriptional changes are persistent and do not reverse even after the termination of exposure. This suggested transcriptional memory, wherein the cell 'remembers' past nickel exposure. Transcriptional memory, due to which the cells respond more robustly to a previously encountered stimulus has been identified in a number of organisms. Therefore, transcriptional memory has been described as an adaptive mechanism. However, transcriptional memory caused by environmental toxicant exposures has not been well investigated. Moreover, how the transcriptional memory caused by an environmental toxicant might influence the outcome of exposure to a second toxicant has not been explored. In this study, we investigated whether nickel-induced transcriptional memory influences the outcome of the cell's response to a second respiratory toxicant, nicotine. Nicotine, an addictive compound in tobacco, is associated with the development of chronic lung diseases including chronic obstructive pulmonary disease (COPD) and pulmonary fibrosis. Our results show that nicotine exposure upregulated a subset of genes only in the cells previously exposed to nickel. Furthermore, our analyses indicate robust activation of interferon (IFN) signaling in these cells. IFN signaling is a driver of inflammation, which is associated with many chronic lung diseases. Therefore, our results suggest that nicotine exposure of lung cells that retain the transcriptional memory of previous nickel exposure could result in increased susceptibility to developing chronic inflammatory lung diseases.
Collapse
Affiliation(s)
- Xiaoru Zhang
- Division of Environmental Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA
| | - Beatrix Bradford
- Division of Environmental Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA
| | - Sahdev Baweja
- Division of Environmental Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA; Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Taotao Tan
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Hyun-Wook Lee
- Division of Environmental Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA
| | - Cynthia C Jose
- Division of Environmental Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA
| | - Nicholas Kim
- Division of Environmental Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA
| | - Manpreet Katari
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA.
| | - Suresh Cuddapah
- Division of Environmental Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA.
| |
Collapse
|
18
|
Marroquin A, Holmes K, Salazar D. Soil salinization and chemically mediated plant-insect interactions in a changing climate. CURRENT OPINION IN INSECT SCIENCE 2023; 60:101130. [PMID: 37839579 DOI: 10.1016/j.cois.2023.101130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
Increase in soil salinization due to climate change is a global phenomenon that can induce significant changes in plant growth, physiology, and chemistry, exacerbating growing threats to insect biodiversity. Insects that rely on plants are likely to be indirectly impacted by changes in soil salt content through changes in plant chemistry, yet few studies link changes in plant metabolism to impacts on higher trophic levels. Some salinity-mediated changes in specialized metabolites may be predictable due to highly conserved metabolic pathways shared between herbivore defense and stress resistance, but recent studies also suggest substantial variation across plant species and habitats. To date, most of the research on salinity and chemically mediated plant-insect interactions has focused on herbivores, particularly in agricultural systems. Published effects of salinity on pollinators and parasitoids are scarce. Future research will need to focus more on the role of plant chemistry to bridge the divide between studies of plant and insect responses to salinization.
Collapse
Affiliation(s)
- Andrea Marroquin
- Florida International University, International Center of Tropical Botany, Institute of Environment, Department of Biological Sciences, Miami, FL, USA.
| | - Katherine Holmes
- Florida International University, International Center of Tropical Botany, Institute of Environment, Department of Biological Sciences, Miami, FL, USA
| | - Diego Salazar
- Binghamton University, Department of Integrative Biology, Binghamton, NY, USA
| |
Collapse
|
19
|
Sharma M, Sidhu AK, Samota MK, Gupta M, Koli P, Choudhary M. Post-Translational Modifications in Histones and Their Role in Abiotic Stress Tolerance in Plants. Proteomes 2023; 11:38. [PMID: 38133152 PMCID: PMC10747722 DOI: 10.3390/proteomes11040038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Abiotic stresses profoundly alter plant growth and development, resulting in yield losses. Plants have evolved adaptive mechanisms to combat these challenges, triggering intricate molecular responses to maintain tissue hydration and temperature stability during stress. A pivotal player in this defense is histone modification, governing gene expression in response to diverse environmental cues. Post-translational modifications (PTMs) of histone tails, including acetylation, phosphorylation, methylation, ubiquitination, and sumoylation, regulate transcription, DNA processes, and stress-related traits. This review comprehensively explores the world of PTMs of histones in plants and their vital role in imparting various abiotic stress tolerance in plants. Techniques, like chromatin immune precipitation (ChIP), ChIP-qPCR, mass spectrometry, and Cleavage Under Targets and Tag mentation, have unveiled the dynamic histone modification landscape within plant cells. The significance of PTMs in enhancing the plants' ability to cope with abiotic stresses has also been discussed. Recent advances in PTM research shed light on the molecular basis of stress tolerance in plants. Understanding the intricate proteome complexity due to various proteoforms/protein variants is a challenging task, but emerging single-cell resolution techniques may help to address such challenges. The review provides the future prospects aimed at harnessing the full potential of PTMs for improved plant responses under changing climate change.
Collapse
Affiliation(s)
- Madhvi Sharma
- Post Graduate Department of Biotechnology, Khalsa College, Amritsar 143009, India; (M.S.); (A.K.S.)
| | - Amanpreet K. Sidhu
- Post Graduate Department of Biotechnology, Khalsa College, Amritsar 143009, India; (M.S.); (A.K.S.)
| | - Mahesh Kumar Samota
- ICAR-Central Institute of Post-Harvest Engineering and Technology, Regional Station, Abohar 152116, India
| | - Mamta Gupta
- ICAR-Indian Institute of Maize Research, Ludhiana 141001, India;
| | - Pushpendra Koli
- Plant Animal Relationship Division, ICAR-Indian Grassland and Fodder Research Institute, Jhansi 284003, India;
- Post-Harvest Biosecurity, Murdoch University, Perth, WA 6150, Australia
| | - Mukesh Choudhary
- ICAR-Indian Institute of Maize Research, Ludhiana 141001, India;
- School of Agriculture and Environment, The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
20
|
Godínez-Mendoza PL, Rico-Chávez AK, Ferrusquía-Jimenez NI, Carbajal-Valenzuela IA, Villagómez-Aranda AL, Torres-Pacheco I, Guevara-González RG. Plant hormesis: Revising of the concepts of biostimulation, elicitation and their application in a sustainable agricultural production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 894:164883. [PMID: 37348730 DOI: 10.1016/j.scitotenv.2023.164883] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023]
Abstract
Current research in basic and applied knowledge of plant science has aimed to unravel the role of the interaction between environmental factors and the genome in the physiology of plants to confer the ability to overcome challenges in a climate change scenario. Evidence shows that factors causing environmental stress (stressors), whether of biological, chemical, or physical origin, induce eustressing or distressing effects in plants depending on the dose. The latter suggests the induction of the "hormesis" phenomenon. Sustainable crop production requires a better understanding of hormesis, its basic concepts, and the input variables to make its management feasible. This implies that acknowledging hormesis in plant research could allow specifying beneficial effects to effectively manage environmental stressors according to cultivation goals. Several factors have been useful in this regard, which at low doses show beneficial eustressing effects (biostimulant/elicitor), while at higher doses, they show distressing toxic effects. These insights highlight biostimulants/elicitors as tools to be included in integrated crop management strategies for reaching sustainability in plant science and agricultural studies. In addition, compelling evidence on the inheritance of elicited traits in plants unfolds the possibility of implementing stressors as a tool in plant breeding.
Collapse
Affiliation(s)
- Pablo L Godínez-Mendoza
- Center of Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Carr. Amazcala-Chichimequillas Km 1.0, C.P 76265 El Marqués, Querétaro, Mexico
| | - Amanda K Rico-Chávez
- Center of Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Carr. Amazcala-Chichimequillas Km 1.0, C.P 76265 El Marqués, Querétaro, Mexico
| | - Noelia I Ferrusquía-Jimenez
- Center of Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Carr. Amazcala-Chichimequillas Km 1.0, C.P 76265 El Marqués, Querétaro, Mexico
| | - Ireri A Carbajal-Valenzuela
- Center of Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Carr. Amazcala-Chichimequillas Km 1.0, C.P 76265 El Marqués, Querétaro, Mexico
| | - Ana L Villagómez-Aranda
- Center of Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Carr. Amazcala-Chichimequillas Km 1.0, C.P 76265 El Marqués, Querétaro, Mexico
| | - Irineo Torres-Pacheco
- Center of Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Carr. Amazcala-Chichimequillas Km 1.0, C.P 76265 El Marqués, Querétaro, Mexico.
| | - Ramon G Guevara-González
- Center of Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Carr. Amazcala-Chichimequillas Km 1.0, C.P 76265 El Marqués, Querétaro, Mexico.
| |
Collapse
|
21
|
Bolouki A, Rahimi M, Azarpira N, Baghban F. Integrated multi-omics analysis identifies epigenetic alteration related to neurodegeneration development in post-traumatic stress disorder patients. Psychiatr Genet 2023; 33:167-181. [PMID: 37222234 DOI: 10.1097/ypg.0000000000000340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
INTRODUCTION Post-traumatic stress disorder (PTSD), is associated with an elevated risk of neurodegenerative disorders, but the molecular mechanism was not wholly identified. Aberrant methylation status and miRNA expression pattern have been identified to be associated with PTSD, but their complex regulatory networks remain largely unexplored. METHODS The purpose of this study was to identify the key genes/pathways related to neurodegenerative disorder development in PTSD by evaluating epigenetic regulatory signature (DNA methylation and miRNA) using an integrative bioinformatic analysis. We integrated DNA expression array data with miRNA and DNA methylation array data - obtained from the GEO database- to evaluate the epigenetic regulatory mechanisms. RESULTS Our results indicated that target genes of dysregulated miRNAs were significantly related to several neurodegenerative diseases. Several dysregulated genes in the neurodegeneration pathways interacted with some members of the miR-17 and miR-15/107 families. Our analysis indicated that APP/CaN/NFATs signaling pathway was dysregulated in the peripheral blood samples of PTSD. Besides, the DNMT3a and KMT2D genes, as the encoding DNA and histone methyltransferase enzymes, were upregulated, and DNA methylation and miRNA regulators were proposed as critical molecular mechanisms. Our study found dysregulation of circadian rhythm as the CLOCK gene was upregulated and hypomethylated at TSS1500 CpGs S_shores and was also a target of several dysregulated miRNAs. CONCLUSION In conclusion, we found evidence of a negative feedback loop between stress oxidative, circadian rhythm dysregulation, miR-17 and miR-15/107 families, some essential genes involved in neuronal and brain cell health, and KMT2D/DNMT3a in the peripheral blood samples of PTSD.
Collapse
Affiliation(s)
- Ayeh Bolouki
- Basic Sciences Laboratory, Mohammad Rasul Allah Research Tower, Shiraz University of Medical Sciences, Shiraz, Iran
- University of Namur, Department of Biology, Research Unit on Cellular Biology (URBC), Namur, Belgium
| | - Moosa Rahimi
- Basic Sciences Laboratory, Mohammad Rasul Allah Research Tower, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Mohammad Rasul Allah Research Tower, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Baghban
- Basic Sciences Laboratory, Mohammad Rasul Allah Research Tower, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
22
|
Kim MK, Jeong HB, Yu N, Park BM, Chae WB, Lee OJ, Lee HE, Kim S. Comparative heat stress responses of three hot pepper (Capsicum annuum L.) genotypes differing temperature sensitivity. Sci Rep 2023; 13:14203. [PMID: 37648718 PMCID: PMC10468523 DOI: 10.1038/s41598-023-41418-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023] Open
Abstract
As global temperatures have steadily increased over past decades, studying of the impacts of heat stress on morpho-physiological traits and economic yields of horticultural crops have been increasingly gained attentions by many scientists and farmers. Hot pepper (Capsicum annuum L.) is an important vegetable crop mostly grown in open-fields in South Korea. In this study, the impacts of prolonged heat stress on three hot pepper genotypes differing by levels of stress susceptibility were evaluated. The study was conducted in two different temperature-controlled greenhouses for 75 days. 48 days old plants were grown in control and heat-treated greenhouses where the temperatures had been set at 30 °C and 35 °C during the day for 75 days, respectively. Morphological, physiological, and nutrient characteristics of three accessions were measured. All hot pepper accessions were enabled to recover from prolonged heat stress exposures within approximately a month. The phenomenon of recovery was observed in some significant morphological and physiological characteristics. For example, the plant growth rate and photosynthesis rate significantly increased after 40th days of heat treatment. The heat stress sensitivity varied between genotypes. The plants that produced more fruits over biomass at early stage of heat treatment had relatively slow recovery, resulting in the largest yield loss. This key morphological characteristic can be used for future breeding program to adapt the prolonged heat stress.
Collapse
Affiliation(s)
- Min Kyoung Kim
- Department of Environmental Horticulture and Landscape Architecture, Environmental Horticulture, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hyo Bong Jeong
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, RDA, Wanju, 55365, Republic of Korea
| | - Nari Yu
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, RDA, Wanju, 55365, Republic of Korea
| | - Bo Mi Park
- Department of Environmental Horticulture and Landscape Architecture, Environmental Horticulture, Dankook University, Cheonan, 31116, Republic of Korea
| | - Won Byoung Chae
- Department of Environmental Horticulture and Landscape Architecture, Environmental Horticulture, Dankook University, Cheonan, 31116, Republic of Korea
| | - Oak Jin Lee
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, RDA, Wanju, 55365, Republic of Korea
| | - Hye Eun Lee
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, RDA, Wanju, 55365, Republic of Korea
| | - Sumin Kim
- Department of Environmental Horticulture and Landscape Architecture, Environmental Horticulture, Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
23
|
Húdoková H, Fleischer P, Ježík M, Marešová J, Pšidová E, Mukarram M, Ditmarová Ľ, Sliacka-KonôPková A, Jamnická G. Can seedlings of Norway spruce ( Picea abies L. H. Karst.) populations withstand changed climate conditions? PHOTOSYNTHETICA 2023; 61:328-341. [PMID: 39651359 PMCID: PMC11558570 DOI: 10.32615/ps.2023.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 06/12/2023] [Indexed: 12/11/2024]
Abstract
A manipulative experiment with two different water regimes was established to identify the variability of physiological responses to environmental changes in 5-year-old Norway spruce provenances in the Western Carpathians. While variations in the growth responses were detected only between treatments, photosynthetic and biochemical parameters were also differently influenced among provenances. Following drought treatment, an obvious shrinkage of tree stems was observed. In most provenances, drought had a negative effect on leaf gas-exchange parameters and kinetics of chlorophyll a fluorescence. Secondary metabolism was not affected so much with notable differences in concentration of sabinene, o-cimene, and (-)-alpha-terpineol monoterpenes. The most suitable indicators of drought stress were abscisic acid and fluorescence parameters. Seedlings from the highest altitude (1,500 m a.s.l.) responded better to stress conditions than the other populations. Such provenance trials may be a valuable tool in assessing the adaptive potential of spruce populations under changing climate.
Collapse
Affiliation(s)
- H. Húdoková
- Institute of Forest Ecology, Slovak Academy of Sciences, Ľ. Štúra 2, 96001 Zvolen, Slovakia
- Technical University in Zvolen, Faculty of Ecology and Environmental Sciences, T.G. Masaryka 24, 96001 Zvolen, Slovakia
| | - P. Fleischer
- Institute of Forest Ecology, Slovak Academy of Sciences, Ľ. Štúra 2, 96001 Zvolen, Slovakia
- Technical University in Zvolen, Faculty of Forestry, T.G. Masaryka 24, 96001 Zvolen, Slovakia
- Administration of Tatra National Park, Tatranská Lomnica, 059 60 Vysoké Tatry, Slovakia
| | - M. Ježík
- Institute of Forest Ecology, Slovak Academy of Sciences, Ľ. Štúra 2, 96001 Zvolen, Slovakia
| | - J. Marešová
- Institute of Forest Ecology, Slovak Academy of Sciences, Ľ. Štúra 2, 96001 Zvolen, Slovakia
| | - E. Pšidová
- Institute of Forest Ecology, Slovak Academy of Sciences, Ľ. Štúra 2, 96001 Zvolen, Slovakia
| | - M. Mukarram
- Technical University in Zvolen, Faculty of Forestry, T.G. Masaryka 24, 96001 Zvolen, Slovakia
| | - Ľ. Ditmarová
- Institute of Forest Ecology, Slovak Academy of Sciences, Ľ. Štúra 2, 96001 Zvolen, Slovakia
| | - A. Sliacka-KonôPková
- Technical University in Zvolen, Faculty of Forestry, T.G. Masaryka 24, 96001 Zvolen, Slovakia
| | - G. Jamnická
- Institute of Forest Ecology, Slovak Academy of Sciences, Ľ. Štúra 2, 96001 Zvolen, Slovakia
| |
Collapse
|
24
|
Schott J, Jantzen F, Hilker M. Elm tree defences against a specialist herbivore are moderately primed by an infestation in the previous season. TREE PHYSIOLOGY 2023; 43:1218-1232. [PMID: 37010106 PMCID: PMC10335851 DOI: 10.1093/treephys/tpad038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 03/06/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
The studies of the long-term effects of insect infestations on plant anti-herbivore defences tend to focus on feeding-induced damage. Infestations by an entire insect generation, including egg depositions as well as the feeding insects, are often neglected. Whilst there is increasing evidence that the presence of insect eggs can intensify plants' anti-herbivore defences against hatching larvae in the short term, little is known about how insect infestations, including insect egg depositions, affect plant defences in the long term. We addressed this knowledge gap by investigating long-term effects of insect infestation on elm's (Ulmus minor Mill. cv. 'Dahlem') defences against subsequent infestation. In greenhouse experiments, elms were exposed to elm leaf beetle (ELB, Xanthogaleruca luteola) infestation (adults, eggs and larvae). Thereafter, the trees cast their leaves under simulated winter conditions and were re-infested with ELB after the regrowth of their leaves under simulated summer conditions. Elm leaf beetles performed moderately worse on previously infested elms with respect to several developmental parameters. The concentrations of the phenylpropanoids kaempferol and quercetin, which are involved in egg-mediated, short-term effects on elm defences, were slightly higher in the ELB-challenged leaves of previously infested trees than in the challenged leaves of naïve trees. The expression of several genes involved in the phenylpropanoid pathway, jasmonic acid signalling, and DNA and histone modifications appeared to be affected by ELB infestation; however, prior infestation did not alter the expression intensities of these genes. The concentrations of several phytohormones were similarly affected in the currently challenged leaves of previously infested trees and naïve trees. Our study shows that prior infestation of elms by a specialised insect leads to moderately improved defences against subsequent infestation in the following growing season. Prior infestation adds a long-term effect to the short-term enhancer effect that plants show in response to egg depositions when defending against hatching larvae.
Collapse
Affiliation(s)
- Johanna Schott
- Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, Haderslebener Str. 9, 12163 Berlin, Germany
| | - Friederike Jantzen
- Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, Haderslebener Str. 9, 12163 Berlin, Germany
| | - Monika Hilker
- Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, Haderslebener Str. 9, 12163 Berlin, Germany
| |
Collapse
|
25
|
Pan R, Ren W, Liu S, Zhang H, Deng X, Wang B. Ectopic over-expression of HaFT-1, a 14-3-3 protein from Haloxylon ammodendron, enhances acquired thermotolerance in transgenic Arabidopsis. PLANT MOLECULAR BIOLOGY 2023:10.1007/s11103-023-01361-5. [PMID: 37341869 DOI: 10.1007/s11103-023-01361-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 05/19/2023] [Indexed: 06/22/2023]
Abstract
Haloxylon ammodendron, an important shrub utilized for afforestation in desert areas, can withstand harsh ecological conditions such as drought, high salt and extreme heat. A better understanding of the stress adaptation mechanisms of H. ammodendron is vital for ecological improvement in desert areas. In this study, the role of the H. ammodendron 14-3-3 protein HaFT-1 in thermotolerance was investigated. qRT-PCR analysis showed that heat stress (HS) priming (the first HS) enhanced the expression of HaFT-1 during the second HS and subsequent recovery phase. The subcellular localization of YFP-HaFT-1 fusion protein was mainly detected in cytoplasm. HaFT-1 overexpression increased the germination rate of transgenic Arabidopsis seeds, and the survival rate of HaFT-1 overexpression seedlings was higher than that of wild-type (WT) Arabidopsis after priming-and-triggering and non-primed control treatments. Cell death staining showed that HaFT-1 overexpression lines exhibited significantly reduced cell death during HS compared to WT. Transcriptome analysis showed that genes associated with energy generation, protein metabolism, proline metabolism, autophagy, chlorophyll metabolism and reactive oxygen species (ROS) scavenging were important to the thermotolerance of HS-primed HaFT-1 transgenic plants. Growth physiology analysis indicated that priming-and-triggering treatment of Arabidopsis seedlings overexpressing HaFT-1 increased proline content and strengthened ROS scavenging activity. These results demonstrated that overexpression of HaFT-1 increased not only HS priming but also tolerance to the second HS of transgenic Arabidopsis, suggesting that HaFT-1 is a positive regulator in acquired thermotolerance.
Collapse
Affiliation(s)
- Rong Pan
- College of Life Sciences, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Wenjing Ren
- College of Life Sciences, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Shuanshuan Liu
- College of Agriculture, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Hua Zhang
- College of Life Sciences, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Xin Deng
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Bo Wang
- College of Life Sciences, Xinjiang Agricultural University, Urumqi, 830052, China.
| |
Collapse
|
26
|
Liu C, Wang J, Huang P, Hu C, Gao F, Liu Y, Li Z, Cui B. Response of Soil Microenvironment and Crop Growth to Cyclic Irrigation Using Reclaimed Water and Brackish Water. PLANTS (BASEL, SWITZERLAND) 2023; 12:2285. [PMID: 37375911 DOI: 10.3390/plants12122285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
The scarcity of freshwater resources has increased the use of nonconventional water resources such as brackish water, reclaimed water, etc., especially in water-scarce areas. Whether an irrigation cycle using reclaimed water and brackish water (RBCI) poses a risk of secondary soil salinization to crop yields needs to be studied. Aiming to find an appropriate use for different nonconventional water resources, pot experiments were conducted to study the effects of RBCI on soil microenvironments, growth, physiological characteristics and antioxidation properties of crops. The results showed the following: (1) compared to FBCI, the soil moisture content was slightly higher, without a significant difference, while the soil EC, sodium and chloride ions contents increased significantly under the RBCI treatment. With an increase in the reclaimed water irrigation frequency (Tri), the contents of EC, Na+ and Cl- in the soil decreased gradually, and the difference was significant; the soil moisture content also decreased gradually. (2) There were different effects of the RBCI regime on the soil's enzyme activities. With an increase in the Tri, the soil urease activity indicated a significant upward trend as a whole. (3) RBCI can alleviate the risk of soil salinization to some extent. The soil pH values were all below 8.5, and were without a risk of secondary soil alkalization. The ESP did not exceed 15 percent, and there was no possible risk of soil alkalization except that the ESP in soil irrigated by brackish water irrigation went beyond the limit of 15 percent. (4) Compared with FBCI, no obvious changes appeared to the aboveground and underground biomasses under the RBCI treatment. The RBCI treatment was conducive to increasing the aboveground biomass compared with pure brackish water irrigation. Therefore, short-term RBCI helps to reduce the risk of soil salinization without significantly affecting crop yield, and the irrigation cycle using reclaimed-reclaimed-brackish water at 3 g·L-1 was recommended, according to the experimental results.
Collapse
Affiliation(s)
- Chuncheng Liu
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
- Key Laboratory of High-Efficient and Safe Utilization of Agriculture Water Resources, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
- Agriculture Water and Soil Environmental Field Science Research Station of Xinxiang City, Chinese Academy of Agricultural Sciences, Xinxiang 453000, China
| | - Juan Wang
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225000, China
| | - Pengfei Huang
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
- Key Laboratory of High-Efficient and Safe Utilization of Agriculture Water Resources, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
- Agriculture Water and Soil Environmental Field Science Research Station of Xinxiang City, Chinese Academy of Agricultural Sciences, Xinxiang 453000, China
| | - Chao Hu
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
- Key Laboratory of High-Efficient and Safe Utilization of Agriculture Water Resources, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
- Agriculture Water and Soil Environmental Field Science Research Station of Xinxiang City, Chinese Academy of Agricultural Sciences, Xinxiang 453000, China
| | - Feng Gao
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
- Key Laboratory of High-Efficient and Safe Utilization of Agriculture Water Resources, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
- Agriculture Water and Soil Environmental Field Science Research Station of Xinxiang City, Chinese Academy of Agricultural Sciences, Xinxiang 453000, China
| | - Yuan Liu
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
- Key Laboratory of High-Efficient and Safe Utilization of Agriculture Water Resources, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
- Agriculture Water and Soil Environmental Field Science Research Station of Xinxiang City, Chinese Academy of Agricultural Sciences, Xinxiang 453000, China
| | - Zhongyang Li
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
- Key Laboratory of High-Efficient and Safe Utilization of Agriculture Water Resources, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
- Agriculture Water and Soil Environmental Field Science Research Station of Xinxiang City, Chinese Academy of Agricultural Sciences, Xinxiang 453000, China
| | - Bingjian Cui
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
- Key Laboratory of High-Efficient and Safe Utilization of Agriculture Water Resources, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
- Agriculture Water and Soil Environmental Field Science Research Station of Xinxiang City, Chinese Academy of Agricultural Sciences, Xinxiang 453000, China
| |
Collapse
|
27
|
Amini A, Majidi MM, Mokhtari N, Ghanavati M. Drought stress memory in a germplasm of synthetic and common wheat: antioxidant system, physiological and morphological consequences. Sci Rep 2023; 13:8569. [PMID: 37237176 DOI: 10.1038/s41598-023-35642-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/21/2023] [Indexed: 05/28/2023] Open
Abstract
Plants have evolved mechanisms of adaptation to fluctuations in their environmental conditions that have been given the term "stress memory". Synthetic wheat offers new hope for breeders to restore useful genes lost during the genetic bottleneck. We aimed to test whether drought priming and seed priming could improve drought tolerance in a diverse germplasm of synthetic and common wheat under field conditions. In this research, 27 wheat genotypes (including 20 synthetics, 4 common local and 3 common exotic bread wheat) were field evaluated under four water environments. These treatments included: 1) normal condition (N), plants were irrigated when 40% of the total available soil water was depleted from the root-zone, 2) seed priming-secondary stress (SD2), only water stress was applied at anthesis when 90% of the total available soil water was depleted and seeds were planted for evaluating, 3) primary stress- secondary stress (D1D2), primary water stress was applied at jointing stage when 70% of the total available soil water was depleted then secondary water stress was applied at the anthesis stage when 90% of the total available soil water was depleted, and 4) secondary stress (D2) only water stress was applied at the anthesis when 90% of the total available soil water was depleted. Our results indicated that improved efficient enzymatic antioxidant system leads to less yield reduction in D1D2 treatment. However, the positive effects of drought priming were more pronounced in drought primed (D1D2) than seed primed treatment (SD2). Synthetic wheat genotypes had a significant superiority in terms of yield, yield components and drought tolerance compared to common wheat genotypes. Nevertheless, the response of genotypes to stress memory was very different. Drought sensitive genotypes had better response to stress memory. Superior genotypes were identified as high yield and drought tolerant genotypes which can be used for future studies.
Collapse
Affiliation(s)
- Azadeh Amini
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, 8415683111, Iran
| | - Mohammad Mahdi Majidi
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, 8415683111, Iran.
| | - Niloofar Mokhtari
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, 8415683111, Iran
| | - Mehdi Ghanavati
- Department of Agriculture, Payame Noor University (PNU), P.O Box 19395-3697, Tehran, Iran
| |
Collapse
|
28
|
Wu Y, Chaumier T, Manirakiza E, Veluchamy A, Tirichine L. PhaeoEpiView: an epigenome browser of the newly assembled genome of the model diatom Phaeodactylum tricornutum. Sci Rep 2023; 13:8320. [PMID: 37221245 DOI: 10.1038/s41598-023-35403-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/17/2023] [Indexed: 05/25/2023] Open
Abstract
Recent advances in DNA sequencing technologies particularly long-read sequencing, greatly improved genomes assembly. However, this has created discrepancies between published annotations and epigenome tracks, which have not been updated to keep pace with the new assemblies. Here, we used the latest improved telomere-to-telomere assembly of the model pennate diatom Phaeodactylum tricornutum to lift over the gene models from Phatr3, a previously annotated reference genome. We used the lifted genes annotation and newly published transposable elements to map the epigenome landscape, namely DNA methylation and post-translational modifications of histones. This provides the community with PhaeoEpiView, a browser that allows the visualization of epigenome data and transcripts on an updated and contiguous reference genome, to better understand the biological significance of the mapped data. We updated previously published histone marks with a more accurate peak calling using mono instead of poly(clonal) antibodies and deeper sequencing. PhaeoEpiView ( https://PhaeoEpiView.univ-nantes.fr ) will be continuously updated with the newly published epigenomic data, making it the largest and richest epigenome browser of any stramenopile. In the upcoming era of molecular environmental studies, where epigenetics plays a significant role, we anticipate that PhaeoEpiView will become a widely used tool.
Collapse
Affiliation(s)
- Yue Wu
- Nantes Université, CNRS, US2B, UMR 6286, 44000, Nantes, France
| | | | - Eric Manirakiza
- Nantes Université, CNRS, US2B, UMR 6286, 44000, Nantes, France
| | | | - Leila Tirichine
- Nantes Université, CNRS, US2B, UMR 6286, 44000, Nantes, France.
| |
Collapse
|
29
|
Wang D, Wang S, Li LX, Wang YS, Ling-Hu KN, Chen JX. Contrasting effects of experiencing temporally heterogeneous light availability versus homogenous shading on plant subsequent responses to light conditions. BMC PLANT BIOLOGY 2023; 23:232. [PMID: 37131187 PMCID: PMC10155447 DOI: 10.1186/s12870-023-04229-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 04/11/2023] [Indexed: 05/04/2023]
Abstract
Temporally heterogeneous environments is hypothesized to correlate with greater plasticity of plants, which has rarely been supported by direct evidence. To address this issue, we subjected three species from different ranges of habitats to a first round of alternating full light and heavy shading (temporally heterogeneous light experience), constant moderate shading and full light conditions (temporally homogeneous light experiences, control) and a second round of light-gradient treatments. We measured plant performance in a series of morphological, biomass, physiological and biochemical traits at the end of each round. Compared to constant full light experience, temporally heterogeneous light conditions induced immediate active biochemical responses (in the first round) with improved late growth in biomass (during the second round); constant moderate shading experience increased photosynthetic physiological and biomass performances of plants in early response, and decreased their late growth in biomass. The karst endemic species of Kmeria septentrionalis showed greater improvement in late growth of biomass and lower decrease in biochemical performance, due to early heterogeneous experience, compared to the non-karst species of Lithocarpus glaber and the karst adaptable species of Celtis sinensis. Results suggested plants will prefer to produce morphological and physiological responses that are less reversible and more costly in the face of more reliable environmental cues at early stage in spite of decreased future growth potential, but to produce immediate biochemical responses for higher late growth potential when early environmental cues are less reliable, to avoid the loss of high costs and low profits. Typical karst species should be more able to benefit from early temporally heterogeneous experience, due to long-term adaptation to karst habitats of high environmental heterogeneity and low resource availability.
Collapse
Affiliation(s)
- Deng Wang
- College of Urban and Rural Construction, Shaoyang University, Shaoyang, 422000, China
- College of Forestry, Forest Ecology Research Center, Guizhou University, Guiyang, 550025, China
| | - Shu Wang
- College of Forestry, Forest Ecology Research Center, Guizhou University, Guiyang, 550025, China.
| | - Li-Xia Li
- College of Forestry, Forest Ecology Research Center, Guizhou University, Guiyang, 550025, China
| | - Ye-She Wang
- College of Urban and Rural Construction, Shaoyang University, Shaoyang, 422000, China
| | - Ke-Nian Ling-Hu
- College of Forestry, Forest Ecology Research Center, Guizhou University, Guiyang, 550025, China
| | - Jia-Xing Chen
- College of Forestry, Forest Ecology Research Center, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
30
|
Yang K, Huang Y, Yang J, Lv C, Hu Z, Yu L, Sun W. Effects of three patterns of elevated CO2 in single and multiple generations on photosynthesis and stomatal features in rice. ANNALS OF BOTANY 2023; 131:463-473. [PMID: 36708194 PMCID: PMC10072110 DOI: 10.1093/aob/mcad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND AND AIMS Effects of elevated CO2 (E) within a generation on photosynthesis and stomatal features have been well documented in crops; however, long-term responses to gradually elevated CO2 (Eg) and abruptly elevated CO2 (Ea) over multiple generations remain scarce. METHODS Japonica rice plants grown in open-top chambers were tested in the first generation (F1) under Ea and in the fifth generation (F5) under Eg and Ea, as follows: Ea in F1: ambient CO2 (A) + 200 μmol mol-1; Eg in F5: an increase of A + 40 μmol mol-1 year-1 until A + 200 μmol mol-1 from 2016 to 2020; Ea in F5: A + 200 μmol mol-1 from 2016 to 2020. For multigenerational tests, the harvested seeds were grown continuously in the following year in the respective CO2 environments. KEY RESULTS The responses to Ea in F1 were consistent with the previous consensus, such as the occurrence of photosynthetic acclimation, stimulation of photosynthesis, and downregulation of photosynthetic physiological parameters and stomatal area. In contrast, multigenerational exposure to both Eg and Ea did not induce photosynthetic acclimation, but stimulated greater photosynthesis and had little effect on the photosynthetic physiology and stomatal traits. This suggests that E retained intergenerational effects on photosynthesis and stomatal features and that there were no multigenerational differences in the effects of Eg and Ea. CONCLUSIONS The present study demonstrated that projecting future changes induced by E based on the physiological responses of contemporary plants could be misleading. Thus, responses of plants to large and rapid environmental changes within a generation cannot predict the long-term response of plants to natural environmental changes over multiple generations, especially in annual herbs with short life cycles.
Collapse
Affiliation(s)
- Kai Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yao Huang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingrui Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chunhua Lv
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhenghua Hu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
| | - Lingfei Yu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Wenjuan Sun
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
31
|
Kambona CM, Koua PA, Léon J, Ballvora A. Stress memory and its regulation in plants experiencing recurrent drought conditions. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:26. [PMID: 36788199 PMCID: PMC9928933 DOI: 10.1007/s00122-023-04313-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Developing stress-tolerant plants continues to be the goal of breeders due to their realized yields and stability. Plant responses to drought have been studied in many different plant species, but the occurrence of stress memory as well as the potential mechanisms for memory regulation is not yet well described. It has been observed that plants hold on to past events in a way that adjusts their response to new challenges without altering their genetic constitution. This ability could enable training of plants to face future challenges that increase in frequency and intensity. A better understanding of stress memory-associated mechanisms leading to alteration in gene expression and how they link to physiological, biochemical, metabolomic and morphological changes would initiate diverse opportunities to breed stress-tolerant genotypes through molecular breeding or biotechnological approaches. In this perspective, this review discusses different stress memory types and gives an overall view using general examples. Further, focusing on drought stress, we demonstrate coordinated changes in epigenetic and molecular gene expression control mechanisms, the associated transcription memory responses at the genome level and integrated biochemical and physiological responses at cellular level following recurrent drought stress exposures. Indeed, coordinated epigenetic and molecular alterations of expression of specific gene networks link to biochemical and physiological responses that facilitate acclimation and survival of an individual plant during repeated stress.
Collapse
Affiliation(s)
- Carolyn Mukiri Kambona
- Department of Plant Breeding, Institut Für Nutzpflanzenwissenschaften Und Ressourcenschutz (INRES), RheinischeFriedrich-Wilhelms-University, Bonn, Germany
| | - Patrice Ahossi Koua
- Department of Plant Breeding, Institut Für Nutzpflanzenwissenschaften Und Ressourcenschutz (INRES), RheinischeFriedrich-Wilhelms-University, Bonn, Germany
- Deutsche Saatveredelung AG, Thüler Str. 30, 33154, Salzkotten-Thüle, Germany
| | - Jens Léon
- Department of Plant Breeding, Institut Für Nutzpflanzenwissenschaften Und Ressourcenschutz (INRES), RheinischeFriedrich-Wilhelms-University, Bonn, Germany
- Field Lab Campus Klein-Altendorf, Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| | - Agim Ballvora
- Department of Plant Breeding, Institut Für Nutzpflanzenwissenschaften Und Ressourcenschutz (INRES), RheinischeFriedrich-Wilhelms-University, Bonn, Germany.
| |
Collapse
|
32
|
Valero-Rubira I, Castillo AM, Burrell MÁ, Vallés MP. Microspore embryogenesis induction by mannitol and TSA results in a complex regulation of epigenetic dynamics and gene expression in bread wheat. FRONTIERS IN PLANT SCIENCE 2023; 13:1058421. [PMID: 36699843 PMCID: PMC9868772 DOI: 10.3389/fpls.2022.1058421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Reprogramming of microspores development towards embryogenesis mediated by stress treatment constitutes the basis of doubled haploid production. Recently, compounds that alter histone post-translational modifications (PTMs) have been reported to enhance microspore embryogenesis (ME), by altering histones acetylation or methylation. However, epigenetic mechanisms underlying ME induction efficiency are poorly understood. In this study, the epigenetic dynamics and the expression of genes associated with histone PTMs and ME induction were studied in two bread wheat cultivars with different ME response. Microspores isolated at 0, 3 and 5 days, treated with 0.7M mannitol (MAN) and 0.7M mannitol plus 0.4µM trichostatin A (TSA), which induced ME more efficiently, were analyzed. An additional control of gametophytic development was included. Microspores epigenetic state at the onset of ME induction was distinctive between cultivars by the ratio of H3 variants and their acetylated forms, the localization and percentage of labeled microspores with H3K9ac, H4K5ac, H4K16ac, H3K9me2 and H3K27me3, and the expression of genes related to pollen development. These results indicated that microspores of the high responding cultivar could be at a less advanced stage in pollen development. MAN and TSA resulted in a hyperacetylation of H3.2, with a greater effect of TSA. Histone PTMs were differentially affected by both treatments, with acetylation being most concerned. The effect of TSA was observed in the H4K5ac localization pattern at 3dT in the mid-low responding cultivar. Three gene networks linked to ME response were identified. TaHDT1, TaHAG2, TaYAO, TaNFD6-A, TabZIPF1 and TaAGO802-B, associated with pollen development, were down-regulated. TaHDA15, TaHAG3, TaHAM, TaYUC11D, Ta-2B-LBD16 TaMS1 and TaDRM3 constituted a network implicated in morphological changes by auxin signaling and cell wall modification up-regulated at 3dT. The last network included TaHDA18, TaHAC1, TaHAC4, TaABI5, TaATG18fD, TaSDG1a-7A and was related to ABA and ethylene hormone signaling pathways, DNA methylation and autophagy processes, reaching the highest expression at 5dT. The results indicated that TSA mainly modified the regulation of genes related to pollen and auxin signaling. This study represents a breakthrough in identifying the epigenetic dynamics and the molecular mechanisms governing ME induction efficiency, with relevance to recalcitrant wheat genotypes and other crops.
Collapse
Affiliation(s)
- Isabel Valero-Rubira
- Departamento de Genética y Producción Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Zaragoza, Spain
| | - Ana María Castillo
- Departamento de Genética y Producción Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Zaragoza, Spain
| | - María Ángela Burrell
- Departamento de Patología, Anatomía y Fisiología, Facultad de Ciencias, Universidad de Navarra, Pamplona, Spain
| | - Maria Pilar Vallés
- Departamento de Genética y Producción Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Zaragoza, Spain
| |
Collapse
|
33
|
Charng YY, Mitra S, Yu SJ. Maintenance of abiotic stress memory in plants: Lessons learned from heat acclimation. THE PLANT CELL 2023; 35:187-200. [PMID: 36271858 PMCID: PMC9806581 DOI: 10.1093/plcell/koac313] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/17/2022] [Indexed: 05/23/2023]
Abstract
Plants acquire enhanced tolerance to intermittent abiotic stress by employing information obtained during prior exposure to an environmental disturbance, a process known as acclimation or defense priming. The capacity for stress memory is a critical feature in this process. The number of reports related to plant stress memory (PSM) has recently increased, but few studies have focused on the mechanisms that maintain PSM. Identifying the components involved in maintaining PSM is difficult due in part to the lack of clear criteria to recognize these components. In this review, based on what has been learned from genetic studies on heat acclimation memory, we propose criteria for identifying components of the regulatory networks that maintain PSM. We provide examples of the regulatory circuits formed by effectors and regulators of PSM. We also highlight strategies for assessing PSMs, update the progress in understanding the mechanisms of PSM maintenance, and provide perspectives for the further development of this exciting research field.
Collapse
Affiliation(s)
| | - Suma Mitra
- Agricultural Biotechnology Research Center, Academia Sinica, Taiwan, ROC
- Molecular and Biological Agricultural Sciences Program, TIGP, Academia Sinica, Taiwan, ROC
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan, ROC
| | - Shih-Jiun Yu
- Agricultural Biotechnology Research Center, Academia Sinica, Taiwan, ROC
- Department of Biochemical Sciences and Technology, National Taiwan University, Taipei, Taiwan, ROC
| |
Collapse
|
34
|
Vicente TFL, Félix C, Félix R, Valentão P, Lemos MFL. Seaweed as a Natural Source against Phytopathogenic Bacteria. Mar Drugs 2022; 21:23. [PMID: 36662196 PMCID: PMC9867177 DOI: 10.3390/md21010023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Plant bacterial pathogens can be devastating and compromise entire crops of fruit and vegetables worldwide. The consequences of bacterial plant infections represent not only relevant economical losses, but also the reduction of food availability. Synthetic bactericides have been the most used tool to control bacterial diseases, representing an expensive investment for the producers, since cyclic applications are usually necessary, and are a potential threat to the environment. The development of greener methodologies is of paramount importance, and some options are already available in the market, usually related to genetic manipulation or plant community modulation, as in the case of biocontrol. Seaweeds are one of the richest sources of bioactive compounds, already being used in different industries such as cosmetics, food, medicine, pharmaceutical investigation, and agriculture, among others. They also arise as an eco-friendly alternative to synthetic bactericides. Several studies have already demonstrated their inhibitory activity over relevant bacterial phytopathogens, some of these compounds are known for their eliciting ability to trigger priming defense mechanisms. The present work aims to gather the available information regarding seaweed extracts/compounds with antibacterial activity and eliciting potential to control bacterial phytopathogens, highlighting the extracts from brown algae with protective properties against microbial attack.
Collapse
Affiliation(s)
- Tânia F. L. Vicente
- MARE-Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associated Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Carina Félix
- MARE-Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associated Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal
| | - Rafael Félix
- MARE-Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associated Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Marco F. L. Lemos
- MARE-Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associated Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal
| |
Collapse
|
35
|
Ornelas-Ayala D, Cortés-Quiñones C, Olvera-Herrera J, García-Ponce B, Garay-Arroyo A, Álvarez-Buylla ER, Sanchez MDLP. A Green Light to Switch on Genes: Revisiting Trithorax on Plants. PLANTS (BASEL, SWITZERLAND) 2022; 12:75. [PMID: 36616203 PMCID: PMC9824250 DOI: 10.3390/plants12010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
The Trithorax Group (TrxG) is a highly conserved multiprotein activation complex, initially defined by its antagonistic activity with the PcG repressor complex. TrxG regulates transcriptional activation by the deposition of H3K4me3 and H3K36me3 marks. According to the function and evolutionary origin, several proteins have been defined as TrxG in plants; nevertheless, little is known about their interactions and if they can form TrxG complexes. Recent evidence suggests the existence of new TrxG components as well as new interactions of some TrxG complexes that may be acting in specific tissues in plants. In this review, we bring together the latest research on the topic, exploring the interactions and roles of TrxG proteins at different developmental stages, required for the fine-tuned transcriptional activation of genes at the right time and place. Shedding light on the molecular mechanism by which TrxG is recruited and regulates transcription.
Collapse
|
36
|
Liu Y, Wang J, Liu B, Xu ZY. Dynamic regulation of DNA methylation and histone modifications in response to abiotic stresses in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2252-2274. [PMID: 36149776 DOI: 10.1111/jipb.13368] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
DNA methylation and histone modification are evolutionarily conserved epigenetic modifications that are crucial for the expression regulation of abiotic stress-responsive genes in plants. Dynamic changes in gene expression levels can result from changes in DNA methylation and histone modifications. In the last two decades, how epigenetic machinery regulates abiotic stress responses in plants has been extensively studied. Here, based on recent publications, we review how DNA methylation and histone modifications impact gene expression regulation in response to abiotic stresses such as drought, abscisic acid, high salt, extreme temperature, nutrient deficiency or toxicity, and ultraviolet B exposure. We also review the roles of epigenetic mechanisms in the formation of transgenerational stress memory. We posit that a better understanding of the epigenetic underpinnings of abiotic stress responses in plants may facilitate the design of more stress-resistant or -resilient crops, which is essential for coping with global warming and extreme environments.
Collapse
Affiliation(s)
- Yutong Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Jie Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
37
|
Petrik P, Petek-Petrik A, Kurjak D, Mukarram M, Klein T, Gömöry D, Střelcová K, Frýdl J, Konôpková A. Interannual adjustments in stomatal and leaf morphological traits of European beech (Fagus sylvatica L.) demonstrate its climate change acclimation potential. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:1287-1296. [PMID: 35238138 DOI: 10.1111/plb.13401] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
The current projections of climate change might exceed the ability of European forest trees to adapt to upcoming environmental conditions. However, stomatal and leaf morphological traits could greatly influence the acclimation potential of forest tree species subjected to global warming, including the single most important forestry species in Europe, European beech. We analysed stomatal (guard cell length, stomatal density and potential conductance index) and leaf (leaf area, leaf dry weight and leaf mass per area) morphological traits of ten provenances from two provenance trials with contrasting climates between 2016 and 2020. The impact of meteorological conditions of the current and preceding year on stomatal and leaf traits was tested by linear and quadratic regressions. Ecodistance was used to capture the impact of adaptation after the transfer of provenances to new environments. Interactions of trial-provenance and trial-year factors were significant for all measured traits. Guard cell length was lowest and stomatal density was highest across beech provenances in the driest year, 2018. Adaptation was also reflected in a significant relationship between aridity ecodistance and measured traits. Moreover, the meteorological conditions of the preceding year affected the interannual variability of stomatal and leaf traits more than the meteorological conditions of the spring of the current year, suggesting the existence of plant stress memory. High intraspecific variability of stomatal and leaf traits controlled by the interaction of adaptation, acclimation and plant memory suggests a high acclimation potential of European beech provenances under future conditions of global climate change.
Collapse
Affiliation(s)
- P Petrik
- Global Change Research Institute, Czech Academy of Sciences, Brno, Czech Republic
| | - A Petek-Petrik
- Department of Vegetation Ecology, Institute of Botany CAS, Brno, Czech Republic
| | - D Kurjak
- Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - M Mukarram
- Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - T Klein
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - D Gömöry
- Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - K Střelcová
- Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - J Frýdl
- Forestry and Game Management Research Institute, Jíloviště, Czech Republic
| | - A Konôpková
- Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| |
Collapse
|
38
|
Sharma M, Sharma M, Jamsheer K M, Laxmi A. A glucose-target of rapamycin signaling axis integrates environmental history of heat stress through maintenance of transcription-associated epigenetic memory in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7083-7102. [PMID: 35980748 DOI: 10.1093/jxb/erac338] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
In nature, plants cope with adversity and have established strategies that recall past episodes and enable them to better cope with stress recurrences by establishing a 'stress memory'. Emerging evidence suggests that glucose (Glc) and target of rapamycin (TOR), central regulators of plant growth, have remarkable functions in stress adaptation. However, whether TOR modulates a stress memory response is so far unknown. Global transcriptome profiling identified that Glc, through TOR, regulates the expression of numerous genes involved in thermomemory. Priming of TOR overexpressors with mild heat showed better stress endurance, whereas TOR RNAi showed reduced thermomemory. This thermomemory is linked with histone methylation at specific sites of heat stress (HS) genes. TOR promotes long-term accumulation of H3K4me3 on thermomemory-associated gene promoters, even when transcription of those genes reverts to their basal level. Our results suggest that ARABIDOPSIS TRITHORAX 1 (ATX1), an H3K4 methyltransferase already shown to regulate H3K4me3 levels at the promoters of HS recovery genes, is a direct target of TOR signaling. The TOR-activating E2Fa binds to the promoter of ATX1 and regulates its expression, which ultimately regulates thermomemory. Collectively, our findings reveal a mechanistic framework in which Glc-TOR signaling determines the integration of stress and energy signaling to regulate thermomemory.
Collapse
Affiliation(s)
- Mohan Sharma
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi 110067, India
| | - Manvi Sharma
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi 110067, India
| | - Muhammed Jamsheer K
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi 110067, India
| | - Ashverya Laxmi
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi 110067, India
| |
Collapse
|
39
|
Varotto S, Krugman T, Aiese Cigliano R, Kashkush K, Kondić-Špika A, Aravanopoulos FA, Pradillo M, Consiglio F, Aversano R, Pecinka A, Miladinović D. Exploitation of epigenetic variation of crop wild relatives for crop improvement and agrobiodiversity preservation. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3987-4003. [PMID: 35678824 PMCID: PMC9729329 DOI: 10.1007/s00122-022-04122-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/04/2022] [Indexed: 05/05/2023]
Abstract
Crop wild relatives (CWRs) are recognized as the best potential source of traits for crop improvement. However, successful crop improvement using CWR relies on identifying variation in genes controlling desired traits in plant germplasms and subsequently incorporating them into cultivars. Epigenetic diversity may provide an additional layer of variation within CWR and can contribute novel epialleles for key traits for crop improvement. There is emerging evidence that epigenetic variants of functional and/or agronomic importance exist in CWR gene pools. This provides a rationale for the conservation of epigenotypes of interest, thus contributing to agrobiodiversity preservation through conservation and (epi)genetic monitoring. Concepts and techniques of classical and modern breeding should consider integrating recent progress in epigenetics, initially by identifying their association with phenotypic variations and then by assessing their heritability and stability in subsequent generations. New tools available for epigenomic analysis offer the opportunity to capture epigenetic variation and integrate it into advanced (epi)breeding programmes. Advances in -omics have provided new insights into the sources and inheritance of epigenetic variation and enabled the efficient introduction of epi-traits from CWR into crops using epigenetic molecular markers, such as epiQTLs.
Collapse
Affiliation(s)
- Serena Varotto
- Department of Agronomy Animal Food Natural Resources and Environment, University of Padova, Viale dell'Università, 16 35020, Legnaro, Italy.
| | - Tamar Krugman
- Institute of Evolution, University of Haifa, Abba Khoushy Ave 199, 3498838, Haifa, Israel
| | | | - Khalil Kashkush
- Department of Life Sciences, Ben-Gurion University, Beersheba, 84105, Israel
| | - Ankica Kondić-Špika
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000, Novi Sad, Serbia
| | - Fillipos A Aravanopoulos
- Faculty of Agriculture, Forest Science & Natural Environment, Aristotle University of Thessaloniki, Thessaloniki, GR54006, Greece
| | - Monica Pradillo
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, 28040, Madrid, Spain
| | - Federica Consiglio
- Institute of Biosciences and Bioresources, National Research Council (CNR), Via Università 133, 80055, Portici, Italy
| | - Riccardo Aversano
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici, Italy
| | - Ales Pecinka
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Czech Acad Sci, Šlechtitelů 31, 779 00, Olomouc, Czech Republic
| | - Dragana Miladinović
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000, Novi Sad, Serbia
| |
Collapse
|
40
|
Nguyen NH, Vu NT, Cheong JJ. Transcriptional Stress Memory and Transgenerational Inheritance of Drought Tolerance in Plants. Int J Mol Sci 2022; 23:12918. [PMID: 36361708 PMCID: PMC9654142 DOI: 10.3390/ijms232112918] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 12/03/2023] Open
Abstract
Plants respond to drought stress by producing abscisic acid, a chemical messenger that regulates gene expression and thereby expedites various physiological and cellular processes including the stomatal operation to mitigate stress and promote tolerance. To trigger or suppress gene transcription under drought stress conditions, the surrounding chromatin architecture must be converted between a repressive and active state by epigenetic remodeling, which is achieved by the dynamic interplay among DNA methylation, histone modifications, loop formation, and non-coding RNA generation. Plants can memorize chromatin status under drought conditions to enable them to deal with recurrent stress. Furthermore, drought tolerance acquired during plant growth can be transmitted to the next generation. The epigenetically modified chromatin architectures of memory genes under stressful conditions can be transmitted to newly developed cells by mitotic cell division, and to germline cells of offspring by overcoming the restraints on meiosis. In mammalian cells, the acquired memory state is completely erased and reset during meiosis. The mechanism by which plant cells overcome this resetting during meiosis to transmit memory is unclear. In this article, we review recent findings on the mechanism underlying transcriptional stress memory and the transgenerational inheritance of drought tolerance in plants.
Collapse
Affiliation(s)
- Nguyen Hoai Nguyen
- Faculty of Biotechnology, Ho Chi Minh City Open University, Ho Chi Minh City 700000, Vietnam
| | - Nam Tuan Vu
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea
| | - Jong-Joo Cheong
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
41
|
De Houwer J, Hughes S. Learning in Individual Organisms, Genes, Machines, and Groups: A New Way of Defining and Relating Learning in Different Systems. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2022; 18:649-663. [PMID: 36257050 DOI: 10.1177/17456916221114886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Learning is a central concept in many scientific disciplines. Communication about research on learning is, however, hampered by the fact that different researchers define learning in different ways. In this article, we introduce the extended functional definition of learning that can be used across scientific disciplines. We provide examples of how the definition can be applied to individual organisms, genes, machines, and groups. Using the extended functional definition (a) reveals a heuristic framework for research that can be applied across scientific disciplines, (b) allows researchers to engage in intersystem analyses that relate the behavior and learning of different systems, and (c) clarifies how learning differs from other phenomena such as (changes in) behavior, damaging systems, and programming systems.
Collapse
Affiliation(s)
- Jan De Houwer
- Department of Experimental Clinical and Health Psychology, Ghent University
| | - Sean Hughes
- Department of Experimental Clinical and Health Psychology, Ghent University
| |
Collapse
|
42
|
Zhao L, Bai T, Wei H, Gardea-Torresdey JL, Keller A, White JC. Nanobiotechnology-based strategies for enhanced crop stress resilience. NATURE FOOD 2022; 3:829-836. [PMID: 37117882 DOI: 10.1038/s43016-022-00596-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 08/16/2022] [Indexed: 04/30/2023]
Abstract
Nanobiotechnology approaches to engineering crops with enhanced stress tolerance may be a safe and sustainable strategy to increase crop yield. Under stress conditions, cellular redox homeostasis is disturbed, resulting in the over-accumulation of reactive oxygen species (ROS) that damage biomolecules (lipids, proteins and DNA) and inhibit crop growth and yield. Delivering ROS-scavenging nanomaterials to plants has been shown to alleviate abiotic stress. Here we review the current state of knowledge of using ROS-scavenging nanomaterials to enhance plant stress tolerance. When present below a threshold level, ROS can mediate redox signalling and defence pathways that foster plant acclimatization against stress. We find that ROS-triggering nanomaterials, such as nanoparticulate silver and copper oxide, have the potential to be judiciously applied to crop species to stimulate the defence system, prime stress responses and subsequently increase the stress resistance of crops.
Collapse
Affiliation(s)
- Lijuan Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, China.
| | - Tonghao Bai
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, China
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, China
| | | | - Arturo Keller
- Bren School of Environmental Science & Management and Center for Environmental Implications of Nanotechnology, University of California, Santa Barbara, CA, USA
| | - Jason C White
- The Connecticut Agricultural Experiment Station (CAES), New Haven, CT, USA.
| |
Collapse
|
43
|
Lu J, Chen H, Yang Z, Sun S, Luo Q, Xie J, Tan J. Physiological and molecular mechanisms of the response of roots of Pinus massoniana Lamb. to low-temperature stress. FRONTIERS IN PLANT SCIENCE 2022; 13:954324. [PMID: 36247576 PMCID: PMC9554314 DOI: 10.3389/fpls.2022.954324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Pinus massoniana Lamb. is the timber species with the widest distribution and the largest afforestation area in China, providing a large amount of timber, turpentine and ecological products. but low temperature limits its growth and geographical distribution. Physiological and molecular studies can well explain the mechanism of P. massoniana response to low temperature. In this study, physiological and biochemical indexes, cell morphology, lignin content, gene regulatory networks, and gene expression patterns of different P. massoniana varieties (cold-tolerant and cold-sensitive) were studied from physiological, biochemical, and molecular perspectives. The results indicated that under low-temperature stress, the cold-tolerant cultivar maintained high contents of osmoregulatory substances, and the root morphology and structure remained intact. In the initial stage of low-temperature stress, the number of differentially expressed genes was 7148, and with the extension of stress time, the number of differentially expressed genes decreased to 1991. P. massoniana might direct its responses to low temperature by regulating phenylpropane metabolism, starch and sucrose metabolism, hormone signaling pathways, and transcription factors. BAM, 4CL, CCoAOMT, PRX5, WRKYs, and hormone synthesis related genes play important roles. P. massoniana cultivars may vary in response mechanisms. In this study, physiological and analytical techniques were used to study the root tip response mechanism of Masson's pine to low temperature stress. The results of this study lay a foundation for in-depth research on the molecular functions of P. massoniana under low-temperature stress conditions.
Collapse
Affiliation(s)
- Jingyu Lu
- Key Laboratory of Central South Fast-Growing Timber Cultivation of Forestry Ministry of China, Guangxi Forestry Research Institute, Nanning, China
| | - Hu Chen
- Key Laboratory of Central South Fast-Growing Timber Cultivation of Forestry Ministry of China, Guangxi Forestry Research Institute, Nanning, China
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Nanning, China
- Masson Pine Engineering Research Center of the State Forestry Administration, Nanning, China
- Masson Pine Engineering Research Center of Guangxi, Nanning, China
| | - Zhangqi Yang
- Key Laboratory of Central South Fast-Growing Timber Cultivation of Forestry Ministry of China, Guangxi Forestry Research Institute, Nanning, China
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Nanning, China
- Masson Pine Engineering Research Center of the State Forestry Administration, Nanning, China
- Masson Pine Engineering Research Center of Guangxi, Nanning, China
| | - Shuang Sun
- Key Laboratory of Central South Fast-Growing Timber Cultivation of Forestry Ministry of China, Guangxi Forestry Research Institute, Nanning, China
| | - Qunfeng Luo
- Key Laboratory of Central South Fast-Growing Timber Cultivation of Forestry Ministry of China, Guangxi Forestry Research Institute, Nanning, China
- Masson Pine Engineering Research Center of the State Forestry Administration, Nanning, China
| | - Junkang Xie
- Key Laboratory of Central South Fast-Growing Timber Cultivation of Forestry Ministry of China, Guangxi Forestry Research Institute, Nanning, China
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Nanning, China
| | - Jianhui Tan
- Key Laboratory of Central South Fast-Growing Timber Cultivation of Forestry Ministry of China, Guangxi Forestry Research Institute, Nanning, China
- Masson Pine Engineering Research Center of Guangxi, Nanning, China
| |
Collapse
|
44
|
Transcriptome Profiling of Different State Callus Induced from Immature Embryo in Maize. J CHEM-NY 2022. [DOI: 10.1155/2022/6237298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Embryogenic and regenerable tissue cultures are widely used in plant transformation. To dissect the molecular mechanism of embryogenesis, we used inbred line A188 as the material; the immature embryo of kernels (15 day after pollination, 15DAP) was isolated and cultured in inducing medium and subjected to RNA-Seq. The results revealed that 5,076 differentially expressed genes (DEGs) were involved in morphological and histological changes and endogenous indole-3-acetic acid (IAA) alteration. Functional analysis showed that the DEGs were related to metabolic pathways and biosynthesis of secondary metabolites. In particular, ARF16 and ARF8 genes of auxin response factors (ARF) were upregulated from EC to IDC and EC to IRC. Meanwhile, BBM2, SERK1, and SERK2 genes of the embryogenic pathway were upregulated, and WIP2 and ESR genes of the wound-inducible were upregulated from EC to IDC and EC to IRC. These changes can improve conversion efficiency from EC to IRC, which is important for elucidating the underlying molecular mechanisms of callus formation.
Collapse
|
45
|
Dehydration Stress Memory Genes in Triticum turgidum L. ssp. durum (Desf.). BIOTECH 2022; 11:biotech11030043. [PMID: 36134917 PMCID: PMC9497085 DOI: 10.3390/biotech11030043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Exposure to successive stress cycles can result in a variety of memory response patterns in several plant species. We have investigated a group of these patterns at both the transcriptional and physiological memory levels in durum wheat. The data revealed huge discrepancies between investigated durum wheat cultivars, which presumably are all drought tolerant. It was possible to generate a consensus memory response pattern for each cultivar, where Hourani 27 was the most tolerant followed by Balikh 2 and then Omrabi 5. When durum wheat homologs from rice and maize were compared, only 18% gave similar memory response patterns. The data would indicate the presence of potentially divergent memory mechanisms in different plant species and genotypes. Ultimately, a thorough examination is required for each genotype before giving solid memory-based conclusions that can be applied in plant breeding and agricultural management practices.
Collapse
|
46
|
Liu L, Cao X, Zhai Z, Ma S, Tian Y, Cheng J. Direct evidence of drought stress memory in mulberry from a physiological perspective: Antioxidative, osmotic and phytohormonal regulations. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 186:76-87. [PMID: 35820349 DOI: 10.1016/j.plaphy.2022.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 06/21/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Drought stress commonly happens more than once during the life cycle of perennial trees. Stress memory endows better capacity to cope with repeated stresses for plants, while the underlying mechanisms are not fully elucidated. In this study, 2-month-old saplings of two mulberry cultivars (Husang32 and 7307 of Morus multicaulis) with or without an early soil water deficit were subjected to subsequent drought for 9 days. The shoot height growth, biomass production, stable carbon isotope discrimination, phytohormones, reactive oxygen species (ROS), osmotic substances and antioxidant enzymes were analyzed after the first and the second drought, respectively. Drought priming saplings sustained comparable or slightly higher biomass accumulation under the second drought than those non-priming. They also exhibited decreased levels of soluble sugars, free proline and soluble proteins, lower accumulation of malonaldehyde (MDA) and superoxide anion (O2•-), reduced activities of superoxide dismutase (SOD) and peroxidase (POD) compared to non-priming plants. Moreover, cultivar Husang32 exhibited elevated abscisic acid (ABA) and jasmonic acid (JA) where 7307 displayed opposite changes. PCA suggests that MDA, H2O2, free proline, SOD and POD in roots, and ROS, soluble sugars and glutamate reductase in leaves are dominant factors influenced by stress memory. ABA and JA in leaves also play important roles in exerting drought imprints. Collectively, stress memory can confer mulberry resistance to recurrent drought via combined regulations of antioxidative protection, osmotic adjustment and phytohormonal responses.
Collapse
Affiliation(s)
- Li Liu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China
| | - Xu Cao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China
| | - Zeyang Zhai
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China
| | - Sang Ma
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China
| | - Yue Tian
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China
| | - Jialing Cheng
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China.
| |
Collapse
|
47
|
Xiao M, Wang J, Xu F. Methylation hallmarks on the histone tail as a linker of osmotic stress and gene transcription. FRONTIERS IN PLANT SCIENCE 2022; 13:967607. [PMID: 36035677 PMCID: PMC9399788 DOI: 10.3389/fpls.2022.967607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/25/2022] [Indexed: 06/12/2023]
Abstract
Plants dynamically manipulate their gene expression in acclimation to the challenging environment. Hereinto, the histone methylation tunes the gene transcription via modulation of the chromatin accessibility to transcription machinery. Osmotic stress, which is caused by water deprivation or high concentration of ions, can trigger remarkable changes in histone methylation landscape and genome-wide reprogramming of transcription. However, the dynamic regulation of genes, especially how stress-inducible genes are timely epi-regulated by histone methylation remains largely unclear. In this review, recent findings on the interaction between histone (de)methylation and osmotic stress were summarized, with emphasis on the effects on histone methylation profiles imposed by stress and how histone methylation works to optimize the performance of plants under stress.
Collapse
|
48
|
Bhatia P, Gupta M. Micronutrient seed priming: new insights in ameliorating heavy metal stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:58590-58606. [PMID: 35781664 DOI: 10.1007/s11356-022-21795-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Plants need to survive with changing environmental conditions, be it different accessibility to water or nutrients, or attack by insects or pathogens. Few of these changes, especially heavy metal stress, can become more stressful and needed strong countermeasures to ensure survival of plants. Priming, a pre-sowing hydration treatment, involves pre-exposure of plants to an eliciting component which enhance the plant's tolerance to later stress events. By considering the role of micronutrients in aiding plants to cope up under adverse conditions, this review addresses various aspects of micronutrient seed priming in attenuating heavy metal stress. Priming using micronutrients is an adaptive strategy that boosts the defensive capacity of the plant by accumulating several active or inactive signaling proteins, which hold considerable importance in signal amplification against the triggered stimulus. Priming induced 'defence memory' persists in both present generation and its progeny. Therefore, it is considered a promising approach by seed technologist for commercial seed lots to enhance the vigour in terms of seed germination potential, productivity and strengthening resistance response against metalloid stress. The present review provides an overview regarding the potency of priming with micronutrient to ameliorate harmful effects of heavy metal stress, possible mechanism how attenuation is accomplished, role of priming in enhancing crop productivity and inducing defence memory against the metalloid stress stimulus.
Collapse
Affiliation(s)
- Priyanka Bhatia
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India
| | - Meetu Gupta
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
49
|
Villagómez-Aranda AL, Feregrino-Pérez AA, García-Ortega LF, González-Chavira MM, Torres-Pacheco I, Guevara-González RG. Activating stress memory: eustressors as potential tools for plant breeding. PLANT CELL REPORTS 2022; 41:1481-1498. [PMID: 35305133 PMCID: PMC8933762 DOI: 10.1007/s00299-022-02858-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/26/2022] [Indexed: 05/08/2023]
Abstract
Plants are continuously exposed to stress conditions, such that they have developed sophisticated and elegant survival strategies, which are reflected in their phenotypic plasticity, priming capacity, and memory acquisition. Epigenetic mechanisms play a critical role in modulating gene expression and stress responses, allowing malleability, reversibility, stability, and heritability of favourable phenotypes to enhance plant performance. Considering the urgency to improve our agricultural system because of going impacting climate change, potential and sustainable strategies rely on the controlled use of eustressors, enhancing desired characteristics and yield and shaping stress tolerance in crops. However, for plant breeding purposes is necessary to focus on the use of eustressors capable of establishing stable epigenetic marks to generate a transgenerational memory to stimulate a priming state in plants to face the changing environment.
Collapse
Affiliation(s)
- A L Villagómez-Aranda
- Biosystems Engineering Group. Engineering Faculty, Amazcala Campus, Autonomous University of Querétaro, Highway Chichimequillas s/n Km 1, Amazcala, El Marques, Querétaro, Mexico
| | - A A Feregrino-Pérez
- Biosystems Engineering Group. Engineering Faculty, Amazcala Campus, Autonomous University of Querétaro, Highway Chichimequillas s/n Km 1, Amazcala, El Marques, Querétaro, Mexico
| | - L F García-Ortega
- Laboratory of Learning and Research in Biological Computing, Centre for Research and Advanced Studies, National Polytechnic Institute (CINVESTAV), Irapuato, Guanajuato, Mexico
| | - M M González-Chavira
- Molecular Markers Laboratory, Bajío Experimental Field, National Institute for Forestry, Agriculture and Livestock Research (INIFAP), Celaya-San Miguel de Allende, Celaya, Guanajuato, Mexico
| | - I Torres-Pacheco
- Biosystems Engineering Group. Engineering Faculty, Amazcala Campus, Autonomous University of Querétaro, Highway Chichimequillas s/n Km 1, Amazcala, El Marques, Querétaro, Mexico
| | - R G Guevara-González
- Biosystems Engineering Group. Engineering Faculty, Amazcala Campus, Autonomous University of Querétaro, Highway Chichimequillas s/n Km 1, Amazcala, El Marques, Querétaro, Mexico.
| |
Collapse
|
50
|
Liu H, Able AJ, Able JA. Priming crops for the future: rewiring stress memory. TRENDS IN PLANT SCIENCE 2022; 27:699-716. [PMID: 34906381 DOI: 10.1016/j.tplants.2021.11.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 05/12/2023]
Abstract
The agricultural sector must produce resilient and climate-smart crops to meet the increasing needs of global food production. Recent advancements in elucidating the mechanistic basis of plant stress memory have provided new opportunities for crop improvement. Stress memory-coordinated changes at the organismal, cellular, and various omics levels prepare plants to be more responsive to reoccurring stress within or across generation(s). The exposure to a primary stress, or stress priming, can also elicit a beneficial impact when encountering a secondary abiotic or biotic stress through the convergence of synergistic signalling pathways, referred to as cross-stress tolerance. 'Rewired plants' with stress memory provide a new means to stimulate adaptable stress responses, safeguard crop reproduction, and engineer climate-smart crops for the future.
Collapse
Affiliation(s)
- Haipei Liu
- School of Agriculture, Food & Wine, Waite Research Institute, The University of Adelaide, Urrbrae, SA 5064, Australia
| | - Amanda J Able
- School of Agriculture, Food & Wine, Waite Research Institute, The University of Adelaide, Urrbrae, SA 5064, Australia
| | - Jason A Able
- School of Agriculture, Food & Wine, Waite Research Institute, The University of Adelaide, Urrbrae, SA 5064, Australia.
| |
Collapse
|