1
|
Huang J, Xuan X, Xu D, Wen Y. Dual-Mediated Roles of H +-ATPase in Alleviating the Phytotoxicity of Imazethapyr to Nontarget Wheat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19333-19341. [PMID: 39183467 DOI: 10.1021/acs.jafc.4c06062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
The regulation solutions and mechanisms of reducing pesticide phytotoxicity to nontarget plants are not well-defined and detailed. Here, we have proposed a new detoxification strategy to control the toxic effects of herbicide imazethapyr (IM) induced in wheat seedlings from the perspective of the plasma membrane (PM) H+-ATPase. We found that the changes in PM H+-ATPase activity have a regulatory effect on the phytotoxic effects induced by IM in plants. Treatment with PM H+-ATPase activators restored the reduced auxin content and photosynthetic efficiency caused by IM, thereby promoting plant growth. Application of a PM H+-ATPase inhibitor further reduced phosphorus content and significantly increased 2,4-dihydroxy-7-methoxy-2H,1,4-benzoxazin-3(4H)one (DIMBOA) and jasmonic acid levels. These effects indicate that auxin and DIMBOA may regulate plant growth trends and detoxification effects mediated by PM H+-ATPase. This work opens a new strategy for regulating herbicide toxicity to nontarget plants from the PM H+-ATPase.
Collapse
Affiliation(s)
- Jinye Huang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xuan Xuan
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Dongmei Xu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yuezhong Wen
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Hernandez-Escribano L, Morales Clemente MT, Fariña-Flores D, Raposo R. A delayed response in phytohormone signaling and production contributes to pine susceptibility to Fusarium circinatum. BMC PLANT BIOLOGY 2024; 24:727. [PMID: 39080528 PMCID: PMC11289988 DOI: 10.1186/s12870-024-05342-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/26/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Fusarium circinatum is the causal agent of pine pitch canker disease, which affects Pinus species worldwide, causing significant economic and ecological losses. In Spain, two Pinus species are most affected by the pathogen; Pinus radiata is highly susceptible, while Pinus pinaster has shown moderate resistance. In F. circinatum-Pinus interactions, phytohormones are known to play a crucial role in plant defense. By comparing species with different degrees of susceptibility, we aimed to elucidate the fundamental mechanisms underlying resistance to the pathogen. For this purpose, we used an integrative approach by combining gene expression and metabolomic phytohormone analyses at 5 and 10 days post inoculation. RESULTS Gene expression and metabolite phytohormone contents suggested that the moderate resistance of P. pinaster to F. circinatum is determined by the induction of phytohormone signaling and hormone rearrangement beginning at 5 dpi, when symptoms are still not visible. Jasmonic acid was the hormone that showed the greatest increase by 5 dpi, together with the active gibberellic acid 4 and the cytokinin dehydrozeatin; there was also an increase in abscisic acid and salicylic acid by 10 dpi. In contrast, P. radiata hormonal changes were delayed until 10 dpi, when symptoms were already visible; however, this increase was not as high as that in P. pinaster. Indeed, in P. radiata, no differences in jasmonic acid or salicylic acid production were found. Gene expression analysis supported the hormonal data, since the activation of genes related to phytohormone synthesis was observed earlier in P. pinaster than in the susceptible P. radiata. CONCLUSIONS We determine that the moderate resistance of P. pinaster to F. circinatum is in part a result of early and strong activation of plant phytohormone-based defense responses before symptoms become visible. We suggest that jasmonic acid signaling and production are strongly associated with F. circinatum resistance. In contrast, P. radiata susceptibility was attributed to a delayed response to the fungus at the moment when symptoms were visible. Our results contribute to a better understanding of the phytohormone-based defense mechanism involved in the Pinus-F. circinatum interactions and provide insight into the development of new strategies for disease mitigation.
Collapse
Affiliation(s)
- Laura Hernandez-Escribano
- Instituto de Ciencias Forestales (ICIFOR-INIA), CSIC, Carretera Coruña km 7.5, Madrid, 28040, Spain.
| | | | - David Fariña-Flores
- Instituto de Ciencias Forestales (ICIFOR-INIA), CSIC, Carretera Coruña km 7.5, Madrid, 28040, Spain
- Departamento de Biotecnología-Biología Vegetal, E.T.S. de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, 28040, Spain
| | - Rosa Raposo
- Instituto de Ciencias Forestales (ICIFOR-INIA), CSIC, Carretera Coruña km 7.5, Madrid, 28040, Spain.
| |
Collapse
|
3
|
Wang S, Liu Y, Hao X, Chen Y, Wang Z, Shen Y. Enhancing plant defensins in a desert shrub: Exploring a regulatory pathway of AnWRKY29. Int J Biol Macromol 2024; 270:132259. [PMID: 38740161 DOI: 10.1016/j.ijbiomac.2024.132259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/28/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
A distinct family of plant-specific WRKY transcription factors plays a crucial role in modulating responses to biotic and abiotic stresses. In this investigation, we unveiled a signaling pathway activated in the desert shrub Ammopiptanthus nanus during feeding by the moth Spodoptera exigua. The process involves a Ca2+ flux that facilitates interaction between the protein kinase AnCIPK12 and AnWRKY29. AnWRKY29 directly interacts with the promoters of two key genes encoding AnPDF1 and AnHsfB1, involved in the biosynthesis of plant defensins. Consequently, AnWRKY29 exerts its transcriptional regulatory function, influencing plant defensins biosynthesis. This discovery implies that A. nanus can bolster resistance against herbivorous insects like S. exigua by utilizing this signaling pathway, providing an effective natural defense mechanism that supports its survival and reproductive success.
Collapse
Affiliation(s)
- Shuyao Wang
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yahui Liu
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xin Hao
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yingying Chen
- Guangxi Key Laboratory of Special Non-wood Forests Cultivation and Utilization, Guangxi Xylophyta Spices Research Center of Engineering Technology, Illicium and Cinnamomum Engineering Technology Research Center of National Forestry and Grassland Administration, Guangxi Forestry Research Institute, Nanning 530002, China
| | - Zhaoyuan Wang
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yingbai Shen
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
| |
Collapse
|
4
|
Wang C, Hua Y, Liang T, Guo Y, Wang L, Zheng X, Liu P, Zheng Q, Kang Z, Xu Y, Cao P, Chen Q. Integrated analyses of ionomics, phytohormone profiles, transcriptomics, and metabolomics reveal a pivotal role of carbon-nano sol in promoting the growth of tobacco plants. BMC PLANT BIOLOGY 2024; 24:473. [PMID: 38811869 PMCID: PMC11137978 DOI: 10.1186/s12870-024-05195-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Carbon nano sol (CNS) can markedly affect the plant growth and development. However, few systematic analyses have been conducted on the underlying regulatory mechanisms in plants, including tobacco (Nicotiana tabacum L.). RESULTS Integrated analyses of phenome, ionome, transcriptome, and metabolome were performed in this study to elucidate the physiological and molecular mechanisms underlying the CNS-promoting growth of tobacco plants. We found that 0.3% CNS, facilitating the shoot and root growth of tobacco plants, significantly increased shoot potassium concentrations. Antioxidant, metabolite, and phytohormone profiles showed that 0.3% CNS obviously reduced reactive oxygen species production and increased antioxidant enzyme activity and auxin accumulation. Comparative transcriptomics revealed that the GO and KEGG terms involving responses to oxidative stress, DNA binding, and photosynthesis were highly enriched in response to exogenous CNS application. Differential expression profiling showed that NtNPF7.3/NtNRT1.5, potentially involved in potassium/auxin transport, was significantly upregulated under the 0.3% CNS treatment. High-resolution metabolic fingerprints showed that 141 and 163 metabolites, some of which were proposed as growth regulators, were differentially accumulated in the roots and shoots under the 0.3% CNS treatment, respectively. CONCLUSIONS Taken together, this study revealed the physiological and molecular mechanism underlying CNS-mediated growth promotion in tobacco plants, and these findings provide potential support for improving plant growth through the use of CNS.
Collapse
Affiliation(s)
- Chen Wang
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy (BLSA), Beijing, 102209, China
| | - Yingpeng Hua
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Taibo Liang
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Yadi Guo
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Lin Wang
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Xueao Zheng
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy (BLSA), Beijing, 102209, China
| | - Pingping Liu
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy (BLSA), Beijing, 102209, China
| | - Qingxia Zheng
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy (BLSA), Beijing, 102209, China
| | - Zhengzhong Kang
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy (BLSA), Beijing, 102209, China
| | - Yalong Xu
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy (BLSA), Beijing, 102209, China
| | - Peijian Cao
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy (BLSA), Beijing, 102209, China
| | - Qiansi Chen
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China.
- Beijing Life Science Academy (BLSA), Beijing, 102209, China.
| |
Collapse
|
5
|
Guo C, Shabala S, Chen ZH, Zhou M, Zhao C. Aluminium tolerance and stomata operation: Towards optimising crop performance in acid soil. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108626. [PMID: 38615443 DOI: 10.1016/j.plaphy.2024.108626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/23/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Stomatal operation is crucial for optimising plant water and gas exchange and represents a major trait conferring abiotic stress tolerance in plants. About 56% of agricultural land around the globe is classified as acidic, and Al toxicity is a major limiting factor affecting plant performance in such soils. While most of the research work in the field discusses the impact of major abiotic stresses such as drought or salinity on stomatal operation, the impact of toxic metals and, specifically aluminium (Al) on stomatal operation receives much less attention. We aim to fill this knowledge gap by summarizing the current knowledge of the adverse effects of acid soils on plant stomatal development and operation. We summarised the knowledge of stomatal responses to both long-term and transient Al exposure, explored molecular mechanisms underlying plant adaptations to Al toxicity, and elucidated regulatory networks that alleviate Al toxicity. It is shown that Al-induced stomatal closure involves regulations of core stomatal signalling components, such as ROS, NO, and CO2 and key elements of ABA signalling. We also discuss possible targets and pathway to modify stomatal operation in plants grown in acid soils thus reducing the impact of Al toxicity on plant growth and yield.
Collapse
Affiliation(s)
- Ce Guo
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS, 7250, Australia
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS, 7250, Australia; International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China; School of Biological Science, University of Western Australia, Crawley, 6009, Australia
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, 2751, Australia; Hawkesbury Institute for the Environment, Western Sydney University, Penrith, 2751, Australia
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS, 7250, Australia.
| | - Chenchen Zhao
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS, 7250, Australia.
| |
Collapse
|
6
|
Fan C, Li J, Dai S, Xuan X, Xu D, Wen Y. Plasma Membrane (PM) H +-ATPase Mediates Rhizosphere Acidification and Regulates Herbicide Imazethapyr Toxicity in Wheat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38623691 DOI: 10.1021/acs.jafc.4c00313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The plasma membrane (PM) H+-ATPase is crucial for a plant defense system. However, there is currently no consensus on whether the PM H+-ATPase plays a role in alleviating the toxic effects of herbicides on nontarget plants. We found that under the herbicide imazethapyr (IM) exposure, PM H+-ATPase activity in wheat roots increased by approximately 69.53%, leading to rhizosphere acidification. When PM H+-ATPase activity is inhibited, the toxicity of IM significantly increases: When exposed to IM alone, the total Fe content of wheat roots decreased by 29.07%, the relative Fe2+ content increased by 27.75%, and the ROS content increased by 27.74%. When the PM H+-ATPase activity was inhibited, the corresponding data under IM exposure were 37.36%, 215%, and 57.68%, respectively. This work delves into the role of PM H+-ATPase in mediating the detoxification mechanism in plants exposed to herbicides, offering new insights into enhancing crop resistance against herbicides.
Collapse
Affiliation(s)
- Chenyang Fan
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jun Li
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Siyuan Dai
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xuan Xuan
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Dongmei Xu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yuezhong Wen
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
7
|
Wu Y, Wang S, Wang P, Nie W, Ahmad I, Sarris PF, Chen G, Zhu B. Suppression of host plant defense by bacterial small RNAs packaged in outer membrane vesicles. PLANT COMMUNICATIONS 2024; 5:100817. [PMID: 38217288 PMCID: PMC11009154 DOI: 10.1016/j.xplc.2024.100817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
Noncoding small RNAs (sRNAs) packaged in bacterial outer membrane vesicles (OMVs) function as novel mediators of interspecies communication. While the role of bacterial sRNAs in enhancing virulence is well established, the role of sRNAs in the interaction between OMVs from phytopathogenic bacteria and their host plants remains unclear. In this study, we employ RNA sequencing to characterize differentially packaged sRNAs in OMVs of the phytopathogen Xanthomonas oryzae pv. oryzicola (Xoc). Our candidate sRNA (Xosr001) was abundant in OMVs and involved in the regulation of OsJMT1 to impair host stomatal immunity. Xoc loads Xosr001 into OMVs, which are specifically ttransferred into the mechanical tissues of rice leaves. Xosr001 suppresses OsJMT1 transcript accumulation in vivo, leading to a reduction in MeJA accumulation in rice leaves. Furthermore, the application of synthesized Xosr001 sRNA to the leaves of OsJMT1-HA-OE transgenic line results in the suppression of OsJMT1 expression by Xosr001. Notably, the OsJMT1-HA-OE transgenic line exhibited attenuated stomatal immunity and disease susceptibility upon infection with ΔXosr001 compared to Xoc. These results suggest that Xosr001 packaged in Xoc OMVs functions to suppress stomatal immunity in rice.
Collapse
Affiliation(s)
- Yan Wu
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Sai Wang
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Peihong Wang
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Wenhan Nie
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Iftikhar Ahmad
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China; Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, Vehari 61100, Pakistan
| | | | - Gongyou Chen
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| | - Bo Zhu
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China; Shanghai Jiao Tong University Chongqing Research Institute, Shanghai, China.
| |
Collapse
|
8
|
Zhang J, Chen X, Song Y, Gong Z. Integrative regulatory mechanisms of stomatal movements under changing climate. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:368-393. [PMID: 38319001 DOI: 10.1111/jipb.13611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024]
Abstract
Global climate change-caused drought stress, high temperatures and other extreme weather profoundly impact plant growth and development, restricting sustainable crop production. To cope with various environmental stimuli, plants can optimize the opening and closing of stomata to balance CO2 uptake for photosynthesis and water loss from leaves. Guard cells perceive and integrate various signals to adjust stomatal pores through turgor pressure regulation. Molecular mechanisms and signaling networks underlying the stomatal movements in response to environmental stresses have been extensively studied and elucidated. This review focuses on the molecular mechanisms of stomatal movements mediated by abscisic acid, light, CO2 , reactive oxygen species, pathogens, temperature, and other phytohormones. We discussed the significance of elucidating the integrative mechanisms that regulate stomatal movements in helping design smart crops with enhanced water use efficiency and resilience in a climate-changing world.
Collapse
Affiliation(s)
- Jingbo Zhang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
| | - Xuexue Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yajing Song
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
- Institute of Life Science and Green Development, School of Life Sciences, Hebei University, Baoding, 071001, China
| |
Collapse
|
9
|
Hao X, Wang S, Fu Y, Liu Y, Shen H, Jiang L, McLamore ES, Shen Y. The WRKY46-MYC2 module plays a critical role in E-2-hexenal-induced anti-herbivore responses by promoting flavonoid accumulation. PLANT COMMUNICATIONS 2024; 5:100734. [PMID: 37859344 PMCID: PMC10873895 DOI: 10.1016/j.xplc.2023.100734] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 10/08/2023] [Accepted: 10/17/2023] [Indexed: 10/21/2023]
Abstract
Volatile organic compounds (VOCs) play key roles in plant-plant communication, especially in response to pest attack. E-2-hexenal is an important component of VOCs, but it is unclear whether it can induce endogenous plant resistance to insects. Here, we show that E-2-hexenal activates early signaling events in Arabidopsis (Arabidopsis thaliana) mesophyll cells, including an H2O2 burst at the plasma membrane, the directed flow of calcium ions, and an increase in cytosolic calcium concentration. Treatment of wild-type Arabidopsis plants with E-2-hexenal increases their resistance when challenged with the diamondback moth Plutella xylostella L., and this phenomenon is largely lost in the wrky46 mutant. Mechanistically, E-2-hexenal induces the expression of WRKY46 and MYC2, and the physical interaction of their encoded proteins was verified by yeast two-hybrid, firefly luciferase complementation imaging, and in vitro pull-down assays. The WRKY46-MYC2 complex directly binds to the promoter of RBOHD to promote its expression, as demonstrated by luciferase reporter, yeast one-hybrid, chromatin immunoprecipitation, and electrophoretic mobility shift assays. This module also positively regulates the expression of E-2-hexenal-induced naringenin biosynthesis genes (TT4 and CHIL) and the accumulation of total flavonoids, thereby modulating plant tolerance to insects. Together, our results highlight an important role for the WRKY46-MYC2 module in the E-2-hexenal-induced defense response of Arabidopsis, providing new insights into the mechanisms by which VOCs trigger plant defense responses.
Collapse
Affiliation(s)
- Xin Hao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Shuyao Wang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yu Fu
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yahui Liu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Hongyu Shen
- University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - Libo Jiang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Eric S McLamore
- Department of Agricultural Sciences, Clemson University, Clemson, SC 29634, USA
| | - Yingbai Shen
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
10
|
Jia B, Cui H, Zhang D, Hu B, Li Y, Shen Y, Cai X, Sun X, Sun M. The conserved evolution of plant H +-ATPase family and the involvement of soybean H +-ATPases in sodium bicarbonate stress responses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108133. [PMID: 37883915 DOI: 10.1016/j.plaphy.2023.108133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/11/2023] [Accepted: 10/21/2023] [Indexed: 10/28/2023]
Abstract
Plant plasma membrane (PM) H+-ATPases are essential pumps involved in multiple physiological processes. They play a significant role in regulating pH homeostasis and membrane potential by generating the electrochemical gradient of the proton across the plasma membrane. However, information on soybean PM H+-ATPase is still limited. In this study, we conducted the evolutionary analysis of PM H+-ATPases in land plants and investigated the subfamily classification and whole genome duplication of PM H+-ATPases in angiosperms. We further characterized the extremely high conservation of the soybean PM H+-ATPase family in terms of gene structure, domain architecture, and protein sequence identity. Using the yeast system, we confirmed the highly conserved biochemical characteristics (14-3-3 binding affinity and pump activity) of soybean PM H+-ATPases and their conserved function in enhancing tolerance to high pH and NaHCO3 stresses. Meanwhile, our results also revealed their divergence in the transcriptional expression in different tissues and under sodium bicarbonate stress. Finally, the function of soybean PM H+-ATPases in conferring sodium bicarbonate tolerance was validated using transgenic Arabidopsis. Together, these results conclude that the soybean PM H+-ATPase is evolutionarily conserved and positively regulates the response to sodium bicarbonate stress.
Collapse
Affiliation(s)
- Bowei Jia
- Crop Stress Molecular Biology Laboratory, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, China; Key Laboratory of Germplasm Enhancement, Physiology, and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Hongli Cui
- Crop Stress Molecular Biology Laboratory, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Dajian Zhang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Bingshuang Hu
- Crop Stress Molecular Biology Laboratory, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Yuan Li
- Crop Stress Molecular Biology Laboratory, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Yang Shen
- Crop Stress Molecular Biology Laboratory, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Xiaoxi Cai
- Crop Stress Molecular Biology Laboratory, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Xiaoli Sun
- Crop Stress Molecular Biology Laboratory, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Mingzhe Sun
- Crop Stress Molecular Biology Laboratory, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| |
Collapse
|
11
|
Integration of Electrical Signals and Phytohormones in the Control of Systemic Response. Int J Mol Sci 2023; 24:ijms24010847. [PMID: 36614284 PMCID: PMC9821543 DOI: 10.3390/ijms24010847] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
Plants are constantly exposed to environmental stresses. Local stimuli sensed by one part of a plant are translated into long-distance signals that can influence the activities in distant tissues. Changes in levels of phytohormones in distant parts of the plant occur in response to various local stimuli. The regulation of hormone levels can be mediated by long-distance electrical signals, which are also induced by local stimulation. We consider the crosstalk between electrical signals and phytohormones and identify interaction points, as well as provide insights into the integration nodes that involve changes in pH, Ca2+ and ROS levels. This review also provides an overview of our current knowledge of how electrical signals and hormones work together to induce a systemic response.
Collapse
|
12
|
Sun C, Zhu L, Cao L, Qi H, Liu H, Zhao F, Han X. PKS5 Confers Cold Tolerance by Controlling Stomatal Movement and Regulating Cold-Responsive Genes in Arabidopsis. Life (Basel) 2022; 12:life12101633. [PMID: 36295068 PMCID: PMC9605660 DOI: 10.3390/life12101633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/15/2022] [Accepted: 10/16/2022] [Indexed: 11/16/2022] Open
Abstract
Cold stress limits plant growth and development; however, the precise mechanisms underpinning plant acclimation to cold stress remain largely unknown. In this study, the Ser/Thr protein kinase SOS2-LIKE PROTEIN KINASE5 (PKS5) was shown to play a positive role in plant responses to cold stress. A PKS5 loss-of-function mutant (pks5-1) exhibited elevated sensitivity to cold stress, as well as a lower survival rate and increased ion leakage. Conversely, PKS5 gain-of-function mutants (pks5-3, pks5-4) were more tolerant to cold stress and exhibited higher survival rates and decreased ion leakage. Stomatal aperture analysis revealed that stomatal closure was slower during the first 25 min after cold exposure in pks5-1 compared to wild-type, whereas pks5-3 and pks5-4 displayed accelerated stomatal closure over the same time period. Further stomatal aperture analysis under an abscisic acid (ABA) treatment showed slower closure in pks5-1 and more rapid closure in pks5-3 and pks5-4. Finally, expression levels of cold-responsive genes were regulated by PKS5 under cold stress conditions, while cold stress and ABA treatment can regulate PKS5 expression. Taken together, these results suggest that PKS5 plays a positive role in short-term plant acclimation to cold stress by regulating stomatal aperture, possibly via ABA pathways, and in long-term acclimation by regulating cold-responsive genes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiuli Han
- Correspondence: ; Tel.: +86-533-2781-329; Fax: +86-533-3188-608
| |
Collapse
|
13
|
Wang Z, Ouyang Y, Ren H, Wang S, Xu D, Xin Y, Hussain J, Qi G. Transcriptome profiling of Arabidopsis slac1-3 mutant reveals compensatory alterations in gene expression underlying defective stomatal closure. FRONTIERS IN PLANT SCIENCE 2022; 13:987606. [PMID: 36204078 PMCID: PMC9530288 DOI: 10.3389/fpls.2022.987606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Plants adjust their stomatal aperture for regulating CO2 uptake and transpiration. S-type anion channel SLAC1 (slow anion channel-associated 1) is required for stomatal closure in response to various stimuli such as abscisic acid, CO2, and light/dark transitions etc. Arabidopsis slac1 mutants exhibited defects in stimulus-induced stomatal closure, reduced sensitivity to darkness, and faster water loss from detached leaves. The global transcriptomic response of a plant with defective stimuli-induced stomatal closure (particularly because of defects in SLAC1) remains to be explored. In the current research we attempted to address the same biological question by comparing the global transcriptomic changes in Arabidopsis slac1-3 mutant and wild-type (WT) under dark, and dehydration stress, using RNA-sequencing. Abscisic acid (ABA)- and dark-induced stomatal closure was defective in Arabidopsis slac1-3 mutants, consequently the mutants had cooler leaf temperature than WT. Next, we determined the transcriptomic response of the slac1-3 mutant and WT under dark and dehydration stress. Under dehydration stress, the molecular response of slac1-3 mutant was clearly distinct from WT; the number of differentially expressed genes (DEGs) was significantly higher in mutant than WT. Dehydration induced DEGs in mutant were related to hormone signaling pathways, and biotic and abiotic stress response. Although, overall number of DEGs in both genotypes was not different under dark, however, the expression pattern was very much distinct; whereas majority of DEGs in WT were found to be downregulated, in slac1-3 majority were upregulated under dark. Further, a set 262 DEGs was identified with opposite expression pattern between WT and mutant under light-darkness transition. Amongst these, DEGs belonging to stress hormone pathways, and biotic and abiotic stress response were over-represented. To sum up, we have reported gene expression reprogramming underlying slac1-3 mutation and resultantly defective stomatal closure in Arabidopsis. Moreover, the induction of biotic and abiotic response in mutant under dehydration and darkness could be suggestive of the role of stomata as a switch in triggering these responses. To summarize, the data presented here provides useful insights into the gene expression reprogramming underlying slac1-3 mutation and resultant defects in stomatal closure.
Collapse
Affiliation(s)
- Zheng Wang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Yinghui Ouyang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Huimin Ren
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Shuo Wang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Dandan Xu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Yirui Xin
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Jamshaid Hussain
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Guoning Qi
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, China
| |
Collapse
|
14
|
Jiao C, Guo Z, Gong J, Zuo Y, Li S, Vanegas D, McLamore ES, Shen Y. CML8 and GAD4 function in (Z)-3-hexenol-mediated defense by regulating γ-aminobutyric acid accumulation in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 186:135-144. [PMID: 35842997 DOI: 10.1016/j.plaphy.2022.06.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/09/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
(Z)-3-hexenol, a small gaseous molecule, is produced in plants under biotic stress and induces defense responses in neighboring plants. However, little is known about how (Z)-3-hexenol induces plant defense-related signaling. In this study, we uncovered how (Z)-3-hexenol treatment enhances plant resistance to insect attacks by increasing γ-aminobutyric acid (GABA) contents in Arabidopsis leaves. First, (Z)-3-hexenol increases the intracellular content of calcium as secondary messenger in Arabidopsis leaf mesophyll cells. Both intracellular and extracellular calcium stores regulate changes in calcium content. Then, CML8 and GAD4 transmit calcium signaling to affect (Z)-3-hexenol induced GABA content and plant resistance. Herein, CML8 interaction with GAD4 was examined via yeast two-hybrid assays, firefly luciferase complementation imaging, and GST pull-down assays. These results indicate that (Z)-3-hexenol treatment increased the GABA contents in Arabidopsis leaves based on CML8 and GAD4, thus increasing plant resistance to the insect Plutella xylostella. This study revealed the mechanism of activating plant insect defense induced by (Z)-3-hexenol, which guides the study of volatiles as biological pest control.
Collapse
Affiliation(s)
- Chunyang Jiao
- National Engineering Research Center of Tree breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Zhujuan Guo
- National Engineering Research Center of Tree breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Junqing Gong
- National Engineering Research Center of Tree breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yixin Zuo
- National Engineering Research Center of Tree breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Shuwen Li
- National Engineering Research Center of Tree breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Diana Vanegas
- College of Engineering, Computing and Applied Sciences, Clemson University, Clemson, 29634, South Carolina, USA
| | - Eric S McLamore
- Agricultural Sciences, Clemson University, Clemson, 29634, South Carolina, USA
| | - Yingbai Shen
- National Engineering Research Center of Tree breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
15
|
Sohn SI, Pandian S, Rakkammal K, Largia MJV, Thamilarasan SK, Balaji S, Zoclanclounon YAB, Shilpha J, Ramesh M. Jasmonates in plant growth and development and elicitation of secondary metabolites: An updated overview. FRONTIERS IN PLANT SCIENCE 2022; 13:942789. [PMID: 36035665 PMCID: PMC9407636 DOI: 10.3389/fpls.2022.942789] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Secondary metabolites are incontestably key specialized molecules with proven health-promoting effects on human beings. Naturally synthesized secondary metabolites are considered an important source of pharmaceuticals, food additives, cosmetics, flavors, etc., Therefore, enhancing the biosynthesis of these relevant metabolites by maintaining natural authenticity is getting more attention. The application of exogenous jasmonates (JAs) is well recognized for its ability to trigger plant growth and development. JAs have a large spectrum of action that covers seed germination, hypocotyl growth regulation, root elongation, petal expansion, and apical hook growth. This hormone is considered as one of the key regulators of the plant's growth and development when the plant is under biotic or abiotic stress. The JAs regulate signal transduction through cross-talking with other genes in plants and thereby deploy an appropriate metabolism in the normal or stressed conditions. It has also been found to be an effective chemical elicitor for the synthesis of naturally occurring secondary metabolites. This review discusses the significance of JAs in the growth and development of plants and the successful outcomes of jasmonate-driven elicitation of secondary metabolites including flavonoids, anthraquinones, anthocyanin, xanthonoid, and more from various plant species. However, as the enhancement of these metabolites is essentially measured via in vitro cell culture or foliar spray, the large-scale production is significantly limited. Recent advancements in the plant cell culture technology lay the possibilities for the large-scale manufacturing of plant-derived secondary metabolites. With the insights about the genetic background of the metabolite biosynthetic pathway, synthetic biology also appears to be a potential avenue for accelerating their production. This review, therefore, also discussed the potential manoeuvres that can be deployed to synthesis plant secondary metabolites at the large-scale using plant cell, tissue, and organ cultures.
Collapse
Affiliation(s)
- Soo-In Sohn
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - Subramani Pandian
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | | | | | - Senthil Kumar Thamilarasan
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | | | - Yedomon Ange Bovys Zoclanclounon
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - Jayabalan Shilpha
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Manikandan Ramesh
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| |
Collapse
|
16
|
Pei D, Hua D, Deng J, Wang Z, Song C, Wang Y, Wang Y, Qi J, Kollist H, Yang S, Guo Y, Gong Z. Phosphorylation of the plasma membrane H+-ATPase AHA2 by BAK1 is required for ABA-induced stomatal closure in Arabidopsis. THE PLANT CELL 2022; 34:2708-2729. [PMID: 35404404 PMCID: PMC9252505 DOI: 10.1093/plcell/koac106] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/04/2022] [Indexed: 05/13/2023]
Abstract
Stomatal opening is largely promoted by light-activated plasma membrane-localized proton ATPases (PM H+-ATPases), while their closure is mainly modulated by abscisic acid (ABA) signaling during drought stress. It is unknown whether PM H+-ATPases participate in ABA-induced stomatal closure. We established that BRI1-ASSOCIATED RECEPTOR KINASE 1 (BAK1) interacts with, phosphorylates and activates the major PM Arabidopsis H+-ATPase isoform 2 (AHA2). Detached leaves from aha2-6 single mutant Arabidopsis thaliana plants lost as much water as bak1-4 single and aha2-6 bak1-4 double mutants, with all three mutants losing more water than the wild-type (Columbia-0 [Col-0]). In agreement with these observations, aha2-6, bak1-4, and aha2-6 bak1-4 mutants were less sensitive to ABA-induced stomatal closure than Col-0, whereas the aha2-6 mutation did not affect ABA-inhibited stomatal opening under light conditions. ABA-activated BAK1 phosphorylated AHA2 at Ser-944 in its C-terminus and activated AHA2, leading to rapid H+ efflux, cytoplasmic alkalinization, and reactive oxygen species (ROS) accumulation, to initiate ABA signal transduction and stomatal closure. The phosphorylation-mimicking mutation AHA2S944D driven by its own promoter could largely compensate for the defective phenotypes of water loss, cytoplasmic alkalinization, and ROS accumulation in both aha2-6 and bak1-4 mutants. Our results uncover a crucial role of AHA2 in cytoplasmic alkalinization and ABA-induced stomatal closure during the plant's response to drought stress.
Collapse
Affiliation(s)
- Dan Pei
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Deping Hua
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Jinping Deng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhifang Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chunpeng Song
- Collaborative Innovation Center of Crop Stress Biology, Institute of Plant Stress Biology, Henan University, Kaifeng 475001, China
| | - Yi Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yu Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Junsheng Qi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hannes Kollist
- Plant Signal Research Group, Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | | |
Collapse
|
17
|
Abstract
H+-ATPases, including the phosphorylated intermediate-type (P-type) and vacuolar-type (V-type) H+-ATPases, are important ATP-driven proton pumps that generate membrane potential and provide proton motive force for secondary active transport. P- and V-type H+-ATPases have distinct structures and subcellular localizations and play various roles in growth and stress responses. A P-type H+-ATPase is mainly regulated at the posttranslational level by phosphorylation and dephosphorylation of residues in its autoinhibitory C terminus. The expression and activity of both P- and V-type H+-ATPases are highly regulated by hormones and environmental cues. In this review, we summarize the recent advances in understanding of the evolution, regulation, and physiological roles of P- and V-type H+-ATPases, which coordinate and are involved in plant growth and stress adaptation. Understanding the different roles and the regulatory mechanisms of P- and V-type H+-ATPases provides a new perspective for improving plant growth and stress tolerance by modulating the activity of H+-ATPases, which will mitigate the increasing environmental stress conditions associated with ongoing global climate change.
Collapse
Affiliation(s)
- Ying Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Houqing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Feiyun Xu
- Center for Plant Water-Use and Nutrition Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China;
| | - Feng Yan
- Institute of Agronomy and Plant Breeding, Justus Liebig University of Giessen, Giessen, Germany
| | - Weifeng Xu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
- Center for Plant Water-Use and Nutrition Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China;
| |
Collapse
|
18
|
Arabidopsis Plasma Membrane ATPase AHA5 Is Negatively Involved in PAMP-Triggered Immunity. Int J Mol Sci 2022; 23:ijms23073857. [PMID: 35409217 PMCID: PMC8998810 DOI: 10.3390/ijms23073857] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/20/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022] Open
Abstract
Plants evolve a prompt and robust immune system to defend themselves against pathogen infections. Pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) is the first battle layer activated upon the PAMP’s perception, which leads to multiple defense responses. The plasma membrane (PM) H+-ATPases are the primary ion pumps to create and maintain the cellular membrane potential that is critical for various essential biological processes, including plant growth, development, and defense. This study discovered that the PM H+-ATPase AHA5 is negatively involved in Arabidopsis PTI against the virulent pathogen Pseudomonas syringae pvr. tomato (Pto) DC3000 infection. The aha5 mutant plants caused the reduced stomata opening upon the Pto infection, which was associated with the salicylic acid (SA) pathway. In addition, the aha5 mutant plants caused the increased levels of callose deposition, defense-related gene expression, and SA accumulation. Our results also indicate that the PM H+-ATPase activity of AHA5 probably mediates the coupling of H2O2 generation and the apoplast alkalization in PTI responses. Moreover, AHA5 was found to interact with a vital defense regulator, RPM1-interacting protein 4 (RIN4), in vitro and in vivo, which might also be critical for its function in PTI. In summary, our studies show that AHA5 functions as a novel and critical component that is negatively involved in PTI by coordinating different defense responses during the Arabidopsis–Pto DC3000 interaction.
Collapse
|
19
|
Zamora O, Schulze S, Azoulay-Shemer T, Parik H, Unt J, Brosché M, Schroeder JI, Yarmolinsky D, Kollist H. Jasmonic acid and salicylic acid play minor roles in stomatal regulation by CO 2 , abscisic acid, darkness, vapor pressure deficit and ozone. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:134-150. [PMID: 34289193 PMCID: PMC8842987 DOI: 10.1111/tpj.15430] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 07/07/2021] [Accepted: 07/14/2021] [Indexed: 05/08/2023]
Abstract
Jasmonic acid (JA) and salicylic acid (SA) regulate stomatal closure, preventing pathogen invasion into plants. However, to what extent abscisic acid (ABA), SA and JA interact, and what the roles of SA and JA are in stomatal responses to environmental cues, remains unclear. Here, by using intact plant gas-exchange measurements in JA and SA single and double mutants, we show that stomatal responsiveness to CO2 , light intensity, ABA, high vapor pressure deficit and ozone either did not or, for some stimuli only, very slightly depended upon JA and SA biosynthesis and signaling mutants, including dde2, sid2, coi1, jai1, myc2 and npr1 alleles. Although the stomata in the mutants studied clearly responded to ABA, CO2 , light and ozone, ABA-triggered stomatal closure in npr1-1 was slightly accelerated compared with the wild type. Stomatal reopening after ozone pulses was quicker in the coi1-16 mutant than in the wild type. In intact Arabidopsis plants, spraying with methyl-JA led to only a modest reduction in stomatal conductance 80 min after treatment, whereas ABA and CO2 induced pronounced stomatal closure within minutes. We could not document a reduction of stomatal conductance after spraying with SA. Coronatine-induced stomatal opening was initiated slowly after 1.5-2.0 h, and reached a maximum by 3 h after spraying intact plants. Our results suggest that ABA, CO2 and light are major regulators of rapid guard cell signaling, whereas JA and SA could play only minor roles in the whole-plant stomatal response to environmental cues in Arabidopsis and Solanum lycopersicum (tomato).
Collapse
Affiliation(s)
- Olena Zamora
- Plant Signal Research Group, Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Sebastian Schulze
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, La Jolla, CA 92093, USA
| | - Tamar Azoulay-Shemer
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, La Jolla, CA 92093, USA
- Fruit Tree Sciences, Agricultural Research Organization (ARO), the Volcani Center, Newe Ya’ar Research Center, Ramat Yishay, Israel, and
| | - Helen Parik
- Plant Signal Research Group, Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Jaanika Unt
- Plant Signal Research Group, Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Mikael Brosché
- Plant Signal Research Group, Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 65 (Viikinkaari 1), Helsinki FI-00014, Finland
| | - Julian I. Schroeder
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, La Jolla, CA 92093, USA
| | - Dmitry Yarmolinsky
- Plant Signal Research Group, Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
- For correspondence ()
| | - Hannes Kollist
- Plant Signal Research Group, Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| |
Collapse
|
20
|
Ghorbel M, Brini F, Sharma A, Landi M. Role of jasmonic acid in plants: the molecular point of view. PLANT CELL REPORTS 2021; 40:1471-1494. [PMID: 33821356 DOI: 10.1007/s00299-021-02687-4] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/23/2021] [Indexed: 05/12/2023]
Abstract
Recent updates in JA biosynthesis, signaling pathways and the crosstalk between JA and others phytohormones in relation with plant responses to different stresses. In plants, the roles of phytohormone jasmonic acid (JA), amino acid conjugate (e.g., JA-Ile) and their derivative emerged in last decades as crucial signaling compounds implicated in stress defense and development in plants. JA has raised a great interest, and the number of researches on JA has increased rapidly highlighting the importance of this phytohormone in plant life. First, JA was considered as a stress hormone implicated in plant response to biotic stress (pathogens and herbivores) which confers resistance to biotrophic and hemibiotrophic pathogens contrarily to salicylic acid (SA) which is implicated in plant response to necrotrophic pathogens. JA is also implicated in plant responses to abiotic stress (such as soil salinity, wounding and UV). Moreover, some researchers have recently revealed that JA controls several physiological processes like root growth, growth of reproductive organs and, finally, plant senescence. JA is also involved in the biosynthesis of various metabolites (e.g., phytoalexins and terpenoids). In plants, JA signaling pathways are well studied in few plants essentially Arabidopsis thaliana, Nicotiana benthamiana, and Oryza sativa L. confirming the crucial role of this hormone in plants. In this review, we highlight the last foundlings about JA biosynthesis, JA signaling pathways and its implication in plant maturation and response to environmental constraints.
Collapse
Affiliation(s)
- Mouna Ghorbel
- Biology Department, Faculty of Science, University of Ha'il, P.O. box, Ha'il, 2440, Saudi Arabia
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, B.P '1177', 3018, Sfax, Tunisia
| | - Faiçal Brini
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, B.P '1177', 3018, Sfax, Tunisia
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Marco Landi
- Department of Agriculture, Food and Environment - University of Pisa, 56124, Pisa, Italy.
| |
Collapse
|
21
|
Jiang Y, Ye J, Niinemets Ü. Dose-dependent methyl jasmonate effects on photosynthetic traits and volatile emissions: biphasic kinetics and stomatal regulation. PLANT SIGNALING & BEHAVIOR 2021; 16:1917169. [PMID: 33879022 PMCID: PMC8204986 DOI: 10.1080/15592324.2021.1917169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Exogenous application of methyl jasmonate (MeJA) has been extensively used to study jasmonate-dependent signaling events triggered by biotic stresses. MeJA application leads to complex jasmonate-dependent physiological responses, including changes in stomatal openness and induction of emissions of a multitude of volatile compounds. Whether the alterations in stomatal conductance and emissions of MeJA-induced volatiles are quantitatively associated with MeJA dose, and whether the induced volatile emissions are regulated by modifications in stomatal conductance had been poorly known until recently. Our latest studies highlighted a biphasic kinetics of jasmonate-dependent volatile emissions induced by MeJA treatment in the model species cucumber (Cucumis sativus), indicating induction of an immediate stress response and subsequent gene-expression level response. Both the immediate and delayed responses were MeJA dose-dependent. The studies further demonstrated that stomata modulated the kinetics of emissions of water-soluble volatiles in a MeJA dose-dependent manner. These studies contribute to understanding of plant short- and long-term responses to different biotic stress severities as simulated by treatments with a range of MeJA doses corresponding to mild to acute stress.
Collapse
Affiliation(s)
- Yifan Jiang
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
- College of Horticulture, Nanjing Agricultural University, NanjingChina
| | - Jiayan Ye
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
- School of Forestry and Bio-Technology, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
- School of Forestry and Bio-Technology, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Estonian Academy of Sciences, Tallinn, Estonia
| |
Collapse
|
22
|
Qi X, Gu P, Shan X. Current progress of PM-localized protein functions in jasmonate pathway. PLANT SIGNALING & BEHAVIOR 2021; 16:1906573. [PMID: 33818272 PMCID: PMC8143263 DOI: 10.1080/15592324.2021.1906573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Jasmonate (JA), a class of lipid-derived phytohormone, regulates diverse developmental processes and responses to abiotic or biotic stresses. The biosynthesis and signaling of JA mainly occur in various organelles, except for the plasma membrane (PM). Recently, several PM proteins have been reported to be associated with the JA pathway. This mini-review summarized the recent progress on the functional role of PM-localized proteins involved in JA transportation, JA-related defense responses, and JA-regulated endocytosis.
Collapse
Affiliation(s)
- Xueying Qi
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Pan Gu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xiaoyi Shan
- School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
23
|
Li K, Prada J, Damineli DSC, Liese A, Romeis T, Dandekar T, Feijó JA, Hedrich R, Konrad KR. An optimized genetically encoded dual reporter for simultaneous ratio imaging of Ca 2+ and H + reveals new insights into ion signaling in plants. THE NEW PHYTOLOGIST 2021; 230:2292-2310. [PMID: 33455006 PMCID: PMC8383442 DOI: 10.1111/nph.17202] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/23/2020] [Indexed: 05/07/2023]
Abstract
Whereas the role of calcium ions (Ca2+ ) in plant signaling is well studied, the physiological significance of pH-changes remains largely undefined. Here we developed CapHensor, an optimized dual-reporter for simultaneous Ca2+ and pH ratio-imaging and studied signaling events in pollen tubes (PTs), guard cells (GCs), and mesophyll cells (MCs). Monitoring spatio-temporal relationships between membrane voltage, Ca2+ - and pH-dynamics revealed interconnections previously not described. In tobacco PTs, we demonstrated Ca2+ -dynamics lag behind pH-dynamics during oscillatory growth, and pH correlates more with growth than Ca2+ . In GCs, we demonstrated abscisic acid (ABA) to initiate stomatal closure via rapid cytosolic alkalization followed by Ca2+ elevation. Preventing the alkalization blocked GC ABA-responses and even opened stomata in the presence of ABA, disclosing an important pH-dependent GC signaling node. In MCs, a flg22-induced membrane depolarization preceded Ca2+ -increases and cytosolic acidification by c. 2 min, suggesting a Ca2+ /pH-independent early pathogen signaling step. Imaging Ca2+ and pH resolved similar cytosol and nuclear signals and demonstrated flg22, but not ABA and hydrogen peroxide to initiate rapid membrane voltage-, Ca2+ - and pH-responses. We propose close interrelation in Ca2+ - and pH-signaling that is cell type- and stimulus-specific and the pH having crucial roles in regulating PT growth and stomata movement.
Collapse
Affiliation(s)
- Kunkun Li
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, Wuerzburg 97082, Germany
| | - Juan Prada
- Department of Bioinformatics, University of Wuerzburg, Wuerzburg 97074, Germany
| | - Daniel S. C. Damineli
- Department of Cell Biology & Molecular Genetics, University of Maryland, 2136 Bioscience Research Bldg, College Park, MD 20742-5815, USA
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP 01246-903, Brazil
| | - Anja Liese
- Leibniz Institute of Plant Biochemistry, Halle (Saale) 06120, Germany
| | - Tina Romeis
- Leibniz Institute of Plant Biochemistry, Halle (Saale) 06120, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, University of Wuerzburg, Wuerzburg 97074, Germany
| | - José A. Feijó
- Department of Cell Biology & Molecular Genetics, University of Maryland, 2136 Bioscience Research Bldg, College Park, MD 20742-5815, USA
| | - Rainer Hedrich
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, Wuerzburg 97082, Germany
| | - Kai Robert Konrad
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, Wuerzburg 97082, Germany
| |
Collapse
|
24
|
Cui Y, Zhao Y, Lu Y, Su X, Chen Y, Shen Y, Lin J, Li X. In vivo single-particle tracking of the aquaporin AtPIP2;1 in stomata reveals cell type-specific dynamics. PLANT PHYSIOLOGY 2021; 185:1666-1681. [PMID: 33569600 PMCID: PMC8133650 DOI: 10.1093/plphys/kiab007] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/23/2020] [Indexed: 05/20/2023]
Abstract
Aquaporins such as the plasma membrane intrinsic proteins (PIPs) allow water to move through cell membranes and are vital for stomatal movement in plants. Despite their importance, the dynamic changes in aquaporins during water efflux and influx have not been directly observed in real time in vivo. Here, to determine which factors regulate these changes during the bidirectional translocation of water, we examined aquaporin dynamics during the stomatal immune response to the bacterial flagellin-derived peptide flg22. The Arabidopsis (Arabidopsis thaliana) aquaporin mutant pip2;1 showed defects in the flg22-induced stomatal response. Variable-angle total internal reflection fluorescence microscopy revealed that the movement dynamics and dwell times of AQ6]GFP-AtPIP2;1 in guard cells and subsidiary cells exhibited cell type-specific dependencies on flg22. The cytoskeleton, rather than the cell wall, was the major factor regulating AtPIP2;1 dynamics, although both the cytoskeleton and cell wall might form bounded domains that restrict the diffusion of AtPIP2;1 in guard cells and subsidiary cells. Finally, our analysis revealed the different roles of cortical actin and microtubules in regulating AtPIP2;1 dynamics in guard cells, as well as subsidiary cells, under various conditions. Our observations shed light on the heterogeneous mechanisms that regulate membrane protein dynamics in plants in response to pathogens.
Collapse
Affiliation(s)
- Yaning Cui
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences & Technology, Beijing Forestry University, Beijing 100083, China
| | - Yanxia Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences & Technology, Beijing Forestry University, Beijing 100083, China
| | - Yuqing Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences & Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiao Su
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences & Technology, Beijing Forestry University, Beijing 100083, China
| | - Yingying Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences & Technology, Beijing Forestry University, Beijing 100083, China
| | - Yingbai Shen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences & Technology, Beijing Forestry University, Beijing 100083, China
| | - Jinxing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences & Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xiaojuan Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences & Technology, Beijing Forestry University, Beijing 100083, China
- Author for communication:
| |
Collapse
|
25
|
Ren H, Su Q, Hussain J, Tang S, Song W, Sun Y, Liu H, Qi G. Slow anion channel GhSLAC1 is essential for stomatal closure in response to drought stress in cotton. JOURNAL OF PLANT PHYSIOLOGY 2021; 258-259:153360. [PMID: 33482420 DOI: 10.1016/j.jplph.2020.153360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/24/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
Drought is one of the abiotic stresses which affects the growth and development of plants, including cotton. The role of stomatal anion channel SLAC1 has been well established in regulating stomatal closure in response to drought stress in several plant species. However, the gene encoding for the main S-type anion channel SLAC1 in cotton has not been identified hence its role in drought stress response remains uncharacterized. In this study, we identified Gh_A08G1582 as the gene encoding for GhSLAC1 in cotton. The gene exhibited abundant expression in leaves and was localized in cell membrane. Furthermore, the expression of GhSLAC1 in Arabidopsis slac1-3 mutants rescued the defective stomatal movement phenotypes of the mutants, pointing to its role in stomata regulation. GhSLAC1 channel was activated by AtOST1 in Xenopus laevis oocytes and showed greater permeability for nitrate than chloride. Further data demonstrated that transgenic cotton lines with silenced GhSLAC1 exhibited obvious leaf wilting phenotype and strong stomatal closure insensitivity under drought stress. Taken together, these results demonstrate that GhSLAC1 is an essential element for stomatal closure in response to drought in cotton.
Collapse
Affiliation(s)
- Huimin Ren
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China; China Colored-cotton (Group) Co., Ltd., Urumqi, Xinjiang, 830011, China
| | - Quansheng Su
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016, Zhejiang, China
| | - Jamshaid Hussain
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, 22060, University Road Abbottabad, Pakistan
| | - Shouwu Tang
- China Colored-cotton (Group) Co., Ltd., Urumqi, Xinjiang, 830011, China
| | - Wu Song
- China Colored-cotton (Group) Co., Ltd., Urumqi, Xinjiang, 830011, China
| | - Yuqiang Sun
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016, Zhejiang, China
| | - Haifeng Liu
- China Colored-cotton (Group) Co., Ltd., Urumqi, Xinjiang, 830011, China.
| | - Guoning Qi
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
26
|
Li F, Shi T, Tang X, Tang M, Gong J, Yi Y. Bacillus amyloliquefaciens PDR1 from root of karst adaptive plant enhances Arabidopsis thaliana resistance to alkaline stress through modulation of plasma membrane H +-ATPase activity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:472-482. [PMID: 32827872 DOI: 10.1016/j.plaphy.2020.08.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/09/2020] [Accepted: 08/06/2020] [Indexed: 05/17/2023]
Abstract
Exploration of native microbes is a feasible way to develop microbial agents for ecological restoration. This study was aimed to explore the impact of Bacillus amyloliquefaciens PDR1 from karst adaptive plant on the activity of root plasma membrane H+-ATPase in Arabidopsis thaliana. A. thaliana was cultured in presence or absence of B. amyloliquefaciens PDR1 and its effects on the growth were evaluated by measuring the taproot length and dry weight. The rhizosphere acidification capacity was detected by a pH indicator, a pH meter and non-invasive micro-test techniques (NMT). The nutrient uptake was performed using appropriate methods. A combination of transcriptome sequencing and real-time quantitative polymerase chain reaction (qRT-PCR) was used to measure the expression of functional genes that regulate the plasma membrane H+-ATPase activity in A. thaliana roots. Functional analysis was performed to understand how B. amyloliquefaciens regulates biological processes and metabolic pathways to strengthen A. thaliana resistance to alkaline stress. Here, we show that volatile organic compounds (VOCs) from B. amyloliquefaciens PDR1 promoted the growth and development of A. thaliana, enhanced the plasma membrane H+-ATPase activity, and affected ion absorption in Arabidopsis roots. Moreover, B. amyloliquefaciens PDR1 VOCs did not affect the expression of the gene coding for plasma membrane H+-ATPase, but affected the expression of genes regulating the activity of plasma membrane H+-ATPase. Our findings illuminate the mechanism by which B. amyloliquefaciens regulates the growth and alkaline stress resistance of A. thaliana, and lay a foundation for wide and efficient application for agricultural production and ecological protection.
Collapse
Affiliation(s)
- Fei Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, 150040, China; The Key Laboratory of Biodiversity Conservation in Karst Mountain Area of Southwest of China, Forestry Ministry, School of Life Sciences, Guizhou Normal University, Guiyang, 550003, China; Key Laboratory of Plant Physiology and Developmental Regulation, School of Life Sciences, Guizhou Normal University, Guiyang, 550003, China
| | - Tianlong Shi
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Xiaoxin Tang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, 150040, China; The Key Laboratory of Biodiversity Conservation in Karst Mountain Area of Southwest of China, Forestry Ministry, School of Life Sciences, Guizhou Normal University, Guiyang, 550003, China
| | - Ming Tang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, 150040, China; The Key Laboratory of Biodiversity Conservation in Karst Mountain Area of Southwest of China, Forestry Ministry, School of Life Sciences, Guizhou Normal University, Guiyang, 550003, China
| | - Jiyi Gong
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, 150040, China; The Key Laboratory of Biodiversity Conservation in Karst Mountain Area of Southwest of China, Forestry Ministry, School of Life Sciences, Guizhou Normal University, Guiyang, 550003, China
| | - Yin Yi
- The Key Laboratory of Biodiversity Conservation in Karst Mountain Area of Southwest of China, Forestry Ministry, School of Life Sciences, Guizhou Normal University, Guiyang, 550003, China; Key Laboratory of Plant Physiology and Developmental Regulation, School of Life Sciences, Guizhou Normal University, Guiyang, 550003, China.
| |
Collapse
|
27
|
Li C, Huang D, Wang C, Wang N, Yao Y, Li W, Liao W. NO is involved in H 2-induced adventitious rooting in cucumber by regulating the expression and interaction of plasma membrane H +-ATPase and 14-3-3. PLANTA 2020; 252:9. [PMID: 32602044 DOI: 10.1007/s00425-020-03416-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/23/2020] [Indexed: 05/27/2023]
Abstract
NO was involved in H2-induced adventitious rooting by regulating the protein and gene expressions of PM H+-ATPase and 14-3-3. Simultaneously, the interaction of PM H+-ATPase and 14-3-3 protein was also involved in this process. Hydrogen gas (H2) and nitric oxide (NO) have been shown to be involved in plant growth and development. The results in this study revealed that NO was involved in H2-induced adventitious root formation. Western blot (WB) analysis showed that the protein abundances of plasma membrane H+-ATPase (PM H+-ATPase) and 14-3-3 protein were increased after H2, NO, H2 plus NO treatments, whereas their protein abundances were down regulated when NO scavenger carboxy-2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTI O) was added. Moreover, the mRNA abundances of the HA3 and 14-3-3(7) gene as well as the activities of PM H+-ATPase (EC 3.6.1.35) and H+ pump were in full agreement with the changes of protein abundance. Phosphorylation of PM H+-ATPase and the interaction of PM H+-ATPase and 14-3-3 protein were detected by co-immunoprecipitation analysis. H2 and NO significantly up regulated the phosphorylation of PM H+-ATPase and the interaction of PM H+-ATPase and 14-3-3 protein. Conversely, the stimulation of PM H+-ATPase phosphorylation and protein interaction were significantly diminished by cPTIO. Protein interaction activator fusicoccin (FC) and inhibitor adenosine monophosphate (AMP) of PM H+-ATPase and 14-3-3 were used in this study, and the results showed that FC significantly increased the abundances of PM H+-ATPase and 14-3-3, while AMP showed opposite trends. We further proved the critical roles of PM H+-ATPase and 14-3-3 protein interaction in NO-H2-induced adventitious root formation. Taken together, our results suggested that NO might be involved in H2-induced adventitious rooting by regulating the expression and the interaction of PM H+-ATPase and 14-3-3 protein.
Collapse
Affiliation(s)
- Changxia Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Dengjing Huang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Chunlei Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Ni Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Yandong Yao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Weifang Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China.
| |
Collapse
|
28
|
Role of Stomatal Conductance in Modifying the Dose Response of Stress-Volatile Emissions in Methyl Jasmonate Treated Leaves of Cucumber ( Cucumis sativa). Int J Mol Sci 2020; 21:ijms21031018. [PMID: 32033119 PMCID: PMC7038070 DOI: 10.3390/ijms21031018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 12/22/2022] Open
Abstract
Treatment by volatile plant hormone methyl jasmonate (MeJA) leads to release of methanol and volatiles of lipoxygenase pathway (LOX volatiles) in a dose-dependent manner, but how the dose dependence is affected by stomatal openness is poorly known. We studied the rapid (0-60 min after treatment) response of stomatal conductance (Gs), net assimilation rate (A), and LOX and methanol emissions to varying MeJA concentrations (0.2-50 mM) in cucumber (Cucumis sativus) leaves with partly open stomata and in leaves with reduced Gs due to drought and darkness. Exposure to MeJA led to initial opening of stomata due to an osmotic shock, followed by MeJA concentration-dependent reduction in Gs, whereas A initially decreased, followed by recovery for lower MeJA concentrations and time-dependent decline for higher MeJA concentrations. Methanol and LOX emissions were elicited in a MeJA concentration-dependent manner, whereas the peak methanol emissions (15-20 min after MeJA application) preceded LOX emissions (20-60 min after application). Furthermore, peak methanol emissions occurred earlier in treatments with higher MeJA concentration, while the opposite was observed for LOX emissions. This difference reflected the circumstance where the rise of methanol release partly coincided with MeJA-dependent stomatal opening, while stronger stomatal closure at higher MeJA concentrations progressively delayed peak LOX emissions. We further observed that drought-dependent reduction in Gs ameliorated MeJA effects on foliage physiological characteristics, underscoring that MeJA primarily penetrates through the stomata. However, despite reduced Gs, dark pretreatment amplified stress-volatile release upon MeJA treatment, suggesting that increased leaf oxidative status due to sudden illumination can potentiate the MeJA response. Taken together, these results collectively demonstrate that the MeJA dose response of volatile emission is controlled by stomata that alter MeJA uptake and volatile release kinetics and by leaf oxidative status in a complex manner.
Collapse
|
29
|
Chen Y, Cao C, Guo Z, Zhang Q, Li S, Zhang X, Gong J, Shen Y. Herbivore exposure alters ion fluxes and improves salt tolerance in a desert shrub. PLANT, CELL & ENVIRONMENT 2020; 43:400-419. [PMID: 31674033 DOI: 10.1111/pce.13662] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 08/28/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Plants have evolved complex mechanisms that allow them to withstand multiple environmental stresses, including biotic and abiotic stresses. Here, we investigated the interaction between herbivore exposure and salt stress of Ammopiptanthus nanus, a desert shrub. We found that jasmonic acid (JA) was involved in plant responses to both herbivore attack and salt stress, leading to an increased NaCl stress tolerance for herbivore-pretreated plants and increase in K+ /Na+ ratio in roots. Further evidence revealed the mechanism by which herbivore improved plant NaCl tolerance. Herbivore pretreatment reduced K+ efflux and increased Na+ efflux in plants subjected to long-term, short-term, or transient NaCl stress. Moreover, herbivore pretreatment promoted H+ efflux by increasing plasma membrane H+ -adenosine triphosphate (ATP)ase activity. This H+ efflux creates a transmembrane proton motive force that drives the Na+ /H+ antiporter to expel excess Na+ into the external medium. In addition, high cytosolic Ca2+ was observed in the roots of herbivore-treated plants exposed to NaCl, and this effect may be regulated by H+ -ATPase. Taken together, herbivore exposure enhances A. nanus tolerance to salt stress by activating the JA-signalling pathway, increasing plasma membrane H+ -ATPase activity, promoting cytosolic Ca2+ accumulation, and then restricting K+ leakage and reducing Na+ accumulation in the cytosol.
Collapse
Affiliation(s)
- Yingying Chen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
| | - Chuanjian Cao
- China Forest Pest control and Quarantine Station of Ningxia, Yinchuan, China
| | - Zhujuan Guo
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
| | - Qinghua Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
| | - Shuwen Li
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
| | - Xiao Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
| | - Junqing Gong
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
| | - Yingbai Shen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
| |
Collapse
|
30
|
Ding C, Zhang W, Li D, Dong Y, Liu J, Huang Q, Su X. Effect of Overexpression of JERFs on Intracellular K +/Na + Balance in Transgenic Poplar ( Populus alba × P. berolinensis) Under Salt Stress. FRONTIERS IN PLANT SCIENCE 2020; 11:1192. [PMID: 32922413 PMCID: PMC7456863 DOI: 10.3389/fpls.2020.01192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/22/2020] [Indexed: 05/03/2023]
Abstract
Salt stress is one of the main factors that affect both growth and development of plants. Maintaining K+/Na+ balance in the cytoplasm is important for metabolism as well as salt resistance in plants. In the present study, we monitored the growth (height and diameter) of transgenic Populus alba × P. berolinensis trees (ABJ01) carrying JERF36s gene (a tomato jasmonic/ethylene responsive factors gene) over 4 years, which showed faster growth and significant salt tolerance compared with non-transgenic poplar trees (9#). The expression of NHX1 and SOS1 genes that encode Na+/H+ antiporters in the vacuole and plasma membranes was measured in leaves under NaCl stress. Non-invasive micro-test techniques (NMT) were used to analyse ion flux of Na+, K+, and H+ in the root tip of seedlings under treatment with100 mM NaCl for 7, 15, and 30 days. Results showed that the expression of NHX1 and SOS1 was much higher in ABJ01 compared with 9#, and the Na+ efflux and H+ influx fluxes of root were remarkable higher in ABJ01 than in 9#, but K+ efflux exhibited lower level. All above suggest that salt stress induces NHX1 and SOS1 to a greater expression level in ABJ01, resulting in the accumulation of Na+/H+ antiporter to better maintain K+/Na+ balance in the cytoplasm of this enhanced salt resistant variety. This may help us to better understand the mechanism of transgenic poplars with improving salt tolerance by overexpressing JERF36s and could provide a basis for future breeding programs aimed at improving salt resistance in transgenic poplar.
Collapse
Affiliation(s)
- Changjun Ding
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Weixi Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Dan Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yufeng Dong
- Shandong Provincial Key Laboratory of Forest Tree Genetic Improvement, Shandong Academy of Forestry, Jinan, China
| | - Junlong Liu
- Industry of Timber and Bamboo, Anhui Academy of Forestry, Hefei, China
| | - Qinjun Huang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- *Correspondence: Qinjun Huang, ; Xiaohua Su,
| | - Xiaohua Su
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- *Correspondence: Qinjun Huang, ; Xiaohua Su,
| |
Collapse
|
31
|
Saito S, Uozumi N. Guard Cell Membrane Anion Transport Systems and Their Regulatory Components: An Elaborate Mechanism Controlling Stress-Induced Stomatal Closure. PLANTS 2019; 8:plants8010009. [PMID: 30609843 PMCID: PMC6359458 DOI: 10.3390/plants8010009] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/19/2018] [Accepted: 12/16/2018] [Indexed: 02/07/2023]
Abstract
When plants are exposed to drastic environmental changes such as drought, salt or bacterial invasion, rapid stomatal movement confers tolerance to these stresses. This process involves a variety of guard cell expressed ion channels and their complex regulation network. Inward K+ channels mainly function in stomatal opening. On the other hand, guard cell anion channels play a crucial role in the closing of stomata, which is vital in terms of preventing water loss and bacterial entrance. Massive progress has been made on the research of these anion channels in the last decade. In this review, we focus on the function and regulation of Arabidopsis guard cell anion channels. Starting from SLAC1, a main contributor of stomatal closure, members of SLAHs (SLAC1 homologues), AtNRTs (Nitrate transporters), AtALMTs (Aluminum-activated malate transporters), ABC transporters, AtCLCs (Chloride channels), DTXs (Detoxification efflux carriers), SULTRs (Sulfate transporters), and their regulator components are reviewed. These membrane transport systems are the keys to maintaining cellular ion homeostasis against fluctuating external circumstances.
Collapse
Affiliation(s)
- Shunya Saito
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai 980-8579, Japan.
| | - Nobuyuki Uozumi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai 980-8579, Japan.
| |
Collapse
|
32
|
Zhang K, Su H, Zhou J, Liang W, Liu D, Li J. Overexpressing the Myrosinase Gene TGG1 Enhances Stomatal Defense Against Pseudomonas syringae and Delays Flowering in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2019; 10:1230. [PMID: 31636648 PMCID: PMC6787276 DOI: 10.3389/fpls.2019.01230] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 09/04/2019] [Indexed: 05/11/2023]
Abstract
Myrosinase enzymes and their substrate glucosinolates provide a specific defensive mechanism against biotic invaders in the Brassicaceae family. In these plants, myrosinase hydrolyzes glucosinolates into diverse products, which can have direct antibiotic activity or function as signaling molecules that initiate a variety of defense reactions. A myrosinase, β-thioglucoside glucohydrolase 1 (TGG1) was previously found to be strikingly abundant in guard cells, and it is required for the abscisic acid (ABA) response of stomata. However, it remains unknown which particular physiological processes actually involve stomatal activity as modulated by TGG1. In this experimental study, a homologous TGG1 gene from broccoli (Brassica oleracea var. italica), BoTGG1, was overexpressed in Arabidopsis. The transgenic plants showed enhanced resistance against the bacterial pathogen Pseudomonas syringae pv. tomato (Pst) DC3000 via improved stomatal defense. Upon Pst DC3000 infection, overexpressing BoTGG1 accelerated stomatal closure and inhibited the reopening of stomata. Compared with the wild type, 35S::BoTGG1 was more sensitive to ABA- and salicylic acid (SA)-induced stomatal closure but was less sensitive to indole-3-acetic acid (IAA)-inhibited stomatal closure, thus indicating these hormone signaling pathways were possibly involved in stomatal defense regulated by TGG1. Furthermore, overexpression of BoTGG1 delayed flowering by promoting the expression of FLOWERING LOCUS C (FLC), which encodes a MADS-box transcription factor known as floral repressor. Taken together, our study's results suggest glucosinolate metabolism mediated by TGG1 plays a role in plant stomatal defense against P. syringae and also modulates flowering time by affecting the FLC pathway.
Collapse
|
33
|
Maintenance of mesophyll potassium and regulation of plasma membrane H+-ATPase are associated with physiological responses of tea plants to drought and subsequent rehydration. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.cj.2018.06.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
34
|
Davis JL, Armengaud P, Larson TR, Graham IA, White PJ, Newton AC, Amtmann A. Contrasting nutrient-disease relationships: Potassium gradients in barley leaves have opposite effects on two fungal pathogens with different sensitivities to jasmonic acid. PLANT, CELL & ENVIRONMENT 2018; 41:2357-2372. [PMID: 29851096 PMCID: PMC6175101 DOI: 10.1111/pce.13350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/21/2018] [Indexed: 05/20/2023]
Abstract
Understanding the interactions between mineral nutrition and disease is essential for crop management. Our previous studies with Arabidopsis thaliana demonstrated that potassium (K) deprivation induced the biosynthesis of jasmonic acid (JA) and increased the plant's resistance to herbivorous insects. Here, we addressed the question of how tissue K affects the development of fungal pathogens and whether sensitivity of the pathogens to JA could play a role for the K-disease relationship in barley (Hordeum vulgare cv. Optic). We report that K-deprived barley plants showed increased leaf concentrations of JA and other oxylipins. Furthermore, a natural tip-to-base K-concentration gradient within leaves of K-sufficient plants was quantitatively mirrored by the transcript levels of JA-responsive genes. The local leaf tissue K concentrations affected the development of two economically important fungi in opposite ways, showing a positive correlation with powdery mildew (Blumeria graminis) and a negative correlation with leaf scald (Rhynchosporium commune) disease symptoms. B. graminis induced a JA response in the plant and was sensitive to methyl-JA treatment whereas R. commune initiated no JA response and was JA insensitive. Our study challenges the view that high K generally improves plant health and suggests that JA sensitivity of pathogens could be an important factor in determining the exact K-disease relationship.
Collapse
Affiliation(s)
- Jayne L. Davis
- Plant Science Group, Institute for Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
- Ecological SciencesThe James Hutton InstituteDundeeUK
| | - Patrick Armengaud
- Plant Science Group, Institute for Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Tony R. Larson
- Department of Biology, Centre for Novel Agricultural ProductsUniversity of YorkYorkUK
| | - Ian A. Graham
- Department of Biology, Centre for Novel Agricultural ProductsUniversity of YorkYorkUK
| | | | | | - Anna Amtmann
- Plant Science Group, Institute for Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| |
Collapse
|
35
|
Cui Y, Li X, Yu M, Li R, Fan L, Zhu Y, Lin J. Sterols regulate endocytic pathways during flg22-induced defense responses in Arabidopsis. Development 2018; 145:dev.165688. [PMID: 30228101 DOI: 10.1242/dev.165688] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/13/2018] [Indexed: 12/21/2022]
Abstract
The plant transmembrane receptor kinase FLAGELLIN SENSING 2 (FLS2) is crucial for innate immunity. Although previous studies have reported FLS2-mediated signal transduction and endocytosis via the clathrin-mediated pathway, whether additional endocytic pathways affect FLS2-mediated defense responses remains unclear. Here, we show that the Arabidopsis thaliana sterol-deficient mutant steroid methyltransferase 1 displays defects in immune responses induced by the flagellin-derived peptide flg22. Variable-angle total internal reflection fluorescence microscopy (VA-TIRFM) coupled with single-particle tracking showed that the spatiotemporal dynamics of FLS2-GFP changed on a millisecond time scale and that the FLS2-GFP dwell time at the plasma membrane increased in cells treated with a sterol-extracting reagent when compared with untreated counterparts. We further demonstrate that flg22-induced FLS2 clustering and endocytosis involves the sterol-associated endocytic pathway, which is distinct from the clathrin-mediated pathway. Moreover, flg22 enhanced the colocalization of FLS2-GFP with the membrane microdomain marker Flot 1-mCherry and FLS2 endocytosis via the sterol-associated pathway. This indicates that plants may respond to pathogen attacks by regulating two different endocytic pathways. Taken together, our results suggest the key role of sterol homeostasis in flg22-induced plant defense responses.
Collapse
Affiliation(s)
- Yaning Cui
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China.,College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xiaojuan Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China.,College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Meng Yu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China.,College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Ruili Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China.,College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Lusheng Fan
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Yingfang Zhu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA.,Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Jinming Street, Kaifeng 475001, China
| | - Jinxing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China .,College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
36
|
Wei J, Li DX, Zhang JR, Shan C, Rengel Z, Song ZB, Chen Q. Phytomelatonin receptor PMTR1-mediated signaling regulates stomatal closure in Arabidopsis thaliana. J Pineal Res 2018; 65:e12500. [PMID: 29702752 DOI: 10.1111/jpi.12500] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 03/30/2018] [Indexed: 12/12/2022]
Abstract
Melatonin has been detected in plants in 1995; however, the function and signaling pathway of this putative phytohormone are largely undetermined due to a lack of knowledge about its receptor. Here, we discovered the first phytomelatonin receptor (CAND2/PMTR1) in Arabidopsis thaliana and found that melatonin governs the receptor-dependent stomatal closure. The application of melatonin induced stomatal closure through the heterotrimeric G protein α subunit-regulated H2 O2 and Ca2+ signals. The Arabidopsis mutant lines lacking AtCand2 that encodes a candidate G protein-coupled receptor were insensitive to melatonin-induced stomatal closure. Accordingly, the melatonin-induced H2 O2 production and Ca2+ influx were completely abolished in cand2. CAND2 is a membrane protein that interacts with GPA1 and the expression of AtCand2 was tightly regulated by melatonin in various organs and guard cells. CAND2 showed saturable and specific 125 I-melatonin binding, with apparent Kd (dissociation constant) of 0.73 ± 0.10 nmol/L (r2 = .99), demonstrating this protein is a phytomelatonin receptor (PMTR1). Our results suggest that the phytomelatonin regulation of stomatal closure is dependent on its receptor CAND2/PMTR1-mediated H2 O2 and Ca2+ signaling transduction cascade.
Collapse
Affiliation(s)
- Jian Wei
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Dong-Xu Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Jia-Rong Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Chi Shan
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zed Rengel
- Faculty of Science, UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Zhong-Bang Song
- Tobacco Breeding Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| | - Qi Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Faculty of Science, UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
37
|
Wang X, Teng Y, Tu C, Luo Y, Greening C, Zhang N, Dai S, Ren W, Zhao L, Li Z. Coupling between Nitrogen Fixation and Tetrachlorobiphenyl Dechlorination in a Rhizobium-Legume Symbiosis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:2217-2224. [PMID: 29363956 DOI: 10.1021/acs.est.7b05667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Legume-rhizobium symbioses have the potential to remediate soils contaminated with chlorinated organic compounds. Here, the model symbiosis between Medicago sativa and Sinorhizobium meliloti was used to explore the relationships between symbiotic nitrogen fixation and transformation of tetrachlorobiphenyl PCB 77 within this association. 45-day-old seedlings in vermiculite were pretreated with 5 mg L-1 PCB 77 for 5 days. In PCB-supplemented nodules, addition of the nitrogenase enhancer molybdate significantly stimulated dechlorination by 7.2-fold and reduced tissue accumulation of PCB 77 (roots by 96% and nodules by 93%). Conversely, dechlorination decreased in plants exposed to a nitrogenase inhibitor (nitrate) or harboring nitrogenase-deficient symbionts (nifA mutant) by 29% and 72%, respectively. A range of dechlorinated products (biphenyl, methylbiphenyls, hydroxylbiphenyls, and trichlorobiphenyl derivatives) were detected within nodules and roots under nitrogen-fixing conditions. Levels of nitrogenase-derived hydrogen and leghemoglobin expression correlated positively with nodular dechlorination rates, suggesting a more reducing environment promotes PCB dechlorination. Our findings demonstrate for the first time that symbiotic nitrogen fixation acts as a driving force for tetrachlorobiphenyl dechlorination. In turn, this opens new possibilities for using rhizobia to enhance phytoremediation of halogenated organic compounds.
Collapse
Affiliation(s)
- Xiaomi Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science , Chinese Academy of Sciences, Nanjing 210008, P.R. China
- University of Chinese Academy of Sciences , Beijing 100049, P.R. China
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science , Chinese Academy of Sciences, Nanjing 210008, P.R. China
| | - Chen Tu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research , Chinese Academy of Sciences, Yantai 264003, P.R. China
| | - Yongming Luo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science , Chinese Academy of Sciences, Nanjing 210008, P.R. China
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research , Chinese Academy of Sciences, Yantai 264003, P.R. China
| | - Chris Greening
- School of Biological Sciences, Monash University , Clayton, Victoria 3800, Australia
| | - Ning Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science , Chinese Academy of Sciences, Nanjing 210008, P.R. China
| | - Shixiang Dai
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science , Chinese Academy of Sciences, Nanjing 210008, P.R. China
- University of Chinese Academy of Sciences , Beijing 100049, P.R. China
| | - Wenjie Ren
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science , Chinese Academy of Sciences, Nanjing 210008, P.R. China
| | - Ling Zhao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science , Chinese Academy of Sciences, Nanjing 210008, P.R. China
| | - Zhengao Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science , Chinese Academy of Sciences, Nanjing 210008, P.R. China
| |
Collapse
|
38
|
Luo S, Zhang X, Wang J, Jiao C, Chen Y, Shen Y. Plant ion channels and transporters in herbivory-induced signalling. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:111-131. [PMID: 32291026 DOI: 10.1071/fp16318] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 12/06/2016] [Indexed: 06/11/2023]
Abstract
In contrast to many biotic stresses that plants face, feeding by herbivores produces unique mechanical and chemical signatures. Plants have evolved effective systems to recognise these mechanical stimuli and chemical elicitors at the plasma membrane (PM), where this recognition generates ion fluxes, including an influx of Ca2+ that elicits cellular Ca2+ signalling, production of reactive oxygen species (ROS), and variation in transmembrane potential. These signalling events also function in propagation of long-distance signals (Ca2+ waves, ROS waves, and electrical signals), which contribute to rapid, systemic induction of defence responses. Recent studies have identified several candidate channels or transporters that likely produce these ion fluxes at the PM. Here, we describe the important roles of these channels/transporters in transduction or transmission of herbivory-induced early signalling events, long-distance signals, and jasmonic acid and green leaf volatile signalling in plants.
Collapse
Affiliation(s)
- Shuitian Luo
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiao Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jinfei Wang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Chunyang Jiao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yingying Chen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yingbai Shen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
39
|
Junková P, Daněk M, Kocourková D, Brouzdová J, Kroumanová K, Zelazny E, Janda M, Hynek R, Martinec J, Valentová O. Mapping of Plasma Membrane Proteins Interacting With Arabidopsis thaliana Flotillin 2. FRONTIERS IN PLANT SCIENCE 2018; 9:991. [PMID: 30050548 PMCID: PMC6052134 DOI: 10.3389/fpls.2018.00991] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/19/2018] [Indexed: 05/08/2023]
Abstract
Arabidopsis flotillin 2 (At5g25260) belongs to the group of plant flotillins, which are not well characterized. In contrast, metazoan flotillins are well known as plasma membrane proteins associated with membrane microdomains that act as a signaling hub. The similarity of plant and metazoan flotillins, whose functions most likely consist of affecting other proteins via protein-protein interactions, determines the necessity of detecting their interacting partners in plants. Nevertheless, identifying the proteins that form complexes on the plasma membrane is a challenging task due to their low abundance and hydrophobic character. Here we present an approach for mapping Arabidopsis thaliana flotillin 2 plasma membrane interactors, based on the immunoaffinity purification of crosslinked and enriched plasma membrane proteins with mass spectrometry detection. Using this approach, 61 proteins were enriched in the AtFlot-GFP plasma membrane fraction, and 19 of them were proposed to be flotillin 2 interaction partners. Among our proposed partners of Flot2, proteins playing a role in the plant response to various biotic and abiotic stresses were detected. Additionally, the use of the split-ubiquitin yeast system helped us to confirm that plasma-membrane ATPase 1, early-responsive to dehydration stress protein 4, syntaxin-71, harpin-induced protein-like 3, hypersensitive-induced response protein 2 and two aquaporin isoforms interact with flotillin 2 directly. Based on the results of our study and the reported properties of Flot2 interactors, we propose that Flot2 complexes may be involved in plant-pathogen interactions, water transport and intracellular trafficking.
Collapse
Affiliation(s)
- Petra Junková
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czechia
- *Correspondence: Petra Junková, ;
| | - Michal Daněk
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Daniela Kocourková
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Jitka Brouzdová
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Kristýna Kroumanová
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Enric Zelazny
- Institut de Biologie Intégrative de la Cellule (I2BC), CNRS–CEA–Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Martin Janda
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czechia
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Radovan Hynek
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czechia
| | - Jan Martinec
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Olga Valentová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czechia
| |
Collapse
|
40
|
Han X, Yang Y, Wu Y, Liu X, Lei X, Guo Y. A bioassay-guided fractionation system to identify endogenous small molecules that activate plasma membrane H+-ATPase activity in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2951-2962. [PMID: 28582540 PMCID: PMC5853834 DOI: 10.1093/jxb/erx156] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/08/2017] [Indexed: 05/13/2023]
Abstract
Plasma membrane (PM) H+-ATPase is essential for plant growth and development. Various environmental stimuli regulate its activity, a process that involves many protein cofactors. However, whether endogenous small molecules play a role in this regulation remains unknown. Here, we describe a bio-guided isolation method to identify endogenous small molecules that regulate PM H+-ATPase activity. We obtained crude extracts from Arabidopsis seedlings with or without salt treatment and then purified them into fractions based on polarity and molecular mass by repeated column chromatography. By evaluating the effect of each fraction on PM H+-ATPase activity, we found that fractions containing the endogenous, free unsaturated fatty acids oleic acid (C18:1), linoleic acid (C18:2), and linolenic acid (C18:3) extracted from salt-treated seedlings stimulate PM H+-ATPase activity. These results were further confirmed by the addition of exogenous C18:1, C18:2, or C18:3 in the activity assay. The ssi2 mutant, with reduced levels of C18:1, C18:2, and C18:3, displayed reduced PM H+-ATPase activity. Furthermore, C18:1, C18:2, and C18:3 directly bound to the C-terminus of the PM H+-ATPase AHA2. Collectively, our results demonstrate that the binding of free unsaturated fatty acids to the C-terminus of PM H+-ATPase is required for its activation under salt stress. The bio-guided isolation model described in this study could enable the identification of new endogenous small molecules that modulate essential protein functions, as well as signal transduction, in plants.
Collapse
Affiliation(s)
- Xiuli Han
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
- National Institute of Biological Sciences, Beijing, China
| | - Yongqing Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yujiao Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaohui Liu
- National Institute of Biological Sciences, Beijing, China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xiaoguang Lei
- National Institute of Biological Sciences, Beijing, China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
41
|
Huang H, Liu B, Liu L, Song S. Jasmonate action in plant growth and development. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1349-1359. [PMID: 28158849 DOI: 10.1093/jxb/erw495] [Citation(s) in RCA: 338] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Phytohormones, including jasmonates (JAs), gibberellin, ethylene, abscisic acid, and auxin, integrate endogenous developmental cues with environmental signals to regulate plant growth, development, and defense. JAs are well- recognized lipid-derived stress hormones that regulate plant adaptations to biotic stresses, including herbivore attack and pathogen infection, as well as abiotic stresses, including wounding, ozone, and ultraviolet radiation. An increasing number of studies have shown that JAs also have functions in a remarkable number of plant developmental events, including primary root growth, reproductive development, and leaf senescence. Since the 1980s, details of the JA biosynthesis pathway, signaling pathway, and crosstalk during plant growth and development have been elucidated. Here, we summarize recent advances and give an updated overview of JA action and crosstalk in plant growth and development.
Collapse
Affiliation(s)
- Huang Huang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bei Liu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Liangyu Liu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Susheng Song
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| |
Collapse
|
42
|
Falhof J, Pedersen JT, Fuglsang AT, Palmgren M. Plasma Membrane H(+)-ATPase Regulation in the Center of Plant Physiology. MOLECULAR PLANT 2016; 9:323-337. [PMID: 26584714 DOI: 10.1016/j.molp.2015.11.002] [Citation(s) in RCA: 280] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/30/2015] [Accepted: 11/01/2015] [Indexed: 05/21/2023]
Abstract
The plasma membrane (PM) H(+)-ATPase is an important ion pump in the plant cell membrane. By extruding protons from the cell and generating a membrane potential, this pump energizes the PM, which is a prerequisite for growth. Modification of the autoinhibitory terminal domains activates PM H(+)-ATPase activity, and on this basis it has been hypothesized that these regulatory termini are targets for physiological factors that activate or inhibit proton pumping. In this review, we focus on the posttranslational regulation of the PM H(+)-ATPase and place regulation of the pump in an evolutionary and physiological context. The emerging picture is that multiple signals regulating plant growth interfere with the posttranslational regulation of the PM H(+)-ATPase.
Collapse
Affiliation(s)
- Janus Falhof
- Department of Plant and Environmental Science, Center for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Jesper Torbøl Pedersen
- Department of Plant and Environmental Science, Center for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Anja Thoe Fuglsang
- Department of Plant and Environmental Science, Center for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Michael Palmgren
- Department of Plant and Environmental Science, Center for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, University of Copenhagen, 1871 Frederiksberg, Denmark.
| |
Collapse
|