1
|
Chen MM, Kopittke PM, Zhao FJ, Wang P. Applications and opportunities of click chemistry in plant science. TRENDS IN PLANT SCIENCE 2024; 29:167-178. [PMID: 37612212 DOI: 10.1016/j.tplants.2023.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 06/29/2023] [Accepted: 07/19/2023] [Indexed: 08/25/2023]
Abstract
The Nobel Prize in Chemistry for 2022 was awarded to the pioneers of Lego-like 'click chemistry': combinatorial chemistry with remarkable modularity and diversity. It has been applied to a wide variety of biological systems, from microorganisms to plants and animals, including humans. Although click chemistry is a powerful chemical biology tool, comparatively few studies have examined its potential in plant science. Here, we review click chemistry reactions and their applications in plant systems, highlighting the activity-based probes and metabolic labeling strategies combined with bioorthogonal click chemistry to visualize plant biological processes. These applications offer new opportunities to explore and understand the underlying molecular mechanisms regulating plant composition, growth, metabolism, defense, and immune responses.
Collapse
Affiliation(s)
- Ming-Ming Chen
- Centre of Agriculture and Health, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, China
| | - Peter M Kopittke
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Peng Wang
- Centre of Agriculture and Health, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, China; State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
2
|
The Light-Controlled Release of 2-fluoro-l-fucose, an Inhibitor of the Root Cell Elongation, from a nitrobenzyl-caged Derivative. Int J Mol Sci 2023; 24:ijms24032533. [PMID: 36768855 PMCID: PMC9916816 DOI: 10.3390/ijms24032533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
Glycan metabolic engineering is a powerful tool for studying the glycosylation in living plant cells. The use of modified monosaccharides such as deoxy or fluorine-containing glycosides has been reported as a powerful pharmacological approach for studying the carbohydrate metabolism. 1,3,4-tri-O-acetyl-2-fluoro-l-fucose (2F-Fuc) is a potent inhibitor of the plant cell elongation. After feeding plant seedlings with 2F-Fuc, this monosaccharide derivative is deacetylated and converted by the endogenous metabolic machinery into the corresponding nucleotide-sugar, which then efficiently inhibits Golgi-localized fucosyltransferases. Among plant cell wall polymers, defects in the fucosylation of the pectic rhamnogalacturonan-II cause a decrease in RG-II dimerization, which in turn induce the arrest of the cell elongation. In order to perform the inhibition of the cell elongation process in a spatio-temporal manner, we synthesized a caged 3,4-di-O-acetyl-1-hydroxy-2-fluoro-l-fucose (1-OH-2F-Fuc) derivative carrying a photolabile ortho-nitrobenzyl alcohol function at the anomeric position: 3,4-di-O-acetyl-1-ortho-nitrobenzyl-2-fluoro-l-fucose (2F-Fuc-NB). The photorelease of the trapped 1-OH-2F-Fuc was performed under a 365 nm LED illumination. We demonstrated that the in planta elimination by photoexcitation of the photolabile group releases free 2F-Fuc in plant cells, which in turn inhibits in a dose-dependent manner and, reversibly, the root cell elongation.
Collapse
|
3
|
Kufleitner M, Haiber LM, Wittmann V. Metabolic glycoengineering - exploring glycosylation with bioorthogonal chemistry. Chem Soc Rev 2023; 52:510-535. [PMID: 36537135 DOI: 10.1039/d2cs00764a] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Glycans are involved in numerous biological recognition events. Being secondary gene products, their labeling by genetic methods - comparable to GFP labeling of proteins - is not possible. To overcome this limitation, metabolic glycoengineering (MGE, also known as metabolic oligosaccharide engineering, MOE) has been developed. In this approach, cells or organisms are treated with synthetic carbohydrate derivatives that are modified with a chemical reporter group. In the cytosol, the compounds are metabolized and incorporated into newly synthesized glycoconjugates. Subsequently, the reporter groups can be further derivatized in a bioorthogonal ligation reaction. In this way, glycans can be visualized or isolated. Furthermore, diverse targeting strategies have been developed to direct drugs, nanoparticles, or whole cells to a desired location. This review summarizes research in the field of MGE carried out in recent years. After an introduction to the bioorthogonal ligation reactions that have been used in in connection with MGE, an overview on carbohydrate derivatives for MGE is given. The last part of the review focuses on the many applications of MGE starting from mammalian cells to experiments with animals and other organisms.
Collapse
Affiliation(s)
- Markus Kufleitner
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| | - Lisa Maria Haiber
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| | - Valentin Wittmann
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| |
Collapse
|
4
|
Michels L, Bronkhorst J, Kasteel M, de Jong D, Albada B, Ketelaar T, Govers F, Sprakel J. Molecular sensors reveal the mechano-chemical response of Phytophthora infestans walls and membranes to mechanical and chemical stress. Cell Surf 2022; 8:100071. [PMID: 35059532 PMCID: PMC8760408 DOI: 10.1016/j.tcsw.2021.100071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/09/2021] [Accepted: 12/29/2021] [Indexed: 11/15/2022] Open
Abstract
Phytophthora infestans, causal agent of late blight in potato and tomato, remains challenging to control. Unravelling its biomechanics of host invasion, and its response to mechanical and chemical stress, could provide new handles to combat this devastating pathogen. Here we introduce two fluorescent molecular sensors, CWP-BDP and NR12S, that reveal the micromechanical response of the cell wall-plasma membrane continuum in P. infestans during invasive growth and upon chemical treatment. When visualized by live-cell imaging, CWP-BDP reports changes in cell wall (CW) porosity while NR12S reports variations in chemical polarity and lipid order in the plasma membrane (PM). During invasive growth, mechanical interactions between the pathogen and a surface reveal clear and localized changes in the structure of the CW. Moreover, the molecular sensors can reveal the effect of chemical treatment to CW and/or PM, thereby revealing the site-of-action of crop protection agents. This mechano-chemical imaging strategy resolves, non-invasively and with high spatio-temporal resolution, how the CW-PM continuum adapts and responds to abiotic stress, and provides information on the dynamics and location of cellular stress responses for which, to date, no other methods are available.
Collapse
Affiliation(s)
- Lucile Michels
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Jochem Bronkhorst
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Michiel Kasteel
- Laboratory of Phytopathology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
- Laboratory of Cell Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Djanick de Jong
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Bauke Albada
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Tijs Ketelaar
- Laboratory of Cell Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Francine Govers
- Laboratory of Phytopathology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Joris Sprakel
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| |
Collapse
|
5
|
Ropitaux M, Hays Q, Baron A, Fourmois L, Boulogne I, Vauzeilles B, Lerouge P, Mollet JC, Lehner A. Dynamic imaging of cell wall polysaccharides by metabolic click-mediated labeling of pectins in living elongating cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:916-924. [PMID: 35165972 DOI: 10.1111/tpj.15706] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Protein tracking in living plant cells has become routine with the emergence of reporter genes encoding fluorescent tags. Unfortunately, this imaging strategy is not applicable to glycans because they are not directly encoded by the genome. Indeed, complex glycans result from sequential additions and/or removals of monosaccharides by the glycosyltransferases and glycosidases of the cell's biosynthetic machinery. Currently, the imaging of cell wall polymers mainly relies on the use of antibodies or dyes that exhibit variable specificities. However, as immunolocalization typically requires sample fixation, it does not provide access to the dynamics of living cells. The development of click chemistry in plant cell wall biology offers an alternative for live-cell labeling. It consists of the incorporation of a carbohydrate containing a bio-orthogonal chemical reporter into the target polysaccharide using the endogenous biosynthetic machinery of the cell. Once synthesized and deposited in the cell wall, the polysaccharide containing the analog monosaccharide is covalently coupled to an exogenous fluorescent probe. Here, we developed a metabolic click labeling approach which allows the imaging of cell wall polysaccharides in living and elongating cells without affecting cell viability. The protocol was established using the pollen tube, a useful model to follow cell wall dynamics due to its fast and tip-polarized growth, but was also successfully tested on Arabidopsis root cells and root hairs. This method offers the possibility of imaging metabolically incorporated sugars of viable and elongating cells, allowing the study of the long-term dynamics of labeled extracellular polysaccharides.
Collapse
Affiliation(s)
- Marc Ropitaux
- UNIROUEN, Laboratoire Glyco-MEV, Normandie Université, UR 4358, Structure Fédérative de Recherche Normandie Végétal FED 4277, Innovation Chimie Carnot, 76000, Rouen, France
| | - Quentin Hays
- UNIROUEN, Laboratoire Glyco-MEV, Normandie Université, UR 4358, Structure Fédérative de Recherche Normandie Végétal FED 4277, Innovation Chimie Carnot, 76000, Rouen, France
| | - Aurélie Baron
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Laura Fourmois
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Isabelle Boulogne
- UNIROUEN, Laboratoire Glyco-MEV, Normandie Université, UR 4358, Structure Fédérative de Recherche Normandie Végétal FED 4277, Innovation Chimie Carnot, 76000, Rouen, France
| | - Boris Vauzeilles
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Patrice Lerouge
- UNIROUEN, Laboratoire Glyco-MEV, Normandie Université, UR 4358, Structure Fédérative de Recherche Normandie Végétal FED 4277, Innovation Chimie Carnot, 76000, Rouen, France
| | - Jean-Claude Mollet
- UNIROUEN, Laboratoire Glyco-MEV, Normandie Université, UR 4358, Structure Fédérative de Recherche Normandie Végétal FED 4277, Innovation Chimie Carnot, 76000, Rouen, France
| | - Arnaud Lehner
- UNIROUEN, Laboratoire Glyco-MEV, Normandie Université, UR 4358, Structure Fédérative de Recherche Normandie Végétal FED 4277, Innovation Chimie Carnot, 76000, Rouen, France
| |
Collapse
|
6
|
Morel O, Lion C, Neutelings G, Stefanov J, Baldacci‐Cresp F, Simon C, Biot C, Hawkins S, Spriet C. REPRISAL: mapping lignification dynamics using chemistry, data segmentation, and ratiometric analysis. PLANT PHYSIOLOGY 2022; 188:816-830. [PMID: 34687294 PMCID: PMC8825451 DOI: 10.1093/plphys/kiab490] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/05/2021] [Indexed: 05/04/2023]
Abstract
This article describes a methodology for detailed mapping of the lignification capacity of plant cell walls that we have called "REPRISAL" for REPorter Ratiometrics Integrating Segmentation for Analyzing Lignification. REPRISAL consists of the combination of three separate approaches. In the first approach, H*, G*, and S* monolignol chemical reporters, corresponding to p-coumaryl alcohol, coniferyl alcohol, and sinapyl alcohol, are used to label the growing lignin polymer in a fluorescent triple labeling strategy based on the sequential use of three main bioorthogonal chemical reactions. In the second step, an automatic parametric and/or artificial intelligence segmentation algorithm is developed that assigns fluorescent image pixels to three distinct cell wall zones corresponding to cell corners, compound middle lamella and secondary cell walls. The last step corresponds to the exploitation of a ratiometric approach enabling statistical analyses of differences in monolignol reporter distribution (ratiometric method [RM] 1) and proportions (RM 2) within the different cell wall zones. We first describe the use of this methodology to map developmentally related changes in the lignification capacity of wild-type Arabidopsis (Arabidopsis thaliana) interfascicular fiber cells. We then apply REPRISAL to analyze the Arabidopsis peroxidase (PRX) mutant prx64 and provide further evidence for the implication of the AtPRX64 protein in floral stem lignification. In addition, we also demonstrate the general applicability of REPRISAL by using it to map lignification capacity in poplar (Populus tremula × Populus alba), flax (Linum usitatissimum), and maize (Zea mays). Finally, we show that the methodology can be used to map the incorporation of a fucose reporter into noncellulosic cell wall polymers.
Collapse
Affiliation(s)
- Oriane Morel
- Univ. Lille, CNRS, UMR 8576—UGSF—Unité de Glycobiologie Structurale et Fonctionnelle, Lille F 59000, France
- Institute of Biophysics, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Cedric Lion
- Univ. Lille, CNRS, UMR 8576—UGSF—Unité de Glycobiologie Structurale et Fonctionnelle, Lille F 59000, France
| | - Godfrey Neutelings
- Univ. Lille, CNRS, UMR 8576—UGSF—Unité de Glycobiologie Structurale et Fonctionnelle, Lille F 59000, France
| | - Jonathan Stefanov
- Univ. Lille, CNRS, UMR 8576—UGSF—Unité de Glycobiologie Structurale et Fonctionnelle, Lille F 59000, France
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41—UMS 2014—PLBS, Lille F-59000, France
| | - Fabien Baldacci‐Cresp
- Univ. Lille, CNRS, UMR 8576—UGSF—Unité de Glycobiologie Structurale et Fonctionnelle, Lille F 59000, France
| | - Clemence Simon
- Univ. Lille, CNRS, UMR 8576—UGSF—Unité de Glycobiologie Structurale et Fonctionnelle, Lille F 59000, France
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41—UMS 2014—PLBS, Lille F-59000, France
| | - Christophe Biot
- Univ. Lille, CNRS, UMR 8576—UGSF—Unité de Glycobiologie Structurale et Fonctionnelle, Lille F 59000, France
- Author for communication:
| | - Simon Hawkins
- Univ. Lille, CNRS, UMR 8576—UGSF—Unité de Glycobiologie Structurale et Fonctionnelle, Lille F 59000, France
| | - Corentin Spriet
- Univ. Lille, CNRS, UMR 8576—UGSF—Unité de Glycobiologie Structurale et Fonctionnelle, Lille F 59000, France
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41—UMS 2014—PLBS, Lille F-59000, France
| |
Collapse
|
7
|
Yagi N, Yoshinari A, Iwatate RJ, Isoda R, Frommer WB, Nakamura M. Advances in Synthetic Fluorescent Probe Labeling for Live-Cell Imaging in Plants. PLANT & CELL PHYSIOLOGY 2021; 62:1259-1268. [PMID: 34233356 PMCID: PMC8579277 DOI: 10.1093/pcp/pcab104] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 06/24/2021] [Accepted: 07/06/2021] [Indexed: 05/03/2023]
Abstract
Fluorescent probes are powerful tools for visualizing cellular and subcellular structures, their dynamics and cellular molecules in living cells and enable us to monitor cellular processes in a spatiotemporal manner within complex and crowded systems. In addition to popular fluorescent proteins, a wide variety of small-molecule dyes have been synthesized through close association with the interdisciplinary field of chemistry and biology, ranging from those suitable for labeling cellular compartments such as organelles to those for labeling intracellular biochemical and biophysical processes and signaling. In recent years, self-labeling technologies including the SNAP-tag system have allowed us to attach these dyes to cellular domains or specific proteins and are beginning to be employed in plant studies. In this mini review, we will discuss the current range of synthetic fluorescent probes that have been exploited for live-cell imaging and the recent advances in the application that enable genetical tagging of synthetic probes in plant research.
Collapse
Affiliation(s)
- Noriyoshi Yagi
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Akira Yoshinari
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Ryu J Iwatate
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan
- School of Medicine, Nagoya University, Universitätsstr. 1, Showa, Nagoya 466−8550, Japan
| | - Reika Isoda
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Wolf B Frommer
- *Corresponding authors: Wolf B. Frommer, E-mail, ; Masayoshi Nakamura, E-mail,
| | - Masayoshi Nakamura
- *Corresponding authors: Wolf B. Frommer, E-mail, ; Masayoshi Nakamura, E-mail,
| |
Collapse
|
8
|
Wang C, Hao N, Xia Y, Du Y, Huang K, Wu T. CsKDO is a candidate gene regulating seed germination lethality in cucumber. BREEDING SCIENCE 2021; 71:417-425. [PMID: 34912168 PMCID: PMC8661486 DOI: 10.1270/jsbbs.20149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/18/2021] [Indexed: 06/14/2023]
Abstract
Seed germination plays an important role in the initial stage of plant growth. However, few related studies focused on lethality after seed germination in plants. In this study, we identified an Ethyl methanesulfonate (EMS) mutagenesis mutant Csleth with abnormal seed germination in cucumber (Cucumis sativus L.). The radicle of the Csleth mutant grew slowly and detached from the cotyledon until 14 d after sowing. Genetic analysis showed that the mutant phenotype of Csleth was controlled by a single recessive gene. MutMap+ and Kompetitive Allele Specific PCR (KASP) genotyping results demonstrated that Csa3G104930 encoding 3-deoxy-manno-octulosonate cytidylyltransferase (CsKDO) was the candidate gene of the Csleth mutant. The transition mutation of aspartate occurred in Csa3G104930 co-segregated with the phenotyping data. CsKDO was highly expressed in male flowers in wild type cucumbers. Subcellular localization results showed that CsKDO was located in the nucleus. Overall, these results suggest CsKDO regulates lethality during seed germination in cucumber.
Collapse
Affiliation(s)
- Chen Wang
- College of Horticulture and Landscape, Hunan Agricultural
University, 1 Nongda Road, Changsha 410128,
China
- College of Horticulture and Landscape, Northeast Agricultural
University, 600 Changjiang Road, Harbin 150030,
China
- Engineering Research Center for Horticultural Crop Germplasm Creation and
New Variety Breeding, Ministry of Education, 1 Nongda Road,
Changsha 410128, China
- Key Labortory for Vegetable Biology of Hunan Province,
1 Nongda Road, Changsha 410128, China
| | - Ning Hao
- College of Horticulture and Landscape, Northeast Agricultural
University, 600 Changjiang Road, Harbin 150030,
China
| | - Yutong Xia
- College of Horticulture and Landscape, Hunan Agricultural
University, 1 Nongda Road, Changsha 410128,
China
- Engineering Research Center for Horticultural Crop Germplasm Creation and
New Variety Breeding, Ministry of Education, 1 Nongda Road,
Changsha 410128, China
- Key Labortory for Vegetable Biology of Hunan Province,
1 Nongda Road, Changsha 410128, China
| | - Yalin Du
- College of Horticulture and Landscape, Hunan Agricultural
University, 1 Nongda Road, Changsha 410128,
China
- Engineering Research Center for Horticultural Crop Germplasm Creation and
New Variety Breeding, Ministry of Education, 1 Nongda Road,
Changsha 410128, China
- Key Labortory for Vegetable Biology of Hunan Province,
1 Nongda Road, Changsha 410128, China
| | - Ke Huang
- College of Horticulture and Landscape, Hunan Agricultural
University, 1 Nongda Road, Changsha 410128,
China
- Engineering Research Center for Horticultural Crop Germplasm Creation and
New Variety Breeding, Ministry of Education, 1 Nongda Road,
Changsha 410128, China
- Key Labortory for Vegetable Biology of Hunan Province,
1 Nongda Road, Changsha 410128, China
| | - Tao Wu
- College of Horticulture and Landscape, Hunan Agricultural
University, 1 Nongda Road, Changsha 410128,
China
- College of Horticulture and Landscape, Northeast Agricultural
University, 600 Changjiang Road, Harbin 150030,
China
- Engineering Research Center for Horticultural Crop Germplasm Creation and
New Variety Breeding, Ministry of Education, 1 Nongda Road,
Changsha 410128, China
- Key Labortory for Vegetable Biology of Hunan Province,
1 Nongda Road, Changsha 410128, China
| |
Collapse
|
9
|
Chen F, Wang C, Yue L, Zhu L, Tang J, Yu X, Cao X, Schröder P, Wang Z. Cell Walls Are Remodeled to Alleviate nY 2O 3 Cytotoxicity by Elaborate Regulation of de Novo Synthesis and Vesicular Transport. ACS NANO 2021; 15:13166-13177. [PMID: 34339172 DOI: 10.1021/acsnano.1c02715] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Yttrium oxide nanoparticles (nY2O3), one of the broadly used rare earth nanoparticles, can interact with plants and possibly cause plant health and environmental impacts, but the plant defense response particularly at the nanoparticle-cell interface is largely unknown. To elucidate this, Bright Yellow 2 (BY-2) tobacco (Nicotiana tabacum L.) suspension-cultured cells were exposed to 50 mg L-1 nY2O3 (30 nm) for 12 h. Although 42.2% of the nY2O3 remained outside of protoplasts, nY2O3 could still traverse the cell wall and was partially deposited inside the vacuole. In addition to growth inhibition, morphological and compositional changes in cell walls occurred. Together with a locally thickened (7-13-fold) cell wall, increased content (up to 58%) of pectin and reduction in (up to 29%) hemicellulose were observed. Transcriptome analysis revealed that genes involved in cell wall metabolism and remodeling were highly regulated in response to nY2O3 stress. Expression of genes for pectin synthesis and degradation was up- and down-regulated by 31-78% and 13-42%, respectively, and genes for xyloglucan and pectin modifications were up- and down-regulated by 82% and 81-92%, respectively. Interestingly, vesicle trafficking seemed to be activated, enabling the repair and defense against nY2O3 disturbance. Our findings indicate that, although nY2O3 generated toxicity on BY-2 cells, it is very likely that during the recovery process cell wall remodeling was initiated to gain resistance to nY2O3 stress, demonstrating the plant's cellular regulatory machinery regarding repair and adaptation to nanoparticles like nY2O3.
Collapse
Affiliation(s)
- Feiran Chen
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Liqi Zhu
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Junfeng Tang
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaoyu Yu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Peter Schröder
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
10
|
Cheng B, Tang Q, Zhang C, Chen X. Glycan Labeling and Analysis in Cells and In Vivo. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:363-387. [PMID: 34314224 DOI: 10.1146/annurev-anchem-091620-091314] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As one of the major types of biomacromolecules in the cell, glycans play essential functional roles in various biological processes. Compared with proteins and nucleic acids, the analysis of glycans in situ has been more challenging. Herein we review recent advances in the development of methods and strategies for labeling, imaging, and profiling of glycans in cells and in vivo. Cellular glycans can be labeled by affinity-based probes, including lectin and antibody conjugates, direct chemical modification, metabolic glycan labeling, and chemoenzymatic labeling. These methods have been applied to label glycans with fluorophores, which enables the visualization and tracking of glycans in cells, tissues, and living organisms. Alternatively, labeling glycans with affinity tags has enabled the enrichment of glycoproteins for glycoproteomic profiling. Built on the glycan labeling methods, strategies enabling cell-selective and tissue-specific glycan labeling and protein-specific glycan imaging have been developed. With these methods and strategies, researchers are now better poised than ever to dissect the biological function of glycans in physiological or pathological contexts.
Collapse
Affiliation(s)
- Bo Cheng
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China;
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Qi Tang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China;
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Che Zhang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China;
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Xing Chen
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China;
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Synthetic and Functional Biomolecules Center, Peking University, Beijing 100871, China
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China
| |
Collapse
|
11
|
Affiliation(s)
- Vincent Rigolot
- UMR 8576 CNRS Unité de Glycobiologie Structurale et Fonctionnelle Université de Lille Faculté des Sciences et Technologies Bât. C9, 59655 Villeneuve d'Ascq France
| | - Christophe Biot
- UMR 8576 CNRS Unité de Glycobiologie Structurale et Fonctionnelle Université de Lille Faculté des Sciences et Technologies Bât. C9, 59655 Villeneuve d'Ascq France
| | - Cedric Lion
- UMR 8576 CNRS Unité de Glycobiologie Structurale et Fonctionnelle Université de Lille Faculté des Sciences et Technologies Bât. C9, 59655 Villeneuve d'Ascq France
| |
Collapse
|
12
|
Rigolot V, Biot C, Lion C. To View Your Biomolecule, Click inside the Cell. Angew Chem Int Ed Engl 2021; 60:23084-23105. [PMID: 34097349 DOI: 10.1002/anie.202101502] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Indexed: 12/13/2022]
Abstract
The surging development of bioorthogonal chemistry has profoundly transformed chemical biology over the last two decades. Involving chemical partners that specifically react together in highly complex biological fluids, this branch of chemistry now allows researchers to probe biomolecules in their natural habitat through metabolic labelling technologies. Chemical reporter strategies include metabolic glycan labelling, site-specific incorporation of unnatural amino acids in proteins, and post-synthetic labelling of nucleic acids. While a majority of literature reports mark cell-surface exposed targets, implementing bioorthogonal ligations in the interior of cells constitutes a more challenging task. Owing to limiting factors such as membrane permeability of reagents, fluorescence background due to hydrophobic interactions and off-target covalent binding, and suboptimal balance between reactivity and stability of the designed molecular reporters and probes, these strategies need mindful planning to achieve success. In this review, we discuss the hurdles encountered when targeting biomolecules localized in cell organelles and give an easily accessible summary of the strategies at hand for imaging intracellular targets.
Collapse
Affiliation(s)
- Vincent Rigolot
- UMR 8576 CNRS, Unité de Glycobiologie Structurale et Fonctionnelle, Université de Lille, Faculté des Sciences et Technologies, Bât. C9, 59655, Villeneuve d'Ascq, France
| | - Christophe Biot
- UMR 8576 CNRS, Unité de Glycobiologie Structurale et Fonctionnelle, Université de Lille, Faculté des Sciences et Technologies, Bât. C9, 59655, Villeneuve d'Ascq, France
| | - Cedric Lion
- UMR 8576 CNRS, Unité de Glycobiologie Structurale et Fonctionnelle, Université de Lille, Faculté des Sciences et Technologies, Bât. C9, 59655, Villeneuve d'Ascq, France
| |
Collapse
|
13
|
DeVree BT, Steiner LM, Głazowska S, Ruhnow F, Herburger K, Persson S, Mravec J. Current and future advances in fluorescence-based visualization of plant cell wall components and cell wall biosynthetic machineries. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:78. [PMID: 33781321 PMCID: PMC8008654 DOI: 10.1186/s13068-021-01922-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/05/2021] [Indexed: 05/18/2023]
Abstract
Plant cell wall-derived biomass serves as a renewable source of energy and materials with increasing importance. The cell walls are biomacromolecular assemblies defined by a fine arrangement of different classes of polysaccharides, proteoglycans, and aromatic polymers and are one of the most complex structures in Nature. One of the most challenging tasks of cell biology and biomass biotechnology research is to image the structure and organization of this complex matrix, as well as to visualize the compartmentalized, multiplayer biosynthetic machineries that build the elaborate cell wall architecture. Better knowledge of the plant cells, cell walls, and whole tissue is essential for bioengineering efforts and for designing efficient strategies of industrial deconstruction of the cell wall-derived biomass and its saccharification. Cell wall-directed molecular probes and analysis by light microscopy, which is capable of imaging with a high level of specificity, little sample processing, and often in real time, are important tools to understand cell wall assemblies. This review provides a comprehensive overview about the possibilities for fluorescence label-based imaging techniques and a variety of probing methods, discussing both well-established and emerging tools. Examples of applications of these tools are provided. We also list and discuss the advantages and limitations of the methods. Specifically, we elaborate on what are the most important considerations when applying a particular technique for plants, the potential for future development, and how the plant cell wall field might be inspired by advances in the biomedical and general cell biology fields.
Collapse
Affiliation(s)
- Brian T DeVree
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Lisa M Steiner
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Sylwia Głazowska
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Felix Ruhnow
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Klaus Herburger
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Staffan Persson
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jozef Mravec
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| |
Collapse
|
14
|
Strasser R, Seifert G, Doblin MS, Johnson KL, Ruprecht C, Pfrengle F, Bacic A, Estevez JM. Cracking the "Sugar Code": A Snapshot of N- and O-Glycosylation Pathways and Functions in Plants Cells. FRONTIERS IN PLANT SCIENCE 2021; 12:640919. [PMID: 33679857 PMCID: PMC7933510 DOI: 10.3389/fpls.2021.640919] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 01/22/2021] [Indexed: 05/04/2023]
Abstract
Glycosylation is a fundamental co-translational and/or post-translational modification process where an attachment of sugars onto either proteins or lipids can alter their biological function, subcellular location and modulate the development and physiology of an organism. Glycosylation is not a template driven process and as such produces a vastly larger array of glycan structures through combinatorial use of enzymes and of repeated common scaffolds and as a consequence it provides a huge expansion of both the proteome and lipidome. While the essential role of N- and O-glycan modifications on mammalian glycoproteins is already well documented, we are just starting to decode their biological functions in plants. Although significant advances have been made in plant glycobiology in the last decades, there are still key challenges impeding progress in the field and, as such, holistic modern high throughput approaches may help to address these conceptual gaps. In this snapshot, we present an update of the most common O- and N-glycan structures present on plant glycoproteins as well as (1) the plant glycosyltransferases (GTs) and glycosyl hydrolases (GHs) responsible for their biosynthesis; (2) a summary of microorganism-derived GHs characterized to cleave specific glycosidic linkages; (3) a summary of the available tools ranging from monoclonal antibodies (mAbs), lectins to chemical probes for the detection of specific sugar moieties within these complex macromolecules; (4) selected examples of N- and O-glycoproteins as well as in their related GTs to illustrate the complexity on their mode of action in plant cell growth and stress responses processes, and finally (5) we present the carbohydrate microarray approach that could revolutionize the way in which unknown plant GTs and GHs are identified and their specificities characterized.
Collapse
Affiliation(s)
- Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Georg Seifert
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Monika S. Doblin
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant & Soil Sciences, La Trobe University, Bundoora, VIC, Australia
- The Sino-Australia Plant Cell Wall Research Centre, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Kim L. Johnson
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant & Soil Sciences, La Trobe University, Bundoora, VIC, Australia
- The Sino-Australia Plant Cell Wall Research Centre, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Colin Ruprecht
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Fabian Pfrengle
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Antony Bacic
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant & Soil Sciences, La Trobe University, Bundoora, VIC, Australia
- The Sino-Australia Plant Cell Wall Research Centre, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - José M. Estevez
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Buenos Aires, Argentina
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| |
Collapse
|
15
|
Interrogating Plant-Microbe Interactions with Chemical Tools: Click Chemistry Reagents for Metabolic Labeling and Activity-Based Probes. Molecules 2021; 26:molecules26010243. [PMID: 33466477 PMCID: PMC7796436 DOI: 10.3390/molecules26010243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/27/2020] [Accepted: 01/01/2021] [Indexed: 01/22/2023] Open
Abstract
Continued expansion of the chemical biology toolbox presents many new and diverse opportunities to interrogate the fundamental molecular mechanisms driving complex plant-microbe interactions. This review will examine metabolic labeling with click chemistry reagents and activity-based probes for investigating the impacts of plant-associated microbes on plant growth, metabolism, and immune responses. While the majority of the studies reviewed here used chemical biology approaches to examine the effects of pathogens on plants, chemical biology will also be invaluable in future efforts to investigate mutualistic associations between beneficial microbes and their plant hosts.
Collapse
|
16
|
Ruprecht C, Bartetzko MP, Senf D, Lakhina A, Smith PJ, Soto MJ, Oh H, Yang J, Chapla D, Varon Silva D, Clausen MH, Hahn MG, Moremen KW, Urbanowicz BR, Pfrengle F. A Glycan Array‐Based Assay for the Identification and Characterization of Plant Glycosyltransferases. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Colin Ruprecht
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
- Present address: Department of Chemistry University of Natural Resources and Life Sciences Vienna Muthgasse 18 1190 Vienna Austria
| | - Max P. Bartetzko
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
- Institute of Chemistry and Biochemistry Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Deborah Senf
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
- Institute of Chemistry and Biochemistry Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Anna Lakhina
- Complex Carbohydrate Research Center University of Georgia 315 Riverbend Road Athens GA 30602 USA
| | - Peter J. Smith
- Complex Carbohydrate Research Center University of Georgia 315 Riverbend Road Athens GA 30602 USA
| | - Maria J. Soto
- Complex Carbohydrate Research Center University of Georgia 315 Riverbend Road Athens GA 30602 USA
- Present address: US Department of Energy Joint Genome Institute (JGI) Berkeley CA 94702 USA
| | - Hyunil Oh
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
- Institute of Chemistry and Biochemistry Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Jeong‐Yeh Yang
- Complex Carbohydrate Research Center University of Georgia 315 Riverbend Road Athens GA 30602 USA
| | - Digantkumar Chapla
- Complex Carbohydrate Research Center University of Georgia 315 Riverbend Road Athens GA 30602 USA
| | - Daniel Varon Silva
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Mads H. Clausen
- Center for Nanomedicine and Theranostics Department of Chemistry Technical University of Denmark Kemitorvet 207 2800 Kgs. Lyngby Denmark
| | - Michael G. Hahn
- Complex Carbohydrate Research Center University of Georgia 315 Riverbend Road Athens GA 30602 USA
| | - Kelley W. Moremen
- Complex Carbohydrate Research Center University of Georgia 315 Riverbend Road Athens GA 30602 USA
| | - Breeanna R. Urbanowicz
- Complex Carbohydrate Research Center University of Georgia 315 Riverbend Road Athens GA 30602 USA
| | - Fabian Pfrengle
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
- Institute of Chemistry and Biochemistry Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
- Present address: Department of Chemistry University of Natural Resources and Life Sciences Vienna Muthgasse 18 1190 Vienna Austria
| |
Collapse
|
17
|
Ruprecht C, Bartetzko MP, Senf D, Lakhina A, Smith PJ, Soto MJ, Oh H, Yang J, Chapla D, Varon Silva D, Clausen MH, Hahn MG, Moremen KW, Urbanowicz BR, Pfrengle F. A Glycan Array-Based Assay for the Identification and Characterization of Plant Glycosyltransferases. Angew Chem Int Ed Engl 2020; 59:12493-12498. [PMID: 32396713 PMCID: PMC7383710 DOI: 10.1002/anie.202003105] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/22/2020] [Indexed: 12/19/2022]
Abstract
Growing plants with modified cell wall compositions is a promising strategy to improve resistance to pathogens, increase biomass digestibility, and tune other important properties. In order to alter biomass architecture, a detailed knowledge of cell wall structure and biosynthesis is a prerequisite. We report here a glycan array-based assay for the high-throughput identification and characterization of plant cell wall biosynthetic glycosyltransferases (GTs). We demonstrate that different heterologously expressed galactosyl-, fucosyl-, and xylosyltransferases can transfer azido-functionalized sugar nucleotide donors to selected synthetic plant cell wall oligosaccharides on the array and that the transferred monosaccharides can be visualized "on chip" by a 1,3-dipolar cycloaddition reaction with an alkynyl-modified dye. The opportunity to simultaneously screen thousands of combinations of putative GTs, nucleotide sugar donors, and oligosaccharide acceptors will dramatically accelerate plant cell wall biosynthesis research.
Collapse
Affiliation(s)
- Colin Ruprecht
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Present address: Department of ChemistryUniversity of Natural Resources and Life Sciences ViennaMuthgasse 181190ViennaAustria
| | - Max P. Bartetzko
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Institute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Deborah Senf
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Institute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Anna Lakhina
- Complex Carbohydrate Research CenterUniversity of Georgia315 Riverbend RoadAthensGA30602USA
| | - Peter J. Smith
- Complex Carbohydrate Research CenterUniversity of Georgia315 Riverbend RoadAthensGA30602USA
| | - Maria J. Soto
- Complex Carbohydrate Research CenterUniversity of Georgia315 Riverbend RoadAthensGA30602USA
- Present address: US Department of Energy Joint Genome Institute (JGI)BerkeleyCA94702USA
| | - Hyunil Oh
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Institute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Jeong‐Yeh Yang
- Complex Carbohydrate Research CenterUniversity of Georgia315 Riverbend RoadAthensGA30602USA
| | - Digantkumar Chapla
- Complex Carbohydrate Research CenterUniversity of Georgia315 Riverbend RoadAthensGA30602USA
| | - Daniel Varon Silva
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Mads H. Clausen
- Center for Nanomedicine and TheranosticsDepartment of ChemistryTechnical University of DenmarkKemitorvet 2072800 Kgs.LyngbyDenmark
| | - Michael G. Hahn
- Complex Carbohydrate Research CenterUniversity of Georgia315 Riverbend RoadAthensGA30602USA
| | - Kelley W. Moremen
- Complex Carbohydrate Research CenterUniversity of Georgia315 Riverbend RoadAthensGA30602USA
| | - Breeanna R. Urbanowicz
- Complex Carbohydrate Research CenterUniversity of Georgia315 Riverbend RoadAthensGA30602USA
| | - Fabian Pfrengle
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Institute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
- Present address: Department of ChemistryUniversity of Natural Resources and Life Sciences ViennaMuthgasse 181190ViennaAustria
| |
Collapse
|
18
|
Wimmer MA, Abreu I, Bell RW, Bienert MD, Brown PH, Dell B, Fujiwara T, Goldbach HE, Lehto T, Mock HP, von Wirén N, Bassil E, Bienert GP. Boron: an essential element for vascular plants: A comment on Lewis (2019) 'Boron: the essential element for vascular plants that never was'. THE NEW PHYTOLOGIST 2020; 226:1232-1237. [PMID: 31674046 DOI: 10.1111/nph.16127] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/09/2019] [Indexed: 06/10/2023]
Affiliation(s)
- Monika A Wimmer
- Department Quality of Plant Products, Institute of Crop Science, University of Hohenheim, 70599, Stuttgart, Germany
| | - Isidro Abreu
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), 28223, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Richard W Bell
- Agriculture Discipline, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6150, Australia
| | - Manuela D Bienert
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, 06466, Gatersleben, Germany
| | - Patrick H Brown
- Department of Plant Sciences, University of California-Davis, Davis, CA, 95616, USA
| | - Bernard Dell
- Agriculture Discipline, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6150, Australia
| | - Toru Fujiwara
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Heiner E Goldbach
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53115, Bonn, Germany
| | - Tarja Lehto
- School of Forest Sciences, University of Eastern Finland, 80110, Joensuu, Finland
| | - Hans-Peter Mock
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, 06466, Gatersleben, Germany
| | - Nicolaus von Wirén
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, 06466, Gatersleben, Germany
| | - Elias Bassil
- Horticultural Sciences Department and Tropical Research and Education Center, University of Florida, Homestead, FL, 33031, USA
| | - Gerd P Bienert
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, 06466, Gatersleben, Germany
| |
Collapse
|
19
|
Dehors J, Mareck A, Kiefer-Meyer MC, Menu-Bouaouiche L, Lehner A, Mollet JC. Evolution of Cell Wall Polymers in Tip-Growing Land Plant Gametophytes: Composition, Distribution, Functional Aspects and Their Remodeling. FRONTIERS IN PLANT SCIENCE 2019; 10:441. [PMID: 31057570 PMCID: PMC6482432 DOI: 10.3389/fpls.2019.00441] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/22/2019] [Indexed: 05/22/2023]
Abstract
During evolution of land plants, the first colonizing species presented leafy-dominant gametophytes, found in non-vascular plants (bryophytes). Today, bryophytes include liverworts, mosses, and hornworts. In the first seedless vascular plants (lycophytes), the sporophytic stage of life started to be predominant. In the seed producing plants, gymnosperms and angiosperms , the gametophytic stage is restricted to reproduction. In mosses and ferns, the haploid spores germinate and form a protonema, which develops into a leafy gametophyte producing rhizoids for anchorage, water and nutrient uptakes. The basal gymnosperms (cycads and Ginkgo) reproduce by zooidogamy. Their pollen grains develop a multi-branched pollen tube that penetrates the nucellus and releases flagellated sperm cells that swim to the egg cell. The pollen grain of other gymnosperms (conifers and gnetophytes) as well as angiosperms germinates and produces a pollen tube that directly delivers the sperm cells to the ovule (siphonogamy). These different gametophytes, which are short or long-lived structures, share a common tip-growing mode of cell expansion. Tip-growth requires a massive cell wall deposition to promote cell elongation, but also a tight spatial and temporal control of the cell wall remodeling in order to modulate the mechanical properties of the cell wall. The growth rate of these cells is very variable depending on the structure and the species, ranging from very slow (protonemata, rhizoids, and some gymnosperm pollen tubes), to a slow to fast-growth in other gymnosperms and angiosperms. In addition, the structural diversity of the female counterparts in angiosperms (dry, semi-dry vs wet stigmas, short vs long, solid vs hollow styles) will impact the speed and efficiency of sperm delivery. As the evolution and diversity of the cell wall polysaccharides accompanied the diversification of cell wall structural proteins and remodeling enzymes, this review focuses on our current knowledge on the biochemistry, the distribution and remodeling of the main cell wall polymers (including cellulose, hemicelluloses, pectins, callose, arabinogalactan-proteins and extensins), during the tip-expansion of gametophytes from bryophytes, pteridophytes (lycophytes and monilophytes), gymnosperms and the monocot and eudicot angiosperms.
Collapse
|
20
|
Simon C, Lion C, Spriet C, Baldacci‐Cresp F, Hawkins S, Biot C. One, Two, Three: A Bioorthogonal Triple Labelling Strategy for Studying the Dynamics of Plant Cell Wall Formation In Vivo. Angew Chem Int Ed Engl 2018; 57:16665-16671. [DOI: 10.1002/anie.201808493] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/29/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Clemence Simon
- Université de LilleCNRS, UMR 8576, UGSF—Unité de Glycobiologie Structurale et Fonctionnelle 59000 Lille France
| | - Cedric Lion
- Université de LilleCNRS, UMR 8576, UGSF—Unité de Glycobiologie Structurale et Fonctionnelle 59000 Lille France
| | - Corentin Spriet
- Université de LilleCNRS, UMR 8576, UGSF—Unité de Glycobiologie Structurale et Fonctionnelle 59000 Lille France
| | - Fabien Baldacci‐Cresp
- Université de LilleCNRS, UMR 8576, UGSF—Unité de Glycobiologie Structurale et Fonctionnelle 59000 Lille France
| | - Simon Hawkins
- Université de LilleCNRS, UMR 8576, UGSF—Unité de Glycobiologie Structurale et Fonctionnelle 59000 Lille France
| | - Christophe Biot
- Université de LilleCNRS, UMR 8576, UGSF—Unité de Glycobiologie Structurale et Fonctionnelle 59000 Lille France
| |
Collapse
|
21
|
Simon C, Lion C, Spriet C, Baldacci‐Cresp F, Hawkins S, Biot C. One, Two, Three: A Bioorthogonal Triple Labelling Strategy for Studying the Dynamics of Plant Cell Wall Formation In Vivo. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808493] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Clemence Simon
- Université de LilleCNRS, UMR 8576, UGSF—Unité de Glycobiologie Structurale et Fonctionnelle 59000 Lille France
| | - Cedric Lion
- Université de LilleCNRS, UMR 8576, UGSF—Unité de Glycobiologie Structurale et Fonctionnelle 59000 Lille France
| | - Corentin Spriet
- Université de LilleCNRS, UMR 8576, UGSF—Unité de Glycobiologie Structurale et Fonctionnelle 59000 Lille France
| | - Fabien Baldacci‐Cresp
- Université de LilleCNRS, UMR 8576, UGSF—Unité de Glycobiologie Structurale et Fonctionnelle 59000 Lille France
| | - Simon Hawkins
- Université de LilleCNRS, UMR 8576, UGSF—Unité de Glycobiologie Structurale et Fonctionnelle 59000 Lille France
| | - Christophe Biot
- Université de LilleCNRS, UMR 8576, UGSF—Unité de Glycobiologie Structurale et Fonctionnelle 59000 Lille France
| |
Collapse
|
22
|
Gilormini PA, Batt AR, Pratt MR, Biot C. Asking more from metabolic oligosaccharide engineering. Chem Sci 2018; 9:7585-7595. [PMID: 30393518 PMCID: PMC6187459 DOI: 10.1039/c8sc02241k] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/17/2018] [Indexed: 01/20/2023] Open
Abstract
Glycans form one of the four classes of biomolecules, are found in every living system and present a huge structural and functional diversity. As an illustration of this diversity, it has been reported that more than 50% of the human proteome is glycosylated and that 2% of the human genome is dedicated to glycosylation processes. Glycans are involved in many biological processes such as signalization, cell-cell or host pathogen interactions, immunity, etc. However, fundamental processes associated with glycans are not yet fully understood and the development of glycobiology is relatively recent compared to the study of genes or proteins. Approximately 25 years ago, the studies of Bertozzi's and Reutter's groups paved the way for metabolic oligosaccharide engineering (MOE), a strategy which consists in the use of modified sugar analogs which are taken up into the cells, metabolized, incorporated into glycoconjugates, and finally detected in a specific manner. This groundbreaking strategy has been widely used during the last few decades and the concomitant development of new bioorthogonal ligation reactions has allowed many advances in the field. Typically, MOE has been used to either visualize glycans or identify different classes of glycoproteins. The present review aims to highlight recent studies that lie somewhat outside of these more traditional approaches and that are pushing the boundaries of MOE applications.
Collapse
Affiliation(s)
- Pierre-André Gilormini
- University of Lille , CNRS UMR 8576 , UGSF - Unité de Glycobiologie Structurale et Fonctionnelle , F-59000 Lille , France .
| | - Anna R Batt
- Department of Chemistry , University of Southern California , 840 Downey Way , LJS 250 Los Angeles , CA 90089 , USA
| | - Matthew R Pratt
- Department of Chemistry , University of Southern California , 840 Downey Way , LJS 250 Los Angeles , CA 90089 , USA
- Department of Biological Sciences , University of Southern California , 840 Downey Way , LJS 250 Los Angeles , CA 90089 , USA
| | - Christophe Biot
- University of Lille , CNRS UMR 8576 , UGSF - Unité de Glycobiologie Structurale et Fonctionnelle , F-59000 Lille , France .
| |
Collapse
|
23
|
Nilsson I, Prathapam R, Grove K, Lapointe G, Six DA. The sialic acid transporter NanT is necessary and sufficient for uptake of 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) and its azido analog in Escherichia coli. Mol Microbiol 2018; 110:204-218. [PMID: 30076772 DOI: 10.1111/mmi.14098] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2018] [Indexed: 01/31/2023]
Abstract
3-Deoxy-d-manno-oct-2-ulosonic acid (Kdo) is an essential component of lipopolysaccharides (LPS) in the Gram-negative bacterial outer membrane. Metabolic labeling of Escherichia coli LPS with 8-azido-3,8-dideoxy-d-manno-oct-2-ulosonic acid (Kdo-N3 ) has been reported but is inefficient. For optimization, it is important to understand how exogenous Kdo-N3 enters the cytoplasm. Based on similarities between Kdo and sialic acids, we proposed and verified that the sialic acid transporter NanT imports exogenous Kdo-N3 into E. coli. We demonstrated that E. coli ΔnanT were not labeled with Kdo-N3 , while expression of NanT in the ΔnanT mutant restored Kdo-N3 incorporation. Induced NanT expression in a strain lacking Kdo biosynthesis led to higher exogenous Kdo incorporation and restoration of full-length core-LPS, suggesting that NanT also transports Kdo. While Kdo-N3 incorporation was observed in strains having NanT, it was not detected in Pseudomonas aeruginosa and Acinetobacter baumannii, which lack nanT. However, heterologous expression of E. coli NanT in P. aeruginosa enabled Kdo-N3 incorporation and labeling, though this led to abnormal morphology and growth arrest. NanT seems to define which bacteria can be labeled with Kdo-N3 , provides opportunities to enhance Kdo-N3 labeling efficiency and spectrum, and raises the possibility of Kdo biosynthetic bypass where exogenous Kdo is present, perhaps even in vivo.
Collapse
Affiliation(s)
- Inga Nilsson
- Department of Infectious Diseases, Novartis Institutes for BioMedical Research, Emeryville, CA, 94608, USA
| | - Ramadevi Prathapam
- Department of Infectious Diseases, Novartis Institutes for BioMedical Research, Emeryville, CA, 94608, USA
| | - Kerri Grove
- Department of Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Emeryville, CA, 94608, USA
| | - Guillaume Lapointe
- Department of Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Emeryville, CA, 94608, USA
| | - David A Six
- Department of Infectious Diseases, Novartis Institutes for BioMedical Research, Emeryville, CA, 94608, USA
| |
Collapse
|
24
|
Woolfenden HC, Baillie AL, Gray JE, Hobbs JK, Morris RJ, Fleming AJ. Models and Mechanisms of Stomatal Mechanics. TRENDS IN PLANT SCIENCE 2018; 23:822-832. [PMID: 30149855 DOI: 10.1016/j.tplants.2018.06.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 06/04/2018] [Accepted: 06/07/2018] [Indexed: 05/02/2023]
Abstract
The mechanism of stomatal function (control of gas flux through the plant surface via regulation of pore size) is fundamentally mechanical. The material properties of the pore-forming guard cells must play a key role in setting the dynamics and degree of stomatal opening/closure, but our understanding of the molecular players involved and resultant mechanical performance has remained limited. The application of indentation techniques and computational modelling, combined with molecular tools for imaging and manipulating guard cells and their constituent cell walls, has opened the way to a systems approach to analysing this problem. The outcomes of these investigations have led to a reassessment of accepted paradigms and are providing a new understanding of the mechanism of stomatal mechanics.
Collapse
Affiliation(s)
- Hugh C Woolfenden
- Computational and Systems Biology, John Innes Centre, Norwich, UK; These authors contributed equally to the article
| | - Alice L Baillie
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK; These authors contributed equally to the article
| | - Julie E Gray
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Jamie K Hobbs
- Department of Physics and Astronomy, University of Sheffield, Sheffield, UK
| | - Richard J Morris
- Computational and Systems Biology, John Innes Centre, Norwich, UK
| | - Andrew J Fleming
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK; http://fleminglab.group.shef.ac.uk/.
| |
Collapse
|
25
|
Gilormini PA, Lion C, Vicogne D, Guérardel Y, Foulquier F, Biot C. Chemical glycomics enrichment: imaging the recycling of sialic acid in living cells. J Inherit Metab Dis 2018; 41:515-523. [PMID: 29294191 PMCID: PMC5959963 DOI: 10.1007/s10545-017-0118-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/28/2017] [Accepted: 11/20/2017] [Indexed: 01/10/2023]
Abstract
The development of metabolic oligosaccharide engineering (MOE) over the past two decades enabled the bioimaging studies of glycosylation processes in physio-pathological contexts. Herein, we successfully applied the chemical reporter strategy to image the fate of sialylated glycoconjugates in healthy and sialin-deficient patient fibroblasts. This chemical glycomics enrichment is a powerful tool for tracking sialylated glycoconjugates and probing lysosomal recycling capacities. Thus, such strategies appear fundamental for the characterization of lysosomal storage diseases.
Collapse
Affiliation(s)
- Pierre André Gilormini
- University Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Cédric Lion
- University Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Dorothée Vicogne
- University Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Yann Guérardel
- University Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - François Foulquier
- University Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France.
| | - Christophe Biot
- University Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France.
| |
Collapse
|
26
|
Simon C, Spriet C, Hawkins S, Lion C. Visualizing Lignification Dynamics in Plants with Click Chemistry: Dual Labeling is BLISS! J Vis Exp 2018. [PMID: 29443107 PMCID: PMC5908702 DOI: 10.3791/56947] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Lignin is one of the most prevalent biopolymers on the planet and a major component of lignocellulosic biomass. This phenolic polymer plays a vital structural and protective role in the development and life of higher plants. Although the intricate mechanisms regulating lignification processes in vivo strongly impact the industrial valorization of many plant-derived products, the scientific community still has a long way to go to decipher them. In a simple three-step workflow, the dual labeling protocol presented herein enables bioimaging studies of actively lignifying zones of plant tissues. The first step consists in the metabolic incorporation of two independent chemical reporters, surrogates of the two native monolignols that give rise to lignin H- and G-units. After incorporation into growing lignin polymers, each reporter is then specifically labeled with its own fluorescent probe via a sequential combination of bioorthogonal SPAAC/CuAAC click reactions. Combined with lignin autofluorescence, this approach leads to the generation of three-color localization maps of lignin within plant cell walls by confocal fluorescence microscopy and provides precise spatial information on the presence or absence of active lignification machinery at the scale of plant tissues, cells and different cell wall layers.
Collapse
Affiliation(s)
- Clémence Simon
- UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, CNRS, UMR 8576, Université de Lille
| | - Corentin Spriet
- UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, CNRS, UMR 8576, Université de Lille
| | - Simon Hawkins
- UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, CNRS, UMR 8576, Université de Lille
| | - Cedric Lion
- UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, CNRS, UMR 8576, Université de Lille;
| |
Collapse
|
27
|
Barnes WJ, Anderson CT. Release, Recycle, Rebuild: Cell-Wall Remodeling, Autodegradation, and Sugar Salvage for New Wall Biosynthesis during Plant Development. MOLECULAR PLANT 2018; 11:31-46. [PMID: 28859907 DOI: 10.1016/j.molp.2017.08.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/16/2017] [Accepted: 08/21/2017] [Indexed: 05/20/2023]
Abstract
Plant cell walls contain elaborate polysaccharide networks and regulate plant growth, development, mechanics, cell-cell communication and adhesion, and defense. Despite conferring rigidity to support plant structures, the cell wall is a dynamic extracellular matrix that is modified, reorganized, and degraded to tightly control its properties during growth and development. Far from being a terminal carbon sink, many wall polymers can be degraded and recycled by plant cells, either via direct re-incorporation by transglycosylation or via internalization and metabolic salvage of wall-derived sugars to produce new precursors for wall synthesis. However, the physiological and metabolic contributions of wall recycling to plant growth and development are largely undefined. In this review, we discuss long-standing and recent evidence supporting the occurrence of cell-wall recycling in plants, make predictions regarding the developmental processes to which wall recycling might contribute, and identify outstanding questions and emerging experimental tools that might be used to address these questions and enhance our understanding of this poorly characterized aspect of wall dynamics and metabolism.
Collapse
Affiliation(s)
- William J Barnes
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA; Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Charles T Anderson
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA; Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
28
|
Rydahl MG, Hansen AR, Kračun SK, Mravec J. Report on the Current Inventory of the Toolbox for Plant Cell Wall Analysis: Proteinaceous and Small Molecular Probes. FRONTIERS IN PLANT SCIENCE 2018; 9:581. [PMID: 29774041 PMCID: PMC5943554 DOI: 10.3389/fpls.2018.00581] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/13/2018] [Indexed: 05/18/2023]
Abstract
Plant cell walls are highly complex structures composed of diverse classes of polysaccharides, proteoglycans, and polyphenolics, which have numerous roles throughout the life of a plant. Significant research efforts aim to understand the biology of this cellular organelle and to facilitate cell-wall-based industrial applications. To accomplish this, researchers need to be provided with a variety of sensitive and specific detection methods for separate cell wall components, and their various molecular characteristics in vitro as well as in situ. Cell wall component-directed molecular detection probes (in short: cell wall probes, CWPs) are an essential asset to the plant glycobiology toolbox. To date, a relatively large set of CWPs has been produced-mainly consisting of monoclonal antibodies, carbohydrate-binding modules, synthetic antibodies produced by phage display, and small molecular probes. In this review, we summarize the state-of-the-art knowledge about these CWPs; their classification and their advantages and disadvantages in different applications. In particular, we elaborate on the recent advances in non-conventional approaches to the generation of novel CWPs, and identify the remaining gaps in terms of target recognition. This report also highlights the addition of new "compartments" to the probing toolbox, which is filled with novel chemical biology tools, such as metabolic labeling reagents and oligosaccharide conjugates. In the end, we also forecast future developments in this dynamic field.
Collapse
Affiliation(s)
- Maja G. Rydahl
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Aleksander R. Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Stjepan K. Kračun
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
- GlycoSpot IVS, Frederiksberg, Denmark
| | - Jozef Mravec
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
- *Correspondence: Jozef Mravec
| |
Collapse
|
29
|
Nilsson I, Grove K, Dovala D, Uehara T, Lapointe G, Six DA. Molecular characterization and verification of azido-3,8-dideoxy-d- manno-oct-2-ulosonic acid incorporation into bacterial lipopolysaccharide. J Biol Chem 2017; 292:19840-19848. [PMID: 29018092 DOI: 10.1074/jbc.m117.814962] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/05/2017] [Indexed: 11/06/2022] Open
Abstract
3-Deoxy-d-manno-oct-2-ulosonic acid (Kdo) is an essential component of LPS in the outer leaflet of the Gram-negative bacterial outer membrane. Although labeling of Escherichia coli with the chemical reporter 8-azido-3,8-dideoxy-d-manno-oct-2-ulosonic acid (Kdo-N3) has been reported, its incorporation into LPS has not been directly shown. We have now verified Kdo-N3 incorporation into E. coli LPS at the molecular level. Using microscopy and PAGE analysis, we show that Kdo-N3 is localized to the outer membrane and specifically incorporates into rough and deep-rough LPS. In an E. coli strain lacking endogenous Kdo biosynthesis, supplementation with exogenous Kdo restored full-length core-LPS, which suggests that the Kdo biosynthetic pathways might not be essential in vivo in the presence of sufficient exogenous Kdo. In contrast, exogenous Kdo-N3 only restored a small fraction of core LPS with the majority incorporated into truncated LPS. The truncated LPS were identified as Kdo-N3-lipid IVA and (Kdo-N3)2-lipid IVA by MS analysis. The low level of Kdo-N3 incorporation could be partly explained by a 6-fold reduction in the specificity constant of the CMP-Kdo synthetase KdsB with Kdo-N3 compared with Kdo. These results indicate that the azido moiety in Kdo-N3 interferes with its utilization and may limit its utility as a tracer of LPS biosynthesis and transport in E. coli We propose that our findings will be helpful for researchers using Kdo and its chemical derivatives for investigating LPS biosynthesis, transport, and assembly in Gram-negative bacteria.
Collapse
Affiliation(s)
| | - Kerri Grove
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Emeryville, California 94608
| | | | | | - Guillaume Lapointe
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Emeryville, California 94608
| | - David A Six
- From the Departments of Infectious Diseases and
| |
Collapse
|
30
|
Simon C, Lion C, Huss B, Blervacq AS, Spriet C, Guérardel Y, Biot C, Hawkins S. BLISS: Shining a light on lignification in plants. PLANT SIGNALING & BEHAVIOR 2017; 12:e1359366. [PMID: 28786751 PMCID: PMC5616161 DOI: 10.1080/15592324.2017.1359366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 07/20/2017] [Indexed: 06/07/2023]
Abstract
Lignin is a polyphenolic polymer of the plant cell wall formed by the oxidative polymerization of 3 main monomers called monolignols that give rise to the lignin H-, G- and S-units. Together with cellulose and hemicelluloses, lignin is a major component of plant biomass that is widely exploited by humans in numerous industrial processes. Despite recent advances in our understanding of monolignol biosynthesis, our current understanding of the spatio-temporal regulation of their transport and polymerization is more limited. In a recent publication, we have reported the development of an original Bioorthogonal Labeling Imaging Sequential Strategy (BLISS) that allows us to visualize the simultaneous incorporation dynamics of H and G monolignol reporters into lignifying cell walls of the flax stem. 11 Here, we extend the application of this strategy to other plant organs such as roots and rapidly discuss some of the contributions and perspectives of this new technique for improving our understanding of the lignification process in plants.
Collapse
Affiliation(s)
- Clémence Simon
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille,France
| | - Cedric Lion
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille,France
| | - Brigitte Huss
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille,France
| | - Anne-Sophie Blervacq
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille,France
| | - Corentin Spriet
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille,France
| | - Yann Guérardel
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille,France
| | - Christophe Biot
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille,France
| | - Simon Hawkins
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille,France
| |
Collapse
|
31
|
Zhu Y, Chen X. Expanding the Scope of Metabolic Glycan Labeling in Arabidopsis thaliana. Chembiochem 2017; 18:1286-1296. [PMID: 28383803 DOI: 10.1002/cbic.201700069] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Indexed: 12/26/2022]
Abstract
Metabolic glycan labeling (MGL) has gained wide utility and has become a useful tool for probing glycosylation in living systems. For the past three decades, the development and application of MGL have mostly focused on animal glycosylation. Recently, exploiting MGL for studying plant glycosylation has gained interest. Here, we describe a systematic evaluation of MGL for fluorescence imaging of root glycans in Arabidopsis thaliana. Nineteen monosaccharide analogues containing a bioorthogonal group (azide, alkyne, or cyclopropene) were synthesized and evaluated for metabolic incorporation into root glycans. Among these unnatural sugars, 14 (including three new compounds) were evaluated in plants for the first time. Our results showed that five unnatural sugars metabolically labeled root glycans efficiently, and enabled fluorescence imaging by bioorthogonal conjugation with fluorophores. We optimized the experimental procedures for MGL in Arabidopsis. Finally, distinct distribution patterns of the newly synthesized glycans were observed along the root developmental zones, thus indicating regulated biosynthesis of glycans during root development. We envision that MGL will find broad applications in plant glycobiology.
Collapse
Affiliation(s)
- Yuntao Zhu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xing Chen
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.,Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center and, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| |
Collapse
|
32
|
Wróbel-Marek J, Kurczyńska E, Płachno BJ, Kozieradzka-Kiszkurno M. Identification of symplasmic domains in the embryo and seed of Sedum acre L. (Crassulaceae). PLANTA 2017; 245:491-505. [PMID: 27888360 PMCID: PMC5310571 DOI: 10.1007/s00425-016-2619-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/16/2016] [Indexed: 05/10/2023]
Abstract
MAIN CONCLUSION Our study demonstrated that symplasmic communication between Sedum acre seed compartments and the embryo proper is not uniform. The presence of plasmodesmata (PD) constitutes the structural basis for information exchange between cells, and symplasmic communication is involved in the regulation of cell differentiation and plant development. Most recent studies concerning an analysis of symplasmic communication between seed compartments and the embryo have been predominantly performed on Arabidopsis thaliana. The results presented in this paper describe the analysis of symplasmic communication on the example of Sedum acre seeds, because the ultrastructure of the seed compartments and the embryo proper, including the PD, have already been described, and this species represents an embryonic type of development different to Arabidopsis. Moreover, in this species, an unusual electron-dense dome associated with plasmodesmata on the border between the basal cell/chalazal suspensor cells and the basal cell/the endosperm has been described. This prompted the question as to whether these plasmodesmata are functional. Thus, the aim of this study was to describe the movement of symplasmic transport fluorochromes between different Sedum seed compartments, with particular emphasis on the movement between the basal cell and the embryo proper and endosperm, to answer the following questions: (1) are seeds divided into symplasmic domains; (2) if so, are they stable or do they change with the development? The results have shown that symplasmic tracers movement: (a) from the external integument to internal integument is restricted; (b) from the basal cell to the other part of the embryo proper and from the basal cell to the endosperm is also restricted;
Collapse
Affiliation(s)
- Justyna Wróbel-Marek
- Department of Cell Biology, University of Silesia, Jagiellońska 28, 40-032, Katowice, Poland
| | - Ewa Kurczyńska
- Department of Cell Biology, University of Silesia, Jagiellońska 28, 40-032, Katowice, Poland
| | - Bartosz J Płachno
- Department of Plant Cytology and Embryology, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Kraków, Poland
| | | |
Collapse
|
33
|
Lion C, Simon C, Huss B, Blervacq AS, Tirot L, Toybou D, Spriet C, Slomianny C, Guerardel Y, Hawkins S, Biot C. BLISS: A Bioorthogonal Dual-Labeling Strategy to Unravel Lignification Dynamics in Plants. Cell Chem Biol 2017; 24:326-338. [DOI: 10.1016/j.chembiol.2017.02.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/15/2016] [Accepted: 02/01/2017] [Indexed: 01/11/2023]
|
34
|
van de Meene AML, Doblin MS, Bacic A. The plant secretory pathway seen through the lens of the cell wall. PROTOPLASMA 2017; 254:75-94. [PMID: 26993347 DOI: 10.1007/s00709-016-0952-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 01/27/2016] [Accepted: 02/01/2016] [Indexed: 05/18/2023]
Abstract
Secretion in plant cells is often studied by looking at well-characterised, evolutionarily conserved membrane proteins associated with particular endomembrane compartments. Studies using live cell microscopy and fluorescent proteins have illuminated the highly dynamic nature of trafficking, and electron microscopy studies have resolved the ultrastructure of many compartments. Biochemical and molecular analyses have further informed about the function of particular proteins and endomembrane compartments. In plants, there are over 40 cell types, each with highly specialised functions, and hence potential variations in cell biological processes and cell wall structure. As the primary function of secretion in plant cells is for the biosynthesis of cell wall polysaccharides and apoplastic transport complexes, it follows that utilising our knowledge of cell wall glycosyltransferases (GTs) and their polysaccharide products will inform us about secretion. Indeed, this knowledge has led to novel insights into the secretory pathway, including previously unseen post-TGN secretory compartments. Conversely, our knowledge of trafficking routes of secretion will inform us about polarised and localised deposition of cell walls and their constituent polysaccharides/glycoproteins. In this review, we look at what is known about cell wall biosynthesis and the secretory pathway and how the different approaches can be used in a complementary manner to study secretion and provide novel insights into these processes.
Collapse
Affiliation(s)
- A M L van de Meene
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - M S Doblin
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Antony Bacic
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
35
|
Hoogenboom J, Berghuis N, Cramer D, Geurts R, Zuilhof H, Wennekes T. Direct imaging of glycans in Arabidopsis roots via click labeling of metabolically incorporated azido-monosaccharides. BMC PLANT BIOLOGY 2016; 16:220. [PMID: 27724898 PMCID: PMC5056477 DOI: 10.1186/s12870-016-0907-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/26/2016] [Indexed: 05/25/2023]
Abstract
BACKGROUND Carbohydrates, also called glycans, play a crucial but not fully understood role in plant health and development. The non-template driven formation of glycans makes it impossible to image them in vivo with genetically encoded fluorescent tags and related molecular biology approaches. A solution to this problem is the use of tailor-made glycan analogs that are metabolically incorporated by the plant into its glycans. These metabolically incorporated probes can be visualized, but techniques documented so far use toxic copper-catalyzed labeling. To further expand our knowledge of plant glycobiology by direct imaging of its glycans via this method, there is need for novel click-compatible glycan analogs for plants that can be bioorthogonally labelled via copper-free techniques. RESULTS Arabidopsis seedlings were incubated with azido-containing monosaccharide analogs of N-acetylglucosamine, N-acetylgalactosamine, L-fucose, and L-arabinofuranose. These azido-monosaccharides were metabolically incorporated in plant cell wall glycans of Arabidopsis seedlings. Control experiments indicated active metabolic incorporation of the azido-monosaccharide analogs into glycans rather than through non-specific absorption of the glycan analogs onto the plant cell wall. Successful copper-free labeling reactions were performed, namely an inverse-electron demand Diels-Alder cycloaddition reaction using an incorporated N-acetylglucosamine analog, and a strain-promoted azide-alkyne click reaction. All evaluated azido-monosaccharide analogs were observed to be non-toxic at the used concentrations under normal growth conditions. CONCLUSIONS Our results for the metabolic incorporation and fluorescent labeling of these azido-monosaccharide analogs expand the possibilities for studying plant glycans by direct imaging. Overall we successfully evaluated five azido-monosaccharide analogs for their ability to be metabolically incorporated in Arabidopsis roots and their imaging after fluorescent labeling. This expands the molecular toolbox for direct glycan imaging in plants, from three to eight glycan analogs, which enables more extensive future studies of spatiotemporal glycan dynamics in a wide variety of plant tissues and species. We also show, for the first time in metabolic labeling and imaging of plant glycans, the potential of two copper-free click chemistry methods that are bio-orthogonal and lead to more uniform labeling. These improved labeling methods can be generalized and extended to already existing and future click chemistry-enabled monosaccharide analogs in Arabidopsis.
Collapse
Affiliation(s)
- Jorin Hoogenboom
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Nathalja Berghuis
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Dario Cramer
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Rene Geurts
- Department of Plant Science, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Tom Wennekes
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
36
|
Sminia TJ, Zuilhof H, Wennekes T. Getting a grip on glycans: A current overview of the metabolic oligosaccharide engineering toolbox. Carbohydr Res 2016; 435:121-141. [PMID: 27750120 DOI: 10.1016/j.carres.2016.09.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/14/2016] [Accepted: 09/15/2016] [Indexed: 12/16/2022]
Abstract
This review discusses the advances in metabolic oligosaccharide engineering (MOE) from 2010 to 2016 with a focus on the structure, preparation, and reactivity of its chemical probes. A brief historical overview of MOE is followed by a comprehensive overview of the chemical probes currently available in the MOE molecular toolbox and the bioconjugation techniques they enable. The final part of the review focusses on the synthesis of a selection of probes and finishes with an outlook on recent and potential upcoming advances in the field of MOE.
Collapse
Affiliation(s)
- Tjerk J Sminia
- Laboratory of Organic Chemistry, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Tom Wennekes
- Laboratory of Organic Chemistry, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands; Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| |
Collapse
|
37
|
Wang B, McClosky DD, Anderson CT, Chen G. Synthesis of a suite of click-compatible sugar analogs for probing carbohydrate metabolism. Carbohydr Res 2016; 433:54-62. [PMID: 27447057 DOI: 10.1016/j.carres.2016.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 07/08/2016] [Accepted: 07/08/2016] [Indexed: 10/21/2022]
Abstract
Metabolic labeling based on the click chemistry between alkynyl and azido groups offers a powerful tool to study the function of carbohydrates in living systems, including plants. Herein, we describe the chemical synthesis of six alkynyl-modified sugars designed as analogs to D-glucose, D-mannose, L-rhamnose and sucrose present in plant cell walls. Among these new alkynyl probes, four of them are the 6-deoxy-alkynyl analogs of the corresponding sugars and do not possess any 6-OH groups. The other two are based on a new structural design, in which an ethynyl group is incorporated at the C-6 position of the sugar and the 6-OH group remains. The synthetic routes for both types of probes share common aldehyde intermediates, which are derived from the corresponding 6-OH precursor with other hydroxy groups protected. The overall synthesis sequence of these probes is efficient, concise, and scalable.
Collapse
Affiliation(s)
- Bo Wang
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA; Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Daniel D McClosky
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA; Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Charles T Anderson
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA; Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Gong Chen
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA; Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, PA 16802, USA; State Key Laboratory and Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China.
| |
Collapse
|
38
|
Zhu Y, Wu J, Chen X. Metabolic Labeling and Imaging of N‐Linked Glycans in
Arabidopsis Thaliana. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201603032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Yuntao Zhu
- College of Chemistry and Molecular EngineeringPeking University Beijing 100871 China
| | - Jie Wu
- Peking-Tsinghua Center for Life SciencesPeking University Beijing 100871 China
| | - Xing Chen
- College of Chemistry and Molecular EngineeringPeking University Beijing 100871 China
- Peking-Tsinghua Center for Life SciencesPeking University Beijing 100871 China
- Synthetic and Functional Biomolecules Center, and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationPeking University Beijing 100871 China
| |
Collapse
|
39
|
Zhu Y, Wu J, Chen X. Metabolic Labeling and Imaging of N-Linked Glycans in Arabidopsis Thaliana. Angew Chem Int Ed Engl 2016; 55:9301-5. [PMID: 27346875 DOI: 10.1002/anie.201603032] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/20/2016] [Indexed: 11/06/2022]
Abstract
Molecular imaging of glycans has been actively pursued in animal systems for the past decades. However, visualization of plant glycans remains underdeveloped, despite that glycosylation is essential for the life cycle of plants. Metabolic glycan labeling in Arabidopsis thaliana by using N-azidoacetylglucosamine (GlcNAz) as the chemical reporter is reported. GlcNAz is metabolized through the salvage pathway of N-acetylglucosamine (GlcNAc) and incorporated into N-linked glycans, and possibly intracellular O-GlcNAc. Click-labeling with fluorescent probes enables visualization of newly synthesized N-linked glycans. N-glycosylation in the root tissue was discovered to possess distinct distribution patterns in different developmental zones, suggesting that N-glycosylation is regulated in a developmental stage-dependent manner. This work shows the utility of metabolic glycan labeling in elucidating the function of N-linked glycosylation in plants.
Collapse
Affiliation(s)
- Yuntao Zhu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jie Wu
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Xing Chen
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China. .,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China. .,Synthetic and Functional Biomolecules Center, and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China.
| |
Collapse
|