1
|
Lam LPY, Lui ACW, Bartley LE, Mikami B, Umezawa T, Lo C. Multifunctional 5-hydroxyconiferaldehyde O-methyltransferases (CAldOMTs) in plant metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1671-1695. [PMID: 38198655 DOI: 10.1093/jxb/erae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/09/2024] [Indexed: 01/12/2024]
Abstract
Lignin, flavonoids, melatonin, and stilbenes are plant specialized metabolites with diverse physiological and biological functions, supporting plant growth and conferring stress resistance. Their biosynthesis requires O-methylations catalyzed by 5-hydroxyconiferaldehyde O-methyltransferase (CAldOMT; also called caffeic acid O-methyltransferase, COMT). CAldOMT was first known for its roles in syringyl (S) lignin biosynthesis in angiosperm cell walls and later found to be multifunctional. This enzyme also catalyzes O-methylations in flavonoid, melatonin, and stilbene biosynthetic pathways. Phylogenetic analysis indicated the convergent evolution of enzymes with OMT activities towards the monolignol biosynthetic pathway intermediates in some gymnosperm species that lack S-lignin and Selaginella moellendorffii, a lycophyte which produces S-lignin. Furthermore, neofunctionalization of CAldOMTs occurred repeatedly during evolution, generating unique O-methyltransferases (OMTs) with novel catalytic activities and/or accepting novel substrates, including lignans, 1,2,3-trihydroxybenzene, and phenylpropenes. This review summarizes multiple aspects of CAldOMTs and their related proteins in plant metabolism and discusses their evolution, molecular mechanism, and roles in biorefineries, agriculture, and synthetic biology.
Collapse
Affiliation(s)
- Lydia Pui Ying Lam
- Graduate School of Engineering Science, Akita University, Tegata Gakuen-machi 1-1, Akita City, Akita 010-0852, Japan
| | - Andy C W Lui
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Laura E Bartley
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Bunzo Mikami
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Clive Lo
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
2
|
Li R, Yan D, Tan C, Li C, Song M, Zhao Q, Yang Y, Yin W, Liu Z, Ren X, Liu C. Transcriptome and Metabolomics Integrated Analysis Reveals MdMYB94 Associated with Esters Biosynthesis in Apple ( Malus × domestica). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7904-7920. [PMID: 37167631 DOI: 10.1021/acs.jafc.2c07719] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Volatile esters are major aromas contributing to the organoleptic quality of apple fruit. However, the molecular mechanisms underlying the regulation of volatile ester biosynthesis in apple remain elusive. This study investigated the volatile profiles and transcriptomes of 'Qinguan' (QG) apple fruit during development and/or postharvest storage. Although the constitution of volatiles varied widely between the peel and flesh, the volatile profiles of the peel and flesh of ripening QG fruit were dominated by volatile esters. WGCNA results suggested that 19 genes belonging to ester biosynthesis pathways and 11 hub transcription factor genes potentially participated in the biosynthesis and regulation of esters. To figure out key regulators of ester biosynthesis, correlation network analysis, dual-luciferase assays, and yeast one-hybrid assay were conducted and suggested that MdMYB94 trans-activated the MdAAT2 promoter and participated in the regulation of ester biosynthesis. This study provides a framework for understanding ester biosynthesis and regulation in apple.
Collapse
Affiliation(s)
- Rui Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dan Yan
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunyan Tan
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cen Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Meijie Song
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qiqi Zhao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yaming Yang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weijie Yin
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhande Liu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaolin Ren
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cuihua Liu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
3
|
Zhang S, Wang H, Wang T, Liu W, Zhang J, Fang H, Zhang Z, Peng F, Chen X, Wang N. MdMYB305-MdbHLH33-MdMYB10 regulates sugar and anthocyanin balance in red-fleshed apple fruits. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:1062-1079. [PMID: 36606413 DOI: 10.1111/tpj.16100] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Sugar and anthocyanin are important indicators of fruit quality, and understanding the mechanism underlying their accumulation is essential for breeding high-quality fruit. We identified an R2R3-MYB transcription factor MdMYB305 in the red-fleshed apple progeny, which was positively correlated with fruit sugar content but negatively correlated with anthocyanin content. Transient injection, stable expression [overexpressing and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)], and heterologous transformation of tomato confirmed that MdMYB305 promotes the accumulation of sugar and inhibits the synthesis of anthocyanin. A series of molecular experiments (such as electrophoretic mobility shift and luciferase assays) confirmed that MdMYB305 combines with sugar-related genes (MdCWI1/MdVGT3/MdTMT2) and anthocyanin-related genes (MdF3H/MdDFR/MdUFGT), promoting and inhibiting their activities, and finally regulating the sugar and anthocyanin content of fruits. In addition, the study also found that MdMYB305 competes with MdMYB10 for the MdbHLH33 binding site to balance sugar and anthocyanin accumulation in the fruits, which provides a reference value for exploring more functions of the MYB-bHLH-MYB complex and the balance relationship between sugar and anthocyanin in the future.
Collapse
Affiliation(s)
- Shuhui Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Hui Wang
- College of Horticulture, Northwest A&F University, Yangling, Shanxi, 712100, China
| | - Tong Wang
- State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Wenjun Liu
- State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Jing Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Hongcheng Fang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Zongying Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Futian Peng
- State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Xuesen Chen
- State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Nan Wang
- State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| |
Collapse
|
4
|
Magri A, Malorni L, Cozzolino R, Adiletta G, Siano F, Picariello G, Cice D, Capriolo G, Nunziata A, Di Matteo M, Petriccione M. Agronomic, Physicochemical, Aromatic and Sensory Characterization of Four Sweet Cherry Accessions of the Campania Region. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12030610. [PMID: 36771694 PMCID: PMC9921131 DOI: 10.3390/plants12030610] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 05/27/2023]
Abstract
Sweet cherries (Prunus avium L.) are greatly appreciated fruits worldwide due to their taste, color, nutritional value, and beneficial health effects. The characterization of autochthonous germplasm allows to identify genotypes that possess superior characteristics compared to standard cultivars. In this work, four accessions of sweet cherry from the Campania region (Limoncella, Mulegnana Riccia, Mulegnana Nera and Montenero) were investigated for their morpho-physiological, qualitative, aromatic, and sensorial traits in comparison with two standard cultivars (Ferrovia and Lapins). A high variability in the pomological traits resulted among the samples. Montenero showed comparable fruit weight and titratable acidity to Ferrovia and Lapins, respectively. The highest total soluble solid content was detected in Mulegnana Riccia. A considerable variability in the skin and pulp color of the cherries was observed, varying from yellow-red in Limoncella to a dark red color in Montenero. Mulegnana Nera showed the highest content of polyphenols, flavonoids, anthocyanins, and ascorbic acid compared to the standard cultivars. Volatile organic compounds profile analysis identified 34 volatile compounds, 12 of which were observed at different concentrations in all the sweet cherry genotypes while the others were genotype-dependent. Conservation and cultivation of autochthonous accessions with suitable nutritional and morpho-physiologic characteristics promotes our agrobiodiversity knowledge and allows to better plan future breeding programs.
Collapse
Affiliation(s)
- Anna Magri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania Luigi Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy
- Council for Agricultural Research and Economics (CREA), Research Center for Olive, Fruits, and Citrus Crops, 81100 Caserta, Italy
| | - Livia Malorni
- Institute of Food Science, National Research Council (CNR), Via Roma 64, 83100 Avellino, Italy
| | - Rosaria Cozzolino
- Institute of Food Science, National Research Council (CNR), Via Roma 64, 83100 Avellino, Italy
| | - Giuseppina Adiletta
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Francesco Siano
- Institute of Food Science, National Research Council (CNR), Via Roma 64, 83100 Avellino, Italy
| | - Gianluca Picariello
- Institute of Food Science, National Research Council (CNR), Via Roma 64, 83100 Avellino, Italy
| | - Danilo Cice
- Council for Agricultural Research and Economics (CREA), Research Center for Olive, Fruits, and Citrus Crops, 81100 Caserta, Italy
| | - Giuseppe Capriolo
- Council for Agricultural Research and Economics (CREA), Research Center for Olive, Fruits, and Citrus Crops, 81100 Caserta, Italy
| | - Angelina Nunziata
- Council for Agricultural Research and Economics (CREA), Research Center for Olive, Fruits, and Citrus Crops, 81100 Caserta, Italy
| | - Marisa Di Matteo
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Milena Petriccione
- Council for Agricultural Research and Economics (CREA), Research Center for Olive, Fruits, and Citrus Crops, 81100 Caserta, Italy
| |
Collapse
|
5
|
Souleyre EJF, Nieuwenhuizen NJ, Wang MY, Winz RA, Matich AJ, Ileperuma NR, Tang H, Baldwin SJ, Wang T, List BW, Hoeata KA, Popowski EA, Atkinson RG. Alcohol acyl transferase genes at a high-flavor intensity locus contribute to ester biosynthesis in kiwifruit. PLANT PHYSIOLOGY 2022; 190:1100-1116. [PMID: 35916752 PMCID: PMC9516725 DOI: 10.1093/plphys/kiac316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Volatile esters are key compounds contributing to flavor intensity in commonly consumed fruits including apple (Malus domestica), strawberry (Fragaria spp.), and banana (Musa sapientum). In kiwifruit (Actinidia spp.), ethyl butanoate and other esters have been proposed to contribute fruity, sweet notes to commercial cultivars. Here, we investigated the genetic basis for ester production in Actinidia in an A. chinensis mapping population (AcMPO). A major quantitative trait loci for the production of multiple esters was identified at the high-flavor intensity (HiFI) locus on chromosome 20. This locus co-located with eight tandemly arrayed alcohol acyl transferase genes in the Red5 genome that were expressed in a ripening-specific fashion that corresponded with ester production. Biochemical characterization suggested two genes at the HiFI locus, alcohol acyl transferase 16-b/c (AT16-MPb/c), probably contributed most to the production of ethyl butanoate. A third gene, AT16-MPa, probably contributed more to hexyl butanoate and butyl hexanoate production, two esters that segregated in AcMPO. Sensory analysis of AcMPO indicated that fruit from segregating lines with high ester concentrations were more commonly described as being "fruity" as opposed to "beany". The downregulation of AT16-MPa-c by RNAi reduced ester production in ripe "Hort16A" fruit by >90%. Gas chromatography-olfactometry indicated the loss of the major "fruity" notes contributed by ethyl butanoate. A comparison of unimproved Actinidia germplasm with those of commercial cultivars indicated that the selection of fruit with high concentrations of alkyl esters (but not green note aldehydes) was probably an important selection trait in kiwifruit cultivation. Understanding ester production at the HiFI locus is a critical step toward maintaining and improving flavor intensity in kiwifruit.
Collapse
Affiliation(s)
| | - Niels J Nieuwenhuizen
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Auckland 1142, New Zealand
| | - Mindy Y Wang
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Auckland 1142, New Zealand
| | - Robert A Winz
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Auckland 1142, New Zealand
| | - Adam J Matich
- Plant and Food Research Ltd (PFR), Palmerston North 4442, New Zealand
| | - Nadeesha R Ileperuma
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Auckland 1142, New Zealand
| | - Haidee Tang
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Auckland 1142, New Zealand
| | | | - Tianchi Wang
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Auckland 1142, New Zealand
| | - Blake W List
- Plant and Food Research Ltd (PFR), Lincoln, 7608, New Zealand
| | | | | | - Ross G Atkinson
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Auckland 1142, New Zealand
| |
Collapse
|
6
|
Detection and Verification of a Key Intermediate in an Enantioselective Peptide Catalyzed Acylation Reaction. Molecules 2022; 27:molecules27196351. [PMID: 36234884 PMCID: PMC9571696 DOI: 10.3390/molecules27196351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Until now, the intermediate responsible for the acyl transfer of a highly enantioselective tetrapeptide organocatalyst for the kinetic resolution of trans-cycloalkane-1,2-diols has never been directly observed. It was proposed computationally that a π-methylhistidine moiety is acylated as an intermediate step in the catalytic cycle. In this study we set out to investigate whether we can detect and characterize this key intermediate using NMR-spectroscopy and mass spectrometry. Different mass spectrometric experiments using a nano-ElectroSpray Ionization (ESI) source and tandem MS-techniques allowed the identification of tetrapeptide acylium ions using different acylation reagents. The complexes of trans-cyclohexane-1,2-diols with the tetrapeptide were also detected. Additionally, we were able to detect acylated tetrapeptides in solution using NMR-spectroscopy and monitor the acetylation reaction of a trans-cyclohexane-1,2-diol. These findings are important steps towards the understanding of this highly enantioselective organocatalyst.
Collapse
|
7
|
Wu Z, Liang G, Li Y, Lu G, Huang F, Ye X, Wei S, Liu C, Deng H, Huang L. Transcriptome and Metabolome Analyses Provide Insights Into the Composition and Biosynthesis of Grassy Aroma Volatiles in White-Fleshed Pitaya. ACS OMEGA 2022; 7:6518-6530. [PMID: 35252648 PMCID: PMC8892475 DOI: 10.1021/acsomega.1c05340] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/13/2021] [Indexed: 05/19/2023]
Abstract
Aroma is one of the major inherent quality characteristics in fruits. Understanding the composition of aroma volatiles and their biosynthesis mechanism is crucial to improving fruit quality. However, the biosynthesis mechanism of aroma volatiles has not been characterized yet in white-fleshed pitaya (Hylocereus undatus). This study was performed to investigate aroma volatiles and related gene expression patterns in the pulp of "mild grassy" and "strong grassy" aroma cultivars. Analysis of volatile composition and concentration showed that aldehydes, alcohols, esters, and alkenes were predominant in both cultivars. However, comparative analysis revealed a significant difference in the concentration of several metabolites, particularly hexanal and 1-hexanol. The results of the comparative transcriptome identified a large number of aroma-related differentially expressed genes. The majority of these genes were enriched in fatty acid and isoleucine degradation pathways. According to integrative analyses, changes in the expression of lipoxygenase pathway genes, specifically FAD, LOXs, HPLs, and ADHs, probably lead to the difference in strength of "grassy" aroma between both cultivars. The qRT-PCR of 18 aroma-related genes was performed to validate the transcriptome analysis. Our results identified key genes and pathways connected with the biosynthesis of aroma volatiles in white-fleshed pitaya. These results will be useful to dissect the genetic mechanism of fruit aroma in white-fleshed pitaya.
Collapse
Affiliation(s)
- Zhijiang Wu
- Horticultural
Research Institute, Guangxi Academy of Agricultural
Sciences, Nanning 530007, China
| | - Guidong Liang
- Horticultural
Research Institute, Guangxi Academy of Agricultural
Sciences, Nanning 530007, China
| | - Yeyan Li
- Guangxi
Research Academy of Environmental Sciences, Nanning 530022, China
| | - Guifeng Lu
- Horticultural
Research Institute, Guangxi Academy of Agricultural
Sciences, Nanning 530007, China
| | - Fengzhu Huang
- Horticultural
Research Institute, Guangxi Academy of Agricultural
Sciences, Nanning 530007, China
| | - Xiaoying Ye
- Horticultural
Research Institute, Guangxi Academy of Agricultural
Sciences, Nanning 530007, China
| | - Shuotong Wei
- Horticultural
Research Institute, Guangxi Academy of Agricultural
Sciences, Nanning 530007, China
| | - Chaoan Liu
- Horticultural
Research Institute, Guangxi Academy of Agricultural
Sciences, Nanning 530007, China
| | - Haiyan Deng
- Horticultural
Research Institute, Guangxi Academy of Agricultural
Sciences, Nanning 530007, China
| | - Lifang Huang
- Horticultural
Research Institute, Guangxi Academy of Agricultural
Sciences, Nanning 530007, China
| |
Collapse
|
8
|
Quality Traits, Volatile Organic Compounds, and Expression of Key Flavor Genes in Strawberry Genotypes over Harvest Period. Int J Mol Sci 2021; 22:ijms222413499. [PMID: 34948297 PMCID: PMC8703339 DOI: 10.3390/ijms222413499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022] Open
Abstract
Six strawberry genotypes were examined for fruit yield and size, important chemical traits (sugars, phenolics, anthocyanins, ascorbic acid, volatiles) and antioxidant properties (ferric reducing power). In addition, we determined the expression of genes and transcription factors (SAAT, FaNES1, FaFAD1, FaEGS2, FaEOBII and FaMYB10) controlling the main flavor and aroma traits, and finally evaluated the effect of the genotype and harvest time on the examined chemical and genetic factors, as well as their intercorrelations. The commercial varieties 'Fortuna', 'Victory', 'Calderon', 'Rociera', and two advanced selections Ber22/6 and Ber23/3 were cultivated under the same conditions at Berryplasma World Ltd. plantations (Varda, Ilia, Region of Western Greece). Strawberries were harvested at three different time points over the main harvest period in Greece, i.e., early March (T1), late March (T2) and late April (T3). 'Fortuna' exhibited the highest early and total yield, while 'Calderon', the highest average berry weight. General Linear Model repeated measures ANOVA demonstrated that the interaction of the genotype and harvest time was significant (p < 0.001) on all tested quality attributes and gene expression levels, showing that each genotype behaves differently throughout the harvest period. Exceptions were observed for: (a) the volatile anhydrides, fatty acids, aromatics and phenylpropanoids (all were greatly affected by the harvest time), and (b) lactones, furaneol and FaEGS2 that were affected only by the genotype. We observed significant intercorrelations among those factors, e.g., the positive correlation of FaFAD1 expression with decalactone and nerolidol, of SAAT with furaneol, trans-cinnamic acid and phenylpropanoids, and of FaEGS2 with decalactone and FaFAD1. Moreover, a strong positive correlation between SAAT and FaMYB10 and a moderate negative one between SAAT and glucose were also detected. Those correlations can be further investigated to reveal potential markers for strawberry breeding. Overall, our study contributes to a better understanding of strawberry physiology, which would facilitate breeding efforts for the development of new strawberry varieties with superior qualitative traits.
Collapse
|
9
|
Zhou W, Kong W, Yang C, Feng R, Xi W. Alcohol Acyltransferase Is Involved in the Biosynthesis of C6 Esters in Apricot ( Prunus armeniaca L.) Fruit. FRONTIERS IN PLANT SCIENCE 2021; 12:763139. [PMID: 34868159 PMCID: PMC8636060 DOI: 10.3389/fpls.2021.763139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Short-chain esters derived from fatty acid contribute to the characteristic flavor of apricot fruit, and the biosynthesis of these compounds in fruit is catalyzed by alcohol acyltransferase (AAT). In this work, we investigated the AAT gene family via genome-wide scanning, and three AAT loci were identified in different linkage groups (LGs), with PaAAT1 (PARG22907m01) in LG7, PaAAT2 (PARG15279m01) in LG4, and PaAAT3 (PARG22697m01) in LG6. Phylogenetic analysis showed that PaAAT1 belongs to clade 3, while PaAAT2 and PaAAT3 belong to clade 1 and clade 2, respectively. In contrast, the three AAT genes present different expression patterns. Only PaAAT1 exhibited distinct patterns of fruit-specific expression, and the expression of PaAAT1 sharply increased during fruit ripening, which is consistent with the abundance of C4-C6 esters such as (E)-2-hexenyl acetate and (Z)-3-hexenyl acetate. The transient overexpression of PaAAT1 in Katy (KT) apricot fruit resulted in a remarkable decrease in hexenol, (E)-2-hexenol, and (Z)-3-hexenol levels while significantly increasing the corresponding acetate production (p < 0.01). A substrate assay revealed that the PaAAT1 protein enzyme can produce hexenyl acetate, (E)-2-hexenyl acetate, and (Z)-3-hexenyl acetate when C6 alcohols are used as substrates for the reaction. Taken together, these results indicate that PaAAT1 plays a crucial role in the production of C6 esters in apricot fruit during ripening.
Collapse
Affiliation(s)
- Wanhai Zhou
- Key Lab of Aromatic Plant Resources Exploitation and Utilization in Sichuan Higher Education, Yibin University, Yibin, China
| | - Wenbin Kong
- China Chongqing Agricultural Technology Extension Station, Chongqing, China
| | - Can Yang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Ruizhang Feng
- Key Lab of Aromatic Plant Resources Exploitation and Utilization in Sichuan Higher Education, Yibin University, Yibin, China
| | - Wanpeng Xi
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| |
Collapse
|
10
|
Liu X, Hao N, Feng R, Meng Z, Li Y, Zhao Z. Transcriptome and metabolite profiling analyses provide insight into volatile compounds of the apple cultivar 'Ruixue' and its parents during fruit development. BMC PLANT BIOLOGY 2021; 21:231. [PMID: 34030661 PMCID: PMC8147058 DOI: 10.1186/s12870-021-03032-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 05/11/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND Aroma is one the most crucial inherent quality attributes of fruit. 'Ruixue' apples were selected from a cross between 'Pink Lady' and 'Fuji', a later ripening yellow new cultivar. However, there is little known about the content and composition of aroma compounds in 'Ruixue' apples or the genetic characters of 'Ruixue' and its parents. In addition, the metabolic pathways for biosynthesis of aroma volatiles and aroma-related genes remain poorly understood. RESULTS Volatile aroma compounds were putatively identified using gas chromatography-mass spectrometry (GC-MS). Our results show that the profile of volatile compounds changes with ripening. Aldehydes were the dominant volatile compounds in early fruit development, with alcohols and esters increasing dramatically during maturation. On the basis of a heatmap dendrogram, these aroma compounds clustered into seven groups. In ripe fruit, esters and terpenoids were the main aroma volatiles in ripening fruit of 'Pink Lady' and 'Fuji' apples, and they included butyl 2-methylbutanoate; propanoic acid, hexyl ester; propanoic acid, hexyl ester; hexanoic acid, hexyl ester; acetic acid, hexyl ester and (Z, E)-α-farnesene. Interestingly, aldehydes and terpenoids were the dominant volatile aroma compounds in ripening fruit of 'Ruixue', and they mainly included hexanal; 2-hexenal; octanal; (E)-2-octenal; nonanal and (Z, E)-α-farnesene. By comparing the transcriptome profiles of 'Ruixue' and its parents fruits during development, we identified a large number of aroma-related genes related to the fatty acid, isoleucine and sesquiterpenoid metabolism pathways and transcription factors that may volatile regulate biosynthesis. CONCLUSIONS Our initial study facilitates a better understanding of the volatile compounds that affect fruit flavour as well as the mechanisms underlying differences in flavour between 'Ruixue' and its parents.
Collapse
Affiliation(s)
- Xiaojie Liu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Nini Hao
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ruifang Feng
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhipeng Meng
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yanan Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhengyang Zhao
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
11
|
Li Z, Wang Z, Wang K, Liu Y, Hong Y, Chen C, Guan X, Chen Q. Co-expression network analysis uncovers key candidate genes related to the regulation of volatile esters accumulation in Woodland strawberry. PLANTA 2020; 252:55. [PMID: 32949302 DOI: 10.1007/s00425-020-03462-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/12/2020] [Indexed: 05/06/2023]
Abstract
FveERF (FvH4_5g04470.1), FveAP2 (FvH4_1g16370.1) and FveWRKY (FvH4_6g42870.1) might be involved in fruit maturation of strawberry. Overexpression of FveERF could activate the expression of AAT gene and ester accumulation. Volatile esters play an important role in the aroma of strawberry fruits, whose flavor is the result of a complex mixture of various esters. The accumulation of these volatiles is closely tied to changes in metabolism during fruit ripening. Acyltransferase (AAT) is recognized as having a significant effect in ester formation. However, there is little knowledge about the regulation network of AAT. Here, we collected the data of RNA-seq and headspace GC-MS at five time points during fruit maturation of Hawaii4 and Ruegen strawberry varieties. A total of 106 volatile compounds were identified in the fruit of woodland strawberries, including 58 esters, which occupied 41.09% (Hawaii4) or 33.40% (Ruegen) of total volatile concentration. Transcriptome analysis revealed eight transcription factors highly associated with AAT genes. Through the changes in esters and the weight co-expression network analysis (WGCNA), a detailed gene network was established. This demonstrated that ERF gene (FvH4_5g04470.1), AP2 gene (FvH4_1g16370.1) and one WRKY gene (FvH4_6g42870.1) might be involved in expression of AAT genes, especially ERF genes. Overexpression of FveERF (FvH4_5g04470.1) does activate expression of AAT genes and ester accumulation in fruits of strawberry. Our findings provide valuable clues to gain better insight into the ester formation process of numerous fruits.
Collapse
Affiliation(s)
- Zekun Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhennan Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kejing Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yue Liu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanhong Hong
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Changmei Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiayu Guan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qingxi Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
12
|
Insights into the aroma profiles and characteristic aroma of 'Honeycrisp' apple (Malus × domestica). Food Chem 2020; 327:127074. [PMID: 32464463 DOI: 10.1016/j.foodchem.2020.127074] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 02/04/2023]
Abstract
'Honeycrisp' is a popular apple cultivar because of its superior appearance and flavor. We investigated its aroma profiles and characteristic aroma. Whereas the aroma profiles of developing fruits were dominated by aldehydes, postharvest fruit accumulated abundant esters, alcohols, and sesquiterpenoids. Most of these components showed maxima at the fruit's climacteric peak. There were more types and higher contents of sesquiterpenoids, aldehydes, and esters in the fruit skin than in the pulp, while alcohol contents and types were comparable between the pulp and skin. Aroma extract dilution and gas chromatography-olfactometry analyses revealed that hexyl 2-methylbutyrate, α-farnesene, 1,3-octanediol, hexanal, (E)-2-hexenal, hexanol, butanol, and 2-methyl-butanol are the most potent odor compounds in 'Honeycrisp' apple. Aroma reconstruction and omission tests combined with sensory analyses suggested that hexyl 2-methylbutyrate is responsible for the strong fruity note of 'Honeycrisp' apple, and that other alcohols, aldehydes, and α-farnesene are essential for its background aroma notes.
Collapse
|
13
|
Souleyre EJF, Bowen JK, Matich AJ, Tomes S, Chen X, Hunt MB, Wang MY, Ileperuma NR, Richards K, Rowan DD, Chagné D, Atkinson RG. Genetic control of α-farnesene production in apple fruit and its role in fungal pathogenesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:1148-1162. [PMID: 31436867 DOI: 10.1111/tpj.14504] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 07/28/2019] [Accepted: 08/05/2019] [Indexed: 05/05/2023]
Abstract
Terpenes are important compounds in plant trophic interactions. A meta-analysis of GC-MS data from a diverse range of apple (Malus × domestica) genotypes revealed that apple fruit produces a range of terpene volatiles, with the predominant terpene being the acyclic branched sesquiterpene (E,E)-α-farnesene. Four quantitative trait loci (QTLs) for α-farnesene production in ripe fruit were identified in a segregating 'Royal Gala' (RG) × 'Granny Smith' (GS) population with one major QTL on linkage group 10 co-locating with the MdAFS1 (α-farnesene synthase-1) gene. Three of the four QTLs were derived from the GS parent, which was consistent with GC-MS analysis of headspace and solvent-extracted terpenes showing that cold-treated GS apples produced higher levels of (E,E)-α-farnesene than RG. Transgenic RG fruit downregulated for MdAFS1 expression produced significantly lower levels of (E,E)-α-farnesene. To evaluate the role of (E,E)-α-farnesene in fungal pathogenesis, MdAFS1 RNA interference transgenic fruit and RG controls were inoculated with three important apple post-harvest pathogens [Colletotrichum acutatum, Penicillium expansum and Neofabraea alba (synonym Phlyctema vagabunda)]. From results obtained over four seasons, we demonstrate that reduced (E,E)-α-farnesene is associated with decreased disease initiation rates of all three pathogens. In each case, the infection rate was significantly reduced 7 days post-inoculation, although the size of successful lesions was comparable with infections on control fruit. These results indicate that (E,E)-α-farnesene production is likely to be an important factor involved in fungal pathogenesis in apple fruit.
Collapse
Affiliation(s)
- Edwige J F Souleyre
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Joanna K Bowen
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Adam J Matich
- PFR, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Sumathi Tomes
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Xiuyin Chen
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Martin B Hunt
- PFR, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Mindy Y Wang
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Nadeesha R Ileperuma
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Kate Richards
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Daryl D Rowan
- PFR, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - David Chagné
- PFR, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Ross G Atkinson
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| |
Collapse
|
14
|
Pott DM, Osorio S, Vallarino JG. From Central to Specialized Metabolism: An Overview of Some Secondary Compounds Derived From the Primary Metabolism for Their Role in Conferring Nutritional and Organoleptic Characteristics to Fruit. FRONTIERS IN PLANT SCIENCE 2019; 10:835. [PMID: 31316537 PMCID: PMC6609884 DOI: 10.3389/fpls.2019.00835] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/11/2019] [Indexed: 05/23/2023]
Abstract
Fruit flavor and nutritional characteristics are key quality traits and ones of the main factors influencing consumer preference. Central carbon metabolism, also known as primary metabolism, contributes to the synthesis of intermediate compounds that act as precursors for plant secondary metabolism. Specific and specialized metabolic pathways that evolved from primary metabolism play a key role in the plant's interaction with its environment. In particular, secondary metabolites present in the fruit serve to increase its attractiveness to seed dispersers and to protect it against biotic and abiotic stresses. As a consequence, several important organoleptic characteristics, such as aroma, color, and fruit nutritional value, rely upon secondary metabolite content. Phenolic and terpenoid compounds are large and diverse classes of secondary metabolites that contribute to fruit quality and have their origin in primary metabolic pathways, while the delicate aroma of ripe fruits is formed by a unique combination of hundreds of volatiles that are derived from primary metabolites. In this review, we show that the manipulation of primary metabolism is a powerful tool to engineer quality traits in fruits, such as the phenolic, terpenoid, and volatile content. The enzymatic reactions responsible for the accumulation of primary precursors are bottlenecks in the transfer of metabolic flux from central to specialized metabolism and should be taken into account to increase the yield of the final products of the biosynthetic pathways. In addition, understanding the connection and regulation of the carbon flow between primary and secondary metabolism is a key factor for the development of fruit cultivars with enhanced organoleptic and nutritional traits.
Collapse
Affiliation(s)
| | - Sonia Osorio
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga – Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| | - José G. Vallarino
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga – Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| |
Collapse
|
15
|
Yahyaa M, Berim A, Nawade B, Ibdah M, Dudareva N, Ibdah M. Biosynthesis of methyleugenol and methylisoeugenol in Daucus carota leaves: Characterization of eugenol/isoeugenol synthase and O-Methyltransferase. PHYTOCHEMISTRY 2019; 159:179-189. [PMID: 30634080 DOI: 10.1016/j.phytochem.2018.12.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 12/25/2018] [Accepted: 12/27/2018] [Indexed: 06/09/2023]
Abstract
Carrot (Daucus carota subsp. sativus) is a widely cultivated root vegetable of high economic importance. The aroma of carrot roots and aboveground organs is mainly defined by terpenes. We found that leaves of orange carrot cultivar also produce considerable amounts of the phenylpropenes methyleugenol and methylisoeugenol. Notably, methyleugenol is most abundant in young leaves, while methylisoeugenol is the dominant phenylpropene in mature leaf tissue. The goal of the present study was to shed light on the biochemistry and molecular biology of these compounds' biosynthesis and accumulation. Using the available genomic and transcriptomic data, we isolated a cDNA encoding eugenol/isoeugenol synthase (DcE(I)GS1), an NADPH-dependent enzyme that converts coniferyl acetate to eugenol. This enzyme exhibits dual product specificity and yields propenylphenol isoeugenol alongside allylphenol eugenol. Furthermore, we identified a cDNA encoding S-adenosyl-L-methionine:eugenol/isoeugenol O-methyltransferase 1 (DcE(I)OMT1) that produces methyleugenol and methylisoeugenol via methylation of the para-OH-group of their respective precursors. Both DcE(I)GS1 and DcE(I)OMT1 were expressed in seeds, roots, young and mature leaves, and the DcE(I)OMT1 transcript levels were the highest in leaves. The DcE(I)GS1 protein is 67% identical to anise t-anol/isoeugenol synthase and displays an apparent Km of 247 μM for coniferyl acetate. The catalytic efficiency of DcEOMT1 with eugenol is more than five-fold higher than that with isoeugenol, with Km values of 40 μM for eugenol, and of 115 μM for isoeugenol. This work expands the current knowledge of the enzymes involved in phenylpropene biosynthesis and would enable studies into structural elements defining the regioselectivity of phenylpropene synthases.
Collapse
Affiliation(s)
- Mosaab Yahyaa
- Newe Yaar Research Center, Agricultural Research Organization, P. O. Box 1021, Ramat Yishay, 30095, Israel
| | - Anna Berim
- Institute of Biological Chemistry, Washington State University, P. O. Box 646340, Pullman, WA 99164-6340, USA
| | - Bhagwat Nawade
- Newe Yaar Research Center, Agricultural Research Organization, P. O. Box 1021, Ramat Yishay, 30095, Israel
| | - Muhammad Ibdah
- Sakhnin College Academic College for Teacher Education, Sakhnin, Israel
| | - Natalia Dudareva
- Purdue University, Department of Biochemistry, 175 S. University Street, West Lafayette, IN 47907-2063, USA
| | - Mwafaq Ibdah
- Newe Yaar Research Center, Agricultural Research Organization, P. O. Box 1021, Ramat Yishay, 30095, Israel.
| |
Collapse
|
16
|
Liu J, Xu C, Zhang H, Liu F, Ma D, Liu Z. Comparative Transcriptomics Analysis for Gene Mining and Identification of a Cinnamyl Alcohol Dehydrogenase Involved in Methyleugenol Biosynthesis from Asarum sieboldii Miq. Molecules 2018; 23:E3184. [PMID: 30513938 PMCID: PMC6321292 DOI: 10.3390/molecules23123184] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 11/29/2018] [Accepted: 12/01/2018] [Indexed: 01/09/2023] Open
Abstract
Asarum sieboldii Miq., one of the three original plants of TCM ASARI RADIX ET RHIZOMA, is a perennial herb distributed in central and eastern China, the Korean Peninsula, and Japan. Methyleugenol has been considered as the most important constituent of Asarum volatile oil, meanwhile asarinin is also employed as the quality control standard of ASARI RADIX ET RHIZOMA in Chinese Pharmacopeia. They both have shown wide range of biological activities. However, little was known about genes involved in biosynthesis pathways of either methyleugenol or asarinin in Asarum plants. In the present study, we performed de novo transcriptome analysis of plant tissues (e.g., roots, rhizomes, and leaves) at different developmental stages. The sequence assembly resulted in 311,597 transcripts from these plant materials, among which 925 transcripts participated in 'secondary metabolism' with particularly up to 20.22% of them falling into phenylpropanoid biosynthesis pathway. The corresponding enzymes belong to seven families potentially encoding phenylalanine ammonia-lyase (PAL), trans-cinnamate 4-monooxygenase (C4H), p-coumarate 3-hydroxylase (C3H), caffeoyl-CoA O-methyltransferase (CCoAOMT), cinnamoyl-CoA reductase (CCR), cinnamyl alcohol dehydrogenase (CAD), and eugenol synthase (EGS). Moreover, 5 unigenes of DIR (dirigent protein) and 11 unigenes of CYP719A (719A subfamily of cytochrome P450 oxygenases) were speculated to be involved in asarinin pathway. Of the 15 candidate CADs, four unigenes that possessed high FPKM (fragments per transcript kilobase per million fragments mapped) value in roots were cloned and characterized. Only the recombinant AsCAD5 protein efficiently converted p-coumaryl, coniferyl, and sinapyl aldehydes to their corresponding alcohols, which are key intermediates employed not only in biosynthesis of lignin but also in that of methyleugenol and asarinin. qRT-PCR revealed that AsCAD5 had a high expression level in roots at three developmental stages. Our study will provide insight into the potential application of molecular breeding and metabolic engineering for improving the quality of TCM ASARI RADIX ET RHIZOMA.
Collapse
Affiliation(s)
- Jinjie Liu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Chong Xu
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Honglei Zhang
- Jiusan administration of Heilongjiang farms & land reclamation, Harbin 161441, China.
| | - Fawang Liu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Dongming Ma
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Zhong Liu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
17
|
Allan AC, Espley RV. MYBs Drive Novel Consumer Traits in Fruits and Vegetables. TRENDS IN PLANT SCIENCE 2018; 23:693-705. [PMID: 30033210 DOI: 10.1016/j.tplants.2018.06.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 05/27/2023]
Abstract
Eating plant-derived compounds can lead to a longer and healthier life and also benefits the environment. Innovation in the fresh food sector, as well as new cultivars, can improve consumption of fruit and vegetables, with MYB transcription factors being a target to drive this novelty. Plant MYB transcription factors are implicated in diverse roles including development, hormone signalling, and metabolite biosynthesis. The reds and blues of fruit and vegetables provided by anthocyanins, phlobaphenes, and betalains are controlled by specific R2R3 MYBs. New studies are now revealing that MYBs also control carotenoid biosynthesis and other quality traits, such as flavour and texture. Future breeding techniques may manipulate or create alleles of key MYB transcription factors.
Collapse
Affiliation(s)
- Andrew C Allan
- New Zealand Institute for Plant and Food Research, Mt Albert, Auckland, New Zealand; School of Biological Sciences, University of Auckland, Auckland, New Zealand.
| | - Richard V Espley
- New Zealand Institute for Plant and Food Research, Mt Albert, Auckland, New Zealand
| |
Collapse
|
18
|
Pu Y, Ding T, Lv R, Cheng H, Liu D. Effect of Drying and Storage on the Volatile Compounds of Jujube Fruit Detected by Electronic Nose and GC-MS. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2018. [DOI: 10.3136/fstr.24.1039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Yunfeng Pu
- College of Biosystems Engineering and Food Science, Zhejiang University
- College of life sciences, Tarim University
| | - Tian Ding
- College of Biosystems Engineering and Food Science, Zhejiang University
- Fuli Institute of Food Science, Zhejiang University
| | - Ruiling Lv
- College of Biosystems Engineering and Food Science, Zhejiang University
| | - Huan Cheng
- College of Biosystems Engineering and Food Science, Zhejiang University
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, Zhejiang University
- Fuli Institute of Food Science, Zhejiang University
- Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R&D Center for Food Technology and Equipment
| |
Collapse
|