1
|
Bashyal S, Everett H, Matsuura S, Müller LM. A plant CLE peptide and its fungal mimic promote arbuscular mycorrhizal symbiosis via CRN-mediated ROS suppression. Proc Natl Acad Sci U S A 2025; 122:e2422215122. [PMID: 40228122 DOI: 10.1073/pnas.2422215122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 03/14/2025] [Indexed: 04/16/2025] Open
Abstract
CLAVATA3/EMBRYO SURROUNDING REGION-related (CLE) peptides have emerged as key regulators of plant-microbe interactions, including arbuscular mycorrhizal (AM) symbiosis. Here, we identify Medicago truncatula CLE16 as a positive regulator of AM symbiosis. MtCLE16 is expressed in root cells colonized by AM fungi (AMF) and its overexpression within colonized tissues increases arbuscule abundance by finetuning their growth and lifespan. Functional and transcriptomic analyses reveal that MtCLE16 acts via the M. truncatula pseudokinase CORYNE (MtCRN) and suppresses the accumulation of reactive oxygen species (ROS) in roots, thereby attenuating immune responses and promoting root colonization by mutualistic AM fungi. Notably, AMF also express MtCLE16-like peptides. We show that the Rhizophagus irregularis MtCLE16-like peptide, RiCLE1, also attenuates ROS and promotes AMF colonization via MtCRN. This finding suggests that RiCLE1 can interfere with the MtCLE16-MtCRN signaling module of host roots to benefit the fungus. Our research uncovers a functional mechanism underpinning cross-kingdom signaling and molecular mimicry in mutualistic plant-microbe interactions.
Collapse
Affiliation(s)
- Sagar Bashyal
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
- Department of Biology, University of Miami, Coral Gables, FL 33146
| | - Hasani Everett
- Department of Biology, University of Miami, Coral Gables, FL 33146
| | - Suzanne Matsuura
- Department of Biology, University of Miami, Coral Gables, FL 33146
| | - Lena Maria Müller
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
- Department of Biology, University of Miami, Coral Gables, FL 33146
| |
Collapse
|
2
|
Tamayo E, López-Lorca VM, Shim C, López-Castillo O, Castillo AG, Requena N, Benz JP, Ferrol N. The Rhizophagus irregularis permease RiFTR1 functions without a ferroxidase partner for reductive iron transport. Sci Rep 2025; 15:5840. [PMID: 39966403 PMCID: PMC11836134 DOI: 10.1038/s41598-025-88416-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 01/28/2025] [Indexed: 02/20/2025] Open
Abstract
The contribution of arbuscular mycorrhizal fungi (AM fungi) to plant iron (Fe) acquisition has been demonstrated in several studies. A previous investigation revealed that the AM fungus Rhizophagus irregularis utilizes a high-affinity reductive pathway for Fe uptake, mediated by the Fe transporter RiFTR1. In this study, we used a genome-wide approach in R. irregularis to find genes encoding ferroxidases of the multicopper oxidase (MCO) gene family in an attempt to identify the ferroxidase partner of RiFTR1. Nine genes putatively encoding MCOs (RiMCO1-9) were identified. Yeast complementation assays demonstrated that RiMCO1 and RiMCO3 can function as ferroxidases, suggesting their involvement in the reductive Fe uptake pathway. Surprisingly, RiFTR1 was capable of transporting Fe in yeast without a ferroxidase partner, resembling the Fe transport mechanism of plant IRT1-like systems. RiFTR1 exhibited increase expression in arbuscules. Overexpression of RiFTR1 in Medicago truncatula roots led to enhanced mycorrhizal colonization and arbuscule abundance, highlighting the significance of Fe for AM symbiosis.
Collapse
Affiliation(s)
- Elisabeth Tamayo
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Granada, Spain.
- Holzforschung München, TUM School of Life Sciences, Technische Universität München, Freising, Germany.
| | - Víctor Manuel López-Lorca
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Chaeeun Shim
- Holzforschung München, TUM School of Life Sciences, Technische Universität München, Freising, Germany
- Department of Biochemical Engineering, Bernard Katz Building, University College London, London, UK
| | - Olga López-Castillo
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Araceli G Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-CSIC (IHSM, UMA-CSIC), Málaga, Spain
| | - Natalia Requena
- Molecular Phytopathology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - J Philipp Benz
- Holzforschung München, TUM School of Life Sciences, Technische Universität München, Freising, Germany
| | - Nuria Ferrol
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Granada, Spain
| |
Collapse
|
3
|
Vasistha P, Singh PP, Srivastava D, Johny L, Shukla S. Effector proteins of Funneliformis mosseae BR221: unravelling plant-fungal interactions through reference-based transcriptome analysis, in vitro validation, and protein‒protein docking studies. BMC Genomics 2025; 26:42. [PMID: 39819563 PMCID: PMC11736945 DOI: 10.1186/s12864-024-10918-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/17/2024] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND Arbuscular mycorrhizal (AM) fungi form a highly adaptable and versatile group of fungi found in natural and man-managed ecosystems. Effector secreted by AM fungi influence symbiotic relationship by modifying host cells, suppressing host defense and promoting infection to derive nutrients from the host. Here, we conducted a reference-based transcriptome sequencing of Funneliformis mosseae BR221 to enhance understanding on the molecular machinery involved in the establishment of interaction between host and AM fungi. RESULTS A total of 163 effector proteins were identified in F. mosseae isolate BR221, of these, 79.14% are extracellular effectors and 5.5% are predicted cytoplasmic effectors. In silico prediction using a pathogen-host interaction database suggested four of the 163 effectors could be crucial in establishing AM fungi-host interactions. Protein-protein docking analysis revealed interactions between these potential effectors and plant proteins known to be differentially expressed during mycorrhizal association, such as defensins, aquaporins, and PTO proteins. These interactions are multifaceted in modulating host physiological and defense mechanisms, including immune suppression, hydration, nutrient uptake, and oxidative stress modulation. CONCLUSIONS These findings of the current study provide a foundational understanding of fungal-host molecular interactions and open avenues for exploring pathways influenced by these effectors. By deepening our knowledge of these mechanisms, the use of AM fungi in biofertilizer formulations can be refined by selecting strains with specific effectors that enhance nutrient uptake, improve drought and disease resistance, and tailor the fungi's symbiotic efficiency to different crops or environmental conditions, thus contributing to more targeted and sustainable agricultural practices.
Collapse
Affiliation(s)
- Pratima Vasistha
- Deakin Nanobiotechnology Centre, TERI, Sustainable Agriculture Division, TERI Gram, The Energy and Resources Institute, Gwal Pahari, Gurgaon Faridabad Road, Gurgaon, Haryana, 122001, India
| | - Pushplata Prasad Singh
- Deakin Nanobiotechnology Centre, TERI, Sustainable Agriculture Division, TERI Gram, The Energy and Resources Institute, Gwal Pahari, Gurgaon Faridabad Road, Gurgaon, Haryana, 122001, India.
| | - Divya Srivastava
- Deakin Nanobiotechnology Centre, TERI, Sustainable Agriculture Division, TERI Gram, The Energy and Resources Institute, Gwal Pahari, Gurgaon Faridabad Road, Gurgaon, Haryana, 122001, India
| | - Leena Johny
- Deakin Nanobiotechnology Centre, TERI, Sustainable Agriculture Division, TERI Gram, The Energy and Resources Institute, Gwal Pahari, Gurgaon Faridabad Road, Gurgaon, Haryana, 122001, India
| | - Sadhana Shukla
- Deakin Nanobiotechnology Centre, TERI, Sustainable Agriculture Division, TERI Gram, The Energy and Resources Institute, Gwal Pahari, Gurgaon Faridabad Road, Gurgaon, Haryana, 122001, India
| |
Collapse
|
4
|
Guillory A, Fournier J, Kelner A, Hobecker K, Auriac MC, Frances L, Delers A, Pedinotti L, Le Ru A, Keller J, Delaux PM, Gutjahr C, Frei Dit Frey N, de Carvalho-Niebel F. Annexin- and calcium-regulated priming of legume root cells for endosymbiotic infection. Nat Commun 2024; 15:10639. [PMID: 39638784 PMCID: PMC11621553 DOI: 10.1038/s41467-024-55067-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024] Open
Abstract
Legumes establish endosymbioses with arbuscular mycorrhizal (AM) fungi or rhizobia bacteria to improve mineral nutrition. Symbionts are hosted in privileged habitats, root cortex (for AM fungi) or nodules (for rhizobia) for efficient nutrient exchange. To reach these habitats, plants form cytoplasmic cell bridges, key to predicting and guiding fungal hyphae or rhizobia-filled infection thread (IT) root entry. However, the underlying mechanisms are poorly studied. Here we show that unique ultrastructural changes and calcium (Ca2+) spiking signatures, closely associated with Medicago truncatula Annexin 1 (MtAnn1) accumulation, accompany rhizobia-related bridge formation. Loss of MtAnn1 function in M. truncatula affects Ca2+ spike amplitude, cytoplasmic configuration and rhizobia infection efficiency, consistent with a role of MtAnn1 in regulating infection priming. MtAnn1, which evolved in species establishing intracellular symbioses, is also AM-symbiosis-induced and required for proper arbuscule formation. Together, we propose that MtAnn1 is part of an ancient Ca2+-regulatory module for transcellular endosymbiotic infection.
Collapse
Affiliation(s)
- Ambre Guillory
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Joëlle Fournier
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Audrey Kelner
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Karen Hobecker
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | | | - Lisa Frances
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Anaïs Delers
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Léa Pedinotti
- LRSV, Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France
| | - Aurélie Le Ru
- FRAIB-TRI imaging platform, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Jean Keller
- LRSV, Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France
| | - Pierre-Marc Delaux
- LRSV, Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France
| | - Caroline Gutjahr
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | | | | |
Collapse
|
5
|
Serrano K, Tedeschi F, Andersen SU, Scheller HV. Unraveling plant-microbe symbioses using single-cell and spatial transcriptomics. TRENDS IN PLANT SCIENCE 2024; 29:1356-1367. [PMID: 38991926 DOI: 10.1016/j.tplants.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 07/13/2024]
Abstract
Plant-microbe symbioses require intense interaction and genetic coordination to successfully establish in specific cell types of the host and symbiont. Traditional RNA-seq methodologies lack the cellular resolution to fully capture these complexities, but single-cell and spatial transcriptomics (ST) are now allowing scientists to probe symbiotic interactions at an unprecedented level of detail. Here, we discuss the advantages that novel spatial and single-cell transcriptomic technologies provide in studying plant-microbe endosymbioses and highlight key recent studies. Finally, we consider the remaining limitations of applying these approaches to symbiosis research, which are mainly related to the simultaneous capture of both plant and microbial transcripts within the same cells.
Collapse
Affiliation(s)
- Karen Serrano
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA; DOE Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Francesca Tedeschi
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, DK-8000 Aarhus C, Denmark
| | - Stig U Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, DK-8000 Aarhus C, Denmark.
| | - Henrik V Scheller
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA; DOE Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA.
| |
Collapse
|
6
|
Wang P, Zhong Y, Li Y, Zhu W, Zhang Y, Li J, Chen Z, Limpens E. The phosphate starvation response regulator PHR2 antagonizes arbuscule maintenance in Medicago. THE NEW PHYTOLOGIST 2024; 244:1979-1993. [PMID: 38803107 DOI: 10.1111/nph.19869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024]
Abstract
Phosphate starvation response (PHR) transcription factors play essential roles in regulating phosphate uptake in plants through binding to the P1BS cis-element in the promoter of phosphate starvation response genes. Recently, PHRs were also shown to positively regulate arbuscular mycorrhizal colonization in rice and lotus by controlling the expression of many symbiotic genes. However, their role in arbuscule development has remained unclear. In Medicago, we previously showed that arbuscule degradation is controlled by two SPX proteins that are highly expressed in arbuscule-containing cells. Since SPX proteins bind to PHRs and repress their activity in a phosphate-dependent manner, we investigated whether arbuscule maintenance is also regulated by PHR. Here, we show that PHR2 is a major regulator of the phosphate starvation response in Medicago. Knockout of phr2 showed reduced phosphate starvation response, symbiotic gene expression, and fungal colonization levels. However, the arbuscules that formed showed less degradation, suggesting a negative role for PHR2 in arbuscule maintenance. This was supported by the observation that overexpression of PHR2 led to enhanced degradation of arbuscules. Although many arbuscule-induced genes contain P1BS elements in their promoters, we found that the P1BS cis-elements in the promoter of the symbiotic phosphate transporter PT4 are not required for arbuscule-containing cell expression. Since both PHR2 and SPX1/3 negatively affect arbuscule maintenance, our results indicate that they control arbuscule maintenance partly via different mechanisms. While PHR2 potentiates symbiotic gene expression and colonization, its activity in arbuscule-containing cells needs to be tightly controlled to maintain a successful symbiosis in Medicago.
Collapse
Affiliation(s)
- Peng Wang
- Laboratory of Mycology, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University & Research, Wageningen, 6708 PB, the Netherlands
| | - Yanan Zhong
- Laboratory of Mycology, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yan Li
- Laboratory of Mycology, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Wenqian Zhu
- Laboratory of Mycology, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yuexuan Zhang
- Laboratory of Mycology, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Jingyang Li
- Laboratory of Mycology, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Zuohong Chen
- Laboratory of Mycology, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Erik Limpens
- Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University & Research, Wageningen, 6708 PB, the Netherlands
| |
Collapse
|
7
|
Oliveira J, Yildirir G, Corradi N. From Chaos Comes Order: Genetics and Genome Biology of Arbuscular Mycorrhizal Fungi. Annu Rev Microbiol 2024; 78:147-168. [PMID: 38985977 DOI: 10.1146/annurev-micro-041522-105143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) are obligate mutualists that can enhance nutrition and growth of their plant hosts while providing protection against pathogens. AMF produce spores and hyphal networks that can carry thousands of nuclei in a continuous cytoplasm, with no evidence of sexual reproduction. This review examines the impact of genomic technologies on our view of AMF genetics and evolution. We highlight how the genetics, nuclear dynamics, and epigenetics of these prominent symbionts follow trends preserved in distant multinucleate fungal relatives. We also propose new avenues of research to improve our understanding of their nuclear biology and their intricate genetic interactions with plant hosts.
Collapse
Affiliation(s)
- Jordana Oliveira
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada;
| | - Gokalp Yildirir
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada;
| | - Nicolas Corradi
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada;
| |
Collapse
|
8
|
Jaswal R, Dubey H, Kiran K, Rawal H, Kumar G, Rajarammohan S, Deshmukh R, Sonah H, Prasad P, Bhardwaj SC, Gupta N, Sharma TR. Identification and functional characterization of the npc-2-like domain containing rust effector protein that suppresses cell death in plants. Mol Biol Rep 2024; 51:962. [PMID: 39235644 DOI: 10.1007/s11033-024-09894-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024]
Abstract
The MD-2-related lipid-recognition (ML/Md-2) domain is a lipid/sterol-binding domain that are involved in sterol transfer and innate immunity in eukaryotes. Here we report a genome-wide survey of this family, identifying 84 genes in 30 fungi including plant pathogens. All the studied species were found to have varied ML numbers, and expansion of the family was observed in Rhizophagus irregularis (RI) with 33 genes. The molecular docking studies of these proteins with cholesterol derivatives indicate lipid-binding functional conservation across the animal and fungi kingdom. The phylogenetic studies among eukaryotic ML proteins showed that Puccinia ML members are more closely associated with animal (insect) npc2 proteins than other fungal ML members. One of the candidates from leaf rust fungus Puccinia triticina, Pt5643 was PCR amplified and further characterized using various studies such as qRT-PCR, subcellular localization studies, yeast functional complementation, signal peptide validation, and expression studies. The Pt5643 exhibits the highest expression on the 5th day post-infection (dpi). The confocal microscopy of Pt5643 in onion epidermal cells and N. benthamiana shows its location in the cytoplasm and nucleus. The functional complementation studies of Pt5643 in npc2 mutant yeast showed its functional similarity to the eukaryotic/yeast npc2 gene. Furthermore, the overexpression of Pt5643 also suppressed the BAX, NEP1, and H₂O₂-induced program cell death in Nicotiana species and yeast. Altogether the present study reports the novel function of ML domain proteins in plant fungal pathogens and their possible role as effector molecules in host defense manipulation.
Collapse
Affiliation(s)
- Rajdeep Jaswal
- National Agri-Food Biotechnology Institute (NABI), Mohali, 140306, Punjab, India
- Department of Microbiology, Panjab University, Chandigarh, 160014, Punjab, India
| | - Himanshu Dubey
- National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Kanti Kiran
- National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Hukam Rawal
- National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Gulshan Kumar
- Department of Entomology, University of Georgia, Tifton, GA, 30223, USA
| | | | - Rupesh Deshmukh
- Department of Biotechnology, Central University of Haryana, Mahendragarh, Haryana, 123031, India
| | - Humira Sonah
- Department of Biotechnology, Central University of Haryana, Mahendragarh, Haryana, 123031, India
| | - Pramod Prasad
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Flowerdale, 171009, Shimla, India
| | - Subhash C Bhardwaj
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Flowerdale, 171009, Shimla, India
| | - Naveen Gupta
- Department of Microbiology, Panjab University, Chandigarh, 160014, Punjab, India.
| | - Tilak Raj Sharma
- National Agri-Food Biotechnology Institute (NABI), Mohali, 140306, Punjab, India.
| |
Collapse
|
9
|
Fiorilli V, Martínez-Medina A, Pozo MJ, Lanfranco L. Plant Immunity Modulation in Arbuscular Mycorrhizal Symbiosis and Its Impact on Pathogens and Pests. ANNUAL REVIEW OF PHYTOPATHOLOGY 2024; 62:127-156. [PMID: 39251211 DOI: 10.1146/annurev-phyto-121423-042014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Arbuscular mycorrhizal (AM) symbiosis is the oldest and most widespread mutualistic association on Earth and involves plants and soil fungi belonging to Glomeromycotina. A complex molecular, cellular, and genetic developmental program enables partner recognition, fungal accommodation in plant tissues, and activation of symbiotic functions such as transfer of phosphorus in exchange for carbohydrates and lipids. AM fungi, as ancient obligate biotrophs, have evolved strategies to circumvent plant defense responses to guarantee an intimate and long-lasting mutualism. They are among those root-associated microorganisms able to boost plants' ability to cope with biotic stresses leading to mycorrhiza-induced resistance (MIR), which can be effective across diverse hosts and against different attackers. Here, we examine the molecular mechanisms underlying the modulation of plant immunity during colonization by AM fungi and at the onset and display of MIR against belowground and aboveground pests and pathogens. Understanding the MIR efficiency spectrum and its regulation is of great importance to optimizing the biotechnological application of these beneficial microbes for sustainable crop protection.
Collapse
Affiliation(s)
- V Fiorilli
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy;
| | - A Martínez-Medina
- Department of Plant-Microbe Interactions, Institute of Natural Resources and Agrobiology of Salamanca, CSIC, Salamanca, Spain
| | - Maria J Pozo
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Granada, Spain;
| | - L Lanfranco
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy;
| |
Collapse
|
10
|
Betz R, Heidt S, Figueira-Galán D, Hartmann M, Langner T, Requena N. Alternative splicing regulation in plants by SP7-like effectors from symbiotic arbuscular mycorrhizal fungi. Nat Commun 2024; 15:7107. [PMID: 39160162 PMCID: PMC11333574 DOI: 10.1038/s41467-024-51512-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 08/08/2024] [Indexed: 08/21/2024] Open
Abstract
Most plants in natural ecosystems associate with arbuscular mycorrhizal (AM) fungi to survive soil nutrient limitations. To engage in symbiosis, AM fungi secrete effector molecules that, similar to pathogenic effectors, reprogram plant cells. Here we show that the Glomeromycotina-specific SP7 effector family impacts on the alternative splicing program of their hosts. SP7-like effectors localize at nuclear condensates and interact with the plant mRNA processing machinery, most prominently with the splicing factor SR45 and the core splicing proteins U1-70K and U2AF35. Ectopic expression of these effectors in the crop plant potato and in Arabidopsis induced developmental changes that paralleled to the alternative splicing modulation of a specific subset of genes. We propose that SP7-like proteins act as negative regulators of SR45 to modulate the fate of specific mRNAs in arbuscule-containing cells. Unraveling the communication mechanisms between symbiotic fungi and their host plants will help to identify targets to improve plant nutrition.
Collapse
Affiliation(s)
- Ruben Betz
- Joseph Kölreuter Institute for Plant Sciences. Molecular Phytopathology Department, Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4, Karlsruhe, Germany
| | - Sven Heidt
- Joseph Kölreuter Institute for Plant Sciences. Molecular Phytopathology Department, Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4, Karlsruhe, Germany
| | - David Figueira-Galán
- Joseph Kölreuter Institute for Plant Sciences. Molecular Phytopathology Department, Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4, Karlsruhe, Germany
| | - Meike Hartmann
- Joseph Kölreuter Institute for Plant Sciences. Molecular Phytopathology Department, Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4, Karlsruhe, Germany
| | - Thorsten Langner
- Max Planck Institute for Biology Tübingen - Max-Planck-Ring 5, Tübingen, Germany
| | - Natalia Requena
- Joseph Kölreuter Institute for Plant Sciences. Molecular Phytopathology Department, Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4, Karlsruhe, Germany.
| |
Collapse
|
11
|
Durney C, Boussageon R, El-Mjiyad N, Wipf D, Courty PE. Arbuscular mycorrhizal symbiosis with Rhizophagus irregularis DAOM197198 modifies the root transcriptome of walnut trees. MYCORRHIZA 2024; 34:341-350. [PMID: 38801470 DOI: 10.1007/s00572-024-01152-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024]
Abstract
Walnut trees are cultivated and exploited worldwide for commercial timber and nut production. They are heterografted plants, with the rootstock selected to grow in different soil types and conditions and to provide the best anchorage, vigor, and resistance or tolerance to soil borne pests and diseases. However, no individual rootstock is tolerant of all factors that impact walnut production. In Europe, Juglans regia is mainly used as a rootstock. Like most terrestrial plants, walnut trees form arbuscular mycorrhizal symbioses, improving water and nutrient uptake and providing additional ecosystem services. Effects of arbuscular mycorrhizal symbiosis on root gene regulation, however, has never been assessed. We analyzed the response of one rootstock of J. regia to colonization by the arbuscular mycorrhizal fungus Rhizophagus irregularis DAOM197198. Plant growth as well as the nitrogen and phosphorus concentrations in roots and shoots were significantly increased in mycorrhizal plants versus non-colonized plants. In addition, we have shown that 1,549 genes were differentially expressed, with 832 and 717 genes up- and down-regulated, respectively. The analysis also revealed that some rootstock genes involved in plant nutrition through the mycorrhizal pathway, are regulated similarly as in other mycorrhizal woody species: Vitis vinifera and Populus trichocarpa. In addition, an enrichment analysis performed on GO and KEGG pathways revealed some regulation specific to J. regia (i.e., the juglone pathway). This analysis reinforces the role of arbuscular mycorrhizal symbiosis on root gene regulation and on the need to finely study the effects of diverse arbuscular mycorrhizal fungi on root gene regulation, but also of the scion on the functioning of an arbuscular mycorrhizal fungus in heterografted plants such as walnut tree.
Collapse
Affiliation(s)
- Célien Durney
- Agroécologie INRAE, Institut Agro, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Raphael Boussageon
- Plant-Soil Interactions, Department of Agroecology and Environment, Agroscope, Zurich, Switzerland
| | - Noureddine El-Mjiyad
- Agroécologie INRAE, Institut Agro, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Daniel Wipf
- Agroécologie INRAE, Institut Agro, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Pierre-Emmanuel Courty
- Agroécologie INRAE, Institut Agro, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France.
| |
Collapse
|
12
|
Oliveira JIN, Corradi N. Strain-specific evolution and host-specific regulation of transposable elements in the model plant symbiont Rhizophagus irregularis. G3 (BETHESDA, MD.) 2024; 14:jkae055. [PMID: 38507600 PMCID: PMC11075540 DOI: 10.1093/g3journal/jkae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/06/2023] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
Transposable elements (TEs) are repetitive DNA that can create genome structure and regulation variability. The genome of Rhizophagus irregularis, a widely studied arbuscular mycorrhizal fungus (AMF), comprises ∼50% repetitive sequences that include TEs. Despite their abundance, two-thirds of TEs remain unclassified, and their regulation among AMF life stages remains unknown. Here, we aimed to improve our understanding of TE diversity and regulation in this model species by curating repeat datasets obtained from chromosome-level assemblies and by investigating their expression across multiple conditions. Our analyses uncovered new TE superfamilies and families in this model symbiont and revealed significant differences in how these sequences evolve both within and between R. irregularis strains. With this curated TE annotation, we also found that the number of upregulated TE families in colonized roots is 4 times higher than in the extraradical mycelium, and their overall expression differs depending on the plant host. This work provides a fine-scale view of TE diversity and evolution in model plant symbionts and highlights their transcriptional dynamism and specificity during host-microbe interactions. We also provide Hidden Markov Model profiles of TE domains for future manual curation of uncharacterized sequences (https://github.com/jordana-olive/TE-manual-curation/tree/main).
Collapse
Affiliation(s)
| | - Nicolas Corradi
- Department of Biology, Faculty of Sciences, University of Ottawa, Ottawa, ON, Canada K1N 6N5
| |
Collapse
|
13
|
Martin FM, van der Heijden MGA. The mycorrhizal symbiosis: research frontiers in genomics, ecology, and agricultural application. THE NEW PHYTOLOGIST 2024; 242:1486-1506. [PMID: 38297461 DOI: 10.1111/nph.19541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/07/2023] [Indexed: 02/02/2024]
Abstract
Mycorrhizal symbioses between plants and fungi are vital for the soil structure, nutrient cycling, plant diversity, and ecosystem sustainability. More than 250 000 plant species are associated with mycorrhizal fungi. Recent advances in genomics and related approaches have revolutionized our understanding of the biology and ecology of mycorrhizal associations. The genomes of 250+ mycorrhizal fungi have been released and hundreds of genes that play pivotal roles in regulating symbiosis development and metabolism have been characterized. rDNA metabarcoding and metatranscriptomics provide novel insights into the ecological cues driving mycorrhizal communities and functions expressed by these associations, linking genes to ecological traits such as nutrient acquisition and soil organic matter decomposition. Here, we review genomic studies that have revealed genes involved in nutrient uptake and symbiosis development, and discuss adaptations that are fundamental to the evolution of mycorrhizal lifestyles. We also evaluated the ecosystem services provided by mycorrhizal networks and discuss how mycorrhizal symbioses hold promise for sustainable agriculture and forestry by enhancing nutrient acquisition and stress tolerance. Overall, unraveling the intricate dynamics of mycorrhizal symbioses is paramount for promoting ecological sustainability and addressing current pressing environmental concerns. This review ends with major frontiers for further research.
Collapse
Affiliation(s)
- Francis M Martin
- Université de Lorraine, INRAE, UMR IAM, Champenoux, 54280, France
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Marcel G A van der Heijden
- Department of Agroecology & Environment, Plant-Soil Interactions, Agroscope, Zürich, 8046, Switzerland
- Department of Plant and Microbial Biology, University of Zürich, Zürich, 8057, Switzerland
| |
Collapse
|
14
|
Aparicio Chacón MV, Hernández Luelmo S, Devlieghere V, Robichez L, Leroy T, Stuer N, De Keyser A, Ceulemans E, Goossens A, Goormachtig S, Van Dingenen J. Exploring the potential role of four Rhizophagus irregularis nuclear effectors: opportunities and technical limitations. FRONTIERS IN PLANT SCIENCE 2024; 15:1384496. [PMID: 38736443 PMCID: PMC11085264 DOI: 10.3389/fpls.2024.1384496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/02/2024] [Indexed: 05/14/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) are obligate symbionts that interact with the roots of most land plants. The genome of the AMF model species Rhizophagus irregularis contains hundreds of predicted small effector proteins that are secreted extracellularly but also into the plant cells to suppress plant immunity and modify plant physiology to establish a niche for growth. Here, we investigated the role of four nuclear-localized putative effectors, i.e., GLOIN707, GLOIN781, GLOIN261, and RiSP749, in mycorrhization and plant growth. We initially intended to execute the functional studies in Solanum lycopersicum, a host plant of economic interest not previously used for AMF effector biology, but extended our studies to the model host Medicago truncatula as well as the non-host Arabidopsis thaliana because of the technical advantages of working with these models. Furthermore, for three effectors, the implementation of reverse genetic tools, yeast two-hybrid screening and whole-genome transcriptome analysis revealed potential host plant nuclear targets and the downstream triggered transcriptional responses. We identified and validated a host protein interactors participating in mycorrhization in the host.S. lycopersicum and demonstrated by transcriptomics the effectors possible involvement in different molecular processes, i.e., the regulation of DNA replication, methylglyoxal detoxification, and RNA splicing. We conclude that R. irregularis nuclear-localized effector proteins may act on different pathways to modulate symbiosis and plant physiology and discuss the pros and cons of the tools used.
Collapse
Affiliation(s)
- María Victoria Aparicio Chacón
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Sofía Hernández Luelmo
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Viktor Devlieghere
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Louis Robichez
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Toon Leroy
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Naomi Stuer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Annick De Keyser
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Evi Ceulemans
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Judith Van Dingenen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| |
Collapse
|
15
|
Serrano K, Bezrutczyk M, Goudeau D, Dao T, O'Malley R, Malmstrom RR, Visel A, Scheller HV, Cole B. Spatial co-transcriptomics reveals discrete stages of the arbuscular mycorrhizal symbiosis. NATURE PLANTS 2024; 10:673-688. [PMID: 38589485 PMCID: PMC11035146 DOI: 10.1038/s41477-024-01666-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 03/06/2024] [Indexed: 04/10/2024]
Abstract
The symbiotic interaction of plants with arbuscular mycorrhizal (AM) fungi is ancient and widespread. Plants provide AM fungi with carbon in exchange for nutrients and water, making this interaction a prime target for crop improvement. However, plant-fungal interactions are restricted to a small subset of root cells, precluding the application of most conventional functional genomic techniques to study the molecular bases of these interactions. Here we used single-nucleus and spatial RNA sequencing to explore both Medicago truncatula and Rhizophagus irregularis transcriptomes in AM symbiosis at cellular and spatial resolution. Integrated, spatially registered single-cell maps revealed infected and uninfected plant root cell types. We observed that cortex cells exhibit distinct transcriptome profiles during different stages of colonization by AM fungi, indicating dynamic interplay between both organisms during establishment of the cellular interface enabling successful symbiosis. Our study provides insight into a symbiotic relationship of major agricultural and environmental importance and demonstrates a paradigm combining single-cell and spatial transcriptomics for the analysis of complex organismal interactions.
Collapse
Affiliation(s)
- Karen Serrano
- Joint Bioenergy Institute, Emeryville, CA, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Margaret Bezrutczyk
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Danielle Goudeau
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Thai Dao
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ronan O'Malley
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Rex R Malmstrom
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Axel Visel
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- School of Natural Sciences, University of California Merced, Merced, CA, USA
| | - Henrik V Scheller
- Joint Bioenergy Institute, Emeryville, CA, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Benjamin Cole
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
16
|
Pang F, Li Q, Solanki MK, Wang Z, Xing YX, Dong DF. Soil phosphorus transformation and plant uptake driven by phosphate-solubilizing microorganisms. Front Microbiol 2024; 15:1383813. [PMID: 38601943 PMCID: PMC11005474 DOI: 10.3389/fmicb.2024.1383813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/14/2024] [Indexed: 04/12/2024] Open
Abstract
Phosphorus (P) is an important nutrient for plants, and a lack of available P greatly limits plant growth and development. Phosphate-solubilizing microorganisms (PSMs) significantly enhance the ability of plants to absorb and utilize P, which is important for improving plant nutrient turnover and yield. This article summarizes and analyzes how PSMs promote the absorption and utilization of P nutrients by plants from four perspectives: the types and functions of PSMs, phosphate-solubilizing mechanisms, main functional genes, and the impact of complex inoculation of PSMs on plant P acquisition. This article reviews the physiological and molecular mechanisms of phosphorus solubilization and growth promotion by PSMs, with a focus on analyzing the impact of PSMs on soil microbial communities and its interaction with root exudates. In order to better understand the ability of PSMs and their role in soil P transformation and to provide prospects for research on PSMs promoting plant P absorption. PSMs mainly activate insoluble P through the secretion of organic acids, phosphatase production, and mycorrhizal symbiosis, mycorrhizal symbiosis indirectly activates P via carbon exchange. PSMs can secrete organic acids and produce phosphatase, which plays a crucial role in soil P cycling, and related genes are involved in regulating the P-solubilization ability. This article reviews the mechanisms by which microorganisms promote plant uptake of soil P, which is of great significance for a deeper understanding of PSM-mediated soil P cycling, plant P uptake and utilization, and for improving the efficiency of P utilization in agriculture.
Collapse
Affiliation(s)
- Fei Pang
- College of Agriculture, Guangxi University, Nanning, China
| | - Qing Li
- College of Agriculture, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Smart Agricultural College, Yulin Normal University, Yulin, China
| | - Manoj Kumar Solanki
- Department of Life Sciences and Biological Sciences, IES University, Bhopal, India
| | - Zhen Wang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Smart Agricultural College, Yulin Normal University, Yulin, China
| | - Yong-Xiu Xing
- College of Agriculture, Guangxi University, Nanning, China
| | - Deng-Feng Dong
- College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
17
|
Boyno G, Rezaee Danesh Y, Demir S, Teniz N, Mulet JM, Porcel R. The Complex Interplay between Arbuscular Mycorrhizal Fungi and Strigolactone: Mechanisms, Sinergies, Applications and Future Directions. Int J Mol Sci 2023; 24:16774. [PMID: 38069097 PMCID: PMC10706366 DOI: 10.3390/ijms242316774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Plants, the cornerstone of life on Earth, are constantly struggling with a number of challenges arising from both biotic and abiotic stressors. To overcome these adverse factors, plants have evolved complex defense mechanisms involving both a number of cell signaling pathways and a complex network of interactions with microorganisms. Among these interactions, the relationship between symbiotic arbuscular mycorrhizal fungi (AMF) and strigolactones (SLs) stands as an important interplay that has a significant impact on increased resistance to environmental stresses and improved nutrient uptake and the subsequent enhanced plant growth. AMF establishes mutualistic partnerships with plants by colonizing root systems, and offers a range of benefits, such as increased nutrient absorption, improved water uptake and increased resistance to both biotic and abiotic stresses. SLs play a fundamental role in shaping root architecture, promoting the growth of lateral roots and regulating plant defense responses. AMF can promote the production and release of SLs by plants, which in turn promote symbiotic interactions due to their role as signaling molecules with the ability to attract beneficial microbes. The complete knowledge of this synergy has the potential to develop applications to optimize agricultural practices, improve nutrient use efficiency and ultimately increase crop yields. This review explores the roles played by AMF and SLs in plant development and stress tolerance, highlighting their individual contributions and the synergistic nature of their interaction.
Collapse
Affiliation(s)
- Gökhan Boyno
- Department of Plant Protection, Faculty of Agriculture, Van Yuzuncu Yil University, Van 65090, Türkiye
| | - Younes Rezaee Danesh
- Department of Plant Protection, Faculty of Agriculture, Van Yuzuncu Yil University, Van 65090, Türkiye
- Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia 5756151818, Iran
| | - Semra Demir
- Department of Plant Protection, Faculty of Agriculture, Van Yuzuncu Yil University, Van 65090, Türkiye
| | - Necmettin Teniz
- Department of Agricultural Biotechnology, Faculty of Agriculture, Van Yuzuncu Yil University, Van 65090, Türkiye
| | - José M. Mulet
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain
| | - Rosa Porcel
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain
| |
Collapse
|
18
|
Fan X, Xie H, Huang X, Zhang S, Nie Y, Chen H, Xie X, Tang M. A module centered on the transcription factor Msn2 from arbuscular mycorrhizal fungus Rhizophagus irregularis regulates drought stress tolerance in the host plant. THE NEW PHYTOLOGIST 2023; 240:1497-1518. [PMID: 37370253 DOI: 10.1111/nph.19077] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi can form mutualistic endosymbiosis with > 70% of land plants for obtaining fatty acids and sugars, in return, AM fungi promote plant nutrients and water acquisition to enhance plant fitness. However, how AM fungi orchestrate its own signaling components in response to drought stress remains elusive. Here, we identify a transcription factor containing C2H2 zinc finger domains, RiMsn2 from Rhizophagus irregularis. To characterize the RiMsn2, we combined heterologous expression, subcellular localization in yeasts, and biochemical and molecular studies with reverse genetics approaches during the in planta phase. The results indicate that RiMsn2 is highly conserved across AM fungal species and induced during the early stages of symbiosis. It is significantly upregulated in mycorrhizal roots under severe drought conditions. The nucleus-localized RiMsn2 regulates osmotic homeostasis and trehalose contents of yeasts. Importantly, gene silencing analyses indicate that RiMsn2 is essential for arbuscule formation and enhances plant tolerance to drought stress. Results from yeasts and biochemical experiments suggest that the RiHog1-RiMsn2-STREs module controls the drought stress-responsive genes in AM fungal symbiont. In conclusion, our findings reveal that a module centered on the transcriptional activator RiMsn2 from AM fungus regulates drought stress tolerance in host plant.
Collapse
Affiliation(s)
- Xiaoning Fan
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Hongyun Xie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xinru Huang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Shuyuan Zhang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Yuying Nie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Hui Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xianan Xie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
19
|
Stuer N, Van Damme P, Goormachtig S, Van Dingenen J. Seeking the interspecies crosswalk for filamentous microbe effectors. TRENDS IN PLANT SCIENCE 2023; 28:1045-1059. [PMID: 37062674 DOI: 10.1016/j.tplants.2023.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/02/2023] [Accepted: 03/18/2023] [Indexed: 06/19/2023]
Abstract
Both pathogenic and symbiotic microorganisms modulate the immune response and physiology of their host to establish a suitable niche. Key players in mediating colonization outcome are microbial effector proteins that act either inside (cytoplasmic) or outside (apoplastic) the plant cells and modify the abundance or activity of host macromolecules. We compile novel insights into the much-disputed processes of effector secretion and translocation of filamentous organisms, namely fungi and oomycetes. We report how recent studies that focus on unconventional secretion and effector structure challenge the long-standing image of effectors as conventionally secreted proteins that are translocated with the aid of primary amino acid sequence motifs. Furthermore, we emphasize the potential of diverse, unbiased, state-of-the-art proteomics approaches in the holistic characterization of fungal and oomycete effectomes.
Collapse
Affiliation(s)
- Naomi Stuer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), 9052 Ghent, Belgium
| | - Petra Van Damme
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Karel Lodewijk Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), 9052 Ghent, Belgium.
| | - Judith Van Dingenen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), 9052 Ghent, Belgium.
| |
Collapse
|
20
|
Enebe MC, Erasmus M. Susceptibility and plant immune control-a case of mycorrhizal strategy for plant colonization, symbiosis, and plant immune suppression. Front Microbiol 2023; 14:1178258. [PMID: 37476663 PMCID: PMC10355322 DOI: 10.3389/fmicb.2023.1178258] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/15/2023] [Indexed: 07/22/2023] Open
Abstract
Plants and microbes (mycorrhizal fungi to be precise) have evolved together over the past millions of years into an association that is mutualist. The plants supply the fungi with photosynthates and shelter, while the fungi reciprocate by enhancing nutrient and water uptake by the plants as well as, in some cases, control of soil-borne pathogens, but this fungi-plant association is not always beneficial. We argue that mycorrhizal fungi, despite contributing to plant nutrition, equally increase plant susceptibility to pathogens and herbivorous pests' infestation. Understanding of mycorrhizal fungi strategies for suppressing plant immunity, the phytohormones involved and the signaling pathways that aid them will enable the harnessing of tripartite (consisting of three biological systems)-plant-mycorrhizal fungi-microbe interactions for promoting sustainable production of crops.
Collapse
Affiliation(s)
- Matthew Chekwube Enebe
- Centre for Mineral Biogeochemistry, University of the Free State, Bloemfontein, South Africa
| | | |
Collapse
|
21
|
Yu H, Bai F, Ji C, Fan Z, Luo J, Ouyang B, Deng X, Xiao S, Bisseling T, Limpens E, Pan Z. Plant lysin motif extracellular proteins are required for arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A 2023; 120:e2301884120. [PMID: 37368927 PMCID: PMC10318984 DOI: 10.1073/pnas.2301884120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/15/2023] [Indexed: 06/29/2023] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) can form a mutually beneficial symbiotic relationship with most land plants. They are known to secrete lysin motif (LysM) effectors into host root cells for successful colonization. Intriguingly, plants secrete similar types of LysM proteins; however, their role in plant-microbe interactions is unknown. Here, we show that Medicago truncatula deploys LysM extracellular (LysMe) proteins to facilitate symbiosis with AMF. Promoter analyses demonstrated that three M. truncatula LysMe genes MtLysMe1/2/3, are expressed in arbuscule-containing cells and those adjacent to intercellular hyphae. Localization studies showed that these proteins are targeted to the periarbuscular space between the periarbuscular membrane and the fungal cell wall of the branched arbuscule. M. truncatula mutants in which MtLysMe2 was knocked out via CRISPR/Cas9-targeted mutagenesis exhibited a significant reduction in AMF colonization and arbuscule formation, whereas genetically complemented transgenic plants restored wild-type level AMF colonization. In addition, knocking out the ortholog of MtLysMe2 in tomato resulted in a similar defect in AMF colonization. In vitro binding affinity precipitation assays suggested binding of MtLysMe1/2/3 with chitin and chitosan, while microscale thermophoresis (MST) assays revealed weak binding of these proteins with chitooligosaccharides. Moreover, application of purified MtLysMe proteins to root segments could suppress chitooctaose (CO8)-induced reactive oxygen species production and expression of reporter genes of the immune response without impairing chitotetraose (CO4)-triggered symbiotic responses. Taken together, our results reveal that plants, like their fungal partners, also secrete LysM proteins to facilitate symbiosis establishment.
Collapse
Affiliation(s)
- Huimin Yu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Fuxi Bai
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan430064, China
| | - Chuanya Ji
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Zhengyan Fan
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Jinying Luo
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Bo Ouyang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Xiuxin Deng
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Shunyuan Xiao
- Institute for Bioscience and Biotechnology Research and Department of Plant Sciences and Landscape Architecture, University of Maryland College Park, Rockville, MD20850
| | - Ton Bisseling
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University and Research6708 PB, Wageningen, the Netherlands
| | - Erik Limpens
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University and Research6708 PB, Wageningen, the Netherlands
| | - Zhiyong Pan
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| |
Collapse
|
22
|
Teulet A, Quan C, Evangelisti E, Wanke A, Yang W, Schornack S. A pathogen effector FOLD diversified in symbiotic fungi. THE NEW PHYTOLOGIST 2023. [PMID: 37257494 DOI: 10.1111/nph.18996] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/27/2023] [Indexed: 06/02/2023]
Abstract
Pathogenic fungi use secreted effector proteins to suppress immunity and support their infection, but effectors have also been reported from fungi that engage in nutritional symbioses with plants. Sequence-based effector comparisons between pathogens and symbiotic arbuscular mycorrhizal (AM) fungi are hampered by the huge diversity of effector sequences even within closely related microbes. To find sequence-divergent but structurally similar effectors shared between symbiotic and pathogenic fungi, we compared secreted protein structure models of the AM fungus Rhizophagus irregularis to known pathogen effectors. We identified proteins with structural similarity to known Fusarium oxysporum f. sp. lycopersici dual domain (FOLD) effectors, which occur in low numbers in several fungal pathogens. Contrastingly, FOLD genes from AM fungi (MycFOLDs) are found in enlarged and diversified gene families with higher levels of positive selection in their C-terminal domains. Our structure model comparison suggests that MycFOLDs are similar to carbohydrate-binding motifs. Different MycFOLD genes are expressed during colonisation of different hosts and MycFOLD-17 transcripts accumulate in plant intracellular arbuscules. The exclusive presence of MycFOLDs across unrelated plant-colonising fungi, their inducible expression, lineage-specific sequence diversification and transcripts in arbuscules suggest that FOLD proteins act as effectors during plant colonisation of symbiotic and pathogenic fungi.
Collapse
Affiliation(s)
- Albin Teulet
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | - Clément Quan
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | | | - Alan Wanke
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | - Weibing Yang
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | | |
Collapse
|
23
|
Aparicio Chacón MV, Van Dingenen J, Goormachtig S. Characterization of Arbuscular Mycorrhizal Effector Proteins. Int J Mol Sci 2023; 24:9125. [PMID: 37298075 PMCID: PMC10252856 DOI: 10.3390/ijms24119125] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/17/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
Plants are colonized by various fungi with both pathogenic and beneficial lifestyles. One type of colonization strategy is through the secretion of effector proteins that alter the plant's physiology to accommodate the fungus. The oldest plant symbionts, the arbuscular mycorrhizal fungi (AMF), may exploit effectors to their benefit. Genome analysis coupled with transcriptomic studies in different AMFs has intensified research on the effector function, evolution, and diversification of AMF. However, of the current 338 predicted effector proteins from the AM fungus Rhizophagus irregularis, only five have been characterized, of which merely two have been studied in detail to understand which plant proteins they associate with to affect the host physiology. Here, we review the most recent findings in AMF effector research and discuss the techniques used for the functional characterization of effector proteins, from their in silico prediction to their mode of action, with an emphasis on high-throughput approaches for the identification of plant targets of the effectors through which they manipulate their hosts.
Collapse
Affiliation(s)
- María V. Aparicio Chacón
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Judith Van Dingenen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| |
Collapse
|
24
|
Wang S, Xie X, Che X, Lai W, Ren Y, Fan X, Hu W, Tang M, Chen H. Host- and virus-induced gene silencing of HOG1-MAPK cascade genes in Rhizophagus irregularis inhibit arbuscule development and reduce resistance of plants to drought stress. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:866-883. [PMID: 36609693 PMCID: PMC10037146 DOI: 10.1111/pbi.14006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 11/18/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi can form beneficial associations with the most terrestrial vascular plant species. AM fungi not only facilitate plant nutrient acquisition but also enhance plant tolerance to various environmental stresses such as drought stress. However, the molecular mechanisms by which AM fungal mitogen-activated protein kinase (MAPK) cascades mediate the host adaptation to drought stimulus remains to be investigated. Recently, many studies have shown that virus-induced gene silencing (VIGS) and host-induced gene silencing (HIGS) strategies are used for functional studies of AM fungi. Here, we identify the three HOG1 (High Osmolarity Glycerol 1)-MAPK cascade genes RiSte11, RiPbs2 and RiHog1 from Rhizophagus irregularis. The expression levels of the three HOG1-MAPK genes are significantly increased in mycorrhizal roots of the plant Astragalus sinicus under severe drought stress. RiHog1 protein was predominantly localized in the nucleus of yeast in response to 1 M sorbitol treatment, and RiPbs2 interacts with RiSte11 or RiHog1 directly by pull-down assay. Importantly, VIGS or HIGS of RiSte11, RiPbs2 or RiHog1 hampers arbuscule development and decreases relative water content in plants during AM symbiosis. Moreover, silencing of HOG1-MAPK cascade genes led to the decreased expression of drought-resistant genes (RiAQPs, RiTPSs, RiNTH1 and Ri14-3-3) in the AM fungal symbiont in response to drought stress. Taken together, this study demonstrates that VIGS or HIGS of AM fungal HOG1-MAPK cascade inhibits arbuscule development and expression of AM fungal drought-resistant genes under drought stress.
Collapse
Affiliation(s)
- Sijia Wang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro‐Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhouChina
| | - Xianan Xie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro‐Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhouChina
| | - Xianrong Che
- State Key Laboratory of Conservation and Utilization of Subtropical Agro‐Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhouChina
| | - Wenzhen Lai
- State Key Laboratory of Conservation and Utilization of Subtropical Agro‐Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhouChina
| | - Ying Ren
- State Key Laboratory of Conservation and Utilization of Subtropical Agro‐Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhouChina
| | - Xiaoning Fan
- State Key Laboratory of Conservation and Utilization of Subtropical Agro‐Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhouChina
| | - Wentao Hu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro‐Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhouChina
| | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro‐Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhouChina
| | - Hui Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro‐Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
25
|
van Creij J, Auxier B, An J, Wijfjes RY, Bergin C, Rosling A, Bisseling T, Pan Z, Limpens E. Stochastic nuclear organization and host-dependent allele contribution in Rhizophagus irregularis. BMC Genomics 2023; 24:53. [PMID: 36709253 PMCID: PMC9883914 DOI: 10.1186/s12864-023-09126-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/10/2023] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Arbuscular mycorrhizal (AM) fungi are arguably the most important symbionts of plants, offering a range of benefits to their hosts. However, the provisioning of these benefits does not appear to be uniform among AM fungal individuals, with genetic variation between fungal symbionts having a substantial impact on plant performance. Interestingly, genetic variation has also been reported within fungal individuals, which contain millions of haploid nuclei sharing a common cytoplasm. In the model AM fungus, Rhizophagus irregularis, several isolates have been reported to be dikaryotes, containing two genetically distinct types of nuclei recognized based on their mating-type (MAT) locus identity. However, their extremely coenocytic nature and lack of a known single nucleus stage has raised questions on the origin, distribution and dynamics of this genetic variation. RESULTS Here we performed DNA and RNA sequencing at the mycelial individual, single spore and single nucleus levels to gain insight into the dynamic genetic make-up of the dikaryote-like R. irregularis C3 isolate and the effect of different host plants on its genetic variation. Our analyses reveal that parallel spore and root culture batches can have widely variable ratios of two main genotypes in C3. Additionally, numerous polymorphisms were found with frequencies that deviated significantly from the general genotype ratio, indicating a diverse population of slightly different nucleotypes. Changing host plants did not show consistent host effects on nucleotype ratio's after multiple rounds of subculturing. Instead, we found a major effect of host plant-identity on allele-specific expression in C3. CONCLUSION Our analyses indicate a highly dynamic/variable genetic organization in different isolates of R. irregularis. Seemingly random fluctuations in nucleotype ratio's upon spore formation, recombination events, high variability of non-tandemly repeated rDNA sequences and host-dependent allele expression all add levels of variation that may contribute to the evolutionary success of these widespread symbionts.
Collapse
Affiliation(s)
- Jelle van Creij
- grid.4818.50000 0001 0791 5666Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, The Netherlands
| | - Ben Auxier
- grid.4818.50000 0001 0791 5666Laboratory of Genetics, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, The Netherlands
| | - Jianyong An
- grid.4818.50000 0001 0791 5666Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, The Netherlands ,grid.411626.60000 0004 1798 6793Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206 China
| | - Raúl Y. Wijfjes
- grid.4818.50000 0001 0791 5666Laboratory of Bioinformatics, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, The Netherlands ,grid.5252.00000 0004 1936 973XCurrent affiliation: Faculty of Biology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Claudia Bergin
- grid.8993.b0000 0004 1936 9457Department of Cell and Molecular Biology, Uppsala University, and Microbial Single Cell Genomics Facility, Science for Life Laboratory, Uppsala, Sweden
| | - Anna Rosling
- grid.8993.b0000 0004 1936 9457Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, SE-75236 Uppsala, Sweden
| | - Ton Bisseling
- grid.4818.50000 0001 0791 5666Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, The Netherlands ,grid.411626.60000 0004 1798 6793Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206 China
| | - Zhiyong Pan
- grid.35155.370000 0004 1790 4137Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region, Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Erik Limpens
- grid.4818.50000 0001 0791 5666Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, The Netherlands
| |
Collapse
|
26
|
Zhang S, Nie Y, Fan X, Wei W, Chen H, Xie X, Tang M. A transcriptional activator from Rhizophagus irregularis regulates phosphate uptake and homeostasis in AM symbiosis during phosphorous starvation. Front Microbiol 2023; 13:1114089. [PMID: 36741887 PMCID: PMC9895418 DOI: 10.3389/fmicb.2022.1114089] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/28/2022] [Indexed: 01/22/2023] Open
Abstract
Introduction Phosphorus (P) is one of the most important nutrient elements for plant growth and development. Under P starvation, arbuscular mycorrhizal (AM) fungi can promote phosphate (Pi) uptake and homeostasis within host plants. However, the underlying mechanisms by which AM fungal symbiont regulates the AM symbiotic Pi acquisition from soil under P starvation are largely unknown. Here, we identify a HLH domain containing transcription factor RiPho4 from Rhizophagus irregularis. Methods To investigate the biological functions of the RiPho4, we combined the subcellular localization and Yeast One-Hybrid (Y1H) experiments in yeasts with gene expression and virus-induced gene silencing approach during AM symbiosis. Results The approach during AM symbiosis. The results indicated that RiPho4 encodes a conserved transcription factor among different fungi and is induced during the in planta phase. The transcription of RiPho4 is significantly up-regulated by P starvation. The subcellular localization analysis revealed that RiPho4 is located in the nuclei of yeast cells during P starvation. Moreover, knock-down of RiPho4 inhibits the arbuscule development and mycorrhizal Pi uptake under low Pi conditions. Importantly, RiPho4 can positively regulate the downstream components of the phosphate (PHO) pathway in R. irregularis. Discussion In summary, these new findings reveal that RiPho4 acts as a transcriptional activator in AM fungus to maintain arbuscule development and regulate Pi uptake and homeostasis in the AM symbiosis during Pi starvation.
Collapse
Affiliation(s)
| | | | | | | | | | - Xianan Xie
- *Correspondence: Xianan Xie, ; Ming Tang,
| | - Ming Tang
- *Correspondence: Xianan Xie, ; Ming Tang,
| |
Collapse
|
27
|
Duan S, Declerck S, Feng G, Zhang L. Hyphosphere interactions between Rhizophagus irregularis and Rahnella aquatilis promote carbon-phosphorus exchange at the peri-arbuscular space in Medicago truncatula. Environ Microbiol 2023; 25:867-879. [PMID: 36588345 DOI: 10.1111/1462-2920.16333] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi form a continuum between roots and soil. One end of this continuum is comprised of the highly intimate plant-fungus interface with intracellular organelles for nutrient exchange, while on the other end the fungus interacts with bacteria to compensate for the AM fungus' inability to take up organic nutrients from soil. How both interfaces communicate in this highly complex tripartite mutualism is widely unknown. Here, the effects of phosphate-solubilizing bacteria (PSB) Rahnella aquatilis dwelling at the surface of the extraradical hyphae of Rhizophagus irregularis was analysed based on the expression of genes involved in C-P exchange at the peri-arbuscular space (PAS) in Medicago truncatula. The interaction between AM fungus and PSB resulted in an increase in uptake and transport of Pi along the extraradical hyphae and its transfer from AM fungus to plant. In return, this was remunerated by a transfer of C from plant to AM fungus, improving the C-P exchange at the PAS. These results demonstrated that a microorganism (i.e., a PSB) developing at the hyphosphere interface can affect the C-P exchange at the PAS between plant and AM fungus, suggesting a fine-tuned communication operated between three organisms via two distantly connected interfaces.
Collapse
Affiliation(s)
- Shilong Duan
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China.,Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China.,National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing, China
| | - Stéphane Declerck
- Université catholique de Louvain, Earth and Life Institute, Applied Microbiology, Mycology, Louvain-la-Neuve, Belgium
| | - Gu Feng
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China.,Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China.,National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing, China
| | - Lin Zhang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China.,Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China.,National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing, China
| |
Collapse
|
28
|
The Role of Medicago lupulina Interaction with Rhizophagus irregularis in the Determination of Root Metabolome at Early Stages of AM Symbiosis. PLANTS 2022; 11:plants11182338. [PMID: 36145739 PMCID: PMC9501341 DOI: 10.3390/plants11182338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/25/2022] [Accepted: 09/03/2022] [Indexed: 11/30/2022]
Abstract
The nature of plant–fungi interaction at early stages of arbuscular mycorrhiza (AM) development is still a puzzling problem. To investigate the processes behind this interaction, we used the Medicago lupulina MlS-1 line that forms high-efficient AM symbiosis with Rhizophagus irregularis. AM fungus actively colonizes the root system of the host plant and contributes to the formation of effective AM as characterized by a high mycorrhizal growth response (MGR) in the host plant. The present study is aimed at distinguishing the alterations in the M. lupulina root metabolic profile as an indicative marker of effective symbiosis. We examined the root metabolome at the 14th and 24th day after sowing and inoculation (DAS) with low substrate phosphorus levels. A GS-MS analysis detected 316 metabolites. Results indicated that profiles of M. lupulina root metabolites differed from those in leaves previously detected. The roots contained fewer sugars and organic acids. Hence, compounds supporting the growth of mycorrhizal fungus (especially amino acids, specific lipids, and carbohydrates) accumulated, and their presence coincided with intensive development of AM structures. Mycorrhization determined the root metabolite profile to a greater extent than host plant development. The obtained data highlight the importance of active plant–fungi metabolic interaction at early stages of host plant development for the determination of symbiotic efficiency.
Collapse
|
29
|
Goh D, Martin JGA, Banchini C, MacLean AM, Stefani F. RocTest: A standardized method to assess the performance of root organ cultures in the propagation of arbuscular mycorrhizal fungi. Front Microbiol 2022; 13:937912. [PMID: 35966663 PMCID: PMC9366734 DOI: 10.3389/fmicb.2022.937912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Over the past three decades, root organ cultures (ROCs) have been the gold standard method for studying arbuscular mycorrhizal fungi (AMF) under in vitro conditions, and ROCs derived from various plant species have been used as hosts for AM monoxenic cultures. While there is compelling evidence that host identity can significantly modify AMF fitness, there is currently no standardized methodology to assess the performance of ROCs in the propagation of their fungal symbionts. We describe RocTest, a robust methodological approach that models the propagation of AMF in symbiosis with ROCs. The development of extraradical fungal structures and the pattern of sporulation are modeled using cumulative link mixed models and linear mixed models. We demonstrate functionality of RocTest by evaluating the performance of three species of ROCs (Daucus carota, Medicago truncatula, Nicotiana benthamiana) in the propagation of three species of AMF (Rhizophagus clarus, Rhizophagus irregularis, Glomus sp.). RocTest produces a simple graphical output to assess the performance of ROCs and shows that fungal propagation depends on the three-way interaction between ROC, AMF, and time. RocTest makes it possible to identify the best combination of host/AMF for fungal development and spore production, making it an important asset for germplasm collections and AMF research.
Collapse
Affiliation(s)
- Dane Goh
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | | | - Claudia Banchini
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, Canada
| | | | - Franck Stefani
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, Canada
| |
Collapse
|
30
|
López-Lorca VM, Molina-Luzón MJ, Ferrol N. Characterization of the NRAMP Gene Family in the Arbuscular Mycorrhizal Fungus Rhizophagus irregularis. J Fungi (Basel) 2022; 8:jof8060592. [PMID: 35736075 PMCID: PMC9224570 DOI: 10.3390/jof8060592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/18/2022] [Accepted: 05/25/2022] [Indexed: 12/04/2022] Open
Abstract
Transporters of the NRAMP family are ubiquitous metal-transition transporters, playing a key role in metal homeostasis, especially in Mn and Fe homeostasis. In this work, we report the characterization of the NRAMP family members (RiSMF1, RiSMF2, RiSMF3.1 and RiSMF3.2) of the arbuscular mycorrhizal (AM) fungus Rhizophagus irregularis. Phylogenetic analysis of the NRAMP sequences of different AM fungi showed that they are classified in two groups, which probably diverged early in their evolution. Functional analyses in yeast revealed that RiSMF3.2 encodes a protein mediating Mn and Fe transport from the environment. Gene-expression analyses by RT-qPCR showed that the RiSMF genes are differentially expressed in the extraradical (ERM) and intraradical (IRM) mycelium and differentially regulated by Mn and Fe availability. Mn starvation decreased RiSMF1 transcript levels in the ERM but increased RiSMF3.1 expression in the IRM. In the ERM, RiSMF1 expression was up-regulated by Fe deficiency, suggesting a role for its encoded protein in Fe-deficiency alleviation. Expression of RiSMF3.2 in the ERM was up-regulated at the early stages of Fe toxicity but down-regulated at later stages. These data suggest a role for RiSMF3.2 not only in Fe transport but also as a sensor of high external-Fe concentrations. Both Mn- and Fe-deficient conditions affected ERM development. While Mn deficiency increased hyphal length, Fe deficiency reduced sporulation.
Collapse
|
31
|
Molecular Regulation of Arbuscular Mycorrhizal Symbiosis. Int J Mol Sci 2022; 23:ijms23115960. [PMID: 35682640 PMCID: PMC9180548 DOI: 10.3390/ijms23115960] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 02/07/2023] Open
Abstract
Plant-microorganism interactions at the rhizosphere level have a major impact on plant growth and plant tolerance and/or resistance to biotic and abiotic stresses. Of particular importance for forestry and agricultural systems is the cooperative and mutualistic interaction between plant roots and arbuscular mycorrhizal (AM) fungi from the phylum Glomeromycotina, since about 80% of terrestrial plant species can form AM symbiosis. The interaction is tightly regulated by both partners at the cellular, molecular and genetic levels, and it is highly dependent on environmental and biological variables. Recent studies have shown how fungal signals and their corresponding host plant receptor-mediated signalling regulate AM symbiosis. Host-generated symbiotic responses have been characterized and the molecular mechanisms enabling the regulation of fungal colonization and symbiosis functionality have been investigated. This review summarizes these and other recent relevant findings focusing on the molecular players and the signalling that regulate AM symbiosis. Future progress and knowledge about the underlying mechanisms for AM symbiosis regulation will be useful to facilitate agro-biotechnological procedures to improve AM colonization and/or efficiency.
Collapse
|
32
|
Reichert T, Rammig A, Fuchslueger L, Lugli LF, Quesada CA, Fleischer K. Plant phosphorus-use and -acquisition strategies in Amazonia. THE NEW PHYTOLOGIST 2022; 234:1126-1143. [PMID: 35060130 DOI: 10.1111/nph.17985] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
In the tropical rainforest of Amazonia, phosphorus (P) is one of the main nutrients controlling forest dynamics, but its effects on the future of the forest biomass carbon (C) storage under elevated atmospheric CO2 concentrations remain uncertain. Soils in vast areas of Amazonia are P-impoverished, and little is known about the variation or plasticity in plant P-use and -acquisition strategies across space and time, hampering the accuracy of projections in vegetation models. Here, we synthesize current knowledge of leaf P resorption, fine-root P foraging, arbuscular mycorrhizal symbioses, and root acid phosphatase and organic acid exudation and discuss how these strategies vary with soil P concentrations and in response to elevated atmospheric CO2 . We identify knowledge gaps and suggest ways forward to fill those gaps. Additionally, we propose a conceptual framework for the variations in plant P-use and -acquisition strategies along soil P gradients of Amazonia. We suggest that in soils with intermediate to high P concentrations, at the plant community level, investments are primarily directed to P foraging strategies via roots and arbuscular mycorrhizas, whereas in soils with intermediate to low P concentrations, investments shift to prioritize leaf P resorption and mining strategies via phosphatases and organic acids.
Collapse
Affiliation(s)
- Tatiana Reichert
- School of Life Sciences, Technical University of Munich, Freising, 85354, Germany
| | - Anja Rammig
- School of Life Sciences, Technical University of Munich, Freising, 85354, Germany
| | - Lucia Fuchslueger
- Centre of Microbiology and Environmental Systems Science, University of Vienna, Vienna, 1090, Austria
| | - Laynara F Lugli
- National Institute of Amazonian Research, Manaus, 69060-062, Brazil
| | - Carlos A Quesada
- National Institute of Amazonian Research, Manaus, 69060-062, Brazil
| | - Katrin Fleischer
- School of Life Sciences, Technical University of Munich, Freising, 85354, Germany
- Department Biogeochemical Signals, Max Planck Institute for Biogeochemistry, Jena, 07745, Germany
| |
Collapse
|
33
|
Xie X, Lai W, Che X, Wang S, Ren Y, Hu W, Chen H, Tang M. A SPX domain-containing phosphate transporter from Rhizophagus irregularis handles phosphate homeostasis at symbiotic interface of arbuscular mycorrhizas. THE NEW PHYTOLOGIST 2022; 234:650-671. [PMID: 35037255 DOI: 10.1111/nph.17973] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 12/22/2021] [Indexed: 05/28/2023]
Abstract
Reciprocal symbiosis of > 70% of terrestrial vascular plants with arbuscular mycorrhizal (AM) fungi provides the fungi with fatty acids and sugars. In return, AM fungi facilitate plant phosphate (Pi) uptake from soil. However, how AM fungi handle Pi transport and homeostasis at the symbiotic interface of AM symbiosis is poorly understood. Here, we identify an SPX (SYG1/Pho81/XPR1) domain-containing phosphate transporter, RiPT7 from Rhizophagus irregularis. To characterize the RiPT7 transporter, we combined subcellular localization and heterologous expression studies in yeasts with reverse genetics approaches during the in planta phase. The results show that RiPT7 is conserved across fungal species and expressed in the intraradical mycelia. It is expressed in the arbuscules, intraradical hyphae and vesicles, independently of Pi availability. The plasma membrane-localized RiPT7 facilitates bidirectional Pi transport, depending on Pi gradient across the plasma membrane, whereas the SPX domain of RiPT7 inhibits Pi transport activity and mediates the vacuolar targeting of RiPT7 in yeast in response to Pi starvation. Importantly, RiPT7 silencing hampers arbuscule development of R. irregularis and symbiotic Pi delivery under medium- to low-Pi conditions. Collectively, our findings reveal a role for RiPT7 in fine-tuning of Pi homeostasis across the fungal membrane to maintain the AM development.
Collapse
Affiliation(s)
- Xianan Xie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Wenzhen Lai
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xianrong Che
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Sijia Wang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Ying Ren
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Wentao Hu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Hui Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
34
|
Zhang L, Zhou J, George TS, Limpens E, Feng G. Arbuscular mycorrhizal fungi conducting the hyphosphere bacterial orchestra. TRENDS IN PLANT SCIENCE 2022; 27:402-411. [PMID: 34782247 DOI: 10.1016/j.tplants.2021.10.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/13/2021] [Accepted: 10/22/2021] [Indexed: 05/22/2023]
Abstract
More than two-thirds of terrestrial plants acquire nutrients by forming a symbiosis with arbuscular mycorrhizal (AM) fungi. AM fungal hyphae recruit distinct microbes into their hyphosphere, the narrow region of soil influenced by hyphal exudates. They thereby shape this so-called second genome of AM fungi, which significantly contributes to nutrient mobilization and turnover. We summarize current insights into characteristics of the hyphosphere microbiome and the role of hyphal exudates on orchestrating its composition. The hyphal exudates not only contain carbon-rich compounds but also promote bacterial growth and activity and influence the microbial community structure. These effects lead to shifts in function and cause changes in organic nutrient cycling, making the hyphosphere a unique and largely overlooked functional zone in ecosystems.
Collapse
Affiliation(s)
- Lin Zhang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China
| | - Jiachao Zhou
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China
| | | | - Erik Limpens
- Laboratory of Molecular Biology, Wageningen University & Research, Wageningen 6708, PB, The Netherlands
| | - Gu Feng
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
35
|
Yildirir G, Sperschneider J, Malar C M, Chen ECH, Iwasaki W, Cornell C, Corradi N. Long reads and Hi-C sequencing illuminate the two-compartment genome of the model arbuscular mycorrhizal symbiont Rhizophagus irregularis. THE NEW PHYTOLOGIST 2022; 233:1097-1107. [PMID: 34747029 DOI: 10.1111/nph.17842] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Chromosome folding links genome structure with gene function by generating distinct nuclear compartments and topologically associating domains. In mammals, these undergo preferential interactions and regulate gene expression. However, their role in fungal genome biology is unclear. Here, we combine Nanopore (ONT) sequencing with chromatin conformation capture sequencing (Hi-C) to reveal chromosome and epigenetic diversity in a group of obligate plant symbionts: the arbuscular mycorrhizal fungi (AMF). We find that five phylogenetically distinct strains of the model AMF Rhizophagus irregularis carry 33 chromosomes with substantial within-species variability in size, as well as in gene and repeat content. Strain-specific Hi-C contact maps reveal a 'checkerboard' pattern that underline two dominant euchromatin (A) and heterochromatin (B) compartments. Each compartment differs in the level of gene transcription, regulation of candidate effectors and methylation frequencies. The A-compartment is more gene-dense and contains most core genes, while the B-compartment is more repeat-rich and has higher rates of chromosomal rearrangement. While the B-compartment is transcriptionally repressed, it has significantly more secreted proteins and in planta upregulated candidate effectors, suggesting a possible host-induced change in chromosome conformation. Overall, this study provides a fine-scale view into the genome biology and evolution of model plant symbionts, and opens avenues to study the epigenetic mechanisms that modify chromosome folding during host-microbe interactions.
Collapse
Affiliation(s)
- Gökalp Yildirir
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Jana Sperschneider
- Biological Data Science Institute, The Australian National University, Canberra, ACT, 260, Australia
| | - Mathu Malar C
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Eric C H Chen
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, 1113-0033, Japan
| | - Wataru Iwasaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, 1113-0033, Japan
| | - Calvin Cornell
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Nicolas Corradi
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| |
Collapse
|
36
|
Abstract
Rhizophagus irregularis is one of the most extensively studied arbuscular mycorrhizal fungi (AMF) that forms symbioses with and improves the performance of many crops. Lack of transformation protocol for R. irregularis renders it challenging to investigate molecular mechanisms that shape the physiology and interactions of this AMF with plants. Here, we used all published genomics, transcriptomics, and metabolomics resources to gain insights into the metabolic functionalities of R. irregularis by reconstructing its high-quality genome-scale metabolic network that considers enzyme constraints. Extensive validation tests with the enzyme-constrained metabolic model demonstrated that it can be used to (i) accurately predict increased growth of R. irregularis on myristate with minimal medium; (ii) integrate enzyme abundances and carbon source concentrations that yield growth predictions with high and significant Spearman correlation (ρS = 0.74) to measured hyphal dry weight; and (iii) simulate growth rate increases with tighter association of this AMF with the host plant across three fungal structures. Based on the validated model and system-level analyses that integrate data from transcriptomics studies, we predicted that differences in flux distributions between intraradical mycelium and arbuscles are linked to changes in amino acid and cofactor biosynthesis. Therefore, our results demonstrated that the enzyme-constrained metabolic model can be employed to pinpoint mechanisms driving developmental and physiological responses of R. irregularis to different environmental cues. In conclusion, this model can serve as a template for other AMF and paves the way to identify metabolic engineering strategies to modulate fungal metabolic traits that directly affect plant performance. IMPORTANCE Mounting evidence points to the benefits of the symbiotic interactions between the arbuscular mycorrhiza fungus Rhizophagus irregularis and crops; however, the molecular mechanisms underlying the physiological responses of this fungus to different host plants and environments remain largely unknown. We present a manually curated, enzyme-constrained, genome-scale metabolic model of R. irregularis that can accurately predict experimentally observed phenotypes. We show that this high-quality model provides an entry point into better understanding the metabolic and physiological responses of this fungus to changing environments due to the availability of different nutrients. The model can be used to design metabolic engineering strategies to tailor R. irregularis metabolism toward improving the performance of host plants.
Collapse
|
37
|
Seemann C, Heck C, Voß S, Schmoll J, Enderle E, Schwarz D, Requena N. Root cortex development is fine-tuned by the interplay of MIGs, SCL3 and DELLAs during arbuscular mycorrhizal symbiosis. THE NEW PHYTOLOGIST 2022; 233:948-965. [PMID: 34693526 DOI: 10.1111/nph.17823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Root development is a crucial process that determines the ability of plants to acquire nutrients, adapt to the substrate and withstand changing environmental conditions. Root plasticity is controlled by a plethora of transcriptional regulators that allow, in contrast to tissue development in animals, post-embryonic changes that give rise to new tissue and specialized cells. One of these changes is the accommodation in the cortex of hyperbranched hyphae of symbiotic arbuscular mycorrhizal (AM) fungi, called arbuscules. Arbuscule-containing cells undergo massive reprogramming to coordinate developmental changes with transport processes. Here we describe a novel negative regulator of arbuscule development, MIG3. MIG3 induces and interacts with SCL3, both of which modulate the activity of the central regulator DELLA, restraining cortical cell growth. As in a tug-of-war, MIG3-SCL3 antagonizes the function of the complex MIG1-DELLA, which promotes the cell expansion required for arbuscule development, adjusting cell size during the dynamic processes of the arbuscule life cycle. Our results in the legume plant Medicago truncatula advance the knowledge of root development in dicot plants, showing the existence of additional regulatory elements not present in Arabidopsis that fine-tune the activity of conserved central modules.
Collapse
Affiliation(s)
- Christine Seemann
- Molecular Phytopathology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Carolin Heck
- Molecular Phytopathology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Stefanie Voß
- Molecular Phytopathology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Jana Schmoll
- Molecular Phytopathology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Eileen Enderle
- Molecular Phytopathology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Diana Schwarz
- Molecular Phytopathology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Natalia Requena
- Molecular Phytopathology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| |
Collapse
|
38
|
Wang P, Snijders R, Kohlen W, Liu J, Bisseling T, Limpens E. Medicago SPX1 and SPX3 regulate phosphate homeostasis, mycorrhizal colonization, and arbuscule degradation. THE PLANT CELL 2021; 33:3470-3486. [PMID: 34469578 PMCID: PMC8567062 DOI: 10.1093/plcell/koab206] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/12/2021] [Indexed: 05/22/2023]
Abstract
To acquire sufficient mineral nutrients such as phosphate (Pi) from the soil, most plants engage in symbiosis with arbuscular mycorrhizal (AM) fungi. Attracted by plant-secreted strigolactones (SLs), the fungi colonize the roots and form highly branched hyphal structures called arbuscules inside inner cortex cells. The host plant must control the different steps of this interaction to maintain its symbiotic nature. However, how plants sense the amount of Pi obtained from the fungus, and how this determines the arbuscule lifespan, are far from understood. Here, we show that Medicago truncatula SPX-domain containing proteins SPX1 and SPX3 regulate root Pi starvation responses, in part by interacting with PHOSPHATE RESPONSE REGULATOR2, as well as fungal colonization and arbuscule degradation. SPX1 and SPX3 are induced upon Pi starvation but become more restricted to arbuscule-containing cells upon the establishment of symbiosis. This induction in arbuscule-containing cells is associated with the presence of cis-regulatory AW-boxes and transcriptional regulation by the WRINKLED1-like transcription factor WRI5a. Under Pi-limiting conditions, SPX1 and SPX3 facilitate the expression of the SL biosynthesis gene DWARF27, which could help explain the increased fungal branching in response to root exudates. Later, in arbuscule-containing cells, SPX1 and SPX3 redundantly control arbuscule degradation. Thus, SPX proteins play important roles as phosphate sensors to maintain a beneficial AM symbiosis.
Collapse
Affiliation(s)
- Peng Wang
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Roxane Snijders
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Wouter Kohlen
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Jieyu Liu
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Ton Bisseling
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Erik Limpens
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
- Author for correspondence:
| |
Collapse
|
39
|
Sand Particle Size and Phosphorus Amount Affect Rhizophagus irregularis Spore Production Using In Vitro Propagated Spore as a Starter Inoculum in Rhizosphere of Maize ( Zea mays) Plantlets. J Fungi (Basel) 2021; 7:jof7100846. [PMID: 34682267 PMCID: PMC8541049 DOI: 10.3390/jof7100846] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/28/2021] [Accepted: 10/04/2021] [Indexed: 11/16/2022] Open
Abstract
Microbial inoculants, particularly arbuscular mycorrhizal (AM) fungi, have great potential for sustainable crop management. In this study, monoxenic culture of indigenous R. irregularis was developed and used as a tool to determine the minimum phosphorus (P) level for maximum spore production under the in vitro conditions. This type of starter AM fungal inoculum was then applied to an in vivo substrate-based mass-cultivation system. Spore production, colonization rate, and plant growth were examined in maize (Zea mays L.) plant inoculated with the monoxenic culture of R. irregularis in sand graded by particle size with varying P levels in nutrient treatments. In the in vitro culture, the growth medium supplemented with 20 µM P generated the maximum number of spores (400 spores/mL media) of R. irregularis. In the in vivo system, the highest sporulation (≈500 spores g−1 sand) occurred when we added a half-strength Hoagland solution (20 µM P) in the sand with particle size between 500 µm and 710 µm and omitted P after seven weeks. However, the highest colonization occurred when we added a half-strength Hoagland solution in the sand with particle sizes between 710 µm and 1000 µm and omitted P after seven weeks. This study suggests that substrate particle size and P reduction and regulation might have a strong influence on the maximization of sporulation and colonization of R. irregularis in sand substrate-based culture.
Collapse
|
40
|
Lu H, Wei T, Lou H, Shu X, Chen Q. A Critical Review on Communication Mechanism within Plant-Endophytic Fungi Interactions to Cope with Biotic and Abiotic Stresses. J Fungi (Basel) 2021; 7:719. [PMID: 34575757 PMCID: PMC8466524 DOI: 10.3390/jof7090719] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 12/28/2022] Open
Abstract
Endophytic fungi infect plant tissues by evading the immune response, potentially stimulating stress-tolerant plant growth. The plant selectively allows microbial colonization to carve endophyte structures through phenotypic genes and metabolic signals. Correspondingly, fungi develop various adaptations through symbiotic signal transduction to thrive in mycorrhiza. Over the past decade, the regulatory mechanism of plant-endophyte interaction has been uncovered. Currently, great progress has been made on plant endosphere, especially in endophytic fungi. Here, we systematically summarize the current understanding of endophytic fungi colonization, molecular recognition signal pathways, and immune evasion mechanisms to clarify the transboundary communication that allows endophytic fungi colonization and homeostatic phytobiome. In this work, we focus on immune signaling and recognition mechanisms, summarizing current research progress in plant-endophyte communication that converge to improve our understanding of endophytic fungi.
Collapse
Affiliation(s)
- Hongyun Lu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (H.L.); (T.W.); (H.L.)
| | - Tianyu Wei
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (H.L.); (T.W.); (H.L.)
| | - Hanghang Lou
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (H.L.); (T.W.); (H.L.)
| | - Xiaoli Shu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (H.L.); (T.W.); (H.L.)
| |
Collapse
|
41
|
Quo vadis: signaling molecules and small secreted proteins from mycorrhizal fungi at the early stage of mycorrhiza formation. Symbiosis 2021. [DOI: 10.1007/s13199-021-00793-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
42
|
Wang P, Jiang H, Boeren S, Dings H, Kulikova O, Bisseling T, Limpens E. A nuclear-targeted effector of Rhizophagus irregularis interferes with histone 2B mono-ubiquitination to promote arbuscular mycorrhisation. THE NEW PHYTOLOGIST 2021; 230:1142-1155. [PMID: 33507543 PMCID: PMC8048545 DOI: 10.1111/nph.17236] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/18/2021] [Indexed: 05/17/2023]
Abstract
Arguably, symbiotic arbuscular mycorrhizal (AM) fungi have the broadest host range of all fungi, being able to intracellularly colonise root cells in the vast majority of all land plants. This raises the question how AM fungi effectively deal with the immune systems of such a widely diverse range of plants. Here, we studied the role of a nuclear-localisation signal-containing effector from Rhizophagus irregularis, called Nuclear Localised Effector1 (RiNLE1), that is highly and specifically expressed in arbuscules. We showed that RiNLE1 is able to translocate to the host nucleus where it interacts with the plant core nucleosome protein histone 2B (H2B). RiNLE1 is able to impair the mono-ubiquitination of H2B, which results in the suppression of defence-related gene expression and enhanced colonisation levels. This study highlights a novel mechanism by which AM fungi can effectively control plant epigenetic modifications through direct interaction with a core nucleosome component. Homologues of RiNLE1 are found in a range of fungi that establish intimate interactions with plants, suggesting that this type of effector may be more widely recruited to manipulate host defence responses.
Collapse
Affiliation(s)
- Peng Wang
- Laboratory of Molecular BiologyWageningen University & ResearchWageningen6708 PBthe Netherlands
| | - Henan Jiang
- Laboratory of Molecular BiologyWageningen University & ResearchWageningen6708 PBthe Netherlands
| | - Sjef Boeren
- Laboratory of BiochemistryWageningen University & ResearchWageningen6708 WEthe Netherlands
| | - Harm Dings
- Laboratory of Molecular BiologyWageningen University & ResearchWageningen6708 PBthe Netherlands
| | - Olga Kulikova
- Laboratory of Molecular BiologyWageningen University & ResearchWageningen6708 PBthe Netherlands
| | - Ton Bisseling
- Laboratory of Molecular BiologyWageningen University & ResearchWageningen6708 PBthe Netherlands
| | - Erik Limpens
- Laboratory of Molecular BiologyWageningen University & ResearchWageningen6708 PBthe Netherlands
| |
Collapse
|
43
|
The genome of Geosiphon pyriformis reveals ancestral traits linked to the emergence of the arbuscular mycorrhizal symbiosis. Curr Biol 2021; 31:1570-1577.e4. [PMID: 33592192 DOI: 10.1016/j.cub.2021.01.058] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/18/2020] [Accepted: 01/18/2021] [Indexed: 01/19/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) (subphylum Glomeromycotina)1 are among the most prominent symbionts and form the Arbuscular Mycorrhizal symbiosis (AMS) with over 70% of known land plants.2,3 AMS allows plants to efficiently acquire poorly soluble soil nutrients4 and AMF to receive photosynthetically fixed carbohydrates. This plant-fungus symbiosis dates back more than 400 million years5 and is thought to be one of the key innovations that allowed the colonization of lands by plants.6 Genomic and genetic analyses of diverse plant species started to reveal the molecular mechanisms that allowed the evolution of this symbiosis on the host side, but how and when AMS abilities emerged in AMF remain elusive. Comparative phylogenomics could be used to understand the evolution of AMS.7,8 However, the availability of genome data covering basal AMF phylogenetic nodes (Archaeosporales, Paraglomerales) is presently based on fragmentary protein coding datasets.9Geosiphon pyriformis (Archaeosporales) is the only fungus known to produce endosymbiosis with nitrogen-fixing cyanobacteria (Nostoc punctiforme) presumably representing the ancestral AMF state.10-12 Unlike other AMF, it forms long fungal cells ("bladders") that enclose cyanobacteria. Once in the bladder, the cyanobacteria are photosynthetically active and fix nitrogen, receiving inorganic nutrients and water from the fungus. Arguably, G. pyriformis represents an ideal candidate to investigate the origin of AMS and the emergence of a unique endosymbiosis. Here, we aimed to advance knowledge in these questions by sequencing the genome of G. pyriformis, using a re-discovered isolate.
Collapse
|
44
|
Reinhardt D, Roux C, Corradi N, Di Pietro A. Lineage-Specific Genes and Cryptic Sex: Parallels and Differences between Arbuscular Mycorrhizal Fungi and Fungal Pathogens. TRENDS IN PLANT SCIENCE 2021; 26:111-123. [PMID: 33011084 DOI: 10.1016/j.tplants.2020.09.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/29/2020] [Accepted: 09/08/2020] [Indexed: 05/25/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) live as obligate root symbionts on almost all land plants. They have long been regarded as ancient asexuals that have propagated clonally for millions of years. However, genomic studies in Rhizophagus irregularis and other AMF revealed many features indicative of sex. Surprisingly, comparative genomics of conspecific isolates of R. irregularis revealed an unexpected interstrain diversity, suggesting that AMF carry a high number of lineage-specific (LS) genes. Intriguingly, cryptic sex and LS genomic regions have previously been reported in a number of fungal pathogens of plants and humans. Here, we discuss these genomic similarities and highlight their potential relevance for AMF adaptation to the environment and for symbiotic functioning.
Collapse
Affiliation(s)
- Didier Reinhardt
- Department of Biology, University of Fribourg, Fribourg, Switzerland.
| | - Christophe Roux
- Laboratoire de Recherche en Sciences Végétales, UPS, CNRS, Université de Toulouse, Castanet-Tolosan 31326, France
| | - Nicolas Corradi
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Antonio Di Pietro
- Departamento de Genética, Universidad de Cordoba, 14071 Cordoba, Spain
| |
Collapse
|
45
|
Wang D, Peng C, Zheng X, Chang L, Xu B, Tong Z. Secretome Analysis of the Banana Fusarium Wilt Fungi Foc R1 and Foc TR4 Reveals a New Effector OASTL Required for Full Pathogenicity of Foc TR4 in Banana. Biomolecules 2020; 10:E1430. [PMID: 33050283 PMCID: PMC7601907 DOI: 10.3390/biom10101430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/25/2020] [Accepted: 10/07/2020] [Indexed: 12/16/2022] Open
Abstract
Banana Fusarium wilt (BFW), which is one of the most important banana diseases worldwide, is mainly caused by Fusarium oxysporum f. sp. cubense tropic race 4 (Foc TR4). In this study, we conducted secretome analysis of Foc R1 and Foc TR4 and discovered a total of 120 and 109 secretory proteins (SPs) from Foc R1 cultured alone or with banana roots, respectively, and 129 and 105 SPs respectively from Foc TR4 cultured under the same conditions. Foc R1 and Foc TR4 shared numerous SPs associated with hydrolase activity, oxidoreductase activity, and transferase activity. Furthermore, in culture with banana roots, Foc R1 and Foc TR4 secreted many novel SPs, of which approximately 90% (Foc R1; 57/66; Foc TR4; 50/55) were unconventional SPs without signal peptides. Comparative analysis of SPs in Foc R1 and Foc TR4 revealed that Foc TR4 not only generated more specific SPs but also had a higher proportion of SPs involved in various metabolic pathways, such as phenylalanine metabolism and cysteine and methionine metabolism. The cysteine biosynthesis enzyme O-acetylhomoserine (thiol)-lyase (OASTL) was the most abundant root inducible Foc TR4-specific SP. In addition, knockout of the OASTL gene did not affect growth of Foc TR4; but resulted in the loss of pathogenicity in banana 'Brazil'. We speculated that OASTL functions in banana by interfering with the biosynthesis of cysteine, which is the precursor of an enormous number of sulfur-containing defense compounds. Overall, our studies provide a basic understanding of the SPs in Foc R1 and Foc TR4; including a novel effector in Foc TR4.
Collapse
Affiliation(s)
- Dan Wang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (D.W.); (C.P.); (X.Z.); (L.C.)
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Cunzhi Peng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (D.W.); (C.P.); (X.Z.); (L.C.)
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Xingmei Zheng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (D.W.); (C.P.); (X.Z.); (L.C.)
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Lili Chang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (D.W.); (C.P.); (X.Z.); (L.C.)
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Bingqiang Xu
- Haikou Experimental Station (Institute of Tropical Fruit Tree Research) Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Key Laboratory of Banana Genetics and Improvement, Haikou 571101, China
| | - Zheng Tong
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (D.W.); (C.P.); (X.Z.); (L.C.)
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|
46
|
Sanmartín N, Sánchez-Bel P, Pastor V, Pastor-Fernández J, Mateu D, Pozo MJ, Cerezo M, Flors V. Root-to-shoot signalling in mycorrhizal tomato plants upon Botrytis cinerea infection. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 298:110595. [PMID: 32771152 DOI: 10.1016/j.plantsci.2020.110595] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 05/27/2023]
Abstract
Arbuscular mycorrhizal symbiosis is restricted in roots, but it also improves shoot responses against leaf challenges, a phenomenon known as Mycorrhiza-Induced Resistance (MIR). This study focuses on mycorrhizal root signals that may orchestrate shoot defence responses. Metabolomic analysis of non-mycorrhizal and mycorrhizal plants upon Botrytis cinerea infection showed that roots rearrange their metabolome mostly in response to the symbiosis, whereas in shoots a stronger impact of the infection is observed. Specific clusters of compounds in shoots and roots display a priming profile suggesting an implication in the enhanced resistance observed in mycorrhizal plants. Among the primed pathways in roots, lignans showed the highest number of hits followed by oxocarboxylic acids, compounds of the amino acid metabolism, and phytohormones. The lignan yatein was present at higher concentrations in roots, root efflux and leaves of mycorrhizal plants This lignan displayed in vitro antimicrobial activity against B. cinerea and it was also functional protecting tomato plants. Besides, several JA defence-related genes were upregulated in mycorrhizal roots regardless of the pathogen infection, whereas PIN-II was primed in roots of mycorrhizal infected plants. These observations suggest that the enhanced resistance in shoots during MIR may be coordinated by lignans and oxylipins with the participation of roots.
Collapse
Affiliation(s)
- Neus Sanmartín
- Metabolic Integration and Cell Signaling Laboratory, Plant Physiology Section, Unidad Asociada al Consejo Superior de Investigaciones Científicas (EEZ-CSIC), Department of Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castellón, Spain
| | - Paloma Sánchez-Bel
- Metabolic Integration and Cell Signaling Laboratory, Plant Physiology Section, Unidad Asociada al Consejo Superior de Investigaciones Científicas (EEZ-CSIC), Department of Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castellón, Spain
| | - Victoria Pastor
- Metabolic Integration and Cell Signaling Laboratory, Plant Physiology Section, Unidad Asociada al Consejo Superior de Investigaciones Científicas (EEZ-CSIC), Department of Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castellón, Spain
| | - Julia Pastor-Fernández
- Metabolic Integration and Cell Signaling Laboratory, Plant Physiology Section, Unidad Asociada al Consejo Superior de Investigaciones Científicas (EEZ-CSIC), Department of Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castellón, Spain
| | - Diego Mateu
- Metabolic Integration and Cell Signaling Laboratory, Plant Physiology Section, Unidad Asociada al Consejo Superior de Investigaciones Científicas (EEZ-CSIC), Department of Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castellón, Spain
| | - María José Pozo
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - Miguel Cerezo
- Metabolic Integration and Cell Signaling Laboratory, Plant Physiology Section, Unidad Asociada al Consejo Superior de Investigaciones Científicas (EEZ-CSIC), Department of Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castellón, Spain
| | - Víctor Flors
- Metabolic Integration and Cell Signaling Laboratory, Plant Physiology Section, Unidad Asociada al Consejo Superior de Investigaciones Científicas (EEZ-CSIC), Department of Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castellón, Spain.
| |
Collapse
|
47
|
Genre A, Lanfranco L, Perotto S, Bonfante P. Unique and common traits in mycorrhizal symbioses. Nat Rev Microbiol 2020; 18:649-660. [PMID: 32694620 DOI: 10.1038/s41579-020-0402-3] [Citation(s) in RCA: 221] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2020] [Indexed: 12/16/2022]
Abstract
Mycorrhizas are among the most important biological interkingdom interactions, as they involve ~340,000 land plants and ~50,000 taxa of soil fungi. In these mutually beneficial interactions, fungi receive photosynthesis-derived carbon and provide the host plant with mineral nutrients such as phosphorus and nitrogen in exchange. More than 150 years of research on mycorrhizas has raised awareness of their biology, biodiversity and ecological impact. In this Review, we focus on recent phylogenomic, molecular and cell biology studies to present the current state of knowledge of the origin of mycorrhizal fungi and the evolutionary history of their relationship with land plants. As mycorrhizas feature a variety of phenotypes, depending on partner taxonomy, physiology and cellular interactions, we explore similarities and differences between mycorrhizal types. During evolution, mycorrhizal fungi have refined their biotrophic capabilities to take advantage of their hosts as food sources and protective niches, while plants have developed multiple strategies to accommodate diverse fungal symbionts. Intimate associations with pervasive ecological success have originated at the crossroads between these two evolutionary pathways. Our understanding of the biological processes underlying these symbioses, where fungi act as biofertilizers and bioprotectors, provides the tools to design biotechnological applications addressing environmental and agricultural challenges.
Collapse
Affiliation(s)
- Andrea Genre
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Silvia Perotto
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy.
| |
Collapse
|
48
|
|
49
|
Vincent D, Rafiqi M, Job D. The Multiple Facets of Plant-Fungal Interactions Revealed Through Plant and Fungal Secretomics. FRONTIERS IN PLANT SCIENCE 2020; 10:1626. [PMID: 31969889 PMCID: PMC6960344 DOI: 10.3389/fpls.2019.01626] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/19/2019] [Indexed: 05/14/2023]
Abstract
The plant secretome is usually considered in the frame of proteomics, aiming at characterizing extracellular proteins, their biological roles and the mechanisms accounting for their secretion in the extracellular space. In this review, we aim to highlight recent results pertaining to secretion through the conventional and unconventional protein secretion pathways notably those involving plant exosomes or extracellular vesicles. Furthermore, plants are well known to actively secrete a large array of different molecules from polymers (e.g. extracellular RNA and DNA) to small compounds (e.g. ATP, phytochemicals, secondary metabolites, phytohormones). All of these play pivotal roles in plant-fungi (or oomycetes) interactions, both for beneficial (mycorrhizal fungi) and deleterious outcomes (pathogens) for the plant. For instance, recent work reveals that such secretion of small molecules by roots is of paramount importance to sculpt the rhizospheric microbiota. Our aim in this review is to extend the definition of the plant and fungal secretomes to a broader sense to better understand the functioning of the plant/microorganisms holobiont. Fundamental perspectives will be brought to light along with the novel tools that should support establishing an environment-friendly and sustainable agriculture.
Collapse
Affiliation(s)
- Delphine Vincent
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Maryam Rafiqi
- AgroBioSciences Program, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Dominique Job
- CNRS/Université Claude Bernard Lyon 1/Institut National des Sciences Appliquées/Bayer CropScience Joint Laboratory (UMR 5240), Bayer CropScience, Lyon, France
| |
Collapse
|
50
|
Zeng T, Rodriguez‐Moreno L, Mansurkhodzaev A, Wang P, van den Berg W, Gasciolli V, Cottaz S, Fort S, Thomma BPHJ, Bono J, Bisseling T, Limpens E. A lysin motif effector subverts chitin-triggered immunity to facilitate arbuscular mycorrhizal symbiosis. THE NEW PHYTOLOGIST 2020; 225:448-460. [PMID: 31596956 PMCID: PMC6916333 DOI: 10.1111/nph.16245] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 09/24/2019] [Indexed: 05/13/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi greatly improve mineral uptake by host plants in nutrient-depleted soil and can intracellularly colonize root cortex cells in the vast majority of higher plants. However, AM fungi possess common fungal cell wall components such as chitin that can be recognized by plant chitin receptors to trigger immune responses, raising the question as to how AM fungi effectively evade chitin-triggered immune responses during symbiosis. In this study, we characterize a secreted lysin motif (LysM) effector identified from the model AM fungal species Rhizophagus irregularis, called RiSLM. RiSLM is one of the highest expressed effector proteins in intraradical mycelium during the symbiosis. In vitro binding assays show that RiSLM binds chitin-oligosaccharides and can protect fungal cell walls from chitinases. Moreover, RiSLM efficiently interferes with chitin-triggered immune responses, such as defence gene induction and reactive oxygen species production in Medicago truncatula. Although RiSLM also binds to symbiotic (lipo)chitooligosaccharides it does not interfere significantly with symbiotic signalling in Medicago. Host-induced gene silencing of RiSLM greatly reduces fungal colonization levels. Taken together, our results reveal a key role for AM fungal LysM effectors to subvert chitin-triggered immunity in symbiosis, pointing to a common role for LysM effectors in both symbiotic and pathogenic fungi.
Collapse
Affiliation(s)
- Tian Zeng
- Laboratory of Molecular BiologyWageningen University & Research6708 PBWageningenthe Netherlands
| | - Luis Rodriguez‐Moreno
- Department of Plant SciencesLaboratory of PhytopathologyWageningen University & Research6708 PBWageningenthe Netherlands
| | - Artem Mansurkhodzaev
- Laboratory of Molecular BiologyWageningen University & Research6708 PBWageningenthe Netherlands
| | - Peng Wang
- Laboratory of Molecular BiologyWageningen University & Research6708 PBWageningenthe Netherlands
| | - Willy van den Berg
- Laboratory of BiochemistryWageningen University & Research6708 WEWageningenthe Netherlands
| | | | - Sylvain Cottaz
- CNRSCERMAVUniversity Grenoble AlpesUPR 530138041GrenobleFrance
| | - Sébastien Fort
- CNRSCERMAVUniversity Grenoble AlpesUPR 530138041GrenobleFrance
| | - Bart P. H. J. Thomma
- Department of Plant SciencesLaboratory of PhytopathologyWageningen University & Research6708 PBWageningenthe Netherlands
| | | | - Ton Bisseling
- Laboratory of Molecular BiologyWageningen University & Research6708 PBWageningenthe Netherlands
| | - Erik Limpens
- Laboratory of Molecular BiologyWageningen University & Research6708 PBWageningenthe Netherlands
| |
Collapse
|