1
|
Wang Y, Liu X, Sun X, Mao X, Wang Z, Peng J, Yang Z, Ali F, Wang Z, Li F. The promotive and repressive effects of exogenous H 2O 2 on Arabidopsis seed germination and seedling establishment depend on application dose. PHYSIOLOGIA PLANTARUM 2025; 177:e70098. [PMID: 39905992 DOI: 10.1111/ppl.70098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 12/21/2024] [Accepted: 01/15/2025] [Indexed: 02/06/2025]
Abstract
Hydrogen peroxide (H2O2) displays significant and dual effects on seed germination and seedling development, depending on the application dosage. However, the definition of H2O2 thresholds and the mechanisms underlying the dual actions in Arabidopsis seed germination and seedling development are not yet clear. Here, we analyzed the Arabidopsis seed germination profiles in response to different concentrations of exogenous H2O2 and found that 2 mM functions as the key threshold, above this threshold, both seed germination and seedling establishment were gradually inhibited. By RNA-seq analysis and function verification, we identified pathways of abscisic acid (ABA) signalling, seed post-ripening, energy metabolism, ROS homeostasis, and cell wall loosening play positive roles in seed germination and seedling establishment downstream of the H2O2 signalling. Further physio-chemical approaches revealed that exogenous H2O2 affected the accumulation and distribution of O2 •- and H2O2 in embryonic tissues by regulating the tissue-specific expression of SDH2-3, RHD2, and PRXs. Collectively, we found that germination rate and aerial growth were positively correlated with endogenous H2O2 content and root length was positively correlated with O2 •- accumulation, demonstrating that different ROS signals played specific functions in different tissues and development processes. On the other hand, excessive H2O2 (10 mM) represses these two processes for radicle cell damage caused by oxidation stress. Finally, we put forward the mechanism model of the dual effects of exogenous H2O2 on seed germination and seedling establishment.
Collapse
Affiliation(s)
- Yakong Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaohong Liu
- Xinjiang Agricultural Development Group Co., Ltd, Xinjiang, China
| | - Xiangyang Sun
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaonan Mao
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhaoye Wang
- Xinjiang Agricultural Development Group Co., Ltd, Xinjiang, China
| | - Jun Peng
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
| | - Zuoren Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Faiza Ali
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhi Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, Henan, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, Henan, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| |
Collapse
|
2
|
Bhati KK, Luong AM, Dittrich-Domergue F, D'Andrea S, Moreau P, Batoko H. Possible crosstalk between the Arabidopsis TSPO-related protein and the transcription factor WRINKLED1. Biochimie 2024; 224:62-70. [PMID: 38734125 DOI: 10.1016/j.biochi.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/20/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
This study uncovers a regulatory interplay between WRINKLED1 (WRI1), a master transcription factor for glycolysis and lipid biosynthesis, and Translocator Protein (TSPO) expression in Arabidopsis thaliana seeds. We identified potential WRI1-responsive elements upstream of AtTSPO through bioinformatics, suggesting WRI1's involvement in regulating TSPO expression. Our analyses showed a significant reduction in AtTSPO levels in wri1 mutant seeds compared to wild type, establishing a functional link between WRI1 and TSPO. This connection extends to the coordination of seed development and lipid metabolism, with both WRI1 and AtTSPO levels decreasing post-imbibition, indicating their roles in seed physiology. Further investigations into TSPO's impact on fatty acid synthesis revealed that TSPO misexpression alters WRI1's post-translational modifications and significantly enhances seed oil content. Additionally, we noted a decrease in key reserve proteins, including 12 S globulin and oleosin 1, in seeds with TSPO misexpression, suggesting a novel energy storage strategy in these lines. Our findings reveal a sophisticated network involving WRI1 and AtTSPO, highlighting their crucial contributions to seed development, lipid metabolism, and the modulation of energy storage mechanisms in Arabidopsis.
Collapse
Affiliation(s)
- Kaushal Kumar Bhati
- Louvain Institute of Biomolecular Science and Technology (LIBST), University of Louvain, Croix du Sud 4-5, L7.07.14, 1348, Louvain-la-Neuve, Belgium
| | - Ai My Luong
- Louvain Institute of Biomolecular Science and Technology (LIBST), University of Louvain, Croix du Sud 4-5, L7.07.14, 1348, Louvain-la-Neuve, Belgium
| | - Franziska Dittrich-Domergue
- CNRS, University of Bordeaux, Laboratoire de Biogenèse Membranaire, UMR 5200, 33140, Villenave d'Ornon, France
| | - Sabine D'Andrea
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Patrick Moreau
- CNRS, University of Bordeaux, Laboratoire de Biogenèse Membranaire, UMR 5200, 33140, Villenave d'Ornon, France
| | - Henri Batoko
- Louvain Institute of Biomolecular Science and Technology (LIBST), University of Louvain, Croix du Sud 4-5, L7.07.14, 1348, Louvain-la-Neuve, Belgium.
| |
Collapse
|
3
|
Decroës A, Mahillon M, Genard M, Lienard C, Lima-Mendez G, Gilmer D, Bragard C, Legrève A. Rhizomania: Hide and Seek of Polymyxa betae and the Beet Necrotic Yellow Vein Virus with Beta vulgaris. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:989-1005. [PMID: 35816413 DOI: 10.1094/mpmi-03-22-0063-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The molecular interactions between Polymyxa betae, the protist vector of sugar beet viruses, beet necrotic yellow vein virus (BNYVV), the causal agent of rhizomania, and Beta vulgaris have not been extensively studied. Here, the transmission of BNYVV to sugar beet by P. betae zoospores was optimized using genetically characterized organisms. Molecular interactions of aviruliferous and viruliferous protist infection on sugar beet were highlighted by transcriptomic analysis. P. betae alone induced limited gene expression changes in sugar beet, as a biotrophic asymptomatic parasite. Most differentially expressed plant genes were down-regulated and included resistance gene analogs and cell wall peroxidases. Several enzymes involved in stress regulation, such as the glutathione-S-transferases, were significantly induced. With BNYVV, the first stages of the P. betae life cycle on sugar beet were accelerated with a faster increase of relative protist DNA level and an earlier appearance of sporangia and sporosori in plants roots. A clear activation of plant defenses and the modulation of genes involved in plant cell wall metabolism were observed. The P. betae transcriptome in the presence of BNYVV revealed induction of genes possibly involved in the switch to the survival stage. The interactions were different depending on the presence or absence of the virus. P. betae alone alleviates plant defense response, playing hide-and-seek with sugar beet and allowing for their mutual development. Conversely, BNYVV manipulates plant defense and promotes the rapid invasion of plant roots by P. betae. This accelerated colonization is accompanied by the development of thick-walled resting spores, supporting the virus survival. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Alain Decroës
- Phytopathology-Applied Microbiology, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, 1348, Belgium
| | | | - Margaux Genard
- Phytopathology-Applied Microbiology, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, 1348, Belgium
| | - Charlotte Lienard
- Phytopathology-Applied Microbiology, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, 1348, Belgium
| | - Gipsi Lima-Mendez
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, 1348, Belgium
| | - David Gilmer
- Institut de biologie moléculaire des plantes, CNRS UPR2357, Université de Strasbourg, Strasbourg, 67084, France
| | - Claude Bragard
- Phytopathology-Applied Microbiology, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, 1348, Belgium
| | - Anne Legrève
- Phytopathology-Applied Microbiology, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, 1348, Belgium
| |
Collapse
|
4
|
Chen X, Guo HY, Zhang QY, Wang L, Guo R, Zhan YX, Lv P, Xu YP, Guo MB, Zhang Y, Zhang K, Liu YH, Yang M. Whole-genome resequencing of wild and cultivated cannabis reveals the genetic structure and adaptive selection of important traits. BMC PLANT BIOLOGY 2022; 22:371. [PMID: 35883045 PMCID: PMC9327241 DOI: 10.1186/s12870-022-03744-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Cannabis is an important industrial crop species whose fibre, seeds, flowers and leaves are widely used by humans. The study of cannabinoids extracted from plants has been popular research topic in recent years. China is one of the origins of cannabis and one of the few countries with wild cannabis plants. However, the genetic structure of Chinese cannabis and the degree of adaptive selection remain unclear. RESULTS The main morphological characteristics of wild cannabis in China were assessed. Based on whole-genome resequencing SNPs, Chinese cannabis could be divided into five groups in terms of geographical source and ecotype: wild accessions growing in the northwestern region; wild accessions growing in the northeastern region; cultivated accessions grown for fibre in the northeastern region; cultivated accessions grown for seed in northwestern region, and cultivated accessions in southwestern region. We further identified genes related to flowering time, seed germination, seed size, embryogenesis, growth, and stress responses selected during the process of cannabis domestication. The expression of flowering-related genes under long-day (LD) and short-day (SD) conditions showed that Chinese cultivated cannabis is adapted to different photoperiods through the regulation of Flowering locus T-like (FT-like) expression. CONCLUSION This study clarifies the genetic structure of Chinese cannabis and offers valuable genomic resources for cannabis breeding.
Collapse
Affiliation(s)
- Xuan Chen
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
| | - Hong-Yan Guo
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
| | - Qing-Ying Zhang
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
| | - Lu Wang
- State Key Laboratory for Conservation, School of Life Sciences, Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650500 China
| | - Rong Guo
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
| | - Yi-Xun Zhan
- State Key Laboratory for Conservation, School of Life Sciences, Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650500 China
| | - Pin Lv
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
| | - Yan-Ping Xu
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
| | - Meng-Bi Guo
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
| | - Yuan Zhang
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
| | - Kun Zhang
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
| | - Yan-Hu Liu
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 China
| | - Ming Yang
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
| |
Collapse
|
5
|
Advances in Plant Metabolomics and Its Applications in Stress and Single-Cell Biology. Int J Mol Sci 2022; 23:ijms23136985. [PMID: 35805979 PMCID: PMC9266571 DOI: 10.3390/ijms23136985] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/19/2022] [Accepted: 06/19/2022] [Indexed: 02/04/2023] Open
Abstract
In the past two decades, the post-genomic era envisaged high-throughput technologies, resulting in more species with available genome sequences. In-depth multi-omics approaches have evolved to integrate cellular processes at various levels into a systems biology knowledge base. Metabolomics plays a crucial role in molecular networking to bridge the gaps between genotypes and phenotypes. However, the greater complexity of metabolites with diverse chemical and physical properties has limited the advances in plant metabolomics. For several years, applications of liquid/gas chromatography (LC/GC)-mass spectrometry (MS) and nuclear magnetic resonance (NMR) have been constantly developed. Recently, ion mobility spectrometry (IMS)-MS has shown utility in resolving isomeric and isobaric metabolites. Both MS and NMR combined metabolomics significantly increased the identification and quantification of metabolites in an untargeted and targeted manner. Thus, hyphenated metabolomics tools will narrow the gap between the number of metabolite features and the identified metabolites. Metabolites change in response to environmental conditions, including biotic and abiotic stress factors. The spatial distribution of metabolites across different organs, tissues, cells and cellular compartments is a trending research area in metabolomics. Herein, we review recent technological advancements in metabolomics and their applications in understanding plant stress biology and different levels of spatial organization. In addition, we discuss the opportunities and challenges in multiple stress interactions, multi-omics, and single-cell metabolomics.
Collapse
|
6
|
Ohtsuka H, Matsumoto T, Mochida T, Shimasaki T, Shibuya M, Yamamoto Y, Aiba H. Tschimganine has different targets for chronological lifespan extension and growth inhibition in fission yeast. Biosci Biotechnol Biochem 2022; 86:775-779. [PMID: 35416247 DOI: 10.1093/bbb/zbac051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/25/2022] [Indexed: 11/14/2022]
Abstract
Tschimganine inhibits growth and extends the chronological lifespan in Schizosaccharomyces pombe. We synthesized a Tschimganine analog, Mochimganine, which extends the lifespan similar to Tschimganine but exhibits a significantly weaker growth inhibition effect. Based on the comparative analysis of these compounds, we propose that Tschimganine has at least 2 targets: one extends the lifespan and the other inhibits growth.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Takuma Matsumoto
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Takahiro Mochida
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Masatoshi Shibuya
- Laboratory of Molecular Design, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Yoshihiko Yamamoto
- Laboratory of Molecular Design, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
7
|
Turquetti-Moraes DK, Moharana KC, Almeida-Silva F, Pedrosa-Silva F, Venancio TM. Integrating omics approaches to discover and prioritize candidate genes involved in oil biosynthesis in soybean. Gene 2022; 808:145976. [PMID: 34592351 DOI: 10.1016/j.gene.2021.145976] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/15/2022]
Abstract
Soybean is a major source of edible protein and oil. Oil content is a quantitative trait that is significantly determined by genetic and environmental factors. Over the past 30 years, a large volume of soybean genetic, genomic, and transcriptomic data have been accumulated. Nevertheless, integrative analyses of such data remain scarce, in spite of their importance for crop improvement. We hypothesized that the co-occurrence of genomic regions for oil-related traits in different studies may reveal more stable regions encompassing important genetic determinants of oil content and quality in soybean. We integrated publicly available data, obtained with distinct techniques, to discover and prioritize candidate genes involved in oil biosynthesis and regulation in soybean. We detected key fatty acid biosynthesis genes (e.g., BCCP2 and ACCase, FADs, KAS family proteins) and several transcription factors, which are likely regulators of oil biosynthesis. In addition, we identified new candidates for seed oil accumulation and quality, such as Glyma.03G213300 and Glyma.19G160700, which encode a translocator protein homolog and a histone acetyltransferase, respectively. Further, oil and protein genomic hotspots are strongly associated with breeding and not with domestication, suggesting that soybean domestication prioritized other traits. The genes identified here are promising targets for breeding programs and for the development of soybean lines with increased oil content and quality.
Collapse
Affiliation(s)
- Dayana K Turquetti-Moraes
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Kanhu C Moharana
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Fabricio Almeida-Silva
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Francisnei Pedrosa-Silva
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Thiago M Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil.
| |
Collapse
|
8
|
Hiser C, Montgomery BL, Ferguson-Miller S. TSPO protein binding partners in bacteria, animals, and plants. J Bioenerg Biomembr 2021; 53:463-487. [PMID: 34191248 PMCID: PMC8243069 DOI: 10.1007/s10863-021-09905-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/12/2021] [Indexed: 12/11/2022]
Abstract
The ancient membrane protein TSPO is phylogenetically widespread from archaea and bacteria to insects, vertebrates, plants, and fungi. TSPO’s primary amino acid sequence is only modestly conserved between diverse species, although its five transmembrane helical structure appears mainly conserved. Its cellular location and orientation in membranes have been reported to vary between species and tissues, with implications for potential diverse binding partners and function. Most TSPO functions relate to stress-induced changes in metabolism, but in many cases it is unclear how TSPO itself functions—whether as a receptor, a sensor, a transporter, or a translocator. Much evidence suggests that TSPO acts indirectly by association with various protein binding partners or with endogenous or exogenous ligands. In this review, we focus on proteins that have most commonly been invoked as TSPO binding partners. We suggest that TSPO was originally a bacterial receptor/stress sensor associated with porphyrin binding as its most ancestral function and that it later developed additional stress-related roles in eukaryotes as its ability to bind new partners evolved.
Collapse
Affiliation(s)
- Carrie Hiser
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA. .,Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA.
| | - Beronda L Montgomery
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.,Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - Shelagh Ferguson-Miller
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
9
|
Koganti PP, Selvaraj V. Lack of adrenal TSPO/PBR expression in hamsters reinforces correlation to triglyceride metabolism. J Endocrinol 2020; 247:1-10. [PMID: 32698131 PMCID: PMC8011561 DOI: 10.1530/joe-20-0189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/13/2020] [Indexed: 11/08/2022]
Abstract
Despite being a highly conserved protein, the precise role of the mitochondrial translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor (PBR), remains elusive. The void created by studies that overturned a presumptive model that described TSPO/PBR as a mitochondrial cholesterol transporter for steroidogenesis has been filled with evidence that it can affect mitochondrial metabolic functions across different model systems. We previously reported that TSPO/PBR deficient steroidogenic cells upregulate mitochondrial fatty acid oxidation and presented a strong positive correlation between TSPO/PBR expression and tissues active in triglyceride metabolism or lipid storage. Nevertheless, the highlighting of inconsistencies in prior work has provoked reprisals that threaten to stifle progress. One frequent factoid presented as being supportive of a cholesterol import function is that there are no steroid-synthesizing cell types without high TSPO/PBR expression. In this study, we examine the hamster adrenal gland that is devoid of lipid droplets in the cortex and largely relies on de novo cholesterol biosynthesis and uptake for steroidogenesis. We find that Tspo expression in the hamster adrenal is imperceptible compared to the mouse. This observation is consistent with a substantially low expression of Cpt1a in the hamster adrenal, indicating minimal mitochondrial fatty acid oxidation capacity compared to the mouse. These findings provide further reinforcement that the much sought-after mechanism of TSPO/PBR function remains correlated with the extent of cellular triglyceride metabolism. Thus, TSPO/PBR could have a homeostatic function relevant only to steroidogenic systems that manage triglycerides associated with lipid droplets.
Collapse
Affiliation(s)
- Prasanthi P. Koganti
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853
| | - Vimal Selvaraj
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853
| |
Collapse
|
10
|
Seok HY, Nguyen LV, Nguyen DV, Lee SY, Moon YH. Investigation of a Novel Salt Stress-Responsive Pathway Mediated by Arabidopsis DEAD-Box RNA Helicase Gene AtRH17 Using RNA-Seq Analysis. Int J Mol Sci 2020; 21:ijms21051595. [PMID: 32111079 PMCID: PMC7084250 DOI: 10.3390/ijms21051595] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/23/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
Previously, we reported that overexpression of AtRH17, an Arabidopsis DEAD-box RNA helicase gene, confers salt stress-tolerance via a pathway other than the well-known salt stress-responsive pathways. To decipher the salt stress-responsive pathway in AtRH17-overexpressing transgenic plants (OXs), we performed RNA-Sequencing and identified 397 differentially expressed genes between wild type (WT) and AtRH17 OXs. Among them, 286 genes were upregulated and 111 genes were downregulated in AtRH17 OXs relative to WT. Gene ontology annotation enrichment and KEGG pathway analysis showed that the 397 upregulated and downregulated genes are involved in various biological functions including secretion, signaling, detoxification, metabolic pathways, catabolic pathways, and biosynthesis of secondary metabolites as well as in stress responses. Genevestigator analysis of the upregulated genes showed that nine genes, namely, LEA4-5, GSTF6, DIN2/BGLU30, TSPO, GSTF7, LEA18, HAI1, ABR, and LTI30, were upregulated in Arabidopsis under salt, osmotic, and drought stress conditions. In particular, the expression levels of LEA4-5, TSPO, and ABR were higher in AtRH17 OXs than in WT under salt stress condition. Taken together, our results suggest that a high AtRH17 expression confers salt stress-tolerance through a novel salt stress-responsive pathway involving nine genes, other than the well-known ABA-dependent and ABA-independent pathways.
Collapse
Affiliation(s)
- Hye-Yeon Seok
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea;
| | - Linh Vu Nguyen
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea (D.V.N.)
| | - Doai Van Nguyen
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea (D.V.N.)
| | - Sun-Young Lee
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA;
| | - Yong-Hwan Moon
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea;
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea (D.V.N.)
- Department of Molecular Biology, Pusan National University, Busan 46241, Korea
- Correspondence: ; Tel.: +82-51-510-2592
| |
Collapse
|
11
|
Califar B, Sng NJ, Zupanska A, Paul AL, Ferl RJ. Root Skewing-Associated Genes Impact the Spaceflight Response of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:239. [PMID: 32194611 PMCID: PMC7064724 DOI: 10.3389/fpls.2020.00239] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 02/17/2020] [Indexed: 05/03/2023]
Abstract
The observation that plant roots skew in microgravity recently refuted the long-held conviction that skewing was a gravity-dependent phenomenon. Further, spaceflight root skewing suggests that specific root morphologies and cell wall remodeling systems may be important aspects of spaceflight physiological adaptation. However, connections between skewing, cell wall modification and spaceflight physiology are currently based on inferences rather than direct tests. Therefore, the Advanced Plant Experiments-03-2 (APEX-03-2) spaceflight study was designed to elucidate the contribution of two skewing- and cell wall-associated genes in Arabidopsis to root behavior and gene expression patterns in spaceflight, to assess whether interruptions of different skewing pathways affect the overall spaceflight-associated process. SPIRAL1 is a skewing-related protein implicated in directional cell expansion, and functions by regulating cortical microtubule dynamics. SKU5 is skewing-related glycosylphosphatidylinositol-anchored protein of the plasma membrane and cell wall implicated in stress response signaling. These two genes function in different cellular pathways that affect skewing on the Earth, and enable a test of the relevance of skewing pathways to spaceflight physiological adaptation. In this study, both sku5 and spr1 mutants showed different skewing behavior and markedly different patterns of gene expression in the spaceflight environment. The spr1 mutant showed fewer differentially expressed genes than its Col-0 wild-type, whereas sku5 showed considerably more than its WS wild-type. Developmental age played a substantial role in spaceflight acclimation in all genotypes, but particularly in sku5 plants, where spaceflight 4d seedlings had almost 10-times as many highly differentially expressed genes as the 8d seedlings. These differences demonstrated that the two skewing pathways represented by SKU5 and SPR1 have unique and opposite contributions to physiological adaptation to spaceflight. The spr1 response is less intense than wild type, suggesting that the loss of SPR1 positively impacts spaceflight adaptation. Conversely, the intensity of the sku5 responses suggests that the loss of SKU5 initiates a much more complex, deeper and more stress related response to spaceflight. This suggests that proper SKU5 function is important to spaceflight adaptation.
Collapse
Affiliation(s)
- Brandon Califar
- Horticultural Sciences, University of Florida, Gainesville, FL, United States
- The Genetics Institute, University of Florida, Gainesville, FL, United States
- Program in Genetics and Genomics, University of Florida, Gainesville, FL, United States
| | - Natasha J. Sng
- Horticultural Sciences, University of Florida, Gainesville, FL, United States
| | - Agata Zupanska
- Horticultural Sciences, University of Florida, Gainesville, FL, United States
| | - Anna-Lisa Paul
- Horticultural Sciences, University of Florida, Gainesville, FL, United States
- The Genetics Institute, University of Florida, Gainesville, FL, United States
- Program in Genetics and Genomics, University of Florida, Gainesville, FL, United States
- Program in Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL, United States
- Interdisciplinary Center for Biotechnology and Research, University of Florida, Gainesville, FL, United States
- *Correspondence: Anna-Lisa Paul,
| | - Robert J. Ferl
- Horticultural Sciences, University of Florida, Gainesville, FL, United States
- The Genetics Institute, University of Florida, Gainesville, FL, United States
- Program in Genetics and Genomics, University of Florida, Gainesville, FL, United States
- Program in Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL, United States
- Robert J. Ferl,
| |
Collapse
|
12
|
Stephani M, Dagdas Y. Plant Selective Autophagy—Still an Uncharted Territory With a Lot of Hidden Gems. J Mol Biol 2020; 432:63-79. [DOI: 10.1016/j.jmb.2019.06.028] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/22/2019] [Accepted: 06/24/2019] [Indexed: 11/28/2022]
|
13
|
Vanhercke T, Dyer JM, Mullen RT, Kilaru A, Rahman MM, Petrie JR, Green AG, Yurchenko O, Singh SP. Metabolic engineering for enhanced oil in biomass. Prog Lipid Res 2019; 74:103-129. [PMID: 30822461 DOI: 10.1016/j.plipres.2019.02.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 02/06/2023]
Abstract
The world is hungry for energy. Plant oils in the form of triacylglycerol (TAG) are one of the most reduced storage forms of carbon found in nature and hence represent an excellent source of energy. The myriad of applications for plant oils range across foods, feeds, biofuels, and chemical feedstocks as a unique substitute for petroleum derivatives. Traditionally, plant oils are sourced either from oilseeds or tissues surrounding the seed (mesocarp). Most vegetative tissues, such as leaves and stems, however, accumulate relatively low levels of TAG. Since non-seed tissues constitute the majority of the plant biomass, metabolic engineering to improve their low-intrinsic TAG-biosynthetic capacity has recently attracted significant attention as a novel, sustainable and potentially high-yielding oil production platform. While initial attempts predominantly targeted single genes, recent combinatorial metabolic engineering strategies have focused on the simultaneous optimization of oil synthesis, packaging and degradation pathways (i.e., 'push, pull, package and protect'). This holistic approach has resulted in dramatic, seed-like TAG levels in vegetative tissues. With the first proof of concept hurdle addressed, new challenges and opportunities emerge, including engineering fatty acid profile, translation into agronomic crops, extraction, and downstream processing to deliver accessible and sustainable bioenergy.
Collapse
Affiliation(s)
- Thomas Vanhercke
- CSIRO Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia.
| | - John M Dyer
- USDA-ARS, US Arid-Land Agricultural Research Center, Maricopa, AZ, USA
| | - Robert T Mullen
- Department of Molecular and Cellular Biology, University of Guelph, ON, Canada
| | - Aruna Kilaru
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, USA
| | - Md Mahbubur Rahman
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, USA
| | - James R Petrie
- CSIRO Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia; Folear, Goulburn, NSW, Australia
| | - Allan G Green
- CSIRO Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
| | - Olga Yurchenko
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Surinder P Singh
- CSIRO Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
| |
Collapse
|