1
|
Skovbjerg CK, Sarup P, Wahlström E, Jensen JD, Orabi J, Olesen L, Jensen J, Jahoor A, Ramstein G. Multi-population GWAS detects robust marker associations in a newly established six-rowed winter barley breeding program. Heredity (Edinb) 2025; 134:33-48. [PMID: 39609544 PMCID: PMC11724117 DOI: 10.1038/s41437-024-00733-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/30/2024] Open
Abstract
Genome-wide association study (GWAS) is a powerful tool for identifying marker-trait associations that can accelerate breeding progress. Yet, its power is typically constrained in newly established breeding programs where large phenotypic and genotypic datasets have not yet accumulated. Expanding the dataset by inclusion of data from well-established breeding programs with many years of phenotyping and genotyping can potentially address this problem. In this study we performed single- and multi-population GWAS on heading date and lodging in four barley breeding populations with varying combinations of row-type and growth habit. Focusing on a recently established 6-rowed winter (6RW) barley population, single-population GWAS hardly resulted in any significant associations. Nevertheless, the combination of the 6RW target population with other populations in multi-population GWAS detected four and five robust candidate quantitative trait loci for heading date and lodging, respectively. Of these, three remained undetected when analysing the combined populations individually. Further, multi-population GWAS detected markers capturing a larger proportion of genetic variance in 6RW. For multi-population GWAS, we compared the findings of a univariate model (MP1) with a multivariate model (MP2). While both models surpassed single-population GWAS in power, MP2 offered a significant advantage by having more realistic assumptions while pointing towards robust marker-trait associations across populations. Additionally, comparisons of GWAS findings for MP2 and single-population GWAS allowed identification of population-specific loci. In conclusion, our study presents a promising approach to kick-start genomics-based breeding in newly established breeding populations.
Collapse
Affiliation(s)
- Cathrine Kiel Skovbjerg
- Nordic Seed A/S, Odder, Denmark.
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus C, Denmark.
| | | | | | | | | | | | - Just Jensen
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus C, Denmark
| | - Ahmed Jahoor
- Nordic Seed A/S, Odder, Denmark
- Department of Plant Breeding, The Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Guillaume Ramstein
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
2
|
Parrado JD, Slafer GA, Savin R. Diverse alleles of Photoperiod-H1 directly and indirectly affect barley yield-related traits under contrasting photoperiods and PHYTOCHROME C backgrounds. JOURNAL OF EXPERIMENTAL BOTANY 2024:erae491. [PMID: 39851238 DOI: 10.1093/jxb/erae491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/02/2024] [Indexed: 01/26/2025]
Abstract
Barley traits that determine grain number are established between jointing and flowering. The timing of flowering is critical for adaptation and yield as it affects the fertility of both the main shoot and tiller spikes. The Photoperiod-H1 (PPD-H1) gene controls flowering time and impacts spike fertility and yield in barley; however, it is not known if these effects are truly pleiotropic or indirect. Recent findings indicated that under extremely long photoperiods, barley near-isogenic lines (NILs) with contrasting PPD-H1 alleles tend to flower simultaneously, allowing any genetic effects to be determined independently of flowering time. We examined the direct impact of PPD-H1 on barley spike fertility and yield in two PHYC genetic backgrounds. Experiments combined (i) two NILs for PPD-H1 alleles (ppd-H1 or Ppd-H1) under two contrasting PHYTOCHROME C genetic backgrounds (PhyC-l and PhyC-e), and (ii) two photoperiod conditions (12 h and 24 h). Under a 24 h photoperiod, the PPD-H1 gene had a minimal impact on flowering time. The ppd-H1 allele increased grain number by enhancing spike fertility, irrespective of the PHYC background, through better resource allocation to juvenile spikes and more efficient production of fertile florets. These findings support a pleiotropic effect of ppd-H1 in determining flowering time and establishment of yield component traits.
Collapse
Affiliation(s)
- Jorge D Parrado
- Department of Agricultural and Forest Sciences and Engineering, University of Lleida-AGROTECNIO-CERCA Center, Av. Rovira Roure 191, 25198 Lleida, Spain
| | - Gustavo A Slafer
- Department of Agricultural and Forest Sciences and Engineering, University of Lleida-AGROTECNIO-CERCA Center, Av. Rovira Roure 191, 25198 Lleida, Spain
- ICREA, Catalan Institution for Research and Advanced Studies, Spain
| | - Roxana Savin
- Department of Agricultural and Forest Sciences and Engineering, University of Lleida-AGROTECNIO-CERCA Center, Av. Rovira Roure 191, 25198 Lleida, Spain
| |
Collapse
|
3
|
Parrado JD, Savin R, Slafer GA. Dynamics of apex and leaf development in barley as affected by PPD-H1 alleles in two contrasting PHYC backgrounds under short or long photoperiod. FRONTIERS IN PLANT SCIENCE 2024; 15:1398698. [PMID: 39290723 PMCID: PMC11405203 DOI: 10.3389/fpls.2024.1398698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 07/29/2024] [Indexed: 09/19/2024]
Abstract
Barley development from seedling to flowering involves both external and internal changes, the latter requiring microscopic observation. Internal changes allow for the classification of preflowering development into three phases: vegetative, early reproductive, and late reproductive. Genetic and environmental factors influence the duration of these phases, impacting grain yield. Photoperiod-sensitivity genes PPD-H1 play a major role in flowering time, affecting adaptation; however, the effect might also be direct (beyond affecting phenology). In this paper, we aimed to assess how PPD-H1 alleles affect barley development, including the progression of growth phases, leaf emergence, tillering dynamics, and spikelet development. Two experiments (field and controlled conditions) were conducted with a factorial combination of (i) four near-isogenic lines (NILs) for PPD-H1 alleles (ppd-H1 or Ppd-H1) under two contrasting PHYC genetic backgrounds (PhyC-l and PhyC-e) and (ii) two photoperiod conditions (short and long days). As expected, longer photoperiods led to a shorter growth cycle. All subphases of time to flowering, final leaf number, and phyllochron were affected by photoperiod. The effects of PPD-H1 on flowering time depended on the PHYC genetic backgrounds and photoperiod conditions. PPD-H1 effects on flowering time were associated with leaf number and phyllochron; the interplay between leaf number and phyllochron affected mainly the late reproductive phase. We also found that although PPD-H1 did not affect the phyllochron of the first six leaves, the phyllochron of leaves appearing later, when grown under a short photoperiod, was consistently increased in lines carrying the ppd-H1 allele. Tillering dynamics exhibited variability, but PPD-H1 did not affect the final spike number under a 24-h photoperiod.
Collapse
Affiliation(s)
- Jorge D Parrado
- Department of Agricultural and Forest Sciences and Engineering, University of Lleida-AGROTECNIO-CERCA Center, Lleida, Spain
| | - Roxana Savin
- Department of Agricultural and Forest Sciences and Engineering, University of Lleida-AGROTECNIO-CERCA Center, Lleida, Spain
| | - Gustavo A Slafer
- Department of Agricultural and Forest Sciences and Engineering, University of Lleida-AGROTECNIO-CERCA Center, Lleida, Spain
- Catalonian Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
4
|
Civáň P, Fricano A, Russell J, Pont C, Özkan H, Kilian B, Brown TA. Genetic erosion in domesticated barley and a hypothesis of a North African centre of diversity. Ecol Evol 2024; 14:e70068. [PMID: 39114174 PMCID: PMC11303984 DOI: 10.1002/ece3.70068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/27/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
Barley is one of the founder crops of the Neolithic transition in West Asia. While recent advances in genomics have provided a rather detailed picture of barley domestication, there are contradictory views on how the domestication process affected genetic diversity. We set out to revisit this question by integrating public DNA sequencing data from ancient barley and wide collections of extant wild and domesticated accessions. Using two previously overlooked approaches - analyses of chloroplast genomes and genome-wide proportions of private variants - we found that the barley cultivated six millennia ago was genetically unique and more diverse when compared to extant landraces and cultivars. Moreover, the chloroplast genomes revealed a link between the ancient barley, an obscure wild genotype from north-eastern Libya, and a distinct population of barley cultivated in Ethiopia/Eritrea. Based on these results, we hypothesize past existence of a wider North African population that included both wild and cultivated types and suffered from genetic erosion in the past six millennia, likely due to a rapid desertification that ended the Holocene African humid period. Besides providing clues about the origin of Ethiopian landraces, the hypothesis explains the post-domestication loss of diversity observed in barley. Analyses of additional samples will be necessary to resolve the history of African barley and its contribution to the extant cultivated gene pool.
Collapse
Affiliation(s)
- Peter Civáň
- INRAE/UCA UMR 1095, GDECClermont FerrandFrance
| | - Agostino Fricano
- Council for Agricultural Research and Economics – Research Centre for Genomics and BioinformaticsFiorenzuola d'Arda (PC)Italy
| | | | | | - Hakan Özkan
- Department of Field Crops, Faculty of AgricultureUniversity of ÇukurovaAdanaTurkey
| | | | - Terence A. Brown
- Department of Earth and Environmental Sciences, Manchester Institute of BiotechnologyUniversity of ManchesterManchesterUK
| |
Collapse
|
5
|
Li W, Boer MP, Joosen RVL, Zheng C, Percival-Alwyn L, Cockram J, Van Eeuwijk FA. Modeling QTL-by-environment interactions for multi-parent populations. FRONTIERS IN PLANT SCIENCE 2024; 15:1410851. [PMID: 39145196 PMCID: PMC11322070 DOI: 10.3389/fpls.2024.1410851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/27/2024] [Indexed: 08/16/2024]
Abstract
Multi-parent populations (MPPs) are attractive for genetic and breeding studies because they combine genetic diversity with an easy-to-control population structure. Most methods for mapping QTLs in MPPs focus on the detection of QTLs in single environments. Little attention has been given to mapping QTLs in multienvironment trials (METs) and to detecting and modeling QTL-by-environment interactions (QEIs). We present mixed model approaches for the detection and modeling of consistent versus environment-dependent QTLs, i.e., QTL-by-environment interaction (QEI). QTL effects are assumed to be normally distributed with variances expressing consistency or dependence on environments and families. The entries of the corresponding design matrices are functions of identity-by-descent (IBD) probabilities between parents and offspring and follow from the parental origin of offspring DNA. A polygenic effect is added to the models to account for background genetic variation. We illustrate the wide applicability of our method by analyzing several public MPP datasets with observations from METs. The examples include diallel, nested association mapping (NAM), and multi-parent advanced inter-cross (MAGIC) populations. The results of our approach compare favorably with those of previous studies that used tailored methods.
Collapse
Affiliation(s)
- Wenhao Li
- Biometris, Wageningen University and Research Center, Wageningen, Netherlands
| | - Martin P. Boer
- Biometris, Wageningen University and Research Center, Wageningen, Netherlands
| | | | - Chaozhi Zheng
- Biometris, Wageningen University and Research Center, Wageningen, Netherlands
| | | | | | - Fred A. Van Eeuwijk
- Biometris, Wageningen University and Research Center, Wageningen, Netherlands
| |
Collapse
|
6
|
Landis JB, Guercio AM, Brown KE, Fiscus CJ, Morrell PL, Koenig D. Natural selection drives emergent genetic homogeneity in a century-scale experiment with barley. Science 2024; 385:eadl0038. [PMID: 38991084 DOI: 10.1126/science.adl0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 05/21/2024] [Indexed: 07/13/2024]
Abstract
Direct observation is central to our understanding of adaptation, but evolution is rarely documented in a large, multicellular organism for more than a few generations. In this study, we observed evolution across a century-scale competition experiment, barley composite cross II (CCII). CCII was founded in 1929 in Davis, California, with thousands of genotypes, but we found that natural selection has massively reduced genetic diversity, leading to a single lineage constituting most of the population by generation 50. Selection favored alleles originating from climates similar to that of Davis and targeted loci contributing to reproductive development, including the barley diversification loci Vrs1, HvCEN, Ppd-H1, and Vrn-H2. Our findings point to selection as the predominant force shaping genomic variation in one of the world's oldest biological experiments.
Collapse
Affiliation(s)
- Jacob B Landis
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Angelica M Guercio
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Keely E Brown
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Christopher J Fiscus
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Peter L Morrell
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | - Daniel Koenig
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
- Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
7
|
Jørgensen ME, Houston K, Jørgensen HJL, Thomsen HC, Tekaat L, Krogh CT, Mellor SB, Braune KB, Damm ML, Pedas PR, Voss C, Rasmussen MW, Nielsen K, Skadhauge B, Motawia MS, Møller BL, Dockter C, Sørensen M. Disentangling hydroxynitrile glucoside biosynthesis in a barley (Hordeum vulgare) metabolon provides access to elite malting barleys for ethyl carbamate-free whisky production. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:364-382. [PMID: 38652034 DOI: 10.1111/tpj.16768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 04/25/2024]
Abstract
Barley produces several specialized metabolites, including five α-, β-, and γ-hydroxynitrile glucosides (HNGs). In malting barley, presence of the α-HNG epiheterodendrin gives rise to undesired formation of ethyl carbamate in the beverage production, especially after distilling. Metabolite-GWAS identified QTLs and underlying gene candidates possibly involved in the control of the relative and absolute content of HNGs, including an undescribed MATE transporter. By screening 325 genetically diverse barley accessions, we discovered three H. vulgare ssp. spontaneum (wild barley) lines with drastic changes in the relative ratios of the five HNGs. Knock-out (KO)-lines, isolated from the barley FIND-IT resource and each lacking one of the functional HNG biosynthetic genes (CYP79A12, CYP71C103, CYP71C113, CYP71U5, UGT85F22 and UGT85F23) showed unprecedented changes in HNG ratios enabling assignment of specific and mutually dependent catalytic functions to the biosynthetic enzymes involved. The highly similar relative ratios between the five HNGs found across wild and domesticated barley accessions indicate assembly of the HNG biosynthetic enzymes in a metabolon, the functional output of which was reconfigured in the absence of a single protein component. The absence or altered ratios of the five HNGs in the KO-lines did not change susceptibility to the fungal phytopathogen Pyrenophora teres causing net blotch. The study provides a deeper understanding of the organization of HNG biosynthesis in barley and identifies a novel, single gene HNG-0 line in an elite spring barley background for direct use in breeding of malting barley, eliminating HNGs as a source of ethyl carbamate formation in whisky production.
Collapse
Affiliation(s)
- Morten E Jørgensen
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799, Copenhagen V, Denmark
| | - Kelly Houston
- Cell and Molecular Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee, Scotland
| | - Hans Jørgen L Jørgensen
- Section for Plant and Soil Sciences, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Hanne C Thomsen
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799, Copenhagen V, Denmark
| | - Linda Tekaat
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Camilla Timmermann Krogh
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Silas B Mellor
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | | | - Mette L Damm
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799, Copenhagen V, Denmark
| | - Pai Rosager Pedas
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799, Copenhagen V, Denmark
| | - Cynthia Voss
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799, Copenhagen V, Denmark
| | | | - Kasper Nielsen
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799, Copenhagen V, Denmark
| | - Birgitte Skadhauge
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799, Copenhagen V, Denmark
| | - Mohammed S Motawia
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Birger Lindberg Møller
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Christoph Dockter
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799, Copenhagen V, Denmark
| | - Mette Sørensen
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
- Novo Nordisk Pharmatech, Københavnsvej 216, 4600, Køge, Denmark
| |
Collapse
|
8
|
Campoli C, Eskan M, McAllister T, Liu L, Shoesmith J, Prescott A, Ramsay L, Waugh R, McKim SM. A GDSL-motif Esterase/Lipase Affects Wax and Cutin Deposition and Controls Hull-Caryopsis Attachment in Barley. PLANT & CELL PHYSIOLOGY 2024; 65:999-1013. [PMID: 38668634 PMCID: PMC11209556 DOI: 10.1093/pcp/pcae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/29/2024] [Accepted: 04/25/2024] [Indexed: 06/28/2024]
Abstract
The cuticle covering aerial organs of land plants is well known to protect against desiccation. Cuticles also play diverse and specialized functions, including organ separation, depending on plant and tissue. Barley shows a distinctive cuticular wax bloom enriched in β-diketones on leaf sheaths, stem nodes and internodes and inflorescences. Barley also develops a sticky surface on the outer pericarp layer of its grain fruit leading to strongly adhered hulls, 'covered grain', important for embryo protection and seed dispersal. While the transcription factor-encoding gene HvNUDUM (HvNUD) appears essential for adherent hulls, little is understood about how the pericarp cuticle changes during adhesion or whether changes in pericarp cuticles contribute to another phenotype where hulls partially shed, called 'skinning'. To that end, we screened barley lines for hull adhesion defects, focussing on the Eceriferum (= waxless, cer) mutants. Here, we show that the cer-xd allele causes defective wax blooms and compromised hull adhesion, and results from a mutation removing the last 10 amino acids of the GDS(L) [Gly, Asp, Ser, (Leu)]-motif esterase/lipase HvGDSL1. We used severe and moderate HvGDSL1 alleles to show that complete HvGDSL1 function is essential for leaf blade cuticular integrity, wax bloom deposition over inflorescences and leaf sheaths and pericarp cuticular ridge formation. Expression data suggest that HvGDSL1 may regulate hull adhesion independently of HvNUD. We found high conservation of HvGDSL1 among barley germplasm, so variation in HvGDSL1 unlikely leads to grain skinning in cultivated barley. Taken together, we reveal a single locus which controls adaptive cuticular properties across different organs in barley.
Collapse
Affiliation(s)
- Chiara Campoli
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Errol road, Invergowrie, Dundee DD25DA, UK
- Cell and Molecular Sciences, James Hutton Institute, Errol road, Invergowrie, Dundee DD25DA, UK
| | - Mhmoud Eskan
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Errol road, Invergowrie, Dundee DD25DA, UK
| | - Trisha McAllister
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Errol road, Invergowrie, Dundee DD25DA, UK
| | - Linsan Liu
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Errol road, Invergowrie, Dundee DD25DA, UK
| | - Jennifer Shoesmith
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Errol road, Invergowrie, Dundee DD25DA, UK
| | - Alan Prescott
- DIF and Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Nethergate, Dundee DD14HN, UK
| | - Luke Ramsay
- Cell and Molecular Sciences, James Hutton Institute, Errol road, Invergowrie, Dundee DD25DA, UK
| | - Robbie Waugh
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Errol road, Invergowrie, Dundee DD25DA, UK
- Cell and Molecular Sciences, James Hutton Institute, Errol road, Invergowrie, Dundee DD25DA, UK
| | - Sarah M McKim
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Errol road, Invergowrie, Dundee DD25DA, UK
| |
Collapse
|
9
|
Bernád V, Al-Tamimi N, Langan P, Gillespie G, Dempsey T, Henchy J, Harty M, Ramsay L, Houston K, Macaulay M, Shaw PD, Raubach S, Mcdonnel KP, Russell J, Waugh R, Khodaeiaminjan M, Negrão S. Unlocking the genetic diversity and population structure of the newly introduced two-row spring European HerItage Barley collecTion (ExHIBiT). FRONTIERS IN PLANT SCIENCE 2024; 15:1268847. [PMID: 38571708 PMCID: PMC10987740 DOI: 10.3389/fpls.2024.1268847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/28/2024] [Indexed: 04/05/2024]
Abstract
In the last century, breeding programs have traditionally favoured yield-related traits, grown under high-input conditions, resulting in a loss of genetic diversity and an increased susceptibility to stresses in crops. Thus, exploiting understudied genetic resources, that potentially harbour tolerance genes, is vital for sustainable agriculture. Northern European barley germplasm has been relatively understudied despite its key role within the malting industry. The European Heritage Barley collection (ExHIBiT) was assembled to explore the genetic diversity in European barley focusing on Northern European accessions and further address environmental pressures. ExHIBiT consists of 363 spring-barley accessions, focusing on two-row type. The collection consists of landraces (~14%), old cultivars (~18%), elite cultivars (~67%) and accessions with unknown breeding history (~1%), with 70% of the collection from Northern Europe. The population structure of the ExHIBiT collection was subdivided into three main clusters primarily based on the accession's year of release using 26,585 informative SNPs based on 50k iSelect single nucleotide polymorphism (SNP) array data. Power analysis established a representative core collection of 230 genotypically and phenotypically diverse accessions. The effectiveness of this core collection for conducting statistical and association analysis was explored by undertaking genome-wide association studies (GWAS) using 24,876 SNPs for nine phenotypic traits, four of which were associated with SNPs. Genomic regions overlapping with previously characterised flowering genes (HvZTLb) were identified, demonstrating the utility of the ExHIBiT core collection for locating genetic regions that determine important traits. Overall, the ExHIBiT core collection represents the high level of untapped diversity within Northern European barley, providing a powerful resource for researchers and breeders to address future climate scenarios.
Collapse
Affiliation(s)
- Villő Bernád
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Nadia Al-Tamimi
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Patrick Langan
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Gary Gillespie
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Timothy Dempsey
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Joey Henchy
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Mary Harty
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Luke Ramsay
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Kelly Houston
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Malcolm Macaulay
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Paul D. Shaw
- Department of Information and Computational Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Sebastian Raubach
- Department of Information and Computational Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Kevin P. Mcdonnel
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
- School of Biosystems Engineering, University College Dublin, Dublin, Ireland
| | - Joanne Russell
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Robbie Waugh
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
- Division of Plant Sciences, University of Dundee at The James Hutton Institute, Dundee, United Kingdom
| | | | - Sónia Negrão
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
10
|
Bančič J, Odeny DA, Ojulong HF, Josiah SM, Buntjer J, Gaynor RC, Hoad SP, Gorjanc G, Dawson IK. Genomic and phenotypic characterization of finger millet indicates a complex diversification history. THE PLANT GENOME 2024; 17:e20392. [PMID: 37986545 DOI: 10.1002/tpg2.20392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/10/2023] [Accepted: 08/16/2023] [Indexed: 11/22/2023]
Abstract
Advances in sequencing technologies mean that insights into crop diversification can now be explored in crops beyond major staples. We use a genome assembly of finger millet, an allotetraploid orphan crop, to analyze DArTseq single nucleotide polymorphisms (SNPs) at the whole and sub-genome level. A set of 8778 SNPs and 13 agronomic traits was used to characterize a diverse panel of 423 landraces from Africa and Asia. Through principal component analysis (PCA) and discriminant analysis of principal components, four distinct groups of accessions were identified that coincided with the primary geographic regions of finger millet cultivation. Notably, East Africa, presumed to be the crop's origin, exhibited the lowest genetic diversity. The PCA of phenotypic data also revealed geographic differentiation, albeit with differing relationships among geographic areas than indicated with genomic data. Further exploration of the sub-genomes A and B using neighbor-joining trees revealed distinct features that provide supporting evidence for the complex evolutionary history of finger millet. Although genome-wide association study found only a limited number of significant marker-trait associations, a clustering approach based on the distribution of marker effects obtained from a ridge regression genomic model was employed to investigate trait complexity. This analysis uncovered two distinct clusters. Overall, the findings suggest that finger millet has undergone complex and context-specific diversification, indicative of a lengthy domestication history. These analyses provide insights for the future development of finger millet.
Collapse
Affiliation(s)
- Jon Bančič
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Research Centre, Midlothian, UK
- Scotland's Rural College (SRUC), Kings Buildings, Edinburgh, UK
| | - Damaris A Odeny
- International Crops Research Institute for the Semi-Arid Tropics, ICRAF House, Gigiri Nairobi, Kenya
| | - Henry F Ojulong
- International Crops Research Institute for the Semi-Arid Tropics, ICRAF House, Gigiri Nairobi, Kenya
| | - Samuel M Josiah
- Department of Horticulture, University of Georgia, Athens, Georgia, USA
| | - Jaap Buntjer
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Research Centre, Midlothian, UK
| | - R Chris Gaynor
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Research Centre, Midlothian, UK
| | - Stephen P Hoad
- Scotland's Rural College (SRUC), Kings Buildings, Edinburgh, UK
| | - Gregor Gorjanc
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Research Centre, Midlothian, UK
| | - Ian K Dawson
- Scotland's Rural College (SRUC), Kings Buildings, Edinburgh, UK
| |
Collapse
|
11
|
Helmsorig G, Walla A, Rütjes T, Buchmann G, Schüller R, Hensel G, von Korff M. early maturity 7 promotes early flowering by controlling the light input into the circadian clock in barley. PLANT PHYSIOLOGY 2024; 194:849-866. [PMID: 37951242 PMCID: PMC10828213 DOI: 10.1093/plphys/kiad551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/26/2023] [Indexed: 11/13/2023]
Abstract
Breeding for variation in photoperiod response is crucial to adapt crop plants to various environments. Plants measure changes in day length by the circadian clock, an endogenous timekeeper that allows plants to anticipate changes in diurnal and seasonal light-dark cycles. Here, we describe the early maturity 7 (eam7) locus in barley (Hordeum vulgare), which interacts with PHOTOPERIOD 1 (Ppd-H1) to cause early flowering under non-inductive short days. We identify LIGHT-REGULATED WD 1 (LWD1) as a putative candidate to underlie the eam7 locus in barley as supported by genetic mapping and CRISPR-Cas9-generated lwd1 mutants. Mutations in eam7 cause a significant phase advance and a misregulation of core clock and clock output genes under diurnal conditions. Early flowering was linked to an upregulation of Ppd-H1 during the night and consequent induction of the florigen FLOWERING LOCUS T1 under short days. We propose that EAM7 controls photoperiodic flowering in barley by controlling the light input into the clock and diurnal expression patterns of the major photoperiod response gene Ppd-H1.
Collapse
Affiliation(s)
- Gesa Helmsorig
- Institute of Plant Genetics, Heinrich-Heine-Universität Düsseldorf, 40223 Düsseldorf, Germany
| | - Agatha Walla
- Institute of Plant Genetics, Heinrich-Heine-Universität Düsseldorf, 40223 Düsseldorf, Germany
| | - Thea Rütjes
- Institute of Plant Genetics, Heinrich-Heine-Universität Düsseldorf, 40223 Düsseldorf, Germany
| | - Gabriele Buchmann
- Institute of Plant Genetics, Heinrich-Heine-Universität Düsseldorf, 40223 Düsseldorf, Germany
| | - Rebekka Schüller
- Institute of Plant Genetics, Heinrich-Heine-Universität Düsseldorf, 40223 Düsseldorf, Germany
| | - Götz Hensel
- Cluster of Excellence on Plant Sciences “SMART Plants for Tomorrow's Needs”, 40223 Düsseldorf, Germany
- Centre for Plant Genome Engineering, Institute of Plant Biochemistry, Heinrich-Heine-Universität Düsseldorf, 40223 Düsseldorf, Germany
- Division of Molecular Biology, Centre of the Region Hana for Biotechnological and Agriculture Research, Faculty of Science, Palacký University, CZ-779 00 Olomouc, Czech
| | - Maria von Korff
- Institute of Plant Genetics, Heinrich-Heine-Universität Düsseldorf, 40223 Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences “SMART Plants for Tomorrow's Needs”, 40223 Düsseldorf, Germany
| |
Collapse
|
12
|
Gómez-Álvarez EM, Salardi-Jost M, Ahumada GD, Perata P, Dell'Acqua M, Pucciariello C. Seed bacterial microbiota in post-submergence tolerant and sensitive barley genotypes. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23166. [PMID: 38266278 DOI: 10.1071/fp23166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/03/2024] [Indexed: 01/26/2024]
Abstract
Flooding is a predominant abiotic stress for cultivated plants, including barley. This cereal crop shows a large adaptability to different environmental conditions, suggesting the presence of key traits to tolerate adverse conditions. During germination, genetic variations account for dissimilarities in flooding tolerance. However, differences in the seed microbiota may also contribute to tolerance/sensitivity during seedling establishment. This work investigated differences in microbiome among the grains of barley accessions. Two barley phenotypes were compared, each either tolerant or sensitive to a short submergence period followed by a recovery. The study used a metataxonomic analysis based on 16S ribosomal RNA gene sequencing and subsequent functional prediction. Our results support the hypothesis that bacterial microbiota inhabiting the barley seeds are different between sensitive and tolerant barley accessions, which harbour specific bacterial phyla and families. Finally, bacteria detected in tolerant barley accessions show a peculiar functional enrichment that suggests a possible connection with successful germination and seedling establishment.
Collapse
Affiliation(s)
| | | | | | | | - Matteo Dell'Acqua
- Genetics Lab, Center of Plant Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | | |
Collapse
|
13
|
Thorogood R, Mustonen V, Aleixo A, Aphalo PJ, Asiegbu FO, Cabeza M, Cairns J, Candolin U, Cardoso P, Eronen JT, Hällfors M, Hovatta I, Juslén A, Kovalchuk A, Kulmuni J, Kuula L, Mäkipää R, Ovaskainen O, Pesonen AK, Primmer CR, Saastamoinen M, Schulman AH, Schulman L, Strona G, Vanhatalo J. Understanding and applying biological resilience, from genes to ecosystems. NPJ BIODIVERSITY 2023; 2:16. [PMID: 39242840 PMCID: PMC11332022 DOI: 10.1038/s44185-023-00022-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/07/2023] [Indexed: 09/09/2024]
Abstract
The natural world is under unprecedented and accelerating pressure. Much work on understanding resilience to local and global environmental change has, so far, focussed on ecosystems. However, understanding a system's behaviour requires knowledge of its component parts and their interactions. Here we call for increased efforts to understand 'biological resilience', or the processes that enable components across biological levels, from genes to communities, to resist or recover from perturbations. Although ecologists and evolutionary biologists have the tool-boxes to examine form and function, efforts to integrate this knowledge across biological levels and take advantage of big data (e.g. ecological and genomic) are only just beginning. We argue that combining eco-evolutionary knowledge with ecosystem-level concepts of resilience will provide the mechanistic basis necessary to improve management of human, natural and agricultural ecosystems, and outline some of the challenges in achieving an understanding of biological resilience.
Collapse
Affiliation(s)
- Rose Thorogood
- HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| | - Ville Mustonen
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Department of Computer Science, Faculty of Science, University of Helsinki, Helsinki, Finland
- Helsinki Institute for Information Technology, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE Helsinki Institute for Life Science, University of Helsinki, Helsinki, Finland
| | - Alexandre Aleixo
- LUOMUS Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Pedro J Aphalo
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Fred O Asiegbu
- Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Mar Cabeza
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- HELSUS Helsinki Institute of Sustainability Science, University of Helsinki, Helsinki, Finland
| | - Johannes Cairns
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Helsinki Institute for Information Technology, University of Helsinki, Helsinki, Finland
| | - Ulrika Candolin
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Pedro Cardoso
- LUOMUS Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
- CE3C - Centre for Ecology, Evolution and Environmental Changes, CHANGE-Global Change and Sustainability Institute, Faculty of Sciences, University of Lisbon, 1749-016, Lisbon, Portugal
| | - Jussi T Eronen
- HELSUS Helsinki Institute of Sustainability Science, University of Helsinki, Helsinki, Finland
- Research Programme in Ecosystems and Environment, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- BIOS Research Unit, Helsinki, Finland
| | - Maria Hällfors
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Research Centre for Ecological Change, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Syke Finnish Environment Institute, Helsinki, Finland
| | - Iiris Hovatta
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Neuroscience Center, HiLIFE Helsinki Institute for Life Science, University of Helsinki, Helsinki, Finland
| | - Aino Juslén
- LUOMUS Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
- Syke Finnish Environment Institute, Helsinki, Finland
| | - Andriy Kovalchuk
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- VTT Technical Research Centre of Finland Ltd, Espoo, Finland
- Onego Bio Ltd, Helsinki, Finland
| | - Jonna Kulmuni
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Liisa Kuula
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Raisa Mäkipää
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Otso Ovaskainen
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Anu-Katriina Pesonen
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Craig R Primmer
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE Helsinki Institute for Life Science, University of Helsinki, Helsinki, Finland
| | - Marjo Saastamoinen
- HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Research Centre for Ecological Change, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Alan H Schulman
- Institute of Biotechnology, HiLIFE Helsinki Institute for Life Science, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Leif Schulman
- LUOMUS Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
- Syke Finnish Environment Institute, Helsinki, Finland
| | - Giovanni Strona
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Research Centre for Ecological Change, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- European Commission, Joint Research Centre, Directorate D - Sustainable Resources, Ispra, Italy
| | - Jarno Vanhatalo
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Research Centre for Ecological Change, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Department of Mathematics and Statistics, Faculty of Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
Fagerstedt KV. Use of GWAS analysis in deciphering the inability of barley seeds to germinate after hypoxia. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3883-3886. [PMID: 37536060 PMCID: PMC10400110 DOI: 10.1093/jxb/erad198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
This article comments on:
Gómez-Álvarez EM, Tondelli A, Nghi KN, Voloboeva V, Giordano G, Valè G, Perata P, Pucciariello C. 2023. The inability of barley to germinate after submergence depends on hypoxia-induced secondary dormancy. Journal of Experimental Botany 74, 4277–4289
Collapse
Affiliation(s)
- Kurt V Fagerstedt
- University of Helsinki, Faculty of Biological and Environmental Sciences, Organismal and Evolutionary Biology Research Programme, FI-00014 University of Helsinki, Finland
| |
Collapse
|
15
|
Gómez-Álvarez EM, Tondelli A, Nghi KN, Voloboeva V, Giordano G, Valè G, Perata P, Pucciariello C. Barley's inability to germinate after submergence depends on hypoxia-induced secondary dormancy. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad151. [PMID: 37100757 DOI: 10.1093/jxb/erad151] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Indexed: 06/19/2023]
Abstract
Global climate change has dramatically increased flooding events, which have a strong impact on crop production. Barley is one of the most important cereals and its cultivation includes a broad range of different environments. We tested the capacity to germinate of a large barley panel after a short period of submergence followed by a recovery phase. We demonstrated that sensitive barley varieties activate underwater secondary dormancy because of a lower permeability to oxygen dissolved in water. In sensitive barley accessions, secondary dormancy is removed by nitric oxide donors. Our genome wide association study results uncovered a laccase gene located in a region of significant marker-trait association that is differently regulated during grain development and plays a key role in this process. We believe that our findings will help to improve the genetics of barley thereby increasing the capacity of seeds to germinate after a short period of flooding.
Collapse
Affiliation(s)
| | - Alessandro Tondelli
- Council for Agricultural Research and Economics (CREA), Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
| | - Khac Nhu Nghi
- Center of Plant Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- Current Biotechnology Center, Tra Vinh University, Tra Vinh Province, Vietnam
| | | | - Guido Giordano
- Center of Plant Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Giampiero Valè
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, Università del Piemonte Orientale, Vercelli, Italy
| | | | - Chiara Pucciariello
- Center of Plant Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- nanoPlant Center @NEST, Center of Plant Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| |
Collapse
|
16
|
Slafer GA, Casas AM, Igartua E. Sense in sensitivity: difference in the meaning of photoperiod-insensitivity between wheat and barley. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad128. [PMID: 37021554 DOI: 10.1093/jxb/erad128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Indexed: 06/19/2023]
Abstract
The description of long photoperiod sensitivity in wheat and barley is a cause of confusion for researchers working in these crops, usually accustomed to free exchange of physiological and genetic knowledge of such similar crops. Indeed, wheat and barley scientists customarily quote studies of either crop species when researching one of them. Among their numerous similarities the main gene controlling that response is the same in both crops (PPD1; PPD-H1 in barley and PPD-D1 in hexaploid wheat). However, the photoperiod responses are different: (i) the main dominant allele inducing shorter time to anthesis is the insensitive allele in wheat (Ppd-D1a) but the sensitive allele in barley (Ppd-H1) (i.e. sensitivity to photoperiod produces opposite effects on time to heading in wheat and barley), (ii) the main "insensitive" allele in wheat, Ppd-D1a, does confer insensitivity, whilst that of barley reduces the sensitivity but still responds to photoperiod. The different behaviour of PPD1 genes in wheat and barley is put in a common framework based on the similarities and differences of the molecular bases of their mutations, which include polymorphism at gene expression levels, copy number variation, and sequence of coding regions. This common perspective sheds light on a source on confusion for cereal researchers, and prompts us to recommend accounting for the photoperiod sensitivity status of the plant materials when doing research on genetic control of phenology. Finally, we provide advice to facilitate the management of natural PPD1 diversity in breeding programs and suggest targets for further modification through gene editing, based on mutual knowledge on the two crops.
Collapse
Affiliation(s)
- Gustavo A Slafer
- Department of Crop and Forest Sciences University of Lleida and AGROTECNIO-CERCA Center, Av. Rovira Roure 191, 25198 Lleida, Spain
- ICREA, Catalonian Institution for Research and Advanced Studies, Spain
| | - Ana M Casas
- Department of Genetics and Plant Production, Aula Dei Experimental Station, EEAD, CSIC, Avda. Montañana 1005, E-50059 Zaragoza, Spain
| | - Ernesto Igartua
- Department of Genetics and Plant Production, Aula Dei Experimental Station, EEAD, CSIC, Avda. Montañana 1005, E-50059 Zaragoza, Spain
| |
Collapse
|
17
|
Yang X, Wilkinson LG, Aubert MK, Houston K, Shirley NJ, Tucker MR. Ovule cell wall composition is a maternal determinant of grain size in barley. THE NEW PHYTOLOGIST 2023; 237:2136-2147. [PMID: 36600397 DOI: 10.1111/nph.18714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
In cereal species, grain size is influenced by growth of the ovule integuments (seed coat), the spikelet hull (lemma and palea) and the filial endosperm. Whether a highly conserved ovule tissue, the nucellus, has any impact on grain size has remained unclear. Immunolabelling revealed that the barley nucellus comprises two distinct cell types that differ in terms of cell wall homogalacturonan (HG) accumulation. Transcriptional profiling of the nucellus identified two pectin methylesterase (PME) genes, OVULE PECTIN MODIFIER 1 (OPM1) and OPM2, which are expressed in the unfertilized ovule but absent from the seed. Ovules from an opm1 opm2 mutant and plants expressing an ovule-specific pectin methylesterase inhibitor (PMEI), exhibit reduced HG accumulation. This results in changes to ovule cell size and shape and ovules that are longer than wild-type (WT) controls. At grain maturity, this is manifested as significantly longer grain. These findings indicate that cell wall composition during ovule development acts to limit ovule and seed growth. The investigation of ovule PME and PMEI activity reveals an unexpected role of maternal tissues in controlling grain growth before fertilization, one that has been lacking from models exploring improvements in grain size.
Collapse
Affiliation(s)
- Xiujuan Yang
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA, 5064, Australia
| | - Laura G Wilkinson
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA, 5064, Australia
| | - Matthew K Aubert
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA, 5064, Australia
- Australian Grain Technologies, 100 Byfield Street, Northam, WA, 6401, Australia
| | - Kelly Houston
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Neil J Shirley
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA, 5064, Australia
| | - Matthew R Tucker
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA, 5064, Australia
| |
Collapse
|
18
|
Yue W, Cai K, Xia X, Liu L, Wang J. Genome-wide identification, expression pattern and genetic variation analysis of SWEET gene family in barley reveal the artificial selection of HvSWEET1a during domestication and improvement. FRONTIERS IN PLANT SCIENCE 2023; 14:1137434. [PMID: 36860904 PMCID: PMC9968841 DOI: 10.3389/fpls.2023.1137434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
SWEET (Sugars Will Eventually be Exported Transporter) proteins, an essential class of sugar transporters, are involved in vital biological processes of plant growth and development. To date, systematical analysis of SWEET family in barley (Hordeum vulgare) has not been reported. In this study, we genome-wide identified 23 HvSWEET genes in barley, which were further clustered into four clades by phylogenetic tree. The members belonging to the same clade showed relatively similar gene structures and conserved protein motifs. Synteny analysis confirmed the tandem and segmental duplications among HvSWEET genes during evolution. Expression profile analysis demonstrated that the patterns of HvSWEET genes varied and the gene neofunctionalization occurred after duplications. Yeast complementary assay and subcellular localization in tobacco leaves suggested that HvSWEET1a and HvSWEET4, highly expressed in seed aleurone and scutellum during germination, respectively, functioned as plasma membrane hexose sugar transporters. Furthermore, genetic variation detection indicated that HvSWEET1a was under artificial selection pressure during barley domestication and improvement. The obtained results facilitate our comprehensive understanding and further functional investigations of barley HvSWEET gene family, and also provide a potential candidate gene for de novo domestication breeding of barley.
Collapse
Affiliation(s)
- Wenhao Yue
- Key Laboratory of Digital Dry Land Crops of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- National Barley Improvement Center, Hangzhou, China
| | - Kangfeng Cai
- Key Laboratory of Digital Dry Land Crops of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- National Barley Improvement Center, Hangzhou, China
| | - Xue Xia
- Key Laboratory of Digital Dry Land Crops of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- National Barley Improvement Center, Hangzhou, China
- College of Advanced Agricultural Sciences, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Lei Liu
- Key Laboratory of Digital Dry Land Crops of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- National Barley Improvement Center, Hangzhou, China
| | - Junmei Wang
- Key Laboratory of Digital Dry Land Crops of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- National Barley Improvement Center, Hangzhou, China
| |
Collapse
|
19
|
Exome-wide variation in a diverse barley panel reveals genetic associations with ten agronomic traits in Eastern landraces. J Genet Genomics 2022; 50:241-252. [PMID: 36566016 DOI: 10.1016/j.jgg.2022.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
Barley (Hordeum vulgare ssp. vulgare) was one of the first crops to be domesticated and is adapted to a wide range of environments. Worldwide barley germplasm collections possess valuable allelic variations that could further improve barley productivity. Although barley genomics has offered a global picture of allelic variation among varieties and its association with various agronomic traits, polymorphisms from East Asian varieties remain scarce. In this study, we analyzed exome polymorphisms in a panel of 274 barley varieties collected worldwide, including 137 varieties from East Asian countries and Ethiopia. We revealed the underlying population structure and conducted genome-wide association studies for ten agronomic traits. Moreover, we examined genome-wide associations for traits related to grain size such as awn length and glume length. Our results demonstrate the value of diverse barley germplasm panels containing Eastern varieties, highlighting their distinct genomic signatures relative to Western subpopulations.
Collapse
|
20
|
Conserved signalling components coordinate epidermal patterning and cuticle deposition in barley. Nat Commun 2022; 13:6050. [PMID: 36229435 PMCID: PMC9561702 DOI: 10.1038/s41467-022-33300-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 09/12/2022] [Indexed: 12/24/2022] Open
Abstract
Faced with terrestrial threats, land plants seal their aerial surfaces with a lipid-rich cuticle. To breathe, plants interrupt their cuticles with adjustable epidermal pores, called stomata, that regulate gas exchange, and develop other specialised epidermal cells such as defensive hairs. Mechanisms coordinating epidermal features remain poorly understood. Addressing this, we studied two loci whose allelic variation causes both cuticular wax-deficiency and misarranged stomata in barley, identifying the underlying genes, Cer-g/ HvYDA1, encoding a YODA-like (YDA) MAPKKK, and Cer-s/ HvBRX-Solo, encoding a single BREVIS-RADIX (BRX) domain protein. Both genes control cuticular integrity, the spacing and identity of epidermal cells, and barley's distinctive epicuticular wax blooms, as well as stomatal patterning in elevated CO2 conditions. Genetic analyses revealed epistatic and modifying relationships between HvYDA1 and HvBRX-Solo, intimating that their products participate in interacting pathway(s) linking epidermal patterning with cuticular properties in barley. This may represent a mechanism for coordinating multiple adaptive features of the land plant epidermis in a cultivated cereal.
Collapse
|
21
|
de Souza Moraes T, van Es SW, Hernández-Pinzón I, Kirschner GK, van der Wal F, da Silveira SR, Busscher-Lange J, Angenent GC, Moscou M, Immink RGH, van Esse GW. The TCP transcription factor HvTB2 heterodimerizes with VRS5 and controls spike architecture in barley. PLANT REPRODUCTION 2022; 35:205-220. [PMID: 35254529 PMCID: PMC9352630 DOI: 10.1007/s00497-022-00441-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Understanding the molecular network, including protein-protein interactions, of VRS5 provide new routes towards the identification of other key regulators of plant architecture in barley. The TCP transcriptional regulator TEOSINTE BRANCHED 1 (TB1) is a key regulator of plant architecture. In barley, an important cereal crop, HvTB1 (also referred to as VULGARE SIX-ROWED spike (VRS) 5), inhibits the outgrowth of side shoots, or tillers, and grains. Despite its key role in barley development, there is limited knowledge on the molecular network that is utilized by VRS5. In this work, we performed protein-protein interaction studies of VRS5. Our analysis shows that VRS5 potentially interacts with a diverse set of proteins, including other class II TCP's, NF-Y TF, but also chromatin remodelers. Zooming in on the interaction capacity of VRS5 with other TCP TFs shows that VRS5 preferably interacts with other class II TCP TFs in the TB1 clade. Induced mutagenesis through CRISPR-Cas of one of the putative VRS5 interactors, HvTB2 (also referred to as COMPOSITUM 1 and BRANCHED AND INDETERMINATE SPIKELET 1), resulted in plants that have lost their characteristic unbranched spike architecture. More specifically, hvtb2 mutants exhibited branches arising at the main spike, suggesting that HvTB2 acts as inhibitor of branching. Our protein-protein interaction studies of VRS5 resulted in the identification of HvTB2 as putative interactor of VRS5, another key regulator of spike architecture in barley. The study presented here provides a first step to underpin the protein-protein interactome of VRS5 and to identify other, yet unknown, key regulators of barley plant architecture.
Collapse
Affiliation(s)
- Tatiana de Souza Moraes
- Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Laboratório de Biotecnologia Vegetal, Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, CEP 13416-000, Brazil
| | - Sam W van Es
- Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | | | - Gwendolyn K Kirschner
- Institute of Crop Functional Genomics, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| | - Froukje van der Wal
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Sylvia Rodrigues da Silveira
- Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Laboratório de Biotecnologia Vegetal, Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, CEP 13416-000, Brazil
| | - Jacqueline Busscher-Lange
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Gerco C Angenent
- Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Matthew Moscou
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Richard G H Immink
- Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands.
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands.
| | - G Wilma van Esse
- Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands.
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
22
|
Dang VH, Hill CB, Zhang XQ, Angessa TT, McFawn LA, Li C. Multi-locus genome-wide association studies reveal novel alleles for flowering time under vernalisation and extended photoperiod in a barley MAGIC population. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3087-3102. [PMID: 35879467 PMCID: PMC9482607 DOI: 10.1007/s00122-022-04169-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Key genes controlling flowering and interactions of different photoperiod alleles with various environments were identified in a barley MAGIC population. A new candidate gene for vernalisation requirements was also detected. Optimal flowering time has a major impact on grain yield in crop species, including the globally important temperate cereal crop barley (Hordeum vulgare L.). Understanding the genetics of flowering is a key avenue to enhancing yield potential. Although bi-parental populations were used intensively to map genes controlling flowering, their lack of genetic diversity requires additional work to obtain desired gene combinations in the selected lines, especially when the two parental cultivars did not carry the genes. Multi-parent mapping populations, which use a combination of four or eight parental cultivars, have higher genetic and phenotypic diversity and can provide novel genetic combinations that cannot be achieved using bi-parental populations. This study uses a Multi-parent advanced generation intercross (MAGIC) population from four commercial barley cultivars to identify genes controlling flowering time in different environmental conditions. Genome-wide association studies (GWAS) were performed using 5,112 high-quality markers from Diversity Arrays Technology sequencing (DArT-seq), and Kompetitive allele-specific polymerase chain reaction (KASP) genetic markers were developed. Phenotypic data were collected from fifteen different field trials for three consecutive years. Planting was conducted at various sowing times, and plants were grown with/without additional vernalisation and extended photoperiod treatments. This study detected fourteen stable regions associated with flowering time across multiple environments. GWAS combined with pangenome data highlighted the role of CEN gene in flowering and enabled the prediction of different CEN alleles from parental lines. As the founder lines of the multi-parental population are elite germplasm, the favourable alleles identified in this study are directly relevant to breeding, increasing the efficiency of subsequent breeding strategies and offering better grain yield and adaptation to growing conditions.
Collapse
Affiliation(s)
- Viet Hoang Dang
- Western Crop Genetics Alliance, Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Perth, WA, Australia
- Department of Primary Industries and Regional Development, Perth, WA, Australia
| | - Camilla Beate Hill
- Western Crop Genetics Alliance, Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Perth, WA, Australia
| | - Xiao-Qi Zhang
- Western Crop Genetics Alliance, Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Perth, WA, Australia
| | - Tefera Tolera Angessa
- Western Crop Genetics Alliance, Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Perth, WA, Australia
| | - Lee-Anne McFawn
- Department of Primary Industries and Regional Development, Perth, WA, Australia
| | - Chengdao Li
- Western Crop Genetics Alliance, Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Perth, WA, Australia.
- Department of Primary Industries and Regional Development, Perth, WA, Australia.
| |
Collapse
|
23
|
Chen Y, Schreiber M, Bayer MM, Dawson IK, Hedley PE, Lei L, Akhunova A, Liu C, Smith KP, Fay JC, Muehlbauer GJ, Steffenson BJ, Morrell PL, Waugh R, Russell JR. The evolutionary patterns of barley pericentromeric chromosome regions, as shaped by linkage disequilibrium and domestication. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1580-1594. [PMID: 35834607 PMCID: PMC9546296 DOI: 10.1111/tpj.15908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/30/2022] [Accepted: 07/13/2022] [Indexed: 05/17/2023]
Abstract
The distribution of recombination events along large cereal chromosomes is uneven and is generally restricted to gene-rich telomeric ends. To understand how the lack of recombination affects diversity in the large pericentromeric regions, we analysed deep exome capture data from a final panel of 815 Hordeum vulgare (barley) cultivars, landraces and wild barleys, sampled from across their eco-geographical ranges. We defined and compared variant data across the pericentromeric and non-pericentromeric regions, observing a clear partitioning of diversity both within and between chromosomes and germplasm groups. Dramatically reduced diversity was found in the pericentromeres of both cultivars and landraces when compared with wild barley. We observed a mixture of completely and partially differentiated single-nucleotide polymorphisms (SNPs) between domesticated and wild gene pools, suggesting that domesticated gene pools were derived from multiple wild ancestors. Patterns of genome-wide linkage disequilibrium, haplotype block size and number, and variant frequency within blocks showed clear contrasts among individual chromosomes and between cultivars and wild barleys. Although most cultivar chromosomes shared a single major pericentromeric haplotype, chromosome 7H clearly differentiated the two-row and six-row types associated with different geographical origins. Within the pericentromeric regions we identified 22 387 non-synonymous SNPs, 92 of which were fixed for alternative alleles in cultivar versus wild accessions. Surprisingly, only 29 SNPs found exclusively in the cultivars were predicted to be 'highly deleterious'. Overall, our data reveal an unconventional pericentromeric genetic landscape among distinct barley gene pools, with different evolutionary processes driving domestication and diversification.
Collapse
Affiliation(s)
- Yun‐Yu Chen
- The James Hutton Institute, InvergowrieDundeeDD2 5DAUK
- Fios GenomicsBioQuarter, 13 Little France RdEdinburghEH16 4UXUK
| | - Miriam Schreiber
- The James Hutton Institute, InvergowrieDundeeDD2 5DAUK
- Division of Plant Sciences, School of Life SciencesUniversity of DundeeDow StreetDundeeDD1 5EHUK
| | | | - Ian K. Dawson
- The James Hutton Institute, InvergowrieDundeeDD2 5DAUK
- Scotland's Rural College, Kings BuildingsWest Mains RdEdinburghEH9 3JGUK
| | | | - Li Lei
- Department of Agronomy & Plant GeneticsUniversity of Minnesota411 Borlaug Hall, 1991 Buford CircleSt PaulMN55108USA
| | - Alina Akhunova
- Department of Agronomy & Plant GeneticsUniversity of Minnesota411 Borlaug Hall, 1991 Buford CircleSt PaulMN55108USA
- Department of Plant PathologyKansas State UniversityThrockmorton HallManhattanKS66506USA
| | - Chaochih Liu
- Department of Agronomy & Plant GeneticsUniversity of Minnesota411 Borlaug Hall, 1991 Buford CircleSt PaulMN55108USA
| | - Kevin P. Smith
- Department of Agronomy & Plant GeneticsUniversity of Minnesota411 Borlaug Hall, 1991 Buford CircleSt PaulMN55108USA
| | - Justin C. Fay
- Department of BiologyUniversity of Rochester319 HutchisonRochesterNY14627USA
| | - Gary J. Muehlbauer
- Department of Agronomy & Plant GeneticsUniversity of Minnesota411 Borlaug Hall, 1991 Buford CircleSt PaulMN55108USA
| | - Brian J. Steffenson
- Department of Plant PathologyUniversity of Minnesota495 Borlaug Hall, 1991 Buford CircleSt PaulMN55108USA
| | - Peter L. Morrell
- Department of Agronomy & Plant GeneticsUniversity of Minnesota411 Borlaug Hall, 1991 Buford CircleSt PaulMN55108USA
| | - Robbie Waugh
- The James Hutton Institute, InvergowrieDundeeDD2 5DAUK
- Division of Plant Sciences, School of Life SciencesUniversity of DundeeDow StreetDundeeDD1 5EHUK
| | | |
Collapse
|
24
|
Knudsen S, Wendt T, Dockter C, Thomsen HC, Rasmussen M, Egevang Jørgensen M, Lu Q, Voss C, Murozuka E, Østerberg JT, Harholt J, Braumann I, Cuesta-Seijo JA, Kale SM, Bodevin S, Tang Petersen L, Carciofi M, Pedas PR, Opstrup Husum J, Nielsen MTS, Nielsen K, Jensen MK, Møller LA, Gojkovic Z, Striebeck A, Lengeler K, Fennessy RT, Katz M, Garcia Sanchez R, Solodovnikova N, Förster J, Olsen O, Møller BL, Fincher GB, Skadhauge B. FIND-IT: Accelerated trait development for a green evolution. SCIENCE ADVANCES 2022; 8:eabq2266. [PMID: 36001660 PMCID: PMC9401622 DOI: 10.1126/sciadv.abq2266] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Improved agricultural and industrial production organisms are required to meet the future global food demands and minimize the effects of climate change. A new resource for crop and microbe improvement, designated FIND-IT (Fast Identification of Nucleotide variants by droplet DigITal PCR), provides ultrafast identification and isolation of predetermined, targeted genetic variants in a screening cycle of less than 10 days. Using large-scale sample pooling in combination with droplet digital PCR (ddPCR) greatly increases the size of low-mutation density and screenable variant libraries and the probability of identifying the variant of interest. The method is validated by screening variant libraries totaling 500,000 barley (Hordeum vulgare) individuals and isolating more than 125 targeted barley gene knockout lines and miRNA or promoter variants enabling functional gene analysis. FIND-IT variants are directly applicable to elite breeding pipelines and minimize time-consuming technical steps to accelerate the evolution of germplasm.
Collapse
Affiliation(s)
- Søren Knudsen
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Toni Wendt
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Christoph Dockter
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | | | - Magnus Rasmussen
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | | | - Qiongxian Lu
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Cynthia Voss
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Emiko Murozuka
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | | | - Jesper Harholt
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Ilka Braumann
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Jose A. Cuesta-Seijo
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Sandip M. Kale
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Sabrina Bodevin
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Lise Tang Petersen
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | | | - Pai Rosager Pedas
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Jeppe Opstrup Husum
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | | | - Kasper Nielsen
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Mikkel K. Jensen
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Lillian Ambus Møller
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Zoran Gojkovic
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Alexander Striebeck
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Klaus Lengeler
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Ross T. Fennessy
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Michael Katz
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Rosa Garcia Sanchez
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | | | - Jochen Förster
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Ole Olsen
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Centre for Synthetic Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Geoffrey B. Fincher
- Australian Research Council Centre of Excellence in Plant Cell Walls School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | - Birgitte Skadhauge
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| |
Collapse
|
25
|
Root angle is controlled by EGT1 in cereal crops employing an antigravitropic mechanism. Proc Natl Acad Sci U S A 2022; 119:e2201350119. [PMID: 35881796 PMCID: PMC9351459 DOI: 10.1073/pnas.2201350119] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The growth angle roots adopt are critical for capturing soil resources, such as nutrients and water. Despite its agronomic importance, few regulatory genes have been identified in crops. Here we identify the root angle regulatory gene ENHANCED GRAVITROPISM 1 (EGT1) in barley. Strikingly, mutants lacking EGT1 exhibit a steeper angle in every root class. EGT1 appears to function as a component of an antigravitropic offset mechanism that regulates tissue stiffness, which impacts final root growth angle. EGT1 is a hot spot for selection as natural allelic variation within a conserved Tubby domain that is linked with steeper root angle. Analogous EGT1-dependent regulation of root angle in wheat demonstrates broad significance of EGT1 for trait improvement in cereal crops. Root angle in crops represents a key trait for efficient capture of soil resources. Root angle is determined by competing gravitropic versus antigravitropic offset (AGO) mechanisms. Here we report a root angle regulatory gene termed ENHANCED GRAVITROPISM1 (EGT1) that encodes a putative AGO component, whose loss-of-function enhances root gravitropism. Mutations in barley and wheat EGT1 genes confer a striking root phenotype, where every root class adopts a steeper growth angle. EGT1 encodes an F-box and Tubby domain-containing protein that is highly conserved across plant species. Haplotype analysis found that natural allelic variation at the barley EGT1 locus impacts root angle. Gravitropic assays indicated that Hvegt1 roots bend more rapidly than wild-type. Transcript profiling revealed Hvegt1 roots deregulate reactive oxygen species (ROS) homeostasis and cell wall-loosening enzymes and cofactors. ROS imaging shows that Hvegt1 root basal meristem and elongation zone tissues have reduced levels. Atomic force microscopy measurements detected elongating Hvegt1 root cortical cell walls are significantly less stiff than wild-type. In situ analysis identified HvEGT1 is expressed in elongating cortical and stele tissues, which are distinct from known root gravitropic perception and response tissues in the columella and epidermis, respectively. We propose that EGT1 controls root angle by regulating cell wall stiffness in elongating root cortical tissue, counteracting the gravitropic machinery’s known ability to bend the root via its outermost tissues. We conclude that root angle is controlled by EGT1 in cereal crops employing an antigravitropic mechanism.
Collapse
|
26
|
Rau D, Attene G, Rodriguez M, Baghino L, Pisanu AB, Sanna D, Acquadro A, Portis E, Comino C. The Population Structure of a Globe Artichoke Worldwide Collection, as Revealed by Molecular and Phenotypic Analyzes. FRONTIERS IN PLANT SCIENCE 2022; 13:898740. [PMID: 35865281 PMCID: PMC9294547 DOI: 10.3389/fpls.2022.898740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/13/2022] [Indexed: 05/27/2023]
Abstract
The knowledge of the organization of the domesticated gene pool of crop species is an essential requirement to understand crop evolution, to rationalize conservation programs, and to support practical decisions in plant breeding. Here, we integrate simple sequence repeat (SSR) analysis and phenotypic characterization to investigate a globe artichoke collection that comprises most of the varieties cultivated worldwide. We show that the cultivated gene pool of globe artichoke includes five distinct genetic groups associated with the major phenotypic typologies: Catanesi (which based on our analysis corresponds to Violetti di Provenza), Spinosi, Violetti di Toscana, Romaneschi, and Macau. We observed that 17 and 11% of the molecular and phenotypic variance, respectively, is between these groups, while within groups, strong linkage disequilibrium and heterozygote excess are evident. The divergence between groups for quantitative traits correlates with the average broad-sense heritability within the groups. The phenotypic divergence between groups for both qualitative and quantitative traits is strongly and positively correlated with SSR divergence (FST) between groups. All this implies a low population size and strong bottleneck effects, and indicates a long history of clonal propagation and selection during the evolution of the domesticated gene pool of globe artichoke. Moreover, the comparison between molecular and phenotypic population structures suggests that harvest time, plant architecture (i.e., plant height, stem length), leaf spininess, head morphology (i.e., head shape, bract shape, spininess) together with the number of heads per plant were the main targets of selection during the evolution of the cultivated germplasm. We emphasize our findings in light of the potential exploitation of this collection for association mapping studies.
Collapse
Affiliation(s)
- Domenico Rau
- Dipartimento di Agraria, Sezione di Agronomia, Coltivazioni Erbacee e Genetica (SACEG), Università degli Studi di Sassari, Sassari, Italy
| | - Giovanna Attene
- Dipartimento di Agraria, Sezione di Agronomia, Coltivazioni Erbacee e Genetica (SACEG), Università degli Studi di Sassari, Sassari, Italy
| | - Monica Rodriguez
- Dipartimento di Agraria, Sezione di Agronomia, Coltivazioni Erbacee e Genetica (SACEG), Università degli Studi di Sassari, Sassari, Italy
| | - Limbo Baghino
- Agenzia AGRIS Sardegna (Servizio Ricerca sui Sistemi Colturali Erbacei, Settore Innovazione dei Modelli Gestionali e Studio Della Biodiversità Nelle Colture Intensive), Oristano, Italy
| | - Anna Barbara Pisanu
- Agenzia AGRIS Sardegna (Servizio Ricerca sui Sistemi Colturali Erbacei, Settore Innovazione dei Modelli Gestionali e Studio Della Biodiversità Nelle Colture Intensive), Oristano, Italy
| | - Davide Sanna
- Agenzia AGRIS Sardegna (Servizio Ricerca sui Sistemi Colturali Erbacei, Settore Innovazione dei Modelli Gestionali e Studio Della Biodiversità Nelle Colture Intensive), Oristano, Italy
| | - Alberto Acquadro
- Dipartimento di Scienze Agrarie, Forestali ed Alimentari (DISAFA), Genetica Vegetale (Plant Genetics), Università degli Studi di Torino, Turin, Italy
| | - Ezio Portis
- Dipartimento di Scienze Agrarie, Forestali ed Alimentari (DISAFA), Genetica Vegetale (Plant Genetics), Università degli Studi di Torino, Turin, Italy
| | - Cinzia Comino
- Dipartimento di Scienze Agrarie, Forestali ed Alimentari (DISAFA), Genetica Vegetale (Plant Genetics), Università degli Studi di Torino, Turin, Italy
| |
Collapse
|
27
|
Guerra D, Morcia C, Badeck F, Rizza F, Delbono S, Francia E, Milc JA, Monostori I, Galiba G, Cattivelli L, Tondelli A. Extensive allele mining discovers novel genetic diversity in the loci controlling frost tolerance in barley. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:553-569. [PMID: 34757472 PMCID: PMC8866391 DOI: 10.1007/s00122-021-03985-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/26/2021] [Indexed: 05/24/2023]
Abstract
Exome sequencing-based allele mining for frost tolerance suggests HvCBF14 rather than CNV at Fr-H2 locus is the main responsible of frost tolerance in barley. Wild relatives, landraces and old cultivars of barley represent a reservoir of untapped and potentially important genes for crop improvement, and the recent sequencing technologies provide the opportunity to mine the existing genetic diversity and to identify new genes/alleles for the traits of interest. In the present study, we use frost tolerance and vernalization requirement as case studies to demonstrate the power of allele mining carried out on exome sequencing data generated from > 400 barley accessions. New deletions in the first intron of VRN-H1 were identified and linked to a reduced vernalization requirement, while the allelic diversity of HvCBF2a, HvCBF4b and HvCBF14 was investigated by combining the analysis of SNPs and read counts. This approach has proven very effective to identify gene paralogs and copy number variants of HvCBF2 and the HvCBF4b-HvCBF2a segment. A multiple linear regression model which considers allelic variation at these genes suggests a major involvement of HvCBF14, rather than copy number variation of HvCBF4b-HvCBF2a, in controlling frost tolerance in barley. Overall, the present study provides powerful resource and tools to discover novel alleles at relevant genes in barley.
Collapse
Affiliation(s)
- Davide Guerra
- Council for Agricultural Research and Economics - Research Centre for Genomics and Bioinformatics, Via S. Protaso 302, 29017, Fiorenzuola d'Arda , PC, Italy.
| | - Caterina Morcia
- Council for Agricultural Research and Economics - Research Centre for Genomics and Bioinformatics, Via S. Protaso 302, 29017, Fiorenzuola d'Arda , PC, Italy
| | - Franz Badeck
- Council for Agricultural Research and Economics - Research Centre for Genomics and Bioinformatics, Via S. Protaso 302, 29017, Fiorenzuola d'Arda , PC, Italy
| | - Fulvia Rizza
- Council for Agricultural Research and Economics - Research Centre for Genomics and Bioinformatics, Via S. Protaso 302, 29017, Fiorenzuola d'Arda , PC, Italy
| | - Stefano Delbono
- Council for Agricultural Research and Economics - Research Centre for Genomics and Bioinformatics, Via S. Protaso 302, 29017, Fiorenzuola d'Arda , PC, Italy
| | - Enrico Francia
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, Pad. Besta, 42122, Reggio Emilia, Italy
| | - Justyna Anna Milc
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, Pad. Besta, 42122, Reggio Emilia, Italy
| | - Istvan Monostori
- Centre for Agricultural Research, Agricultural Institute, Eötvös Loránd Research Network, Martonvásár, 2462, Hungary
| | - Gabor Galiba
- Centre for Agricultural Research, Agricultural Institute, Eötvös Loránd Research Network, Martonvásár, 2462, Hungary
- Department of Environmental Sustainability, Festetics Doctoral School, IES, Hungarian University of Agriculture and Life Sciences, Georgikon Campus, Keszthely, 8360, Hungary
| | - Luigi Cattivelli
- Council for Agricultural Research and Economics - Research Centre for Genomics and Bioinformatics, Via S. Protaso 302, 29017, Fiorenzuola d'Arda , PC, Italy
| | - Alessandro Tondelli
- Council for Agricultural Research and Economics - Research Centre for Genomics and Bioinformatics, Via S. Protaso 302, 29017, Fiorenzuola d'Arda , PC, Italy
| |
Collapse
|
28
|
Ochagavía H, Kiss T, Karsai I, Casas AM, Igartua E. Responses of Barley to High Ambient Temperature Are Modulated by Vernalization. FRONTIERS IN PLANT SCIENCE 2022; 12:776982. [PMID: 35145529 PMCID: PMC8822234 DOI: 10.3389/fpls.2021.776982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/15/2021] [Indexed: 06/06/2023]
Abstract
Ambient temperatures are increasing due to climate change. Cereal crops development and production will be affected consequently. Flowering time is a key factor for adaptation of small grain cereals and, therefore, exploring developmental responses of barley to rising temperatures is required. In this work, we studied phasic growth, and inflorescence traits related to yield, in eight near isogenic lines of barley (Hordeum vulgare L.) differing at the VRN-H1, VRN-H2 and PPD-H1 genes, representing different growth habits. The lines were grown in contrasting vernalization treatments, under two temperature regimes (18 and 25°C), in long days. Lines with recessive ppd-H1 presented delayed development compared to lines with the sensitive PPD-H1 allele, across the two growth phases considered. High temperature delayed flowering in all unvernalized plants, and in vernalized spring barleys carrying the insensitive ppd-H1 allele, whilst it accelerated flowering in spring barleys with the sensitive PPD-H1 allele. This finding evidenced an interaction between PPD-H1, temperature and vernalization. At the high temperature, PPD-H1 lines in spring backgrounds (VRN-H1-7) yielded more, whereas lines with ppd-H1 were best in vrn-H1 background. Our study revealed new information that will support breeding high-yielding cultivars with specific combinations of major adaptation genes tailored to future climatic conditions.
Collapse
Affiliation(s)
| | - Tibor Kiss
- Agricultural Institute, Centre for Agricultural Research, ELKH, Martonvásár, Hungary
- Center for Research and Development, Food and Wine Center of Excellence, Eszterházy Károly Catholic University, Eger, Hungary
| | - Ildikó Karsai
- Agricultural Institute, Centre for Agricultural Research, ELKH, Martonvásár, Hungary
| | - Ana M. Casas
- Aula Dei Experimental Station (EEAD-CSIC), Zaragoza, Spain
| | | |
Collapse
|
29
|
Selva C, Shirley NJ, Houston K, Whitford R, Baumann U, Li G, Tucker MR. HvLEAFY controls the early stages of floral organ specification and inhibits the formation of multiple ovaries in barley. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:509-527. [PMID: 34382710 DOI: 10.1111/tpj.15457] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Transition to the reproductive phase, inflorescence formation and flower development are crucial elements that ensure maximum reproductive success in a plant's life cycle. To understand the regulatory mechanisms underlying correct flower development in barley (Hordeum vulgare), we characterized the multiovary 5 (mov5.o) mutant. This mutant develops abnormal flowers that exhibit mosaic floral organs typified by multiple carpels at the total or partial expense of stamens. Genetic mapping positioned mov5 on the long arm of chromosome 2H, incorporating a region that encodes HvLFY, the barley orthologue of LEAFY from Arabidopsis. Sequencing revealed that, in mov5.o plants, HvLFY contains a single amino acid substitution in a highly conserved proline residue. CRISPR-mediated knockout of HvLFY replicated the mov5.o phenotype, suggesting that HvLFYmov5 represents a loss of function allele. In heterologous assays, the HvLFYmov5 polymorphism influenced protein-protein interactions and affinity for a putative binding site in the promoter of HvMADS58, a C-class MADS-box gene. Moreover, molecular analysis indicated that HvLFY interacts with HvUFO and regulates the expression of floral homeotic genes including HvMADS2, HvMADS4 and HvMADS16. Other distinct changes in expression differ from those reported in the rice LFY mutants apo2/rfl, suggesting that LFY function in the grasses is modulated in a species-specific manner. This pathway provides a key entry point for the study of LFY function and multiple ovary formation in barley, as well as cereal species in general.
Collapse
Affiliation(s)
- Caterina Selva
- School of Agriculture Food and Wine, Waite Research Institute, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
| | - Neil J Shirley
- School of Agriculture Food and Wine, Waite Research Institute, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
| | - Kelly Houston
- James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Ryan Whitford
- School of Agriculture Food and Wine, Waite Research Institute, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
| | - Ute Baumann
- School of Agriculture Food and Wine, Waite Research Institute, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
| | - Gang Li
- School of Agriculture Food and Wine, Waite Research Institute, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Matthew R Tucker
- School of Agriculture Food and Wine, Waite Research Institute, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
| |
Collapse
|
30
|
Göransson M, Sigurdardottir TH, Lillemo M, Bengtsson T, Hallsson JH. The Winter-Type Allele of HvCEN Is Associated With Earliness Without Severe Yield Penalty in Icelandic Spring Barley ( Hordeum vulgare L.). FRONTIERS IN PLANT SCIENCE 2021; 12:720238. [PMID: 34630467 PMCID: PMC8500236 DOI: 10.3389/fpls.2021.720238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Icelandic barley genotypes have shown extreme earliness both in flowering and maturity compared to other north European genotypes, whereas earliness is a key trait in adapting barley to northern latitudes. Four genes were partially re-sequenced, which are Ppd-H1, HvCEN, HvELF3, and HvFT1, to better understand the mechanisms underlying this observed earliness. These genes are all known to play a part in the photoperiod response. The objective of this study is to correlate allelic diversity with flowering time and yield data from Icelandic field trials. The resequencing identified two to three alleles at each locus which resulted in 12 haplotype combinations. One haplotype combination containing the winter-type allele of Ppd-H1 correlated with extreme earliness, however, with a severe yield penalty. A winter-type allele in HvCEN in four genotypes correlated with earliness combined with high yield. Our results open the possibility of marker-assisted pyramiding as a rapid way to develop varieties with a shortened time from sowing to flowering under the extreme Icelandic growing conditions and possibly in other arctic or sub-arctic regions.
Collapse
Affiliation(s)
- Magnus Göransson
- Faculty of Agriculture, Agricultural University of Iceland, Reykjavík, Iceland
- Department of Plant Science, Norwegian University of Life Sciences, Ås, Norway
| | | | - Morten Lillemo
- Department of Plant Science, Norwegian University of Life Sciences, Ås, Norway
| | - Therése Bengtsson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | | |
Collapse
|
31
|
Fernández-Calleja M, Casas AM, Igartua E. Major flowering time genes of barley: allelic diversity, effects, and comparison with wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1867-1897. [PMID: 33969431 PMCID: PMC8263424 DOI: 10.1007/s00122-021-03824-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/24/2021] [Indexed: 05/10/2023]
Abstract
This review summarizes the allelic series, effects, interactions between genes and with the environment, for the major flowering time genes that drive phenological adaptation of barley. The optimization of phenology is a major goal of plant breeding addressing the production of high-yielding varieties adapted to changing climatic conditions. Flowering time in cereals is regulated by genetic networks that respond predominately to day length and temperature. Allelic diversity at these genes is at the basis of barley wide adaptation. Detailed knowledge of their effects, and genetic and environmental interactions will facilitate plant breeders manipulating flowering time in cereal germplasm enhancement, by exploiting appropriate gene combinations. This review describes a catalogue of alleles found in QTL studies by barley geneticists, corresponding to the genetic diversity at major flowering time genes, the main drivers of barley phenological adaptation: VRN-H1 (HvBM5A), VRN-H2 (HvZCCTa-c), VRN-H3 (HvFT1), PPD-H1 (HvPRR37), PPD-H2 (HvFT3), and eam6/eps2 (HvCEN). For each gene, allelic series, size and direction of QTL effects, interactions between genes and with the environment are presented. Pleiotropic effects on agronomically important traits such as grain yield are also discussed. The review includes brief comments on additional genes with large effects on phenology that became relevant in modern barley breeding. The parallelisms between flowering time allelic variation between the two most cultivated Triticeae species (barley and wheat) are also outlined. This work is mostly based on previously published data, although we added some new data and hypothesis supported by a number of studies. This review shows the wide variety of allelic effects that provide enormous plasticity in barley flowering behavior, which opens new avenues to breeders for fine-tuning phenology of the barley crop.
Collapse
Affiliation(s)
- Miriam Fernández-Calleja
- Department of Genetics and Plant Production, Aula Dei Experimental Station, EEAD-CSIC, Avenida Montañana, 1005, 50059, Zaragoza, Spain
| | - Ana M Casas
- Department of Genetics and Plant Production, Aula Dei Experimental Station, EEAD-CSIC, Avenida Montañana, 1005, 50059, Zaragoza, Spain
| | - Ernesto Igartua
- Department of Genetics and Plant Production, Aula Dei Experimental Station, EEAD-CSIC, Avenida Montañana, 1005, 50059, Zaragoza, Spain.
| |
Collapse
|
32
|
Hill CB, Angessa TT, Zhang XQ, Chen K, Zhou G, Tan C, Wang P, Westcott S, Li C. A global barley panel revealing genomic signatures of breeding in modern Australian cultivars. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:419-434. [PMID: 33506596 DOI: 10.1111/tpj.15173] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 01/08/2021] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
The future of plant cultivar improvement lies in the evaluation of genetic resources from currently available germplasm. Today's gene pool of crop genetic diversity has been shaped during domestication and more recently by breeding. Recent efforts in plant breeding have been aimed at developing new and improved varieties from poorly adapted crops to suit local environments. However, the impact of these breeding efforts is poorly understood. Here, we assess the contributions of both historical and recent breeding efforts to local adaptation and crop improvement in a global barley panel by analysing the distribution of genetic variants with respect to geographic region or historical breeding category. By tracing the impact that breeding had on the genetic diversity of Hordeum vulgare (barley) released in Australia, where the history of barley production is relatively young, we identify 69 candidate regions within 922 genes that were under selection pressure. We also show that modern Australian barley varieties exhibit 12% higher genetic diversity than historical cultivars. Finally, field-trialling and phenotyping for agriculturally relevant traits across a diverse range of Australian environments suggests that genomic regions under strong breeding selection and their candidate genes are closely associated with key agronomic traits. In conclusion, our combined data set and germplasm collection provide a rich source of genetic diversity that can be applied to understanding and improving environmental adaptation and enhanced yields.
Collapse
Affiliation(s)
- Camilla Beate Hill
- Western Crop Genetics Alliance, Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| | - Tefera Tolera Angessa
- Western Crop Genetics Alliance, Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| | - Xiao-Qi Zhang
- Western Crop Genetics Alliance, Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| | - Kefei Chen
- Agriculture and Food, Department of Primary Industries and Regional Development, 3 Baron-Hay Ct, South Perth, WA, 6151, Australia
- Statistics for the Australian Grains Industry (SAGI) West, Faculty of Science and Engineering, Curtin University, Kent Street, Bentley, WA, 6102, Australia
| | - Gaofeng Zhou
- Western Crop Genetics Alliance, Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
- Agriculture and Food, Department of Primary Industries and Regional Development, 3 Baron-Hay Ct, South Perth, WA, 6151, Australia
| | - Cong Tan
- Western Crop Genetics Alliance, Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| | - Penghao Wang
- Western Crop Genetics Alliance, Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| | - Sharon Westcott
- Agriculture and Food, Department of Primary Industries and Regional Development, 3 Baron-Hay Ct, South Perth, WA, 6151, Australia
| | - Chengdao Li
- Western Crop Genetics Alliance, Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
- Agriculture and Food, Department of Primary Industries and Regional Development, 3 Baron-Hay Ct, South Perth, WA, 6151, Australia
| |
Collapse
|
33
|
Insights on decoding wheat and barley genomes. Funct Integr Genomics 2021; 21:157-159. [PMID: 33598867 DOI: 10.1007/s10142-021-00774-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 10/22/2022]
|
34
|
Thudi M, Palakurthi R, Schnable JC, Chitikineni A, Dreisigacker S, Mace E, Srivastava RK, Satyavathi CT, Odeny D, Tiwari VK, Lam HM, Hong YB, Singh VK, Li G, Xu Y, Chen X, Kaila S, Nguyen H, Sivasankar S, Jackson SA, Close TJ, Shubo W, Varshney RK. Genomic resources in plant breeding for sustainable agriculture. JOURNAL OF PLANT PHYSIOLOGY 2021; 257:153351. [PMID: 33412425 PMCID: PMC7903322 DOI: 10.1016/j.jplph.2020.153351] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 05/19/2023]
Abstract
Climate change during the last 40 years has had a serious impact on agriculture and threatens global food and nutritional security. From over half a million plant species, cereals and legumes are the most important for food and nutritional security. Although systematic plant breeding has a relatively short history, conventional breeding coupled with advances in technology and crop management strategies has increased crop yields by 56 % globally between 1965-85, referred to as the Green Revolution. Nevertheless, increased demand for food, feed, fiber, and fuel necessitates the need to break existing yield barriers in many crop plants. In the first decade of the 21st century we witnessed rapid discovery, transformative technological development and declining costs of genomics technologies. In the second decade, the field turned towards making sense of the vast amount of genomic information and subsequently moved towards accurately predicting gene-to-phenotype associations and tailoring plants for climate resilience and global food security. In this review we focus on genomic resources, genome and germplasm sequencing, sequencing-based trait mapping, and genomics-assisted breeding approaches aimed at developing biotic stress resistant, abiotic stress tolerant and high nutrition varieties in six major cereals (rice, maize, wheat, barley, sorghum and pearl millet), and six major legumes (soybean, groundnut, cowpea, common bean, chickpea and pigeonpea). We further provide a perspective and way forward to use genomic breeding approaches including marker-assisted selection, marker-assisted backcrossing, haplotype based breeding and genomic prediction approaches coupled with machine learning and artificial intelligence, to speed breeding approaches. The overall goal is to accelerate genetic gains and deliver climate resilient and high nutrition crop varieties for sustainable agriculture.
Collapse
Affiliation(s)
- Mahendar Thudi
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India; University of Southern Queensland, Toowoomba, Australia
| | - Ramesh Palakurthi
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | | | - Annapurna Chitikineni
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | | | - Emma Mace
- Agri-Science Queensland, Department of Agriculture & Fisheries (DAF), Warwick, Australia
| | - Rakesh K Srivastava
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - C Tara Satyavathi
- Indian Council of Agricultural Research (ICAR)- Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Damaris Odeny
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Nairobi, Kenya
| | | | - Hon-Ming Lam
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region
| | - Yan Bin Hong
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Vikas K Singh
- South Asia Hub, International Rice Research Institute (IRRI), Hyderabad, India
| | - Guowei Li
- Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yunbi Xu
- International Maize and Wheat Improvement Center (CYMMIT), Mexico DF, Mexico; Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoping Chen
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Sanjay Kaila
- Department of Biotechnology, Ministry of Science and Technology, Government of India, India
| | - Henry Nguyen
- National Centre for Soybean Research, University of Missouri, Columbia, USA
| | - Sobhana Sivasankar
- Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | | | | | - Wan Shubo
- Shandong Academy of Agricultural Sciences, Jinan, China
| | - Rajeev K Varshney
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India.
| |
Collapse
|
35
|
Jayakodi M, Padmarasu S, Haberer G, Bonthala VS, Gundlach H, Monat C, Lux T, Kamal N, Lang D, Himmelbach A, Ens J, Zhang XQ, Angessa TT, Zhou G, Tan C, Hill C, Wang P, Schreiber M, Boston LB, Plott C, Jenkins J, Guo Y, Fiebig A, Budak H, Xu D, Zhang J, Wang C, Grimwood J, Schmutz J, Guo G, Zhang G, Mochida K, Hirayama T, Sato K, Chalmers KJ, Langridge P, Waugh R, Pozniak CJ, Scholz U, Mayer KFX, Spannagl M, Li C, Mascher M, Stein N. The barley pan-genome reveals the hidden legacy of mutation breeding. Nature 2020; 588:284-289. [PMID: 33239781 PMCID: PMC7759462 DOI: 10.1038/s41586-020-2947-8] [Citation(s) in RCA: 287] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/09/2020] [Indexed: 12/25/2022]
Abstract
Genetic diversity is key to crop improvement. Owing to pervasive genomic structural variation, a single reference genome assembly cannot capture the full complement of sequence diversity of a crop species (known as the 'pan-genome'1). Multiple high-quality sequence assemblies are an indispensable component of a pan-genome infrastructure. Barley (Hordeum vulgare L.) is an important cereal crop with a long history of cultivation that is adapted to a wide range of agro-climatic conditions2. Here we report the construction of chromosome-scale sequence assemblies for the genotypes of 20 varieties of barley-comprising landraces, cultivars and a wild barley-that were selected as representatives of global barley diversity. We catalogued genomic presence/absence variants and explored the use of structural variants for quantitative genetic analysis through whole-genome shotgun sequencing of 300 gene bank accessions. We discovered abundant large inversion polymorphisms and analysed in detail two inversions that are frequently found in current elite barley germplasm; one is probably the product of mutation breeding and the other is tightly linked to a locus that is involved in the expansion of geographical range. This first-generation barley pan-genome makes previously hidden genetic variation accessible to genetic studies and breeding.
Collapse
Affiliation(s)
- Murukarthick Jayakodi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Sudharsan Padmarasu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Georg Haberer
- Plant Genome and Systems Biology (PGSB), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Venkata Suresh Bonthala
- Plant Genome and Systems Biology (PGSB), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Heidrun Gundlach
- Plant Genome and Systems Biology (PGSB), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Cécile Monat
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Thomas Lux
- Plant Genome and Systems Biology (PGSB), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Nadia Kamal
- Plant Genome and Systems Biology (PGSB), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Daniel Lang
- Plant Genome and Systems Biology (PGSB), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Jennifer Ens
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Xiao-Qi Zhang
- Western Barley Genetics Alliance, State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - Tefera T Angessa
- Western Barley Genetics Alliance, State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - Gaofeng Zhou
- Western Barley Genetics Alliance, State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
- Agriculture and Food, Department of Primary Industries and Regional Development, South Perth, Western Australia, Australia
| | - Cong Tan
- Western Barley Genetics Alliance, State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - Camilla Hill
- Western Barley Genetics Alliance, State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - Penghao Wang
- Western Barley Genetics Alliance, State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | | | - Lori B Boston
- HudsonAlpha, Institute for Biotechnology, Huntsville, AL, USA
| | | | - Jerry Jenkins
- HudsonAlpha, Institute for Biotechnology, Huntsville, AL, USA
| | - Yu Guo
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Anne Fiebig
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | | | - Dongdong Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, China
| | - Jing Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, China
| | - Chunchao Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, China
| | - Jane Grimwood
- HudsonAlpha, Institute for Biotechnology, Huntsville, AL, USA
| | - Jeremy Schmutz
- HudsonAlpha, Institute for Biotechnology, Huntsville, AL, USA
| | - Ganggang Guo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, China
| | - Guoping Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Keiichi Mochida
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Takashi Hirayama
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Kazuhiro Sato
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Kenneth J Chalmers
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Peter Langridge
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Robbie Waugh
- The James Hutton Institute, Dundee, UK
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia, Australia
- School of Life Sciences, University of Dundee, Dundee, UK
| | - Curtis J Pozniak
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Uwe Scholz
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Klaus F X Mayer
- Plant Genome and Systems Biology (PGSB), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Manuel Spannagl
- Plant Genome and Systems Biology (PGSB), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Chengdao Li
- Western Barley Genetics Alliance, State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia.
- Agriculture and Food, Department of Primary Industries and Regional Development, South Perth, Western Australia, Australia.
- Hubei Collaborative Innovation Centre for Grain Industry, Yangtze University, Jingzhou, China.
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.
- Center for Integrated Breeding Research (CiBreed), Georg-August-University Göttingen, Göttingen, Germany.
| |
Collapse
|
36
|
Discovery of beneficial haplotypes for complex traits in maize landraces. Nat Commun 2020; 11:4954. [PMID: 33009396 PMCID: PMC7532167 DOI: 10.1038/s41467-020-18683-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/06/2020] [Indexed: 12/17/2022] Open
Abstract
Genetic variation is of crucial importance for crop improvement. Landraces are valuable sources of diversity, but for quantitative traits efficient strategies for their targeted utilization are lacking. Here, we map haplotype-trait associations at high resolution in ~1000 doubled-haploid lines derived from three maize landraces to make their native diversity for early development traits accessible for elite germplasm improvement. A comparative genomic analysis of the discovered haplotypes in the landrace-derived lines and a panel of 65 breeding lines, both genotyped with 600k SNPs, points to untapped beneficial variation for target traits in the landraces. The superior phenotypic performance of lines carrying favorable landrace haplotypes as compared to breeding lines with alternative haplotypes confirms these findings. Stability of haplotype effects across populations and environments as well as their limited effects on undesired traits indicate that our strategy has high potential for harnessing beneficial haplotype variation for quantitative traits from genetic resources. Genetic variations present in landraces are critical for crop genetic improvement. Here, the authors map haplotype-trait associations in ~1000 doubled haploid lines derived from three European maize landraces and identify beneficial haplotypes for quantitative traits that are not present in breeding lines.
Collapse
|
37
|
Cirilli M, Micali S, Aranzana MJ, Arús P, Babini A, Barreneche T, Bink M, Cantin CM, Ciacciulli A, Cos-Terrer JE, Drogoudi P, Eduardo I, Foschi S, Giovannini D, Guerra W, Liverani A, Pacheco I, Pascal T, Quilot-Turion B, Verde I, Rossini L, Bassi D. The Multisite PeachRefPop Collection: A True Cultural Heritage and International Scientific Tool for Fruit Trees. PLANT PHYSIOLOGY 2020; 184:632-646. [PMID: 32727910 PMCID: PMC7536698 DOI: 10.1104/pp.19.01412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 07/17/2020] [Indexed: 05/21/2023]
Abstract
Plants have evolved a range of adaptive mechanisms that adjust their development and physiology to variable external conditions, particularly in perennial species subjected to long-term interplay with the environment. Exploiting the allelic diversity within available germplasm and leveraging the knowledge of the mechanisms regulating genotype interaction with the environment are crucial to address climatic challenges and assist the breeding of novel cultivars with improved resilience. The development of multisite collections is of utmost importance for the conservation and utilization of genetic materials and will greatly facilitate the dissection of genotype-by-environment interaction. Such resources are still lacking for perennial trees, especially with the intrinsic difficulties of successful propagation, material exchange, and living collection maintenance. This work describes the concept, design, and realization of the first multisite peach (Prunus persica) reference collection (PeachRefPop) located across different European countries and sharing the same experimental design. Other than an invaluable tool for scientific studies in perennial species, PeachRefPop provides a milestone in an international collaborative project for the conservation and exploitation of European peach germplasm resources and, ultimately, as a true heritage for future generations.
Collapse
Affiliation(s)
- Marco Cirilli
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milan, Italy
| | - Sabrina Micali
- Consiglio Per La Ricerca In Agricoltura E L'analisi Dell'Economia Agraria, Research Centre for Olive, Fruit, and Citrus Crops, 00134 Rome, Italy
| | - Maria José Aranzana
- Institut de Recerca i Tecnologia Agroalimentàries, Centre de Recerca en Agrigenòmica Consejo Superior de Investigaciones Científicas, Institut de Recerca i Tecnologia Agroalimentàries, Universitat Autònoma de Barcelona, Universitat de Barcelona, Campus UAB, 08193 Barcelona, Spain
| | - Pere Arús
- Institut de Recerca i Tecnologia Agroalimentàries, Centre de Recerca en Agrigenòmica Consejo Superior de Investigaciones Científicas, Institut de Recerca i Tecnologia Agroalimentàries, Universitat Autònoma de Barcelona, Universitat de Barcelona, Campus UAB, 08193 Barcelona, Spain
| | - Annarosa Babini
- Phytosanitary Service, Regione Emilia-Romagna, 40128 Bologna, Italy
| | - Teresa Barreneche
- Université de Bordeaux, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| | - Marco Bink
- Hendrix Genetics Research, Technology, and Services, 5830 AC Boxmeer, The Netherlands
| | - Celia M Cantin
- Institut de Recerca i Tecnologia Agroalimentàries, Centre de Recerca en Agrigenòmica Consejo Superior de Investigaciones Científicas, Institut de Recerca i Tecnologia Agroalimentàries, Universitat Autònoma de Barcelona, Universitat de Barcelona, Campus UAB, 08193 Barcelona, Spain
| | - Angelo Ciacciulli
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milan, Italy
| | | | - Pavlina Drogoudi
- Hellenic Agricultural Organization 'Demeter', Department of Deciduous Fruit Trees, Institute of Plant Breeding and Genetic Resources, 59200 Naoussa, Greece
| | - Iban Eduardo
- Institut de Recerca i Tecnologia Agroalimentàries, Centre de Recerca en Agrigenòmica Consejo Superior de Investigaciones Científicas, Institut de Recerca i Tecnologia Agroalimentàries, Universitat Autònoma de Barcelona, Universitat de Barcelona, Campus UAB, 08193 Barcelona, Spain
| | - Stefano Foschi
- Centro Ricerche Produzioni Vegetali, 47522 Cesena, Italy
| | - Daniela Giovannini
- Consiglio per la Ricerca in Agricoltura e L'Analisi Del'Economia Agraria, Research Centre for Olive, Fruit, and Citrus Crops, 47121 Forlì, Italy
| | | | - Alessandro Liverani
- Consiglio per la Ricerca in Agricoltura e L'Analisi Del'Economia Agraria, Research Centre for Olive, Fruit, and Citrus Crops, 47121 Forlì, Italy
| | - Igor Pacheco
- Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, 7830490 Macul, Chile
| | - Thierry Pascal
- Institut National de Recherche pour L'Agriculture, L'Alimentation et L'Environnement, Génétique et Amélioration des Fruits et Légumes, F-84143 Montfavet, France
| | - Benedicte Quilot-Turion
- Institut National de Recherche pour L'Agriculture, L'Alimentation et L'Environnement, Génétique et Amélioration des Fruits et Légumes, F-84143 Montfavet, France
| | - Ignazio Verde
- Consiglio Per La Ricerca In Agricoltura E L'analisi Dell'Economia Agraria, Research Centre for Olive, Fruit, and Citrus Crops, 00134 Rome, Italy
| | - Laura Rossini
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milan, Italy
| | - Daniele Bassi
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milan, Italy
| |
Collapse
|
38
|
Bretani G, Rossini L, Ferrandi C, Russell J, Waugh R, Kilian B, Bagnaresi P, Cattivelli L, Fricano A. Segmental duplications are hot spots of copy number variants affecting barley gene content. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1073-1088. [PMID: 32338390 PMCID: PMC7496488 DOI: 10.1111/tpj.14784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 05/31/2023]
Abstract
Copy number variants (CNVs) are pervasive in several animal and plant genomes and contribute to shaping genetic diversity. In barley, there is evidence that changes in gene copy number underlie important agronomic traits. The recently released reference sequence of barley represents a valuable genomic resource for unveiling the incidence of CNVs that affect gene content and for identifying sequence features associated with CNV formation. Using exome sequencing and read count data, we detected 16 605 deletions and duplications that affect barley gene content by surveying a diverse panel of 172 cultivars, 171 landraces, 22 wild relatives and other 32 uncategorized domesticated accessions. The quest for segmental duplications (SDs) in the reference sequence revealed many low-copy repeats, most of which overlap predicted coding sequences. Statistical analyses revealed that the incidence of CNVs increases significantly in SD-rich regions, indicating that these sequence elements act as hot spots for the formation of CNVs. The present study delivers a comprehensive genome-wide study of CNVs affecting barley gene content and implicates SDs in the molecular mechanisms that lead to the formation of this class of CNVs.
Collapse
Affiliation(s)
- Gianluca Bretani
- Università degli Studi di Milano – DiSAAVia Celoria 220133MilanoItaly
| | - Laura Rossini
- Università degli Studi di Milano – DiSAAVia Celoria 220133MilanoItaly
| | - Chiara Ferrandi
- Parco Tecnologico PadanoLoc. C.na CodazzaVia Einstein26900LodiItaly
| | | | - Robbie Waugh
- James Hutton Institute, InvergowrieDundeeDD2 5DAUK
| | - Benjamin Kilian
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Corrensstrasse 306466GaterslebenGermany
- Global Crop Diversity TrustPlatz der Vereinten Nationen 753113BonnGermany
| | - Paolo Bagnaresi
- Council for Agricultural Research and Economics – Research Centre for Genomics & BioinformaticsVia San Protaso 30229017Fiorenzuola d'Arda (PC)Italy
| | - Luigi Cattivelli
- Council for Agricultural Research and Economics – Research Centre for Genomics & BioinformaticsVia San Protaso 30229017Fiorenzuola d'Arda (PC)Italy
| | - Agostino Fricano
- Council for Agricultural Research and Economics – Research Centre for Genomics & BioinformaticsVia San Protaso 30229017Fiorenzuola d'Arda (PC)Italy
| |
Collapse
|
39
|
Pogoda M, Liu F, Douchkov D, Djamei A, Reif JC, Schweizer P, Schulthess AW. Identification of novel genetic factors underlying the host-pathogen interaction between barley (Hordeum vulgare L.) and powdery mildew (Blumeria graminis f. sp. hordei). PLoS One 2020; 15:e0235565. [PMID: 32614894 PMCID: PMC7332009 DOI: 10.1371/journal.pone.0235565] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022] Open
Abstract
Powdery mildew is an important foliar disease of barley (Hordeum vulgare L.) caused by the biotrophic fungus Blumeria graminis f. sp. hordei (Bgh). The understanding of the resistance mechanism is essential for future resistance breeding. In particular, the identification of race-nonspecific resistance genes is important because of their regarded durability and broad-spectrum activity. We assessed the severity of powdery mildew infection on detached seedling leaves of 267 barley accessions using two poly-virulent isolates and performed a genome-wide association study exploiting 201 of these accessions. Two-hundred and fourteen markers, located on six barley chromosomes are associated with potential race-nonspecific Bgh resistance or susceptibility. Initial steps for the functional validation of four promising candidates were performed based on phenotype and transcription data. Specific candidate alleles were analyzed via transient gene silencing as well as transient overexpression. Microarray data of the four selected candidates indicate differential regulation of the transcription in response to Bgh infection. Based on our results, all four candidate genes seem to be involved in the responses to powdery mildew attack. In particular, the transient overexpression of specific alleles of two candidate genes, a potential arabinogalactan protein and the barley homolog of Arabidopsis thaliana’s Light-Response Bric-a-Brac/-Tramtrack/-Broad Complex/-POxvirus and Zinc finger (AtLRB1) or AtLRB2, were top candidates of novel powdery mildew susceptibility genes.
Collapse
Affiliation(s)
- Maria Pogoda
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Fang Liu
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Dimitar Douchkov
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Armin Djamei
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Jochen C. Reif
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Patrick Schweizer
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Albert W. Schulthess
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
- * E-mail:
| |
Collapse
|
40
|
Rotasperti L, Sansoni F, Mizzotti C, Tadini L, Pesaresi P. Barley's Second Spring as A Model Organism for Chloroplast Research. PLANTS 2020; 9:plants9070803. [PMID: 32604986 PMCID: PMC7411767 DOI: 10.3390/plants9070803] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 12/19/2022]
Abstract
Barley (Hordeum vulgare) has been widely used as a model crop for studying molecular and physiological processes such as chloroplast development and photosynthesis. During the second half of the 20th century, mutants such as albostrians led to the discovery of the nuclear-encoded, plastid-localized RNA polymerase and the retrograde (chloroplast-to-nucleus) signalling communication pathway, while chlorina-f2 and xantha mutants helped to shed light on the chlorophyll biosynthetic pathway, on the light-harvesting proteins and on the organization of the photosynthetic apparatus. However, during the last 30 years, a large fraction of chloroplast research has switched to the more “user-friendly” model species Arabidopsis thaliana, the first plant species whose genome was sequenced and published at the end of 2000. Despite its many advantages, Arabidopsis has some important limitations compared to barley, including the lack of a real canopy and the absence of the proplastid-to-chloroplast developmental gradient across the leaf blade. These features, together with the availability of large collections of natural genetic diversity and mutant populations for barley, a complete genome assembly and protocols for genetic transformation and gene editing, have relaunched barley as an ideal model species for chloroplast research. In this review, we provide an update on the genomics tools now available for barley, and review the biotechnological strategies reported to increase photosynthesis efficiency in model species, which deserve to be validated in barley.
Collapse
|
41
|
Dawson IK, Powell W, Hendre P, Bančič J, Hickey JM, Kindt R, Hoad S, Hale I, Jamnadass R. The role of genetics in mainstreaming the production of new and orphan crops to diversify food systems and support human nutrition. THE NEW PHYTOLOGIST 2019; 224:37-54. [PMID: 31063598 DOI: 10.1111/nph.15895] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/28/2019] [Indexed: 05/27/2023]
Abstract
Especially in low-income nations, new and orphan crops provide important opportunities to improve diet quality and the sustainability of food production, being rich in nutrients, capable of fitting into multiple niches in production systems, and relatively adapted to low-input conditions. The evolving space for these crops in production systems presents particular genetic improvement requirements that extensive gene pools are able to accommodate. Particular needs for genetic development identified in part with plant breeders relate to three areas of fundamental importance for addressing food production and human demographic trends and associated challenges, namely: facilitating integration into production systems; improving the processability of crop products; and reducing farm labour requirements. Here, we relate diverse involved target genes and crop development techniques. These techniques include transgressive methods that involve defining exemplar crop models for effective new and orphan crop improvement pathways. Research on new and orphan crops not only supports the genetic improvement of these crops, but they serve as important models for understanding crop evolutionary processes more broadly, guiding further major crop evolution. The bridging position of orphan crops between new and major crops provides unique opportunities for investigating genetic approaches for de novo domestications and major crop 'rewildings'.
Collapse
Affiliation(s)
- Ian K Dawson
- Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
- World Agroforestry (ICRAF), Headquarters, PO Box 30677, Nairobi, Kenya
| | - Wayne Powell
- Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
| | - Prasad Hendre
- World Agroforestry (ICRAF), Headquarters, PO Box 30677, Nairobi, Kenya
| | - Jon Bančič
- Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
- The Roslin Institute, Easter Bush Campus, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - John M Hickey
- The Roslin Institute, Easter Bush Campus, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Roeland Kindt
- World Agroforestry (ICRAF), Headquarters, PO Box 30677, Nairobi, Kenya
| | - Steve Hoad
- Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
| | - Iago Hale
- University of New Hampshire, Durham, NH,, 03824, USA
| | - Ramni Jamnadass
- World Agroforestry (ICRAF), Headquarters, PO Box 30677, Nairobi, Kenya
| |
Collapse
|