1
|
Wang Y, Gong C, Liu L, Wang T. The invertase gene PWIN1 confers chilling tolerance of rice at the booting stage via mediating pollen development. PLANT, CELL & ENVIRONMENT 2024; 47:4651-4663. [PMID: 39051263 DOI: 10.1111/pce.15053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/27/2024]
Abstract
Pollen fertility is a primary regulator of grain yield and is highly susceptible to cold and other environmental stress. We revealed the roles of rice cell wall invertase gene PWIN1 in pollen development and chilling tolerance. We uncovered its preferential expression in microspores and bicellular pollen and identified its knock-down and knock-out mutants. pwin1 mutants produced a higher proportion of abnormal pollen than wild-type plants. The contents of sucrose, glucose, and fructose were increased, while ATP content and primary metabolism activity were reduced in the mutant pollen. Furthermore, the loss of function of PWIN1 coincided with an increase in SnRK1 activity and a decrease in TOR activity. Under chilling conditions, pwin1 mutants displayed significantly reduced pollen viability and seed-setting rate, while overexpressing PWIN1 notably increased pollen viability and seed-setting rate as compared with the wild-type, indicating that PWIN1 is essential for rice pollen development and grain yield under cold stress. This study provides insights into the molecular mechanisms underlying rice pollen fertility during chilling stress, and a new module to improve chilling tolerance of rice at the booting stage by molecular design.
Collapse
Affiliation(s)
- Yanli Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Chunyan Gong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Lingtong Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Tai Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| |
Collapse
|
2
|
Motakefi M, Dahmardeh M, Ghanbari SA, Asgharipour MR. A thermodynamic approach to evaluating the ecological health and sustainability of integrated production systems in Goharkuh Taftan agro-industrial complex and sensitivity analysis of the results. Heliyon 2024; 10:e39210. [PMID: 39640703 PMCID: PMC11620249 DOI: 10.1016/j.heliyon.2024.e39210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 12/07/2024] Open
Abstract
In recent times, the increasing influx of energy inputs into farming systems has led to a significant enhancement in their overall efficiency. However, this has happened at the expense of endangering the sustainability of these systems and degrading the environment. Therefore, it is crucial to develop a methodology to evaluate the resilience of agricultural systems. This study utilised the Steinborn and Svirezhev methodology to assess five different production systems (wheat, barley, alfalfa, cotton, and Pistachio) within the Goharkuh Taftan agro-industrial complex. The approach measures the excessive production of entropy, which acts as an indicator of the system's departure from sustainability. The study focuses on four components: overproduction of entropy, limit energy load, maximum crop yield for sustainable agriculture, and deviation from sustainable agriculture. The results indicated that the production systems analysed in this study produce surplus entropy, thus rendering them in an unstable condition. Among all the products, alfalfa had the lowest entropy overproduction, while pistachio had the highest. The three agricultural commodities, namely wheat, barley, and cotton, are situated at a point equidistant from the two opposite ends. Alfalfa has shown greater energy use efficiency compared to pistachios. It surpasses the maximum crop yield for sustainable agriculture and has less deviation from sustainable agriculture than other integrated production systems. The differences in the intensity of energy flow and the structural characteristics of the integrated production systems were responsible for the variations in the values of the examined components. Nevertheless, none of these solutions are sustainable in the long term. An analysis of the energy inputs and components of the harvest index revealed the importance of implementing management techniques that decrease the intensity of energy flows into these systems and enhance the harvest index to attain a sustainable state. Integrating supplementary renewable energy sources will bolster the long-term sustainability of production systems.
Collapse
Affiliation(s)
- Mahdi Motakefi
- Department of Agronomy, College of Agriculture, University of Zabol, Zabol, Iran
| | - Mehdi Dahmardeh
- Department of Agronomy, College of Agriculture, University of Zabol, Zabol, Iran
| | - Seyed Ahmad Ghanbari
- Department of Agronomy, College of Agriculture, University of Zabol, Zabol, Iran
| | | |
Collapse
|
3
|
Bocianowski J, Starosta E, Jamruszka T, Szwarc J, Jędryczka M, Grynia M, Niemann J. Quantifying Genetic Parameters for Blackleg Resistance in Rapeseed: A Comparative Study. PLANTS (BASEL, SWITZERLAND) 2024; 13:2710. [PMID: 39409580 PMCID: PMC11479079 DOI: 10.3390/plants13192710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024]
Abstract
Selection is a fundamental part of the plant breeding process, enabling the identification and development of varieties with desirable traits. Thanks to advances in genetics and biotechnology, the selection process has become more precise and efficient, resulting in faster breeding progress and better adaptation of crops to environmental challenges. Genetic parameters related to gene additivity and epistasis play a key role and can influence decisions on the suitability of breeding material. In this study, 188 rapeseed doubled haploid lines were assessed in field conditions for resistance to Leptosphaeria spp. Through next-generation sequencing, a total of 133,764 molecular markers (96,121 SilicoDArT and 37,643 SNP) were obtained. The similarity of the DH lines at the phenotypic and genetic levels was calculated. The results indicate that the similarity at the phenotypic level was markedly different from the similarity at the genetic level. Genetic parameters related to additive gene action effects and epistasis (double and triple) were calculated using two methods: based on phenotypic observations only and using molecular marker observations. All evaluated genetic parameters (additive, additive-additive and additive-additive-additive) were statistically significant for both estimation methods. The parameters associated with the interaction (double and triple) had opposite signs depending on the estimation method.
Collapse
Affiliation(s)
- Jan Bocianowski
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Wojska Polskiego 28, 60-627 Poznań, Poland
| | - Ewa Starosta
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (E.S.); (T.J.); (J.S.)
| | - Tomasz Jamruszka
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (E.S.); (T.J.); (J.S.)
| | - Justyna Szwarc
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (E.S.); (T.J.); (J.S.)
| | - Małgorzata Jędryczka
- Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland;
| | - Magdalena Grynia
- IHAR Group, Borowo Department, Strzelce Plant Breeding Ltd., Borowo 35, 64-020 Czempiń, Poland;
| | - Janetta Niemann
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (E.S.); (T.J.); (J.S.)
| |
Collapse
|
4
|
Liu S, Xiang M, Wang X, Li J, Cheng X, Li H, Singh RP, Bhavani S, Huang S, Zheng W, Li C, Yuan F, Wu J, Han D, Kang Z, Zeng Q. Development and application of the GenoBaits WheatSNP16K array to accelerate wheat genetic research and breeding. PLANT COMMUNICATIONS 2024:101138. [PMID: 39318097 DOI: 10.1016/j.xplc.2024.101138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/05/2024] [Accepted: 09/23/2024] [Indexed: 09/26/2024]
Abstract
Single-nucleotide polymorphisms (SNPs) are widely used as molecular markers for constructing genetic linkage maps in wheat. Compared with available SNP-based genotyping platforms, a genotyping by target sequencing (GBTS) system with capture-in-solution (liquid chip) technology has become the favored genotyping technology because it is less demanding and more cost effective, flexible, and user-friendly. In this study, a new GenoBaits WheatSNP16K (GBW16K) GBTS array was designed using datasets generated by the wheat 660K SNP array and resequencing platforms in our previous studies. The GBW16K array contains 14 868 target SNP regions that are evenly distributed across the wheat genome, and 37 669 SNPs in these regions can be identified in a diversity panel consisting of 239 wheat accessions from around the world. Principal component and neighbor-joining analyses using the called SNPs are consistent with the pedigree information and geographic distributions or ecological environments of the accessions. For the GBW16K marker panel, the average genetic diversity among the 239 accessions is 0.270, which is sufficient for linkage map construction and preliminary mapping of targeted genes or quantitative trait loci (QTLs). A genetic linkage map, constructed using the GBW16K array-based genotyping of a recombinant inbred line population derived from a cross of the CIMMYT wheat line Yaco"S" and the Chinese landrace Mingxian169, enables the identification of Yr27, Yr30, and QYr.nwafu-2BL.4 for adult-plant resistance to stripe rust from Yaco"S" and of Yr18 from Mingxian169. QYr.nwafu-2BL.4 is different from any previously reported gene/QTL. Three haplotypes and six candidate genes have been identified for QYr.nwafu-2BL.4 on the basis of haplotype analysis, micro-collinearity, gene annotation, RNA sequencing, and SNP data. This array provides a new tool for wheat genetic analysis and breeding studies and for achieving durable control of wheat stripe rust.
Collapse
Affiliation(s)
- Shengjie Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mingjie Xiang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoting Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiaqi Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiangrui Cheng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Huaizhou Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ravi P Singh
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, Texcoco, Estado de México 56237, Mexico; Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
| | - Sridhar Bhavani
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, Texcoco, Estado de México 56237, Mexico
| | - Shuo Huang
- Key Laboratory of Plant Design, Chinese Academy of Sciences, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200000, China
| | - Weijun Zheng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chunlian Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fengping Yuan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianhui Wu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Dejun Han
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Zhensheng Kang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Qingdong Zeng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
5
|
Xie X, Jaleel A, Zhan J, Ren M. Microalgae: towards human health from urban areas to space missions. FRONTIERS IN PLANT SCIENCE 2024; 15:1419157. [PMID: 39220018 PMCID: PMC11361926 DOI: 10.3389/fpls.2024.1419157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Space exploration and interstellar migration are important strategies for long-term human survival. However, extreme environmental conditions, such as space radiation and microgravity, can cause adverse effects, including DNA damage, cerebrovascular disease, osteoporosis, and muscle atrophy, which would require prophylactic and remedial treatment en route. Production of oral drugs in situ is therefore critical for interstellar travel and can be achieved through industrial production utilizing microalgae, which offers high production efficiency, edibility, resource minimization, adaptability, stress tolerance, and genetic manipulation ease. Synthetic biological techniques using microalgae as a chassis offer several advantages in producing natural products, including availability of biosynthetic precursors, potential for synthesizing natural metabolites, superior quality and efficiency, environmental protection, and sustainable development. This article explores the advantages of bioproduction from microalgal chassis using synthetic biological techniques, suitability of microalgal bioreactor-based cell factories for producing value-added natural metabolites, and prospects and applications of microalgae in interstellar travel.
Collapse
Affiliation(s)
- Xiulan Xie
- Laboratory of Space Biology, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Abdul Jaleel
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Jiasui Zhan
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Maozhi Ren
- Laboratory of Space Biology, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Zhang X, Yang M, Liu Z, Yang F, Zhang L, Guo Y, Huo D. Genetic analysis of yield components in buckwheat using high-throughput sequencing analysis and wild resource populations. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1313-1328. [PMID: 39184561 PMCID: PMC11341512 DOI: 10.1007/s12298-024-01491-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/06/2024] [Accepted: 07/15/2024] [Indexed: 08/27/2024]
Abstract
Fagopyrum tataricum, an important medicinal and edible crop, possesses significant agricultural and economic value. However, the development of buckwheat varieties and yields has been hindered by the delayed breeding progress despite the abundant material resources in China. Current research indicates that quantitative trait loci (QTLs) play a crucial role in controlling plant seed type and yield. To address these limitations, this study constructed recombinant inbred lines (RILs) utilizing both cultivated species and wild buckwheat as raw materials. In total, 84,521 Single Nucleotide Polymorphism (SNP) markers were identified through Genotyping-by-Sequencing (GBS) technology, and high-resolution and high-density SNP genetic maps were developed, which had significant value for QTL mapping, gene cloning and comparative mapping of buckwheat. In this study, we successfully identified 5 QTLs related to thousand grain weight (TGW), 9 for grain length (GL), and 1 for grain width (GW) by combining seed type and TGW data from 202 RIL populations in four different environments, within which one co-located QTL for TGW were discovered on the first chromosome. Transcriptome analysis during different grain development stages revealed 59 significant expression differences between the two materials, which can serve as candidate genes for further investigation into the regulation of grain weight and yield enhancement. The mapped major loci controlling TGW, GL and GW will be valuable for gene cloning and reveal the mechanism underlying grain development and marker-assisted selection in Tartary buckwheat.
Collapse
Affiliation(s)
- Xiao Zhang
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong, 030619 China
| | - Miao Yang
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong, 030619 China
| | - Zhang Liu
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan, 030031 China
| | - Fan Yang
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong, 030619 China
| | - Lei Zhang
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong, 030619 China
| | - Yajing Guo
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong, 030619 China
| | - Dongao Huo
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong, 030619 China
| |
Collapse
|
7
|
Matías J, Rodríguez MJ, Carrillo-Vico A, Casals J, Fondevilla S, Haros CM, Pedroche J, Aparicio N, Fernández-García N, Aguiló-Aguayo I, Soler-Rivas C, Caballero PA, Morte A, Rico D, Reguera M. From 'Farm to Fork': Exploring the Potential of Nutrient-Rich and Stress-Resilient Emergent Crops for Sustainable and Healthy Food in the Mediterranean Region in the Face of Climate Change Challenges. PLANTS (BASEL, SWITZERLAND) 2024; 13:1914. [PMID: 39065441 PMCID: PMC11281201 DOI: 10.3390/plants13141914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/08/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
In the dynamic landscape of agriculture and food science, incorporating emergent crops appears as a pioneering solution for diversifying agriculture, unlocking possibilities for sustainable cultivation and nutritional bolstering food security, and creating economic prospects amid evolving environmental and market conditions with positive impacts on human health. This review explores the potential of utilizing emergent crops in Mediterranean environments under current climate scenarios, emphasizing the manifold benefits of agricultural and food system diversification and assessing the impact of environmental factors on their quality and consumer health. Through a deep exploration of the resilience, nutritional value, and health impacts of neglected and underutilized species (NUS) such as quinoa, amaranth, chia, moringa, buckwheat, millet, teff, hemp, or desert truffles, their capacity to thrive in the changing Mediterranean climate is highlighted, offering novel opportunities for agriculture and functional food development. By analysing how promoting agricultural diversification can enhance food system adaptability to evolving environmental conditions, fostering sustainability and resilience, we discuss recent findings that underscore the main benefits and limitations of these crops from agricultural, food science, and health perspectives, all crucial for responsible and sustainable adoption. Thus, by using a sustainable and holistic approach, this revision analyses how the integration of NUS crops into Mediterranean agrifood systems can enhance agriculture resilience and food quality addressing environmental, nutritional, biomedical, economic, and cultural dimensions, thereby mitigating the risks associated with monoculture practices and bolstering local economies and livelihoods under new climate scenarios.
Collapse
Affiliation(s)
- Javier Matías
- Agrarian Research Institute “La Orden-Valdesequera” of Extremadura (CICYTEX), 06187 Guadajira (Badajoz), Spain;
| | - María José Rodríguez
- Technological Institute of Food and Agriculture of Extremadura (INTAEX-CICYTEX), Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain;
| | - Antonio Carrillo-Vico
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain;
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain
| | - Joan Casals
- Fundació Miquel Agustí/HorPTA, Department of Agri-Food Engineering and Biotechnology, Universitat Politècnica de Catalunya (UPC)-BarcelonaTech, 08860 Castelldefels, Spain;
| | - Sara Fondevilla
- Institute for Sustainable Agriculture, Consejo Superior de Investigaciones Científicas, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain;
| | - Claudia Mónika Haros
- Cereal Group, Institute of Agrochemistry and Food Technology (IATA-CSIC), Av. Agustín Escardino 7, Parque Científico, 46980 Valencia, Spain;
| | - Justo Pedroche
- Group of Plant Proteins, Instituto de la Grasa, CSIC. Ctra. de Utrera Km. 1, 41013 Seville, Spain;
| | - Nieves Aparicio
- Agro-Technological Institute of Castilla y León (ITACyL), Ctra. Burgos Km. 119, 47071 Valladolid, Spain;
| | - Nieves Fernández-García
- Department of Abiotic Stress and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CSIC), Campus Universitario de Espinardo, 30100 Murcia, Spain;
| | - Ingrid Aguiló-Aguayo
- Postharvest Programme, Institute of Agrifood Research and Technology (IRTA), Parc Agrobiotech Lleida, Parc de Gardeny, Edifici Fruitcentre, 25003 Lleida, Spain;
| | - Cristina Soler-Rivas
- Departamento de Producción y Caracterización de Nuevos Alimentos, Institute of Food Science Research-CIAL (UAM+CSIC), Campus de Cantoblanco, Universidad Autónoma de Madrid, C/Nicolas Cabrera 9, 28049 Madrid, Spain;
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Pedro A. Caballero
- Food Technology, Department of Agriculture and Forestry Engineering, Universidad de Valladolid, 34004 Palencia, Spain;
| | - Asunción Morte
- Departamento Biología Vegetal, Facultad de Biología, Campus Universitario de Espinardo, Universidad de Murcia, 30100 Murcia, Spain;
| | - Daniel Rico
- Department of Medicine, Dermatology and Toxicology, Universidad de Valladolid, Av. Ramón y Cajal, 7, 47005 Valladolid, Spain;
| | - María Reguera
- Departamento de Biología, Campus de Cantoblanco, Universidad Autónoma de Madrid, C/Darwin 2, 28049 Madrid, Spain
| |
Collapse
|
8
|
Aleliūnas A, Gorash A, Armonienė R, Tamm I, Ingver A, Bleidere M, Fetere V, Kollist H, Mroz T, Lillemo M, Brazauskas G. Genome-wide association study reveals 18 QTL for major agronomic traits in a Nordic-Baltic spring wheat germplasm. FRONTIERS IN PLANT SCIENCE 2024; 15:1393170. [PMID: 38974985 PMCID: PMC11224466 DOI: 10.3389/fpls.2024.1393170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/20/2024] [Indexed: 07/09/2024]
Abstract
Spring wheat (Triticum aestivum L.) remains an important alternative to winter wheat cultivation at Northern latitudes due to high risk of overwintering or delayed sowing of winter wheat. We studied nine major agronomic traits in a set of 299 spring wheat genotypes in trials across 12-year-site combinations in Lithuania, Latvia, Estonia, and Norway for three consecutive years. The dataset analyzed here consisted of previously published phenotypic data collected in 2021 and 2022, supplemented with additional phenotypic data from the 2023 field season collected in this study. We combined these phenotypic datasets with previously published genotypic data generated using a 25K single nucleotide polymorphism (SNP) array that yielded 18,467 markers with a minor allele frequency above 0.05. Analysis of these datasets via genome-wide association study revealed 18 consistent quantitative trait loci (QTL) replicated in two or more trials that explained more than 5% of phenotypic variance for plant height, grain protein content, thousand kernel weight, or heading date. The most consistent markers across the tested environments were detected for plant height, thousand kernel weight, and days to heading in eight, five, and six trials, respectively. No beneficial effect of the semi-dwarfing alleles Rht-B1b and Rht-D1b on grain yield performance was observed across the 12 tested trials. Moreover, the cultivars carrying these alleles were low yielding in general. Based on principal component analysis, wheat genotypes developed in the Northern European region clustered separately from those developed at the southern latitudes, and markers associated with the clustering were identified. Important phenotypic traits, such as grain yield, days to heading, grain protein content, and thousand kernel weight were associated with this clustering of the genotype sets. Interestingly, despite being adapted to the Nordic environment, genotypes in the Northern set demonstrated lower grain yield performance across all tested environments. The results indicate that spring wheat germplasm harbors valuable QTL/alleles, and the identified trait-marker associations might be useful in improving Nordic-Baltic spring wheat germplasm under global warming conditions.
Collapse
Affiliation(s)
- Andrius Aleliūnas
- Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Akademija, Lithuania
| | - Andrii Gorash
- Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Akademija, Lithuania
| | - Rita Armonienė
- Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Akademija, Lithuania
| | - Ilmar Tamm
- Centre of Estonian Rural Research and Knowledge, Jõgeva Alevik, Estonia
| | - Anne Ingver
- Centre of Estonian Rural Research and Knowledge, Jõgeva Alevik, Estonia
| | - Māra Bleidere
- Crop Research Department, Institute of Agricultural Resources and Economics, Stende Research Centre, Dižstende, Latvia
| | - Valentīna Fetere
- Crop Research Department, Institute of Agricultural Resources and Economics, Stende Research Centre, Dižstende, Latvia
| | - Hannes Kollist
- Institute of Bioengineering, University of Tartu, Tartu, Estonia
| | - Tomasz Mroz
- Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Morten Lillemo
- Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Gintaras Brazauskas
- Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Akademija, Lithuania
| |
Collapse
|
9
|
Feng G, Gu Y, Wang C, Zhou Y, Huang S, Luo B. Wheat Fusarium Head Blight Automatic Non-Destructive Detection Based on Multi-Scale Imaging: A Technical Perspective. PLANTS (BASEL, SWITZERLAND) 2024; 13:1722. [PMID: 38999562 PMCID: PMC11243561 DOI: 10.3390/plants13131722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024]
Abstract
Fusarium head blight (FHB) is a major threat to global wheat production. Recent reviews of wheat FHB focused on pathology or comprehensive prevention and lacked a summary of advanced detection techniques. Unlike traditional detection and management methods, wheat FHB detection based on various imaging technologies has the obvious advantages of a high degree of automation and efficiency. With the rapid development of computer vision and deep learning technology, the number of related research has grown explosively in recent years. This review begins with an overview of wheat FHB epidemic mechanisms and changes in the characteristics of infected wheat. On this basis, the imaging scales are divided into microscopic, medium, submacroscopic, and macroscopic scales. Then, we outline the recent relevant articles, algorithms, and methodologies about wheat FHB from disease detection to qualitative analysis and summarize the potential difficulties in the practicalization of the corresponding technology. This paper could provide researchers with more targeted technical support and breakthrough directions. Additionally, this paper provides an overview of the ideal application mode of the FHB detection technologies based on multi-scale imaging and then examines the development trend of the all-scale detection system, which paved the way for the fusion of non-destructive detection technologies of wheat FHB based on multi-scale imaging.
Collapse
Affiliation(s)
- Guoqing Feng
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100089, China; (G.F.); (Y.G.); (C.W.); (Y.Z.); (S.H.)
- National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China
- College of Agricultural Engineering, Jiangsu University, Zhenjiang 212000, China
| | - Ying Gu
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100089, China; (G.F.); (Y.G.); (C.W.); (Y.Z.); (S.H.)
- National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China
| | - Cheng Wang
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100089, China; (G.F.); (Y.G.); (C.W.); (Y.Z.); (S.H.)
- National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China
- College of Agricultural Engineering, Jiangsu University, Zhenjiang 212000, China
| | - Yanan Zhou
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100089, China; (G.F.); (Y.G.); (C.W.); (Y.Z.); (S.H.)
- National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China
| | - Shuo Huang
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100089, China; (G.F.); (Y.G.); (C.W.); (Y.Z.); (S.H.)
- National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China
| | - Bin Luo
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100089, China; (G.F.); (Y.G.); (C.W.); (Y.Z.); (S.H.)
- National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China
- College of Agricultural Engineering, Jiangsu University, Zhenjiang 212000, China
| |
Collapse
|
10
|
Li S, Li Y, Zhu H, Chen L, Zhang H, Lian L, Xu M, Feng X, Hou R, Yao X, Lin Y, Wang H, Wang X. Deciphering PDH1's role in mung bean domestication: a genomic perspective on pod dehiscence. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1413-1422. [PMID: 38341804 DOI: 10.1111/tpj.16680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/02/2024] [Accepted: 01/29/2024] [Indexed: 02/13/2024]
Abstract
Mung bean (Vigna radiata) stands as a crucial legume crop in Asia, contributing to food security. However, our understanding of the underlying genetic foundation governing domesticated agronomic traits, especially those linked to pod architecture, remains largely unexplored. In this study, we delved into the genomic divergence between wild and domesticated mung bean varieties, leveraging germplasm obtained from diverse sources. Our findings unveiled pronounced variation in promoter regions (35%) between the two mung bean subpopulations, suggesting substantial changes in gene expression patterns during domestication. Leveraging transcriptome analysis using distinct reproductive stage pods and subpopulations, we identified candidate genes responsible for pod and seed architecture development, along with Genome-Wide Association Studies (GWAS) and Quantitative Trait Locus (QTL) analysis. Notably, our research conclusively confirmed PDH1 as a parallel domesticated gene governing pod dehiscence in legumes. This study imparts valuable insights into the genetic underpinnings of domesticated agronomic traits in mung bean, and simultaneously highlighting the parallel domestication of pivotal traits within the realm of legume crops.
Collapse
Affiliation(s)
- Shuai Li
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yaling Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Road, Hongshan District, Wuhan, Hubei, 430070, China
| | - Hong Zhu
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Liyang Chen
- Department of Agronomy, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Huiying Zhang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lijie Lian
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Road, Hongshan District, Wuhan, Hubei, 430070, China
| | - Miaomiao Xu
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xilong Feng
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Road, Hongshan District, Wuhan, Hubei, 430070, China
| | - Rui Hou
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaolin Yao
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yifan Lin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Road, Hongshan District, Wuhan, Hubei, 430070, China
| | - Huaying Wang
- Northeast Normal University, Changchun, 130024, China
| | - Xutong Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Road, Hongshan District, Wuhan, Hubei, 430070, China
| |
Collapse
|
11
|
Guan H. Construction of urban low-carbon development and sustainable evaluation system based on the internet of things. Heliyon 2024; 10:e30533. [PMID: 38774092 PMCID: PMC11106817 DOI: 10.1016/j.heliyon.2024.e30533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/12/2024] [Accepted: 04/29/2024] [Indexed: 05/24/2024] Open
Abstract
Low-carbon (LC) cities are the cities that people long for today. LC environmental protection plays a very important role in people's health. The construction of a city in LC is a great cause that contributes to the present and benefits the future. In this study, we propose a development and sustainability evaluation system for building low-carbon cities based on the Internet of Things (IoT). The study is novel in that it considers key areas such as urban planning, environmental issues and solutions, and how the Internet of Things can optimize low-carbon logistics and smart grids, with the aim of promoting the formation of low-carbon city models. This comprehensive approach not only presents problems and solutions in low-carbon urban planning but also focuses on how the Internet of Things can be used as a key technology to promote low-carbon urban development. The urban development of LC was constructed with a sustainable evaluation system, so that people could experience the life of LC. Through the investigation of the degree of atmospheric pollution of LC cities using the Internet of Things, this article found that the highest degree of atmospheric pollution was 30. The highest degree of atmospheric pollution in cities in LC without IoT was 53. The severity of water pollution in cities in LC using IoT technology ranged from 10 to 25, while those without IoT ranged from 30 to 60. The degree of soil pollution in LC cities using IoT technology was concentrated in 10-30, while those without using IoT were concentrated in 30-50. Through these experimental data, it could be seen that IoT technology could reduce environmental pollution, thus achieving the effect of LC cities. This shows that the use of IoT technology in LC cities was highly feasible.
Collapse
Affiliation(s)
- Haochun Guan
- Faculty of General Education, Huaqiao University, Xiamen, 361021, Fujian, China
| |
Collapse
|
12
|
Plestenjak E, Meglič V, Sinkovič L, Pipan B. Factors Influencing the Emergence of Heterogeneous Populations of Common Bean ( Phaseolus vulgaris L.) and Their Potential for Intercropping. PLANTS (BASEL, SWITZERLAND) 2024; 13:1112. [PMID: 38674521 PMCID: PMC11055032 DOI: 10.3390/plants13081112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024]
Abstract
The common bean is an important legume valued for its protein-rich seeds and its ability to fix nitrogen, making it a key element of crop rotation. In conventional agriculture, the emphasis is on uniformity and genetic purity to optimize crop performance and maximize yields. This is due to both the legal obligations to register varieties and the challenges of implementing breeding programs to create genetically diverse varieties. This paper focuses on the factors that influence the occurrence of heterogeneous common bean populations. The main factors contributing to this diversity have been described, including local adaptations, variable weather conditions, different pollinator species, and intricate interactions between genes controlling seed coat colour. We also discuss the benefits of intercropping common beans for organic farming systems, highlighting the improvement in resistance to diseases, and adverse environmental conditions. This paper contributes to a better understanding of common bean seed heterogeneity and the legal obligation to use heterogeneous populations.
Collapse
Affiliation(s)
- Eva Plestenjak
- Crop Science Department, Agricultural Institute of Slovenia, Hacquetova Ulica 17, 1000 Ljubljana, Slovenia; (V.M.); (L.S.); (B.P.)
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1001 Ljubljana, Slovenia
| | - Vladimir Meglič
- Crop Science Department, Agricultural Institute of Slovenia, Hacquetova Ulica 17, 1000 Ljubljana, Slovenia; (V.M.); (L.S.); (B.P.)
| | - Lovro Sinkovič
- Crop Science Department, Agricultural Institute of Slovenia, Hacquetova Ulica 17, 1000 Ljubljana, Slovenia; (V.M.); (L.S.); (B.P.)
| | - Barbara Pipan
- Crop Science Department, Agricultural Institute of Slovenia, Hacquetova Ulica 17, 1000 Ljubljana, Slovenia; (V.M.); (L.S.); (B.P.)
| |
Collapse
|
13
|
Yang G, Jiang D, Huang LJ, Cui C, Yang R, Pi X, Peng X, Peng X, Pi J, Li N. Distinct toxic effects, gene expression profiles, and phytohormone responses of Polygonatum cyrtonema exposed to two different antibiotics. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133639. [PMID: 38309169 DOI: 10.1016/j.jhazmat.2024.133639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/05/2024]
Abstract
The excessive usage of veterinary antibiotics has raised significant concerns regarding their environmental hazard and agricultural impact when entering surface water and soil. Animal waste serves as a primary source of organic fertilizer for intensive large-scale agricultural cultivation, including the widely utilized medicinal and edible plant, Polygonatum cyrtonem. In this study, we employed a novel plant stress tissue culture technology to investigate the toxic effects of tetracycline hydrochloride (TCH) and sulfadiazine (SDZ) on P. cyrtonema. TCH and SDZ exhibited varying degrees of influence on plant growth, photosynthesis, and the reactive oxygen species (ROS) scavenging system. Flavonoid levels increased following exposure to TCH and SDZ. The biosynthesis and signaling pathways of the growth hormones auxin and gibberellic acid were suppressed by both antibiotics, while the salicylic acid-mediated plant stress response was specifically induced in the case of SDZ. Overall, the study unveiled both common and unique responses at physiological, biochemical, and molecular levels in P. cyrtonema following exposure to two distinct types of antibiotics, providing a foundational framework for comprehensively elucidating the precise toxic effects of antibiotics and the versatile adaptive mechanisms in plants.
Collapse
Affiliation(s)
- Guoqun Yang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China; Key Laboratory of Forest Bio-resources and Integrated Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Changsha 410004, China
| | - Dong Jiang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China; Key Laboratory of Forest Bio-resources and Integrated Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Changsha 410004, China
| | - Li-Jun Huang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
| | - Chuantong Cui
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
| | - Runke Yang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xin Pi
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xia Peng
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiaofeng Peng
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jianhui Pi
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua 418099, China
| | - Ning Li
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China; Key Laboratory of Forest Bio-resources and Integrated Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Changsha 410004, China.
| |
Collapse
|
14
|
Sun Y, Zhou Y, Long Q, Xing J, Guo P, Liu Y, Zhang C, Zhang Y, Fernie AR, Shi Y, Luo Y, Luo J, Jin C. OsBCAT2, a gene responsible for the degradation of branched-chain amino acids, positively regulates salt tolerance by promoting the synthesis of vitamin B5. THE NEW PHYTOLOGIST 2024; 241:2558-2574. [PMID: 38258425 DOI: 10.1111/nph.19551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024]
Abstract
Salt stress negatively affects rice growth, development and yield. Metabolic adjustments contribute to the adaptation of rice under salt stress. Branched-chain amino acids (BCAA) are three essential amino acids that cannot be synthesized by humans or animals. However, little is known about the role of BCAA in response to salt stress in plants. Here, we showed that BCAAs may function as scavengers of reactive oxygen species (ROS) to provide protection against damage caused by salinity. We determined that branched-chain aminotransferase 2 (OsBCAT2), a protein responsible for the degradation of BCAA, positively regulates salt tolerance. Salt significantly induces the expression of OsBCAT2 rather than BCAA synthesis genes, which indicated that salt mainly promotes BCAA degradation and not de novo synthesis. Metabolomics analysis revealed that vitamin B5 (VB5) biosynthesis pathway intermediates were higher in the OsBCAT2-overexpressing plants but lower in osbcat2 mutants under salt stress. The salt stress-sensitive phenotypes of the osbcat2 mutants are rescued by exogenous VB5, indicating that OsBCAT2 affects rice salt tolerance by regulating VB5 synthesis. Our work provides new insights into the enzymes involved in BCAAs degradation and VB5 biosynthesis and sheds light on the molecular mechanism of BCAAs in response to salt stress.
Collapse
Affiliation(s)
- Yangyang Sun
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, 570288, China
- Sanya Research Institute of Hainan Academy of Agricultural Sciences, Sanya, 572025, China
| | - Yutong Zhou
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, 570288, China
| | - Qiyuan Long
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, 570288, China
| | - Junwei Xing
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, 570288, China
| | - Peizhen Guo
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, 570288, China
| | - Yanchen Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, 570288, China
| | - Changjian Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, 570288, China
| | - Yuanyuan Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, 570288, China
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Yuheng Shi
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Yuehua Luo
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, 570288, China
| | - Jie Luo
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Cheng Jin
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, 570288, China
| |
Collapse
|
15
|
Qi Z, Guo C, Li H, Qiu H, Li H, Jong C, Yu G, Zhang Y, Hu L, Wu X, Xin D, Yang M, Liu C, Lv J, Wang X, Kong F, Chen Q. Natural variation in Fatty Acid 9 is a determinant of fatty acid and protein content. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:759-773. [PMID: 37937736 PMCID: PMC10893952 DOI: 10.1111/pbi.14222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 11/09/2023]
Abstract
Soybean is one of the most economically important crops worldwide and an important source of unsaturated fatty acids and protein for the human diet. Consumer demand for healthy fats and oils is increasing, and the global demand for vegetable oil is expected to double by 2050. Identification of key genes that regulate seed fatty acid content can facilitate molecular breeding of high-quality soybean varieties with enhanced fatty acid profiles. Here, we analysed the genetic architecture underlying variations in soybean seed fatty acid content using 547 accessions, including mainly landraces and cultivars from northeastern China. Through fatty acid profiling, genome re-sequencing, population genomics analyses, and GWAS, we identified a SEIPIN homologue at the FA9 locus as an important contributor to seed fatty acid content. Transgenic and multiomics analyses confirmed that FA9 was a key regulator of seed fatty acid content with pleiotropic effects on seed protein and seed size. We identified two major FA9 haplotypes in 1295 resequenced soybean accessions and assessed their phenotypic effects in a field planting of 424 accessions. Soybean accessions carrying FA9H2 had significantly higher total fatty acid contents and lower protein contents than those carrying FA9H1 . FA9H2 was absent in wild soybeans but present in 13% of landraces and 26% of cultivars, suggesting that it may have been selected during soybean post-domestication improvement. FA9 therefore represents a useful genetic resource for molecular breeding of high-quality soybean varieties with specific seed storage profiles.
Collapse
Affiliation(s)
- Zhaoming Qi
- College of AgricultureNortheast Agricultural UniversityHarbinHeilongjiangChina
| | - Chaocheng Guo
- Shanghai Collaborative Innovation Center of Agri‐Seeds, Joint Center for Single Cell Biology, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Haiyang Li
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Hongmei Qiu
- Soybean Research InstituteJilin Academy of Agricultural Sciences/National Soybean Engineering CenterChangchunChina
| | - Hui Li
- College of AgricultureNortheast Agricultural UniversityHarbinHeilongjiangChina
| | - CholNam Jong
- College of AgricultureNortheast Agricultural UniversityHarbinHeilongjiangChina
| | - Guolong Yu
- Shanghai Collaborative Innovation Center of Agri‐Seeds, Joint Center for Single Cell Biology, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Yu Zhang
- College of AgricultureNortheast Agricultural UniversityHarbinHeilongjiangChina
| | - Limin Hu
- College of AgricultureNortheast Agricultural UniversityHarbinHeilongjiangChina
| | - Xiaoxia Wu
- College of AgricultureNortheast Agricultural UniversityHarbinHeilongjiangChina
| | - Dawei Xin
- College of AgricultureNortheast Agricultural UniversityHarbinHeilongjiangChina
| | - Mingliang Yang
- College of AgricultureNortheast Agricultural UniversityHarbinHeilongjiangChina
| | - Chunyan Liu
- College of AgricultureNortheast Agricultural UniversityHarbinHeilongjiangChina
| | - Jian Lv
- Department of InnovationSyngenta Biotechnology ChinaBeijingChina
| | - Xu Wang
- Shanghai Collaborative Innovation Center of Agri‐Seeds, Joint Center for Single Cell Biology, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Fanjiang Kong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Qingshan Chen
- College of AgricultureNortheast Agricultural UniversityHarbinHeilongjiangChina
| |
Collapse
|
16
|
Goh YJ, DeYoung BJ, Dove NC, Johnson BR, Martz MK, Mel M, Videau P. Harnessing the microbial world for human benefit. Trends Biotechnol 2024; 42:382-383. [PMID: 38008689 DOI: 10.1016/j.tibtech.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/28/2023]
Affiliation(s)
| | | | | | | | | | - Matilda Mel
- AgBiome, Inc., Research Triangle Park, NC, USA
| | | |
Collapse
|
17
|
Puskas JE, Cornish K, Kenzhe-Karim B, Mutalkhanov M, Kaszas G, Molnar K. Natural rubber - Increasing diversity of an irreplaceable renewable resource. Heliyon 2024; 10:e25123. [PMID: 38327396 PMCID: PMC10847858 DOI: 10.1016/j.heliyon.2024.e25123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 11/06/2023] [Accepted: 01/21/2024] [Indexed: 02/09/2024] Open
Abstract
This paper discusses the importance of introducing domestic natural rubber production and presents the rediscovery of a rubber-producing species, Scorzonera tau-saghyz or "mountain gum", originally discovered in 1929 on the Karatau mountains in Kazakhstan. This plant could potentially also be cultivated in the U.S. In this exploratory work, roots (2-5 years old) were harvested on June 16, 2021 from wild strands in the Karatau mountains, Kumantas ridge, and Saraba, Kazakhstan, and processed at the Ohio State University. The rubber extraction method was based on an indigenous method in Kazakhstan to make natural chewing gum. Water extraction followed by purification yielded 16.2 wt% rubber from the dry roots, in comparison with 4-8 wt% from most rubber dandelion (Taraxacum kok-saghyz) plants, also a potential domestic rubber producing plant. High-resolution size exclusion chromatography was used to analyze rubber samples. The molecular weights and gel and oligomer contents were very similar to the rubber from Hevea brasiliensis, the current commercial source of natural rubber. More detailed investigations of this very interesting rubber-producing plant are in progress.
Collapse
Affiliation(s)
- Judit E. Puskas
- Department of Food, Agricultural and Biological Engineering, College of Food, Agricultural and Environmental Science, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA
| | - Katrina Cornish
- Department of Food, Agricultural and Biological Engineering, College of Food, Agricultural and Environmental Science, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA
- Department of Horticulture and Crop Science, College of Food, Agricultural and Environmental Science, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA
| | - Boguspaev Kenzhe-Karim
- Al-Farabi Kazakh National University, Department of Biotechnology, 71 al-Farabi Ave., Almaty, Kazakhstan
| | - Meirambek Mutalkhanov
- Department of Horticulture and Crop Science, College of Food, Agricultural and Environmental Science, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA
- Al-Farabi Kazakh National University, Department of Biotechnology, 71 al-Farabi Ave., Almaty, Kazakhstan
| | - Gabor Kaszas
- Department of Food, Agricultural and Biological Engineering, College of Food, Agricultural and Environmental Science, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA
| | - Kristof Molnar
- Department of Food, Agricultural and Biological Engineering, College of Food, Agricultural and Environmental Science, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Nagyvarad ter 4. Budapest, 1089, Hungary
| |
Collapse
|
18
|
Li ZY, Ma N, Zhang FJ, Li LZ, Li HJ, Wang XF, Zhang Z, You CX. Functions of Phytochrome Interacting Factors (PIFs) in Adapting Plants to Biotic and Abiotic Stresses. Int J Mol Sci 2024; 25:2198. [PMID: 38396875 PMCID: PMC10888771 DOI: 10.3390/ijms25042198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/03/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Plants possess the remarkable ability to sense detrimental environmental stimuli and launch sophisticated signal cascades that culminate in tailored responses to facilitate their survival, and transcription factors (TFs) are closely involved in these processes. Phytochrome interacting factors (PIFs) are among these TFs and belong to the basic helix-loop-helix family. PIFs are initially identified and have now been well established as core regulators of phytochrome-associated pathways in response to the light signal in plants. However, a growing body of evidence has unraveled that PIFs also play a crucial role in adapting plants to various biological and environmental pressures. In this review, we summarize and highlight that PIFs function as a signal hub that integrates multiple environmental cues, including abiotic (i.e., drought, temperature, and salinity) and biotic stresses to optimize plant growth and development. PIFs not only function as transcription factors to reprogram the expression of related genes, but also interact with various factors to adapt plants to harsh environments. This review will contribute to understanding the multifaceted functions of PIFs in response to different stress conditions, which will shed light on efforts to further dissect the novel functions of PIFs, especially in adaption to detrimental environments for a better survival of plants.
Collapse
Affiliation(s)
- Zhao-Yang Li
- College of Horticulture Science and Engineering, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an 271000, China; (Z.-Y.L.); (N.M.); (F.-J.Z.); (L.-Z.L.); (H.-J.L.); (X.-F.W.)
| | - Ning Ma
- College of Horticulture Science and Engineering, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an 271000, China; (Z.-Y.L.); (N.M.); (F.-J.Z.); (L.-Z.L.); (H.-J.L.); (X.-F.W.)
| | - Fu-Jun Zhang
- College of Horticulture Science and Engineering, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an 271000, China; (Z.-Y.L.); (N.M.); (F.-J.Z.); (L.-Z.L.); (H.-J.L.); (X.-F.W.)
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China
| | - Lian-Zhen Li
- College of Horticulture Science and Engineering, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an 271000, China; (Z.-Y.L.); (N.M.); (F.-J.Z.); (L.-Z.L.); (H.-J.L.); (X.-F.W.)
| | - Hao-Jian Li
- College of Horticulture Science and Engineering, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an 271000, China; (Z.-Y.L.); (N.M.); (F.-J.Z.); (L.-Z.L.); (H.-J.L.); (X.-F.W.)
| | - Xiao-Fei Wang
- College of Horticulture Science and Engineering, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an 271000, China; (Z.-Y.L.); (N.M.); (F.-J.Z.); (L.-Z.L.); (H.-J.L.); (X.-F.W.)
| | - Zhenlu Zhang
- College of Horticulture Science and Engineering, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an 271000, China; (Z.-Y.L.); (N.M.); (F.-J.Z.); (L.-Z.L.); (H.-J.L.); (X.-F.W.)
| | - Chun-Xiang You
- College of Horticulture Science and Engineering, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an 271000, China; (Z.-Y.L.); (N.M.); (F.-J.Z.); (L.-Z.L.); (H.-J.L.); (X.-F.W.)
| |
Collapse
|
19
|
Kopeć P. Climate Change-The Rise of Climate-Resilient Crops. PLANTS (BASEL, SWITZERLAND) 2024; 13:490. [PMID: 38498432 PMCID: PMC10891513 DOI: 10.3390/plants13040490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 03/20/2024]
Abstract
Climate change disrupts food production in many regions of the world. The accompanying extreme weather events, such as droughts, floods, heat waves, and cold snaps, pose threats to crops. The concentration of carbon dioxide also increases in the atmosphere. The United Nations is implementing the climate-smart agriculture initiative to ensure food security. An element of this project involves the breeding of climate-resilient crops or plant cultivars with enhanced resistance to unfavorable environmental conditions. Modern agriculture, which is currently homogeneous, needs to diversify the species and cultivars of cultivated plants. Plant breeding programs should extensively incorporate new molecular technologies, supported by the development of field phenotyping techniques. Breeders should closely cooperate with scientists from various fields of science.
Collapse
Affiliation(s)
- Przemysław Kopeć
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland
| |
Collapse
|
20
|
Yan M, Li M, Wang Y, Wang X, Moeinzadeh MH, Quispe-Huamanquispe DG, Fan W, Fang Y, Wang Y, Nie H, Wang Z, Tanaka A, Heider B, Kreuze JF, Gheysen G, Wang H, Vingron M, Bock R, Yang J. Haplotype-based phylogenetic analysis and population genomics uncover the origin and domestication of sweetpotato. MOLECULAR PLANT 2024; 17:277-296. [PMID: 38155570 DOI: 10.1016/j.molp.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/10/2023] [Accepted: 12/25/2023] [Indexed: 12/30/2023]
Abstract
The hexaploid sweetpotato (Ipomoea batatas) is one of the most important root crops worldwide. However, its genetic origin remains controversial, and its domestication history remains unknown. In this study, we used a range of genetic evidence and a newly developed haplotype-based phylogenetic analysis to identify two probable progenitors of sweetpotato. The diploid progenitor was likely closely related to Ipomoea aequatoriensis and contributed the B1 subgenome, IbT-DNA2, and the lineage 1 type of chloroplast genome to sweetpotato. The tetraploid progenitor of sweetpotato was most likely I. batatas 4x, which donated the B2 subgenome, IbT-DNA1, and the lineage 2 type of chloroplast genome. Sweetpotato most likely originated from reciprocal crosses between the diploid and tetraploid progenitors, followed by a subsequent whole-genome duplication. In addition, we detected biased gene exchanges between the subgenomes; the rate of B1 to B2 subgenome conversions was nearly three times higher than that of B2 to B1 subgenome conversions. Our analyses revealed that genes involved in storage root formation, maintenance of genome stability, biotic resistance, sugar transport, and potassium uptake were selected during the speciation and domestication of sweetpotato. This study sheds light on the evolution of sweetpotato and paves the way for improvement of this crop.
Collapse
Affiliation(s)
- Mengxiao Yan
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Ming Li
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China; Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610061, China
| | - Yunze Wang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xinyi Wang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - M-Hossein Moeinzadeh
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | | | - Weijuan Fan
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Yijie Fang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yuqin Wang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Haozhen Nie
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Zhangying Wang
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Aiko Tanaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | | | | | | | - Hongxia Wang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; CAS Center for Excellence of Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233, China.
| | - Martin Vingron
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany.
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| | - Jun Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; CAS Center for Excellence of Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233, China.
| |
Collapse
|
21
|
Abasi F, Raja NI, Mashwani ZUR, Ehsan M, Ali H, Shahbaz M. Heat and Wheat: Adaptation strategies with respect to heat shock proteins and antioxidant potential; an era of climate change. Int J Biol Macromol 2024; 256:128379. [PMID: 38000583 DOI: 10.1016/j.ijbiomac.2023.128379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
Extreme changes in weather including heat-wave and high-temperature fluctuations are predicted to increase in intensity and duration due to climate change. Wheat being a major staple crop is under severe threat of heat stress especially during the grain-filling stage. Widespread food insecurity underscores the critical need to comprehend crop responses to forthcoming climatic shifts, pivotal for devising adaptive strategies ensuring sustainable crop productivity. This review addresses insights concerning antioxidant, physiological, molecular impacts, tolerance mechanisms, and nanotechnology-based strategies and how wheat copes with heat stress at the reproductive stage. In this study stress resilience strategies were documented for sustainable grain production under heat stress at reproductive stage. Additionally, the mechanisms of heat resilience including gene expression, nanomaterials that trigger transcription factors, (HSPs) during stress, and physiological and antioxidant traits were explored. The most reliable method to improve plant resilience to heat stress must include nano-biotechnology-based strategies, such as the adoption of nano-fertilizers in climate-smart practices and the use of advanced molecular approaches. Notably, the novel resistance genes through advanced molecular approach and nanomaterials exhibit promise for incorporation into wheat cultivars, conferring resilience against imminent adverse environmental conditions. This review will help scientific communities in thermo-tolerance wheat cultivars and new emerging strategies to mitigate the deleterious impact of heat stress.
Collapse
Affiliation(s)
- Fozia Abasi
- Department of Botany, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan.
| | - Naveed Iqbal Raja
- Department of Botany, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan.
| | | | - Maria Ehsan
- Department of Botany, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Habib Ali
- Department of Agronomy, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Muhammad Shahbaz
- Institute for Tropical Biology and Conservation (ITBC), Universiti Malaysia Sabah, 88400 Kota Kinabalu, Malaysia
| |
Collapse
|
22
|
Tayade R, Imran M, Ghimire A, Khan W, Nabi RBS, Kim Y. Molecular, genetic, and genomic basis of seed size and yield characteristics in soybean. FRONTIERS IN PLANT SCIENCE 2023; 14:1195210. [PMID: 38034572 PMCID: PMC10684784 DOI: 10.3389/fpls.2023.1195210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023]
Abstract
Soybean (Glycine max L. Merr.) is a crucial oilseed cash crop grown worldwide and consumed as oil, protein, and food by humans and feed by animals. Comparatively, soybean seed yield is lower than cereal crops, such as maize, rice, and wheat, and the demand for soybean production does not keep up with the increasing consumption level. Therefore, increasing soybean yield per unit area is the most crucial breeding objective and is challenging for the scientific community. Moreover, yield and associated traits are extensively researched in cereal crops, but little is known about soybeans' genetics, genomics, and molecular regulation of yield traits. Soybean seed yield is a complex quantitative trait governed by multiple genes. Understanding the genetic and molecular processes governing closely related attributes to seed yield is crucial to increasing soybean yield. Advances in sequencing technologies have made it possible to conduct functional genomic research to understand yield traits' genetic and molecular underpinnings. Here, we provide an overview of recent progress in the genetic regulation of seed size in soybean, molecular, genetics, and genomic bases of yield, and related key seed yield traits. In addition, phytohormones, such as auxin, gibberellins, cytokinins, and abscisic acid, regulate seed size and yield. Hence, we also highlight the implications of these factors, challenges in soybean yield, and seed trait improvement. The information reviewed in this study will help expand the knowledge base and may provide the way forward for developing high-yielding soybean cultivars for future food demands.
Collapse
Affiliation(s)
- Rupesh Tayade
- Upland Field Machinery Research Center, Kyungpook National University, Daegu, Republic of Korea
| | - Muhammad Imran
- Division of Biosafety, National Institute of Agriculture Science, Rural Development Administration, Jeonju, Jeollabul-do, Republic of Korea
| | - Amit Ghimire
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
- Department of Integrative Biology, Kyungpook National University, Daegu, Republic of Korea
| | - Waleed Khan
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
- Department of Integrative Biology, Kyungpook National University, Daegu, Republic of Korea
| | - Rizwana Begum Syed Nabi
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, Republic of Korea
| | - Yoonha Kim
- Upland Field Machinery Research Center, Kyungpook National University, Daegu, Republic of Korea
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
- Department of Integrative Biology, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
23
|
Rashad YM, Al Tami MS, Abdalla SA. Eliciting transcriptomic and antioxidant defensive responses against Rhizoctonia root rot of sorghum using the endophyte Aspergillus oryzae YRA3. Sci Rep 2023; 13:19823. [PMID: 37963959 PMCID: PMC10646029 DOI: 10.1038/s41598-023-46696-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/03/2023] [Indexed: 11/16/2023] Open
Abstract
Environmental pollution due to the improper use of the chemical fungicides represents a vital ecological problem, which affects human and animal health, as well as the microbial biodiversity and abundance in the soil. In this study, an endophytic fungus Aspergillus oryzae YRA3, isolated from the wild plant Atractylis carduus (Forssk.) C.Chr, was tested for its biocontrol activity against Rhizoctonia root rot of sorghum. The antagonistic potential of A. oryzae YRA3 was tested against Rhizoctonia solani in vitro. A full inhibition in the growth of R. solani was recorded indicating a strong antagonistic potential for this endophyte. To investigate the chemical composition of its metabolites, GC/MS analysis was used and thirty-two compounds in its culture filtrate were identified. Among these metabolites, some compounds with an antifungal background were detected including palmitic acid, 2-heptanone, and 2,3-butanediol. To these antifungal metabolites the antagonistic activity of A. oryzae YRA3 can be attributed. In the greenhouse experiment, treating of the infected sorghum plants with A. oryzae YRA3 significantly reduced severity of the Rhizoctonia root rot by 73.4%. An upregulation of the defensive genes (JERF3), (POD) and (CHI II) was recorded in sorghum roots when were inoculated with A. oryzae YRA3. In addition, an increment in the activity of peroxidase and polyphenol oxidase, as well as the total phenolic content in the sorghum roots was also recorded. Furthermore, the results obtained from the greenhouse experiment revealed a growth-promoting effect for inoculating the sorghum plants with A. oryzae YRA3. It can be concluded that A. oryzae YRA3 can be a probable biological agent to control this disease in sorghum. However, its evaluation under field conditions is highly needed in the future studies.
Collapse
Affiliation(s)
- Younes M Rashad
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria, 21934, Egypt.
| | - Mona S Al Tami
- Department of Biology, College of Science, Qassim University, 51452, Qassim, Saudi Arabia
| | - Sara A Abdalla
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria, 21934, Egypt
| |
Collapse
|
24
|
Gharabli H, Della Gala V, Welner DH. The function of UDP-glycosyltransferases in plants and their possible use in crop protection. Biotechnol Adv 2023; 67:108182. [PMID: 37268151 DOI: 10.1016/j.biotechadv.2023.108182] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 06/04/2023]
Abstract
Glycosyltransferases catalyse the transfer of a glycosyl moiety from a donor to an acceptor. Members of this enzyme class are ubiquitous throughout all kingdoms of life and are involved in the biosynthesis of countless types of glycosides. Family 1 glycosyltransferases, also referred to as uridine diphosphate-dependent glycosyltransferases (UGTs), glycosylate small molecules such as secondary metabolites and xenobiotics. In plants, UGTs are recognised for their multiple functionalities ranging from roles in growth regulation and development, in protection against pathogens and abiotic stresses and in adaptation to changing environments. In this study, we review UGT-mediated glycosylation of phytohormones, endogenous secondary metabolites, and xenobiotics and contextualise the role this chemical modification plays in the response to biotic and abiotic stresses and plant fitness. Here, the potential advantages and drawbacks of altering the expression patterns of specific UGTs along with the heterologous expression of UGTs across plant species to improve stress tolerance in plants are discussed. We conclude that UGT-based genetic modification of plants could potentially enhance agricultural efficiency and take part in controlling the biological activity of xenobiotics in bioremediation strategies. However, more knowledge of the intricate interplay between UGTs in plants is needed to unlock the full potential of UGTs in crop resistance.
Collapse
Affiliation(s)
- Hani Gharabli
- The Novo Nordisk Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, Kgs. Lyngby DK-2800, Denmark
| | - Valeria Della Gala
- The Novo Nordisk Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, Kgs. Lyngby DK-2800, Denmark
| | - Ditte Hededam Welner
- The Novo Nordisk Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, Kgs. Lyngby DK-2800, Denmark.
| |
Collapse
|
25
|
Liu S, Zenda T, Tian Z, Huang Z. Metabolic pathways engineering for drought or/and heat tolerance in cereals. FRONTIERS IN PLANT SCIENCE 2023; 14:1111875. [PMID: 37810398 PMCID: PMC10557149 DOI: 10.3389/fpls.2023.1111875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 09/04/2023] [Indexed: 10/10/2023]
Abstract
Drought (D) and heat (H) are the two major abiotic stresses hindering cereal crop growth and productivity, either singly or in combination (D/+H), by imposing various negative impacts on plant physiological and biochemical processes. Consequently, this decreases overall cereal crop production and impacts global food availability and human nutrition. To achieve global food and nutrition security vis-a-vis global climate change, deployment of new strategies for enhancing crop D/+H stress tolerance and higher nutritive value in cereals is imperative. This depends on first gaining a mechanistic understanding of the mechanisms underlying D/+H stress response. Meanwhile, functional genomics has revealed several stress-related genes that have been successfully used in target-gene approach to generate stress-tolerant cultivars and sustain crop productivity over the past decades. However, the fast-changing climate, coupled with the complexity and multigenic nature of D/+H tolerance suggest that single-gene/trait targeting may not suffice in improving such traits. Hence, in this review-cum-perspective, we advance that targeted multiple-gene or metabolic pathway manipulation could represent the most effective approach for improving D/+H stress tolerance. First, we highlight the impact of D/+H stress on cereal crops, and the elaborate plant physiological and molecular responses. We then discuss how key primary metabolism- and secondary metabolism-related metabolic pathways, including carbon metabolism, starch metabolism, phenylpropanoid biosynthesis, γ-aminobutyric acid (GABA) biosynthesis, and phytohormone biosynthesis and signaling can be modified using modern molecular biotechnology approaches such as CRISPR-Cas9 system and synthetic biology (Synbio) to enhance D/+H tolerance in cereal crops. Understandably, several bottlenecks hinder metabolic pathway modification, including those related to feedback regulation, gene functional annotation, complex crosstalk between pathways, and metabolomics data and spatiotemporal gene expressions analyses. Nonetheless, recent advances in molecular biotechnology, genome-editing, single-cell metabolomics, and data annotation and analysis approaches, when integrated, offer unprecedented opportunities for pathway engineering for enhancing crop D/+H stress tolerance and improved yield. Especially, Synbio-based strategies will accelerate the development of climate resilient and nutrient-dense cereals, critical for achieving global food security and combating malnutrition.
Collapse
Affiliation(s)
- Songtao Liu
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| | - Tinashe Zenda
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Zaimin Tian
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| | - Zhihong Huang
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| |
Collapse
|
26
|
Wang Y, Li X, Ishikawa R, Luo X. Editorial: Mining and utilization of favorable gene resources in rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1289069. [PMID: 37794934 PMCID: PMC10546390 DOI: 10.3389/fpls.2023.1289069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 10/06/2023]
Affiliation(s)
- Ying Wang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Ecology and Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Xueyong Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ryuji Ishikawa
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori, Japan
| | - Xiaojin Luo
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
27
|
Li Z, Zhou T, Zhu K, Wang W, Zhang W, Zhang H, Liu L, Zhang Z, Wang Z, Wang B, Xu D, Gu J, Yang J. Effects of Salt Stress on Grain Yield and Quality Parameters in Rice Cultivars with Differing Salt Tolerance. PLANTS (BASEL, SWITZERLAND) 2023; 12:3243. [PMID: 37765407 PMCID: PMC10538069 DOI: 10.3390/plants12183243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
Rice yield and grain quality are highly sensitive to salinity stress. Salt-tolerant/susceptible rice cultivars respond to salinity differently. To explore the variation in grain yield and quality to moderate/severe salinity stress, five rice cultivars differing in degrees of salt tolerance, including three salt-tolerant rice cultivars (Lianjian 5, Lianjian 6, and Lianjian 7) and two salt-susceptible rice cultivars (Wuyunjing 30 and Lianjing 7) were examined. Grain yield was significantly decreased under salinity stress, while the extent of yield loss was lesser in salt-tolerant rice cultivars due to the relatively higher grain filling ratio and grain weight. The milling quality continued to increase with increasing levels. There were genotypic differences in the responses of appearance quality to mild salinity. The appearance quality was first increased and then decreased with increasing levels of salinity stress in salt-tolerant rice but continued to decrease in salt-susceptible rice. Under severe salinity stress, the protein accumulation was increased and the starch content was decreased; the content of short branched-chain of amylopectin was decreased; the crystallinity and stability of the starch were increased, and the gelatinization temperature was increased. These changes resulted in the deterioration of cooking and eating quality of rice under severe salinity-stressed environments. However, salt-tolerant and salt-susceptible rice cultivars responded differently to moderate salinity stress in cooking and eating quality and in the physicochemical properties of the starch. For salt-tolerant rice cultivars, the chain length of amylopectin was decreased, the degrees of order of the starch structure were decreased, and pasting properties and thermal properties were increased significantly, whereas for salt-susceptible rice cultivars, cooking and eating quality was deteriorated under moderate salinity stress. In conclusion, the selection of salt-tolerant rice cultivars can effectively maintain the rice production at a relatively high level while simultaneously enhancing grain quality in moderate salinity-stressed environments. Our results demonstrate specific salinity responses among the rice genotypes and the planting of salt-tolerant rice under moderate soil salinity is a solution to ensure rice production in China.
Collapse
Affiliation(s)
- Zhikang Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College, Yangzhou University, Yangzhou 225009, China (K.Z.); (W.W.); (W.Z.); (H.Z.); (L.L.); (Z.Z.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Tianyang Zhou
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College, Yangzhou University, Yangzhou 225009, China (K.Z.); (W.W.); (W.Z.); (H.Z.); (L.L.); (Z.Z.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Kuanyu Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College, Yangzhou University, Yangzhou 225009, China (K.Z.); (W.W.); (W.Z.); (H.Z.); (L.L.); (Z.Z.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Weilu Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College, Yangzhou University, Yangzhou 225009, China (K.Z.); (W.W.); (W.Z.); (H.Z.); (L.L.); (Z.Z.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Weiyang Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College, Yangzhou University, Yangzhou 225009, China (K.Z.); (W.W.); (W.Z.); (H.Z.); (L.L.); (Z.Z.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Hao Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College, Yangzhou University, Yangzhou 225009, China (K.Z.); (W.W.); (W.Z.); (H.Z.); (L.L.); (Z.Z.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Lijun Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College, Yangzhou University, Yangzhou 225009, China (K.Z.); (W.W.); (W.Z.); (H.Z.); (L.L.); (Z.Z.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Zujian Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College, Yangzhou University, Yangzhou 225009, China (K.Z.); (W.W.); (W.Z.); (H.Z.); (L.L.); (Z.Z.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Zhiqin Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College, Yangzhou University, Yangzhou 225009, China (K.Z.); (W.W.); (W.Z.); (H.Z.); (L.L.); (Z.Z.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Baoxiang Wang
- Lianyungang Academy of Agricultural Science, Lianyungang 222000, China
| | - Dayong Xu
- Lianyungang Academy of Agricultural Science, Lianyungang 222000, China
| | - Junfei Gu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College, Yangzhou University, Yangzhou 225009, China (K.Z.); (W.W.); (W.Z.); (H.Z.); (L.L.); (Z.Z.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Jianchang Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College, Yangzhou University, Yangzhou 225009, China (K.Z.); (W.W.); (W.Z.); (H.Z.); (L.L.); (Z.Z.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
28
|
Awad A, Omar M, Ghallab A, El-galil AA. Biochar: A Surrogate Approach to Modulating Soil Chemical Properties and Germination Parameters of Barley Plants Grown under Multi-Stress Conditions.. [DOI: 10.21203/rs.3.rs-3216525/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Abstract
Background
Owing to its unique features, biochar (BC) is an excellent surrogate approach to improve the chemical properties of soil with undesirable characteristics.
Methods.
Under multiple abiotic stresses (ECe = 10.8 vs. 10.7 dS.m−1; CaCO3 = 19.1 vs. 18.8%; soil pH = 8.15 vs. 8.13) during two growing seasons (2020/2021 and 2021/2022), an experimental pot study was conducted to investigate the potential effects of palm tree frond biochar (PTF-BC) applied at three rates (0.0, 28.0, and 56.0 g.pot−1, labeled as BC0, BC1, and BC2) generated under three pyrolysis temperatures (350, 500, and 700 °C, labeled as PT350, PT500, and PT700). The experiment was set up according to a split-plot structure in a randomized complete block design; the pyrolysis temperatures were set as the main plot and BC addition rates were set as sub-main plots.
Results.
The results indicate that PT700 and BC2 had the most impact on soil chemical properties, except soil pH, which was positively affected by PT350 and BC1. Regarding the germination parameters, the data reveal that PT350 and P700 were the superior treatments, while BC2 led to noteworthy elevations of all studied germination parameters, except germination rate (GR), in both seasons. The heat map illustrating the studied soil chemical properties fluctuates between positive and negative.
Conclusion.
In short, the application of BC has profound desirable effects on soil physio-chemical properties relying on PTs.
Collapse
|
29
|
Płażek A, Dziurka M, Słomka A, Kopeć P. The Effect of Stimulants on Nectar Composition, Flowering, and Seed Yield of Common Buckwheat ( Fagopyrum esculentum Moench). Int J Mol Sci 2023; 24:12852. [PMID: 37629032 PMCID: PMC10454428 DOI: 10.3390/ijms241612852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Common buckwheat is a valuable plant producing seeds containing a number of health-promoting compounds and elements. Buckwheat does not contain gluten and is characterized by an excellent composition of amino acids. This species is also a melliferous plant. Despite many advantages, the area of buckwheat cultivation is decreasing due to unstable yields. One of the reasons for low seed yield is its sensitivity to drought, high temperatures, and assimilate deficiencies. These factors have a significant impact on the nectar composition, which is important for visiting pollinators and thus for pollination. High temperature during flowering increases the degeneration of embryo sacs and embryos, which is high anyway (genetic determination) in common buckwheat. This phenomenon seems to be unbreakable by breeding methods. The authors aimed to determine whether stimulants commonly used in agriculture could increase the seed yield of this plant species. The aim of the work was to choose from eight different stimulants the most effective one that would improve the seed yield of two accessions of common buckwheat by increasing the efficiency of nectar production and reducing the number of empty seeds. The plants were sprayed at either the beginning of flowering or at full bloom. The content of sugars and amino acids was higher in the nectar produced at the beginning of flowering. The nectar of both lines included also polyamines. The level of sugars in the nectar increased mainly after spraying with the stimulants in the second phase of flowering. A positive correlation between the total amount of sugars and amino acids in the nectar and seed yield was found. All the stimulants used reduced the number of empty seeds in both accessions. Seed production in the PA15 line increased significantly under the influence of all stimulants used at the beginning of flowering, and the most effective were ASAHI SL and TYTANIT®.
Collapse
Affiliation(s)
- Agnieszka Płażek
- Department of Plant Breeding, Physiology and Seed Science, University of Agriculture, Podłużna 3, 30-239 Kraków, Poland
| | - Michał Dziurka
- Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (M.D.); (P.K.)
| | - Aneta Słomka
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Kraków, Poland;
| | - Przemysław Kopeć
- Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (M.D.); (P.K.)
| |
Collapse
|
30
|
Leskovac A, Petrović S. Pesticide Use and Degradation Strategies: Food Safety, Challenges and Perspectives. Foods 2023; 12:2709. [PMID: 37509801 PMCID: PMC10379487 DOI: 10.3390/foods12142709] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
While recognizing the gaps in pesticide regulations that impact consumer safety, public health concerns associated with pesticide contamination of foods are pointed out. The strategies and research directions proposed to prevent and/or reduce pesticide adverse effects on human health and the environment are discussed. Special attention is paid to organophosphate pesticides, as widely applied insecticides in agriculture, veterinary practices, and urban areas. Biotic and abiotic strategies for organophosphate pesticide degradation are discussed from a food safety perspective, indicating associated challenges and potential for further improvements. As food systems are endangered globally by unprecedented challenges, there is an urgent need to globally harmonize pesticide regulations and improve methodologies in the area of food safety to protect human health.
Collapse
Affiliation(s)
- Andreja Leskovac
- Vinca Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, M. Petrovića Alasa 12-14, 11000 Belgrade, Serbia
| | - Sandra Petrović
- Vinca Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, M. Petrovića Alasa 12-14, 11000 Belgrade, Serbia
| |
Collapse
|
31
|
Hebelstrup KH, Azariadis A, Cordes A, Henriksen PS, Brinch-Pedersen H. Prehistoric Plant Exploitation and Domestication: An Inspiration for the Science of De Novo Domestication in Present Times. PLANTS (BASEL, SWITZERLAND) 2023; 12:2310. [PMID: 37375935 DOI: 10.3390/plants12122310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/02/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
De novo domestication is a novel trend in plant genetics, where traits of wild or semi-wild species are changed by the use of modern precision breeding techniques so that they conform to modern cultivation. Out of more than 300,000 wild plant species, only a few were fully domesticated by humans in prehistory. Moreover, out of these few domesticated species, less than 10 species dominate world agricultural production by more than 80% today. Much of this limited diversity of crop exploitation by modern humans was defined early in prehistory at the emergence of sedentary agro-pastoral cultures that limited the number of crops evolving a favorable domestication syndrome. However, modern plant genetics have revealed the roadmaps of genetic changes that led to these domestication traits. Based on such observations, plant scientists are now taking steps towards using modern breeding technologies to explore the potential of de novo domestication of plant species that were neglected in the past. We suggest here that in this process of de novo domestication, the study of Late Paleolithic/Late Archaic and Early Neolithic/Early Formative exploration of wild plants and identification of neglected species can help identify the barriers towards domestication. Modern breeding technologies may then assist us to break these barriers in order to perform de novo domestication to increase the crop species diversity of modern agriculture.
Collapse
Affiliation(s)
- Kim Henrik Hebelstrup
- Department of Agroecology, Section for Crop Genetics and Biotechnology, Aarhus University, Flakkebjerg, 4200 Slagelse, Denmark
| | - Aristotelis Azariadis
- Department of Agroecology, Section for Crop Genetics and Biotechnology, Aarhus University, Flakkebjerg, 4200 Slagelse, Denmark
| | - Adam Cordes
- Department of Agroecology, Section for Crop Genetics and Biotechnology, Aarhus University, Flakkebjerg, 4200 Slagelse, Denmark
- Department of Environmental Archaeology and Materials Science, National Museum of Denmark, I.C. Modewegsvej 9, 2800 Brede, Denmark
| | - Peter Steen Henriksen
- Department of Environmental Archaeology and Materials Science, National Museum of Denmark, I.C. Modewegsvej 9, 2800 Brede, Denmark
| | - Henrik Brinch-Pedersen
- Department of Agroecology, Section for Crop Genetics and Biotechnology, Aarhus University, Flakkebjerg, 4200 Slagelse, Denmark
| |
Collapse
|
32
|
Thessen AE, Cooper L, Swetnam TL, Hegde H, Reese J, Elser J, Jaiswal P. Using knowledge graphs to infer gene expression in plants. Front Artif Intell 2023; 6:1201002. [PMID: 37384147 PMCID: PMC10298150 DOI: 10.3389/frai.2023.1201002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/23/2023] [Indexed: 06/30/2023] Open
Abstract
Introduction Climate change is already affecting ecosystems around the world and forcing us to adapt to meet societal needs. The speed with which climate change is progressing necessitates a massive scaling up of the number of species with understood genotype-environment-phenotype (G×E×P) dynamics in order to increase ecosystem and agriculture resilience. An important part of predicting phenotype is understanding the complex gene regulatory networks present in organisms. Previous work has demonstrated that knowledge about one species can be applied to another using ontologically-supported knowledge bases that exploit homologous structures and homologous genes. These types of structures that can apply knowledge about one species to another have the potential to enable the massive scaling up that is needed through in silico experimentation. Methods We developed one such structure, a knowledge graph (KG) using information from Planteome and the EMBL-EBI Expression Atlas that connects gene expression, molecular interactions, functions, and pathways to homology-based gene annotations. Our preliminary analysis uses data from gene expression studies in Arabidopsis thaliana and Populus trichocarpa plants exposed to drought conditions. Results A graph query identified 16 pairs of homologous genes in these two taxa, some of which show opposite patterns of gene expression in response to drought. As expected, analysis of the upstream cis-regulatory region of these genes revealed that homologs with similar expression behavior had conserved cis-regulatory regions and potential interaction with similar trans-elements, unlike homologs that changed their expression in opposite ways. Discussion This suggests that even though the homologous pairs share common ancestry and functional roles, predicting expression and phenotype through homology inference needs careful consideration of integrating cis and trans-regulatory components in the curated and inferred knowledge graph.
Collapse
Affiliation(s)
- Anne E. Thessen
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Laurel Cooper
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Tyson L. Swetnam
- BIO5 Institute, University of Arizona, Tucson, AZ, United States
| | - Harshad Hegde
- Environmental Genomics and Systems Biology Division, Berkeley Lab (DOE), Berkeley, CA, United States
| | - Justin Reese
- Environmental Genomics and Systems Biology Division, Berkeley Lab (DOE), Berkeley, CA, United States
| | - Justin Elser
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Pankaj Jaiswal
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
33
|
Gao H, Suo X, Zhao L, Ma X, Cheng R, Wang G, Zhang H. Molecular evolution, diversification, and expression assessment of MADS gene family in Setaria italica, Setaria viridis, and Panicum virgatum. PLANT CELL REPORTS 2023; 42:1003-1024. [PMID: 37012438 DOI: 10.1007/s00299-023-03009-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/20/2023] [Indexed: 05/12/2023]
Abstract
KEY MESSAGE This paper sheds light on the evolution and expression patterns of MADS genes in Setaria and Panicum virgatum. SiMADS51 and SiMADS64 maybe involved in the ABA-dependent pathway of drought response. The MADS gene family is a key regulatory factor family that controls growth, reproduction, and response to abiotic stress in plants. However, the molecular evolution of this family is rarely reported. Here, a total of 265 MADS genes were identified in Setaria italica (foxtail millet), Setaria viridis (green millet), and Panicum virgatum (switchgrass) and analyzed by bioinformatics, including physicochemical characteristics, subcellular localization, chromosomal position and duplicate, motif distribution, genetic structure, genetic evolvement, and expression patterns. Phylogenetic analysis was used to categorize these genes into M and MIKC types. The distribution of motifs and gene structure were similar for the corresponding types. According to a collinearity study, the MADS genes have been mostly conserved during evolution. The principal cause of their expansion is segmental duplication. However, the MADS gene family tends to shrink in foxtail millet, green millet, and switchgrass. The MADS genes were subjected to purifying selection, but several positive selection sites were also identified in three species. And most of the promoters of MADS genes contain cis-elements related to stress and hormonal response. RNA-seq and quantitative Real-time PCR (qRT-PCR) analysis also were examined. SiMADS genes expression levels are considerably changed in reaction to various treatments, following qRT-PCR analysis. This sheds fresh light on the evolution and expansion of the MADS family in foxtail millet, green millet, and switchgrass, and lays the foundation for further research on their functions.
Collapse
Affiliation(s)
- Hui Gao
- Hebei Key Laboratory of Crop Stress Biology (in Preparation), Department of Life Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066600, Hebei, China
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/National Foxtail Millet Improvement Center/Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Xiaoman Suo
- Hebei Key Laboratory of Crop Stress Biology (in Preparation), Department of Life Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066600, Hebei, China
| | - Ling Zhao
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/National Foxtail Millet Improvement Center/Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Xinlei Ma
- Hebei Key Laboratory of Crop Stress Biology (in Preparation), Department of Life Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066600, Hebei, China
| | - Ruhong Cheng
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/National Foxtail Millet Improvement Center/Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China.
| | - Genping Wang
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/National Foxtail Millet Improvement Center/Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China.
| | - Haoshan Zhang
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/National Foxtail Millet Improvement Center/Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China.
- Chinese Academy of Agricultural Sciences Institute of Crop Sciences, Beijing, 100081, China.
| |
Collapse
|
34
|
Liu X, Zhang D, Wu H, Elser JJ, Yuan Z. Uncovering the spatio-temporal dynamics of crop-specific nutrient budgets in China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 340:117904. [PMID: 37084647 DOI: 10.1016/j.jenvman.2023.117904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 05/03/2023]
Abstract
Nitrogen (N) and phosphorus (P) are two critical nutrients for agroecosystems. In meeting food demands, human use of both nutrients has crossed planetary boundaries for sustainability. Further, there has been a dramatic shift in their relative inputs and outputs, which may generate strong N:P imbalances. Despite enormous efforts on agronomic N and P budgets, the spatio-temporal characteristics of different crop types in using nutrients are unknown as are patterns in the stoichiometric coupling of these nutrients. Thus, we analyzed the annual crop-specific N and P budgets and their stoichiometric relations for producing ten major crops at the provincial level of China during 2004-2018. Results show that, China has generally witnessed excessive N and P input over the past 15 years, with the N balance remaining stable while the P balance increasing by more than 170%, thus resulting in a decline in the N:P mass ratios from 10.9 in 2004 to 3.8 in 2018. Crop-aggregated nutrient use efficiency (NUE) of N has increased by 10% in these years while most crops have shown a decreasing trend of this indicator for P, which reduced NUE of P from 75% to 61% during this period. At the provincial level, the nutrient fluxes of Beijing and Shanghai have obviously declined, while the nutrient fluxes of provinces such as Xinjiang and Inner Mongolia have increased significantly. Although N management has made progress, P management should be further explored in the future due to eutrophication concerns. More importantly, N and P management strategies for sustainable agriculture in China should take account of not only the absolute nutrient use, but also their stoichiometric balance for different crops in different locations.
Collapse
Affiliation(s)
- Xin Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Dingming Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Huijun Wu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China
| | - James J Elser
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA; Flathead Lake Biological Station, University of Montana, Polson, MT, 59860, USA
| | - Zengwei Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
35
|
Zhang J, Yu H, Li J. De novo domestication: retrace the history of agriculture to design future crops. Curr Opin Biotechnol 2023; 81:102946. [PMID: 37080109 DOI: 10.1016/j.copbio.2023.102946] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 04/22/2023]
Abstract
Certain crops were domesticated from their wild progenitors and have served as the major staple food since then, but now suffered from the limited genetic diversity in breeding. Enormous wild species possess unique advantages such as stress tolerance, polyploidy, perennial habit, and natural nutrition. However, it remains a big challenge to utilize wild species in conventional breeding. With recent advances in biotechnologies, one new breeding strategy, de novo domestication, has emerged and been demonstrated by pioneer work. Here, we review the emergence and milestone progress of de novo domestication and discuss how wild relatives could be exploited into new types of crops. With the understanding of the genetic basis of crop domestication and the development of biotechnologies, various elite wild germplasms will be designed and practiced to fulfill particular breeding goals and create new types of crops. De novo domestication is paving a new way for breeding the future.
Collapse
Affiliation(s)
- Jingkun Zhang
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China
| | - Hong Yu
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China.
| | - Jiayang Li
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China; Hainan Yazhou Bay Seed Laboratory, China.
| |
Collapse
|
36
|
Krug AS, B. M. Drummond E, Van Tassel DL, Warschefsky EJ. The next era of crop domestication starts now. Proc Natl Acad Sci U S A 2023; 120:e2205769120. [PMID: 36972445 PMCID: PMC10083606 DOI: 10.1073/pnas.2205769120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Current food systems are challenged by relying on a few input-intensive, staple crops. The prioritization of yield and the loss of diversity during the recent history of domestication has created contemporary crops and cropping systems that are ecologically unsustainable, vulnerable to climate change, nutrient poor, and socially inequitable. For decades, scientists have proposed diversity as a solution to address these challenges to global food security. Here, we outline the possibilities for a new era of crop domestication, focused on broadening the palette of crop diversity, that engages and benefits the three elements of domestication: crops, ecosystems, and humans. We explore how the suite of tools and technologies at hand can be applied to renew diversity in existing crops, improve underutilized crops, and domesticate new crops to bolster genetic, agroecosystem, and food system diversity. Implementing the new era of domestication requires that researchers, funders, and policymakers boldly invest in basic and translational research. Humans need more diverse food systems in the Anthropocene-the process of domestication can help build them.
Collapse
Affiliation(s)
| | - Emily B. M. Drummond
- Department of Botany, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
| | | | | |
Collapse
|
37
|
Liu Y, Guo P, Wang J, Xu ZY. Growth-regulating factors: conserved and divergent roles in plant growth and development and potential value for crop improvement. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:1122-1145. [PMID: 36582168 DOI: 10.1111/tpj.16090] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/13/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
High yield and stress resistance are the major prerequisites for successful crop cultivation, and can be achieved by modifying plant architecture. Evolutionarily conserved growth-regulating factors (GRFs) control the growth of different tissues and organs of plants. Here, we provide a systematic overview of the expression patterns of GRF genes and the structural features of GRF proteins in different plant species. Moreover, we illustrate the conserved and divergent roles of GRFs, microRNA396 (miR396), and GRF-interacting factors (GIFs) in leaf, root, and flower development. We also describe the molecular networks involving the miR396-GRF-GIF module, and illustrate how this module coordinates with different signaling molecules and transcriptional regulators to control development of different plant species. GRFs promote leaf growth, accelerate grain filling, and increase grain size and weight. We also provide some molecular insight into how coordination between GRFs and other signaling modules enhances crop productivity; for instance, how the GRF-DELLA interaction confers yield-enhancing dwarfism while increasing grain yield. Finally, we discuss how the GRF-GIF chimera substantially improves plant transformation efficiency by accelerating shoot formation. Overall, we systematically review the conserved and divergent roles of GRFs and the miR396-GRF-GIF module in growth regulation, and also provide insights into how GRFs can be utilized to improve the productivity and nutrient content of crop plants.
Collapse
Affiliation(s)
- Yutong Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Peng Guo
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Jie Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
38
|
Egea I, Estrada Y, Faura C, Egea-Fernández JM, Bolarin MC, Flores FB. Salt-tolerant alternative crops as sources of quality food to mitigate the negative impact of salinity on agricultural production. FRONTIERS IN PLANT SCIENCE 2023; 14:1092885. [PMID: 36818835 PMCID: PMC9935836 DOI: 10.3389/fpls.2023.1092885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
An increase of abiotic stress tolerance and nutritive value of foods is currently a priority because of climate change and rising world population. Among abiotic stresses, salt stress is one of the main problems in agriculture. Mounting urbanization and industrialization, and increasing global food demand, are pressing farmers to make use of marginal lands affected by salinity and low-quality saline water. In that situation, one of the most promising approaches is searching for new sources of genetic variation like salt-tolerant alternative crops or underexploited crops. They are generally less efficient than cultivated crops in optimal conditions due to lower yield but represent an alternative in stressful growth conditions. In this review, we summarize the advances achieved in research on underexploited species differing in their genetic nature. First, we highlight advances in research on salt tolerance of traditional varieties of tomato or landraces; varieties selected and developed by smallholder farmers for adaptation to their local environments showing specific attractive fruit quality traits. We remark advances attained in screening a collection of tomato traditional varieties gathered in Spanish Southeast, a very productive region which environment is extremely stressing. Second, we explore the opportunities of exploiting the natural variation of halophytes, in particular quinoa and amaranth. The adaptation of both species in stressful growth conditions is becoming an increasingly important issue, especially for their cultivation in arid and semiarid areas prone to be affected by salinity. Here we present a project developed in Spanish Southeast, where quinoa and amaranth varieties are being adapted for their culture under abiotic stress targeting high quality grain.
Collapse
Affiliation(s)
- Isabel Egea
- Department Of Stress Biology and Plant Pathology, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Universidad de Murcia, Murcia, Spain
| | - Yanira Estrada
- Department Of Stress Biology and Plant Pathology, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Universidad de Murcia, Murcia, Spain
| | - Celia Faura
- Department Of Stress Biology and Plant Pathology, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Universidad de Murcia, Murcia, Spain
| | | | - Maria C. Bolarin
- Department Of Stress Biology and Plant Pathology, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Universidad de Murcia, Murcia, Spain
| | - Francisco B. Flores
- Department Of Stress Biology and Plant Pathology, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Universidad de Murcia, Murcia, Spain
| |
Collapse
|
39
|
Tripodi P, D’Alessandro A, Francese G. An integrated genomic and biochemical approach to investigate the potentiality of heirloom tomatoes: Breeding resources for food quality and sustainable agriculture. FRONTIERS IN PLANT SCIENCE 2023; 13:1031776. [PMID: 36684727 PMCID: PMC9846345 DOI: 10.3389/fpls.2022.1031776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
A revival of interest in traditional varieties reflects the change in consumer preferences and the greater awareness of the quality of locally grown products. As ancient cultivars, heirlooms have been selected for decades in specific habitats and represent nowadays potential germplasm sources to consider for breeding high-quality products and cultivation in sustainable agriculture. In this study, 60 heirloom tomato (Solanum lycopersicum L.) accessions, including diverse varietal types (beefsteak, globe, oxheart, plum, and cherry), were profiled over two seasons for the main chemical and biochemical fruit traits. A medium-high level of heritability was found for all traits ranging from 0.52 for soluble solids to 0.99 for fruit weight. The average content of ascorbic acid was ~31 mg 100 g-1 of fw in both seasons, while the greatest variability was found for carotenoids with peaks of 245.65 μg g-1 of fw for total lycopene and 32.29 μg g-1 of fw for β-carotene. Dissection of genotypic (G) and seasonal (Y) factors highlighted genotype as the main source of variation for all traits. No significant effect of Y and G × Y was found for ascorbic acid and fruit weight, respectively, whereas a high influence of Y was found on the variation of lycopene. Molecular fingerprinting was performed using the 10K SolCAP array, yielding a total of 7,591 SNPs. Population structure, phylogenetic relationships, and principal components analysis highlighted a differentiation of plum and cherry genotypes with respect to the beefsteak and globe types. These results were confirmed by multivariate analysis of phenotypic traits, shedding light on how breeding and selection focused on fruit characteristics have influenced the genetic and phenotypic makeup of heirlooms. Marker-trait association showed 11 significantly associated loci for β-carotene and fruit weight. For β-carotene, a single variant on chromosome 8 was found at 12 kb to CCD8, a cleavage dioxygenase playing a key role in the biosynthesis of apocarotenoids. For fruit weight, a single association was located at less than 3 Mbp from SLSUN31 and fw11.3, two candidates involved in the increasing of fruit mass. These results highlight the potentiality of heirlooms for genetic improvement and candidate gene identification.
Collapse
|
40
|
Babele PK, Srivastava A, Selim KA, Kumar A. Millet-inspired systems metabolic engineering of NUE in crops. Trends Biotechnol 2022; 41:701-713. [PMID: 36566140 DOI: 10.1016/j.tibtech.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 12/24/2022]
Abstract
The use of nitrogen (N) fertilizers in agriculture has a great ability to increase crop productivity. However, their excessive use has detrimental effects on the environment. Therefore, it is necessary to develop crop varieties with improved nitrogen use efficiency (NUE) that require less N but have substantial yields. Orphan crops such as millets are cultivated in limited regions and are well adapted to lower input conditions. Therefore, they serve as a rich source of beneficial traits that can be transferred into major crops to improve their NUE. This review highlights the tremendous potential of systems biology to unravel the enzymes and pathways involved in the N metabolism of millets, which can open new possibilities to generate transgenic crops with improved NUE.
Collapse
Affiliation(s)
- Piyoosh K Babele
- Rani Lakshmi Bai Central Agricultural University, Jhansi 284003, Uttar Pradesh, India.
| | - Amit Srivastava
- University of Jyväskylä, Nanoscience Centre, Department of Biological and Environmental Science, 40014 Jyväskylä, Finland
| | - Khaled A Selim
- Organismic Interactions Department, Interfaculty Institute for Microbiology and Infection Medicine, Cluster of Excellence 'Controlling Microbes to Fight Infections', Tübingen University, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Anil Kumar
- Rani Lakshmi Bai Central Agricultural University, Jhansi 284003, Uttar Pradesh, India
| |
Collapse
|
41
|
Resilience of Stevia rebaudiana (Bertoni) Bertoni in the Underwater Biospheres of Nemo's Garden ®: Adaptation to New Cultivation Systems. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238602. [PMID: 36500693 PMCID: PMC9740529 DOI: 10.3390/molecules27238602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
The Nemo's Garden® project is an alternative production system for areas with scarce cultivable land but significant presence of water; thus, it is an interesting intervention to address the climate crisis. This work aimed to evaluate the micromorphological, biochemical, and phytochemical characteristics of Stevia rebaudiana (Bertoni) Bertoni grown underwater compared to the terrestrial specimens. The micromorphological analyses, performed on the leaves using light microscopy, fluorescence microscopy, and scanning electron microscopy, evidenced a general uniformity of the trichome morphotype and distribution pattern. The histochemical investigation indicated the simultaneous presence of terpenes and polyphenols in the trichome secreted material from the underwater samples and a prevailing polyphenolic content in the terrestrial specimens; this was also confirmed by biochemical analyses (26.6 mg GAE/g DW). The characterization of non-volatile components, performed using HPLC-MS, showed similar chemical profiles in all the samples, which were characterized by phenolic compounds and steviol glycosides. The volatile compounds, evaluated using HS-SPME coupled with GC-MS, showed sesquiterpene hydrocarbons as the main class in all the analyzed samples (80.1-93.9%). However, the control plants were characterized by a higher content of monoterpene hydrocarbons (12.1%). The underwater biosphere environment did not alter S. rebaudiana micro-morphological characters, although slight qualitative changes were evidenced for the compounds produced as a response to the growth conditions.
Collapse
|
42
|
Mirzaei M, Gorji Anari M, Saronjic N, Sarkar S, Kral I, Gronauer A, Mohammed S, Caballero-Calvo A. Environmental impacts of corn silage production: influence of wheat residues under contrasting tillage management types. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:171. [PMID: 36459271 PMCID: PMC9718881 DOI: 10.1007/s10661-022-10675-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 10/19/2022] [Indexed: 06/17/2023]
Abstract
The intensification of specific land management operations (tillage, herbicide, etc.) is increasing land degradation and contributing to ecosystem pollution. Mulches can be a sustainable tool to counter these processes. This is particularly relevant for rural areas in low-income countries where agriculture is a vital sector. In this research, the environmental impact of different rates of wheat residues (no residues, 25, 50, 75, and 100%) in corn silage cultivation was evaluated using the life cycle assessment (LCA) method under conventional tillage (CT) and no-tillage (NT) systems in a semi-arid region in Karaj, Iran. Results showed that in both tillage systems, marine aquatic ecotoxicity (ME) and global warming potential (GWP) had the highest levels of pollution among the environmental impact indicators. In CT systems, the minimum (17,730.70 kg 1,4-dichlorobenzene (DB) eq.) and maximum (33,683.97 kg 1,4-DB eq.) amounts of ME were related to 0 and 100% wheat residue rates, respectively. Also, in the CT system, 0 and 100% wheat residue rates resulted in minimum (176.72 kg CO2 eq.) and maximum (324.95 kg CO2 eq.) amounts of GWP, respectively. However, in the NT system, the 100% wheat residue rate showed the minimum amounts of ME (11,442.39 kg 1,4-DB eq.) and GWP (120.21 kg CO2 eq.). Also, in the NT system, maximum amounts of ME (17,174 kg 1,4-DB eq.) and GWP (175.60 kg CO2 eq.) were observed with a zero wheat residue rate. On-farm emissions and nitrogen fertilizers were the two factors with the highest contribution to the degradation related to environmental parameters at all rates of wheat residues. Moreover, in the CT system, the number of environmental pollutants increased with the addition of a higher wheat residue rate, while in the NT system, increasing residue rates decreased the amount of environmental pollutants. In conclusion, this LCA demonstrates that the NT system with the full retention of wheat residues (100%) is a more environmentally sustainable practice for corn silage production. Therefore, it may be considered one of the most adequate management strategies in this region and similar semi-arid conditions. Further long-term research and considering more environmental impact categories are required to assess the real potential of crop residues and tillage management for sustainable corn silage production.
Collapse
Affiliation(s)
- Morad Mirzaei
- Department of Soil Science and Engineering, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Iran.
| | - Manouchehr Gorji Anari
- Department of Soil Science and Engineering, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Iran
| | - Nermina Saronjic
- Institute of Soil Research, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Sudip Sarkar
- ICAR Research Complex for Eastern Region, Patna, 800014, India
| | - Iris Kral
- Institute of Agricultural Engineering, Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Andreas Gronauer
- Institute of Agricultural Engineering, Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Safwan Mohammed
- Institute of Land Utilization, Technology and Regional Planning, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Andrés Caballero-Calvo
- Departamento de Análisis Geográfico Regional y Geografía Física, Facultad de Filosofía y Letras, Universidad de Granada, Campus Universitario de Cartuja, 18071, Granada, Spain.
| |
Collapse
|
43
|
Abdul Razak NQ, Md Yusoff MH, Abdul Aziz WNA, Kamal ML, Hasan S, Uyup NH, Zulkffle MA, Mohamed Hussin NA, Shafie MH. Effects of silver nanoparticles on seed germination and seedling growth: A review. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
44
|
Röckel F, Schreiber T, Schüler D, Braun U, Krukenberg I, Schwander F, Peil A, Brandt C, Willner E, Gransow D, Scholz U, Kecke S, Maul E, Lange M, Töpfer R. PhenoApp: A mobile tool for plant phenotyping to record field and greenhouse observations. F1000Res 2022; 11:12. [PMID: 36636476 PMCID: PMC9813448 DOI: 10.12688/f1000research.74239.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/20/2021] [Indexed: 01/21/2023] Open
Abstract
With the ongoing cost decrease of genotyping and sequencing technologies, accurate and fast phenotyping remains the bottleneck in the utilizing of plant genetic resources for breeding and breeding research. Although cost-efficient high-throughput phenotyping platforms are emerging for specific traits and/or species, manual phenotyping is still widely used and is a time- and money-consuming step. Approaches that improve data recording, processing or handling are pivotal steps towards the efficient use of genetic resources and are demanded by the research community. Therefore, we developed PhenoApp, an open-source Android app for tablets and smartphones to facilitate the digital recording of phenotypical data in the field and in greenhouses. It is a versatile tool that offers the possibility to fully customize the descriptors/scales for any possible scenario, also in accordance with international information standards such as MIAPPE (Minimum Information About a Plant Phenotyping Experiment) and FAIR (Findable, Accessible, Interoperable, and Reusable) data principles. Furthermore, PhenoApp enables the use of pre-integrated ready-to-use BBCH (Biologische Bundesanstalt für Land- und Forstwirtschaft, Bundessortenamt und CHemische Industrie) scales for apple, cereals, grapevine, maize, potato, rapeseed and rice. Additional BBCH scales can easily be added. The simple and adaptable structure of input and output files enables an easy data handling by either spreadsheet software or even the integration in the workflow of laboratory information management systems (LIMS). PhenoApp is therefore a decisive contribution to increase efficiency of digital data acquisition in genebank management but also contributes to breeding and breeding research by accelerating the labour intensive and time-consuming acquisition of phenotyping data.
Collapse
Affiliation(s)
- Franco Röckel
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, Siebeldingen, 76833, Germany,
| | - Toni Schreiber
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Data Processing Department, Erwin-Baur-Straße 27, Quedlinburg, 06484, Germany
| | - Danuta Schüler
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, Seeland, 06466, Germany
| | - Ulrike Braun
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, Siebeldingen, 76833, Germany
| | - Ina Krukenberg
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Data Processing Department, Königin-Luise-Strasse 19, Berlin, 14195, Germany
| | - Florian Schwander
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, Siebeldingen, 76833, Germany
| | - Andreas Peil
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Pillnitzer Platz 3a, Dresden/Pillnitz, 01326, Germany
| | - Christine Brandt
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), The Satellite Collections North, Parkweg 3a, Sanitz, 18190, Germany
| | - Evelin Willner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), The Satellite Collections North, Inselstraße 9, Malchow/Poel, 23999, Germany
| | - Daniel Gransow
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), The Satellite Collections North, Inselstraße 9, Malchow/Poel, 23999, Germany
| | - Uwe Scholz
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, Seeland, 06466, Germany
| | - Steffen Kecke
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Data Processing Department, Erwin-Baur-Straße 27, Quedlinburg, 06484, Germany
| | - Erika Maul
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, Siebeldingen, 76833, Germany
| | - Matthias Lange
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, Seeland, 06466, Germany
| | - Reinhard Töpfer
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, Siebeldingen, 76833, Germany
| |
Collapse
|
45
|
Röckel F, Schreiber T, Schüler D, Braun U, Krukenberg I, Schwander F, Peil A, Brandt C, Willner E, Gransow D, Scholz U, Kecke S, Maul E, Lange M, Töpfer R. PhenoApp: A mobile tool for plant phenotyping to record field and greenhouse observations. F1000Res 2022; 11:12. [PMID: 36636476 PMCID: PMC9813448 DOI: 10.12688/f1000research.74239.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
With the ongoing cost decrease of genotyping and sequencing technologies, accurate and fast phenotyping remains the bottleneck in the utilizing of plant genetic resources for breeding and breeding research. Although cost-efficient high-throughput phenotyping platforms are emerging for specific traits and/or species, manual phenotyping is still widely used and is a time- and money-consuming step. Approaches that improve data recording, processing or handling are pivotal steps towards the efficient use of genetic resources and are demanded by the research community. Therefore, we developed PhenoApp, an open-source Android app for tablets and smartphones to facilitate the digital recording of phenotypical data in the field and in greenhouses. It is a versatile tool that offers the possibility to fully customize the descriptors/scales for any possible scenario, also in accordance with international information standards such as MIAPPE (Minimum Information About a Plant Phenotyping Experiment) and FAIR (Findable, Accessible, Interoperable, and Reusable) data principles. Furthermore, PhenoApp enables the use of pre-integrated ready-to-use BBCH (Biologische Bundesanstalt für Land- und Forstwirtschaft, Bundessortenamt und CHemische Industrie) scales for apple, cereals, grapevine, maize, potato, rapeseed and rice. Additional BBCH scales can easily be added. The simple and adaptable structure of input and output files enables an easy data handling by either spreadsheet software or even the integration in the workflow of laboratory information management systems (LIMS). PhenoApp is therefore a decisive contribution to increase efficiency of digital data acquisition in genebank management but also contributes to breeding and breeding research by accelerating the labour intensive and time-consuming acquisition of phenotyping data.
Collapse
Affiliation(s)
- Franco Röckel
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, Siebeldingen, 76833, Germany,
| | - Toni Schreiber
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Data Processing Department, Erwin-Baur-Straße 27, Quedlinburg, 06484, Germany
| | - Danuta Schüler
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, Seeland, 06466, Germany
| | - Ulrike Braun
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, Siebeldingen, 76833, Germany
| | - Ina Krukenberg
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Data Processing Department, Königin-Luise-Strasse 19, Berlin, 14195, Germany
| | - Florian Schwander
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, Siebeldingen, 76833, Germany
| | - Andreas Peil
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Pillnitzer Platz 3a, Dresden/Pillnitz, 01326, Germany
| | - Christine Brandt
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), The Satellite Collections North, Parkweg 3a, Sanitz, 18190, Germany
| | - Evelin Willner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), The Satellite Collections North, Inselstraße 9, Malchow/Poel, 23999, Germany
| | - Daniel Gransow
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), The Satellite Collections North, Inselstraße 9, Malchow/Poel, 23999, Germany
| | - Uwe Scholz
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, Seeland, 06466, Germany
| | - Steffen Kecke
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Data Processing Department, Erwin-Baur-Straße 27, Quedlinburg, 06484, Germany
| | - Erika Maul
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, Siebeldingen, 76833, Germany
| | - Matthias Lange
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, Seeland, 06466, Germany
| | - Reinhard Töpfer
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, Siebeldingen, 76833, Germany
| |
Collapse
|
46
|
Jian L, Yan J, Liu J. De Novo Domestication in the Multi-Omics Era. PLANT & CELL PHYSIOLOGY 2022; 63:1592-1606. [PMID: 35762778 DOI: 10.1093/pcp/pcac077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Most cereal crops were domesticated within the last 12,000 years and subsequently spread around the world. These crops have been nourishing the world by supplying a primary energy and nutrient source, thereby playing a critical role in determining the status of human health and sustaining the global population. Here, we review the major challenges of future agriculture and emphasize the utilization of wild germplasm. De novo domestication is one of the most straightforward strategies to manipulate domestication-related and/or other genes with known function, and thereby introduce desired traits into wild plants. We also summarize known causal variations and their corresponding pathways in order to better understand the genetic basis of crop evolution, and how this knowledge could facilitate de novo domestication. Indeed knowledge-driven de novo domestication has great potential for the development of new sustainable crops that have climate-resilient high yield with low resource input and meet individual nutrient needs. Finally, we discuss current opportunities for and barriers to knowledge-driven de novo domestication.
Collapse
Affiliation(s)
- Liumei Jian
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jie Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
47
|
Bohra A, Tiwari A, Kaur P, Ganie SA, Raza A, Roorkiwal M, Mir RR, Fernie AR, Smýkal P, Varshney RK. The Key to the Future Lies in the Past: Insights from Grain Legume Domestication and Improvement Should Inform Future Breeding Strategies. PLANT & CELL PHYSIOLOGY 2022; 63:1554-1572. [PMID: 35713290 PMCID: PMC9680861 DOI: 10.1093/pcp/pcac086] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 05/11/2023]
Abstract
Crop domestication is a co-evolutionary process that has rendered plants and animals significantly dependent on human interventions for survival and propagation. Grain legumes have played an important role in the development of Neolithic agriculture some 12,000 years ago. Despite being early companions of cereals in the origin and evolution of agriculture, the understanding of grain legume domestication has lagged behind that of cereals. Adapting plants for human use has resulted in distinct morpho-physiological changes between the wild ancestors and domesticates, and this distinction has been the focus of several studies aimed at understanding the domestication process and the genetic diversity bottlenecks created. Growing evidence from research on archeological remains, combined with genetic analysis and the geographical distribution of wild forms, has improved the resolution of the process of domestication, diversification and crop improvement. In this review, we summarize the significance of legume wild relatives as reservoirs of novel genetic variation for crop breeding programs. We describe key legume features, which evolved in response to anthropogenic activities. Here, we highlight how whole genome sequencing and incorporation of omics-level data have expanded our capacity to monitor the genetic changes accompanying these processes. Finally, we present our perspective on alternative routes centered on de novo domestication and re-domestication to impart significant agronomic advances of novel crops over existing commodities. A finely resolved domestication history of grain legumes will uncover future breeding targets to develop modern cultivars enriched with alleles that improve yield, quality and stress tolerance.
Collapse
Affiliation(s)
- Abhishek Bohra
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - Abha Tiwari
- Crop Improvement Division, ICAR-Indian Institute of Pulses Research (ICAR-IIPR), Kalyanpur, Kanpur 208024, India
| | - Parwinder Kaur
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
| | - Showkat Ahmad Ganie
- Department of Biotechnology, Visva-Bharati, Santiniketan, Santiniketan Road, Bolpur 731235, India
| | - Ali Raza
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou 350002, China
| | - Manish Roorkiwal
- Khalifa Center for Genetic Engineering and Biotechnology (KCGEB), UAE University, Sheik Khalifa Bin Zayed Street, Al Ain, Abu Dhabi 15551, UAE
| | - Reyazul Rouf Mir
- Division of Genetics & Plant Breeding, Faculty of Agriculture, SKUAST, Shalimar, Srinagar 190025, India
| | - Alisdair R Fernie
- Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Petr Smýkal
- Department of Botany, Faculty of Sciences, Palacky University, Křížkovského 511/8, Olomouc 78371, Czech Republic
| | - Rajeev K Varshney
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| |
Collapse
|
48
|
Xu Y, Zhang X, Li H, Zheng H, Zhang J, Olsen MS, Varshney RK, Prasanna BM, Qian Q. Smart breeding driven by big data, artificial intelligence, and integrated genomic-enviromic prediction. MOLECULAR PLANT 2022; 15:1664-1695. [PMID: 36081348 DOI: 10.1016/j.molp.2022.09.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/20/2022] [Accepted: 09/02/2022] [Indexed: 05/12/2023]
Abstract
The first paradigm of plant breeding involves direct selection-based phenotypic observation, followed by predictive breeding using statistical models for quantitative traits constructed based on genetic experimental design and, more recently, by incorporation of molecular marker genotypes. However, plant performance or phenotype (P) is determined by the combined effects of genotype (G), envirotype (E), and genotype by environment interaction (GEI). Phenotypes can be predicted more precisely by training a model using data collected from multiple sources, including spatiotemporal omics (genomics, phenomics, and enviromics across time and space). Integration of 3D information profiles (G-P-E), each with multidimensionality, provides predictive breeding with both tremendous opportunities and great challenges. Here, we first review innovative technologies for predictive breeding. We then evaluate multidimensional information profiles that can be integrated with a predictive breeding strategy, particularly envirotypic data, which have largely been neglected in data collection and are nearly untouched in model construction. We propose a smart breeding scheme, integrated genomic-enviromic prediction (iGEP), as an extension of genomic prediction, using integrated multiomics information, big data technology, and artificial intelligence (mainly focused on machine and deep learning). We discuss how to implement iGEP, including spatiotemporal models, environmental indices, factorial and spatiotemporal structure of plant breeding data, and cross-species prediction. A strategy is then proposed for prediction-based crop redesign at both the macro (individual, population, and species) and micro (gene, metabolism, and network) scales. Finally, we provide perspectives on translating smart breeding into genetic gain through integrative breeding platforms and open-source breeding initiatives. We call for coordinated efforts in smart breeding through iGEP, institutional partnerships, and innovative technological support.
Collapse
Affiliation(s)
- Yunbi Xu
- Institute of Crop Sciences, CIMMYT-China, Chinese Academy of Agricultural Sciences, Beijing 100081, China; CIMMYT-China Tropical Maize Research Center, School of Food Science and Engineering, Foshan University, Foshan, Guangdong 528231, China; Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong 261325, China.
| | - Xingping Zhang
- Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong 261325, China
| | - Huihui Li
- Institute of Crop Sciences, CIMMYT-China, Chinese Academy of Agricultural Sciences, Beijing 100081, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan 572024, China
| | - Hongjian Zheng
- CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai 201400, China
| | - Jianan Zhang
- MolBreeding Biotechnology Co., Ltd., Shijiazhuang, Hebei 050035, China
| | - Michael S Olsen
- CIMMYT (International Maize and Wheat Improvement Center), ICRAF Campus, United Nations Avenue, Nairobi, Kenya
| | - Rajeev K Varshney
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Australia
| | - Boddupalli M Prasanna
- CIMMYT (International Maize and Wheat Improvement Center), ICRAF Campus, United Nations Avenue, Nairobi, Kenya
| | - Qian Qian
- Institute of Crop Sciences, CIMMYT-China, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
49
|
Seyum EG, Bille NH, Abtew WG, Munyengwa N, Bell JM, Cros D. Genomic selection in tropical perennial crops and plantation trees: a review. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:58. [PMID: 37313015 PMCID: PMC10248687 DOI: 10.1007/s11032-022-01326-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
To overcome the multiple challenges currently faced by agriculture, such as climate change and soil deterioration, more efficient plant breeding strategies are required. Genomic selection (GS) is crucial for the genetic improvement of quantitative traits, as it can increase selection intensity, shorten the generation interval, and improve selection accuracy for traits that are difficult to phenotype. Tropical perennial crops and plantation trees are of major economic importance and have consequently been the subject of many GS articles. In this review, we discuss the factors that affect GS accuracy (statistical models, linkage disequilibrium, information concerning markers, relatedness between training and target populations, the size of the training population, and trait heritability) and the genetic gain expected in these species. The impact of GS will be particularly strong in tropical perennial crops and plantation trees as they have long breeding cycles and constrained selection intensity. Future GS prospects are also discussed. High-throughput phenotyping will allow constructing of large training populations and implementing of phenomic selection. Optimized modeling is needed for longitudinal traits and multi-environment trials. The use of multi-omics, haploblocks, and structural variants will enable going beyond single-locus genotype data. Innovative statistical approaches, like artificial neural networks, are expected to efficiently handle the increasing amounts of heterogeneous multi-scale data. Targeted recombinations on sites identified from profiles of marker effects have the potential to further increase genetic gain. GS can also aid re-domestication and introgression breeding. Finally, GS consortia will play an important role in making the best of these opportunities. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01326-4.
Collapse
Affiliation(s)
- Essubalew Getachew Seyum
- Department of Plant Biology and Physiology, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
- Department of Horticulture and Plant Sciences, College of Agriculture and Veterinary Medicine, Jimma University, P.O. Box 307, Jimma, Ethiopia
| | - Ngalle Hermine Bille
- Department of Plant Biology and Physiology, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Wosene Gebreselassie Abtew
- Department of Horticulture and Plant Sciences, College of Agriculture and Veterinary Medicine, Jimma University, P.O. Box 307, Jimma, Ethiopia
| | - Norman Munyengwa
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD 4072 Australia
| | - Joseph Martin Bell
- Department of Plant Biology and Physiology, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - David Cros
- CIRAD, UMR AGAP Institut, 34398 Montpellier, France
- UMR AGAP Institut, CIRAD, INRAE, Univ. Montpellier, Institut Agro, 34398 Montpellier, France
| |
Collapse
|
50
|
Esmaeili N, Shen G, Zhang H. Genetic manipulation for abiotic stress resistance traits in crops. FRONTIERS IN PLANT SCIENCE 2022; 13:1011985. [PMID: 36212298 PMCID: PMC9533083 DOI: 10.3389/fpls.2022.1011985] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Abiotic stresses are major limiting factors that pose severe threats to agricultural production. Conventional breeding has significantly improved crop productivity in the last century, but traditional breeding has reached its maximum capacity due to the multigenic nature of abiotic stresses. Alternatively, biotechnological approaches could provide new opportunities for producing crops that can adapt to the fast-changing environment and still produce high yields under severe environmental stress conditions. Many stress-related genes have been identified and manipulated to generate stress-tolerant plants in the past decades, which could lead to further increase in food production in most countries of the world. This review focuses on the recent progress in using transgenic technology and gene editing technology to improve abiotic stress tolerance in plants, and highlights the potential of using genetic engineering to secure food and fiber supply in a world with an increasing population yet decreasing land and water availability for food production and fast-changing climate that will be largely hostile to agriculture.
Collapse
Affiliation(s)
- Nardana Esmaeili
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Guoxin Shen
- Zhejiang Academy of Agricultural Sciences, Sericultural Research Institute, Hangzhou, China
| | - Hong Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|