1
|
Mateos B, Preedy K, Milne L, Morris J, Hedley PE, Simpson C, Hancock RD, Graham J. Altered expression of a raspberry homologue of VRN1 is associated with disruption of dormancy induction and misregulation of subsets of dormancy-associated genes. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6167-6181. [PMID: 39243357 PMCID: PMC11480652 DOI: 10.1093/jxb/erae371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/06/2024] [Indexed: 09/09/2024]
Abstract
Winter dormancy is a key process in the phenology of temperate perennials. Climate change is severely impacting its course leading to economic losses in agriculture. A better understanding of the underlying mechanisms, as well as the genetic basis of the different responses, is necessary for the development of climate-resilient cultivars. This study aims to provide an insight into winter dormancy in red raspberry (Rubus idaeus L). We report the transcriptomic profiles during dormancy in two raspberry cultivars with contrasting responses. The cultivar 'Glen Ample' showed a typical perennial phenology, whereas 'Glen Dee' registered consistent dormancy dysregulation, exhibiting active growth and flowering out of season. RNA-seq combined with weighted gene co-expression network analysis identified gene clusters in both genotypes that exhibited time-dependent expression profiles. Functional analysis of 'Glen Ample' gene clusters highlighted the significance of the cell and structural development prior to dormancy entry as well the role of genetic and epigenetic processes such as RNAi and DNA methylation in regulating gene expression. Dormancy release in 'Glen Ample' was associated with up-regulation of transcripts associated with the resumption of metabolism, nucleic acid biogenesis, and processing signal response pathways. Many of the processes occurring in 'Glen Ample' were dysregulated in 'Glen Dee' and 28 transcripts exhibiting time-dependent expression in 'Glen Ample' that also had an Arabidopsis homologue were not found in 'Glen Dee'. These included a gene with homology to Arabidopsis VRN1 (RiVRN1.1) that exhibited a sharp decline in expression following dormancy induction in 'Glen Ample'. Characterization of the gene region in the 'Glen Dee' genome revealed two large insertions upstream of the ATG start codon. We propose that expression below detection level of a specific VRN1 homologue in 'Glen Dee' causes dormancy misregulation as a result of inappropriate expression of a subset of genes that are directly or indirectly regulated by RiVRN1.1.
Collapse
Affiliation(s)
- Brezo Mateos
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
- School of Biology, Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK
- Biomathematics and Statistics Scotland, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Katharine Preedy
- Biomathematics and Statistics Scotland, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Linda Milne
- Informational and Computational Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Jenny Morris
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Pete E Hedley
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Craig Simpson
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Robert D Hancock
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Julie Graham
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| |
Collapse
|
2
|
Kara MF, Guo W, Zhang R, Denby K. LsRTDv1, a reference transcript dataset for accurate transcript-specific expression analysis in lettuce. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:370-386. [PMID: 39145419 DOI: 10.1111/tpj.16978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/20/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024]
Abstract
Accurate quantification of gene and transcript-specific expression, with the underlying knowledge of precise transcript isoforms, is crucial to understanding many biological processes. Analysis of RNA sequencing data has benefited from the development of alignment-free algorithms which enhance the precision and speed of expression analysis. However, such algorithms require a reference transcriptome. Here we generate a reference transcript dataset (LsRTDv1) for lettuce (cv. Saladin), combining long- and short-read sequencing with publicly available transcriptome annotations, and filtering to keep only transcripts with high-confidence splice junctions and transcriptional start and end sites. LsRTDv1 identifies novel genes (mostly long non-coding RNAs) and increases the number of transcript isoforms per gene in the lettuce genome from 1.4 to 2.7. We show that LsRTDv1 significantly increases the mapping rate of RNA-seq data from a lettuce time-series experiment (mock- and Botrytis cinerea-inoculated) and enables detection of genes that are differentially alternatively spliced in response to infection as well as transcript-specific expression changes. LsRTDv1 is a valuable resource for investigation of transcriptional and alternative splicing regulation in lettuce.
Collapse
Affiliation(s)
- Mehmet Fatih Kara
- Biology Department, Centre for Novel Agricultural Products (CNAP), University of York, Wentworth Way, York, YO10 5DD, UK
| | - Wenbin Guo
- Information and Computational Sciences, James Hutton Institute, Dundee, DD2 5DA, UK
| | - Runxuan Zhang
- Information and Computational Sciences, James Hutton Institute, Dundee, DD2 5DA, UK
| | - Katherine Denby
- Biology Department, Centre for Novel Agricultural Products (CNAP), University of York, Wentworth Way, York, YO10 5DD, UK
| |
Collapse
|
3
|
Sybilska E, Collin A, Sadat Haddadi B, Mur LAJ, Beckmann M, Guo W, Simpson CG, Daszkowska-Golec A. The cap-binding complex modulates ABA-responsive transcript splicing during germination in barley (Hordeum vulgare). Sci Rep 2024; 14:18278. [PMID: 39107424 PMCID: PMC11303550 DOI: 10.1038/s41598-024-69373-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024] Open
Abstract
To decipher the molecular bases governing seed germination, this study presents the pivotal role of the cap-binding complex (CBC), comprising CBP20 and CBP80, in modulating the inhibitory effects of abscisic acid (ABA) in barley. Using both single and double barley mutants in genes encoding the CBC, we revealed that the double mutant hvcbp20.ab/hvcbp80.b displays ABA insensitivity, in stark contrast to the hypersensitivity observed in single mutants during germination. Our comprehensive transcriptome and metabolome analysis not only identified significant alterations in gene expression and splicing patterns but also underscored the regulatory nexus among CBC, ABA, and brassinosteroid (BR) signaling pathways.
Collapse
Affiliation(s)
- Ewa Sybilska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | - Anna Collin
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | | | - Luis A J Mur
- Department of Life Science, Aberystwyth University, Aberystwyth, UK
| | - Manfred Beckmann
- Department of Life Science, Aberystwyth University, Aberystwyth, UK
| | - Wenbin Guo
- Information and Computational Sciences, James Hutton Institute, Dundee, DD2 5DA, Scotland, UK
| | - Craig G Simpson
- Cell and Molecular Sciences, James Hutton Institute, Dundee, DD2 5DA, Scotland, UK
| | - Agata Daszkowska-Golec
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland.
| |
Collapse
|
4
|
Wu ZH, He LL, Wang CC, Liang C, Li HY, Zhong DW, Dong ZX, Zhang LJ, Zhang XQ, Ge LF, Chen S. Unveiling unique alternative splicing responses to low temperature in Zoysia japonica through ZjRTD1.0, a high-quality reference transcript dataset. PHYSIOLOGIA PLANTARUM 2024; 176:e14280. [PMID: 38644527 DOI: 10.1111/ppl.14280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/29/2024] [Accepted: 03/09/2024] [Indexed: 04/23/2024]
Abstract
Inadequate reference databases in RNA-seq analysis can hinder data utilization and interpretation. In this study, we have successfully constructed a high-quality reference transcript dataset, ZjRTD1.0, for Zoysia japonica, a widely-used turfgrass with exceptional tolerance to various abiotic stress, including low temperatures and salinity. This dataset comprises 113,089 transcripts from 57,143 genes. BUSCO analysis demonstrates exceptional completeness (92.4%) in ZjRTD1.0, with reduced proportions of fragmented (3.3%) and missing (4.3%) orthologs compared to prior datasets. ZjRTD1.0 enables more precise analyses, including transcript quantification and alternative splicing assessments using public datasets, which identified a substantial number of differentially expressed transcripts (DETs) and differential alternative splicing (DAS) events, leading to several novel findings on Z. japonica's responses to abiotic stresses. First, spliceosome gene expression influenced alternative splicing significantly under abiotic stress, with a greater impact observed during low-temperature stress. Then, a significant positive correlation was found between the number of differentially expressed genes (DEGs) encoding protein kinases and the frequency of DAS events, suggesting the role of protein phosphorylation in regulating alternative splicing. Additionally, our results suggest possible involvement of serine/arginine-rich (SR) proteins and heterogeneous nuclear ribonucleoproteins (hnRNPs) in generating inclusion/exclusion isoforms under low-temperature stress. Furthermore, our investigation revealed a significantly enhanced overlap between DEGs and differentially alternatively spliced genes (DASGs) in response to low-temperature stress, suggesting a unique co-regulatory mechanism governing transcription and splicing in the context of low-temperature response. In conclusion, we have proven that ZjRTD1.0 will serve as a reliable and useful resource for future transcriptomic analyses in Z. japonica.
Collapse
Affiliation(s)
- Zhi-Hao Wu
- Department of Grass Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, Guangzhou, China
| | - Liang-Liang He
- Department of Grass Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, Guangzhou, China
| | - Cong-Cong Wang
- Department of Grass Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, Guangzhou, China
| | - Chen Liang
- Department of Grass Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, Guangzhou, China
| | - Han-Ying Li
- Department of Grass Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, Guangzhou, China
| | - Dan-Wen Zhong
- Department of Grass Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, Guangzhou, China
| | - Zhao-Xia Dong
- Department of Grass Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, Guangzhou, China
| | - Li-Juan Zhang
- Shenzhen Tourism College of Jinan University, Shenzhen, Guangdong, China
| | - Xiang-Qian Zhang
- College of Food Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Liang-Fa Ge
- Department of Grass Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, Guangzhou, China
| | - Shu Chen
- Department of Grass Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, Guangzhou, China
| |
Collapse
|
5
|
Prazyan A, Podlutskii M, Volkova P, Kazakova E, Bitarishvili S, Shesterikova E, Saburov V, Makarenko E, Lychenkova M, Korol M, Kazakov E, Moiseev A, Geras’kin S, Bondarenko E. Comparative Analysis of the Effect of Gamma-, Electron, and Proton Irradiation on Transcriptomic Profile of Hordeum vulgare L. Seedlings: In Search for Molecular Contributors to Abiotic Stress Resilience. PLANTS (BASEL, SWITZERLAND) 2024; 13:342. [PMID: 38337875 PMCID: PMC10857502 DOI: 10.3390/plants13030342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024]
Abstract
The development of adaptation strategies for crops under ever-changing climate conditions is a critically important food security issue. Studies of barley responses to ionising radiation showed that this evolutionarily ancient stress factor can be successfully used to identify molecular pathways involved in adaptation to a range of abiotic stressors. In order to identify potential molecular contributors to abiotic stress resilience, we examined the transcriptomic profiles of barley seedlings after exposure to γ-rays, electrons, and protons. A total of 553 unique differentially expressed genes with increased expression and 124 with decreased expression were detected. Among all types of radiation, the highest number of differentially expressed genes was observed in electron-irradiated samples (428 upregulated and 56 downregulated genes). Significant upregulation after exposure to the three types of radiation was shown by a set of ROS-responsive genes, genes involved in DNA repair, cell wall metabolism, auxin biosynthesis and signalling, as well as photosynthesis-related genes. Most of these genes are known to be involved in plant ROS-mediated responses to other abiotic stressors, especially with genotoxic components, such as heavy metals and drought. Ultimately, the modulation of molecular pathways of plant responses to ionising radiation may be a prospective tool for stress tolerance programmes.
Collapse
Affiliation(s)
- Alexander Prazyan
- Russian Institute of Radiology and Agroecology of National Research Centre “Kurchatov Institute”, 249035 Obninsk, Russia
| | - Mikhail Podlutskii
- Russian Institute of Radiology and Agroecology of National Research Centre “Kurchatov Institute”, 249035 Obninsk, Russia
| | | | - Elizaveta Kazakova
- Russian Institute of Radiology and Agroecology of National Research Centre “Kurchatov Institute”, 249035 Obninsk, Russia
| | - Sofia Bitarishvili
- Russian Institute of Radiology and Agroecology of National Research Centre “Kurchatov Institute”, 249035 Obninsk, Russia
| | - Ekaterina Shesterikova
- Russian Institute of Radiology and Agroecology of National Research Centre “Kurchatov Institute”, 249035 Obninsk, Russia
| | - Vyacheslav Saburov
- A. Tsyb Medical Radiological Research Centre—Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 249036 Obninsk, Russia
| | - Ekaterina Makarenko
- Russian Institute of Radiology and Agroecology of National Research Centre “Kurchatov Institute”, 249035 Obninsk, Russia
| | - Maria Lychenkova
- Russian Institute of Radiology and Agroecology of National Research Centre “Kurchatov Institute”, 249035 Obninsk, Russia
| | - Marina Korol
- Russian Institute of Radiology and Agroecology of National Research Centre “Kurchatov Institute”, 249035 Obninsk, Russia
| | - Evgeniy Kazakov
- A. Tsyb Medical Radiological Research Centre—Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 249036 Obninsk, Russia
| | - Alexander Moiseev
- A. Tsyb Medical Radiological Research Centre—Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 249036 Obninsk, Russia
| | - Stanislav Geras’kin
- Russian Institute of Radiology and Agroecology of National Research Centre “Kurchatov Institute”, 249035 Obninsk, Russia
| | - Ekaterina Bondarenko
- Russian Institute of Radiology and Agroecology of National Research Centre “Kurchatov Institute”, 249035 Obninsk, Russia
| |
Collapse
|
6
|
Schreiber M, Wonneberger R, Haaning AM, Coulter M, Russell J, Himmelbach A, Fiebig A, Muehlbauer GJ, Stein N, Waugh R. Genomic resources for a historical collection of cultivated two-row European spring barley genotypes. Sci Data 2024; 11:66. [PMID: 38216606 PMCID: PMC10786862 DOI: 10.1038/s41597-023-02850-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 12/12/2023] [Indexed: 01/14/2024] Open
Abstract
Barley genomic resources are increasing rapidly, with the publication of a barley pangenome as one of the latest developments. Two-row spring barley cultivars are intensely studied as they are the source of high-quality grain for malting and distilling. Here we provide data from a European two-row spring barley population containing 209 different genotypes registered for the UK market between 1830 to 2014. The dataset encompasses RNA-sequencing data from six different tissues across a range of barley developmental stages, phenotypic datasets from two consecutive years of field-grown trials in the United Kingdom, Germany and the USA; and whole genome shotgun sequencing from all cultivars, which was used to complement the RNA-sequencing data for variant calling. The outcomes are a filtered SNP marker file, a phenotypic database and a large gene expression dataset providing a comprehensive resource which allows for downstream analyses like genome wide association studies or expression associations.
Collapse
Affiliation(s)
- Miriam Schreiber
- Division of Plant Sciences, University of Dundee at The James Hutton Institute, Invergowrie, Dundee, Scotland, DD2 5DA, UK
| | - Ronja Wonneberger
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Allison M Haaning
- Department of Agronomy and Plant Genetics, The University of Minnesota, St. Paul, MN, 55108, USA
| | - Max Coulter
- Division of Plant Sciences, University of Dundee at The James Hutton Institute, Invergowrie, Dundee, Scotland, DD2 5DA, UK
| | - Joanne Russell
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, Scotland, DD2 5DA, UK
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Anne Fiebig
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Gary J Muehlbauer
- Department of Agronomy and Plant Genetics, The University of Minnesota, St. Paul, MN, 55108, USA
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Robbie Waugh
- Division of Plant Sciences, University of Dundee at The James Hutton Institute, Invergowrie, Dundee, Scotland, DD2 5DA, UK.
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, Scotland, DD2 5DA, UK.
| |
Collapse
|
7
|
Fernie AR, Yan J, Aharoni A, Ma J. Editorial: The past, present and future of The Plant Journal Resource Articles. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:967-973. [PMID: 37943112 DOI: 10.1111/tpj.16515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Affiliation(s)
- Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Jianbing Yan
- National Key Laboratory of Crop Genetics, Huazhong Agricultural District, Wuhan, China
| | - Asaph Aharoni
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Jianxian Ma
- Purdue University, 915 S. University St, West Lafayette, IN, USA
| |
Collapse
|
8
|
Elakhdar A, El-Naggar AA, Kubo T, Kumamaru T. Genome-wide transcriptomic and functional analyses provide new insights into the response of spring barley to drought stress. PHYSIOLOGIA PLANTARUM 2023; 175:e14089. [PMID: 38148212 DOI: 10.1111/ppl.14089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/22/2023] [Accepted: 10/27/2023] [Indexed: 12/28/2023]
Abstract
Drought is a major abiotic stress that impairs the physiology and development of plants, ultimately leading to crop yield losses. Drought tolerance is a complex quantitative trait influenced by multiple genes and metabolic pathways. However, molecular intricacies and subsequent morphological and physiological changes in response to drought stress remain elusive. Herein, we combined morpho-physiological and comparative RNA-sequencing analyses to identify core drought-induced marker genes and regulatory networks in the barley cultivar 'Giza134'. Based on field trials, drought-induced declines occurred in crop growth rate, relative water content, leaf area duration, flag leaf area, concentration of chlorophyll (Chl) a, b and a + b, net photosynthesis, and yield components. In contrast, the Chl a/b ratio, stoma resistance, and proline concentration increased significantly. RNA-sequence analysis identified a total of 2462 differentially expressed genes (DEGs), of which 1555 were up-regulated and 907 were down-regulated in response to water-deficit stress (WD). Comparative transcriptomics analysis highlighted three unique metabolic pathways (carbohydrate metabolism, iron ion binding, and oxidoreductase activity) as containing genes differentially expressed that could mitigate water stress. Our results identified several drought-induced marker genes belonging to diverse physiochemical functions like chlorophyll concentration, photosynthesis, light harvesting, gibberellin biosynthetic, iron homeostasis as well as Cis-regulatory elements. These candidate genes can be utilized to identify gene-associated markers to develop drought-resilient barley cultivars over a short period of time. Our results provide new insights into the understanding of water stress response mechanisms in barley.
Collapse
Affiliation(s)
- Ammar Elakhdar
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
- Field Crops Research Institute, Agricultural Research Center, Giza, Egypt
| | - Ahmed A El-Naggar
- Field Crops Research Institute, Agricultural Research Center, Giza, Egypt
| | - Takahiko Kubo
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Toshihiro Kumamaru
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
9
|
Shanmugaraj N, Rajaraman J, Kale S, Kamal R, Huang Y, Thirulogachandar V, Garibay-Hernández A, Budhagatapalli N, Tandron Moya YA, Hajirezaei MR, Rutten T, Hensel G, Melzer M, Kumlehn J, von Wirén N, Mock HP, Schnurbusch T. Multilayered regulation of developmentally programmed pre-anthesis tip degeneration of the barley inflorescence. THE PLANT CELL 2023; 35:3973-4001. [PMID: 37282730 PMCID: PMC10615218 DOI: 10.1093/plcell/koad164] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/17/2023] [Accepted: 06/04/2023] [Indexed: 06/08/2023]
Abstract
Leaf and floral tissue degeneration is a common feature in plants. In cereal crops such as barley (Hordeum vulgare L.), pre-anthesis tip degeneration (PTD) starts with growth arrest of the inflorescence meristem dome, which is followed basipetally by the degeneration of floral primordia and the central axis. Due to its quantitative nature and environmental sensitivity, inflorescence PTD constitutes a complex, multilayered trait affecting final grain number. This trait appears to be highly predictable and heritable under standardized growth conditions, consistent with a developmentally programmed mechanism. To elucidate the molecular underpinnings of inflorescence PTD, we combined metabolomic, transcriptomic, and genetic approaches to show that barley inflorescence PTD is accompanied by sugar depletion, amino acid degradation, and abscisic acid responses involving transcriptional regulators of senescence, defense, and light signaling. Based on transcriptome analyses, we identified GRASSY TILLERS1 (HvGT1), encoding an HD-ZIP transcription factor, as an important modulator of inflorescence PTD. A gene-edited knockout mutant of HvGT1 delayed PTD and increased differentiated apical spikelets and final spikelet number, suggesting a possible strategy to increase grain number in cereals. We propose a molecular framework that leads to barley PTD, the manipulation of which may increase yield potential in barley and other related cereals.
Collapse
Affiliation(s)
- Nandhakumar Shanmugaraj
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Jeyaraman Rajaraman
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Sandip Kale
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Roop Kamal
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Yongyu Huang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Venkatasubbu Thirulogachandar
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Adriana Garibay-Hernández
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Nagaveni Budhagatapalli
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Yudelsy Antonia Tandron Moya
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Mohammed R Hajirezaei
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Twan Rutten
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Götz Hensel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Michael Melzer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Nicolaus von Wirén
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Hans-Peter Mock
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Thorsten Schnurbusch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
- Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Halle 06120,Germany
| |
Collapse
|
10
|
Dwivedi SL, Quiroz LF, Reddy ASN, Spillane C, Ortiz R. Alternative Splicing Variation: Accessing and Exploiting in Crop Improvement Programs. Int J Mol Sci 2023; 24:15205. [PMID: 37894886 PMCID: PMC10607462 DOI: 10.3390/ijms242015205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Alternative splicing (AS) is a gene regulatory mechanism modulating gene expression in multiple ways. AS is prevalent in all eukaryotes including plants. AS generates two or more mRNAs from the precursor mRNA (pre-mRNA) to regulate transcriptome complexity and proteome diversity. Advances in next-generation sequencing, omics technology, bioinformatics tools, and computational methods provide new opportunities to quantify and visualize AS-based quantitative trait variation associated with plant growth, development, reproduction, and stress tolerance. Domestication, polyploidization, and environmental perturbation may evolve novel splicing variants associated with agronomically beneficial traits. To date, pre-mRNAs from many genes are spliced into multiple transcripts that cause phenotypic variation for complex traits, both in model plant Arabidopsis and field crops. Cataloguing and exploiting such variation may provide new paths to enhance climate resilience, resource-use efficiency, productivity, and nutritional quality of staple food crops. This review provides insights into AS variation alongside a gene expression analysis to select for novel phenotypic diversity for use in breeding programs. AS contributes to heterosis, enhances plant symbiosis (mycorrhiza and rhizobium), and provides a mechanistic link between the core clock genes and diverse environmental clues.
Collapse
Affiliation(s)
| | - Luis Felipe Quiroz
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, H91 REW4 Galway, Ireland
| | - Anireddy S N Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Charles Spillane
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, H91 REW4 Galway, Ireland
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 23053 Alnarp, SE, Sweden
| |
Collapse
|
11
|
Rodríguez Del Río Á, Monteagudo A, Contreras-Moreira B, Kiss T, Mayer M, Karsai I, Igartua E, Casas AM. Diversity of gene expression responses to light quality in barley. Sci Rep 2023; 13:17143. [PMID: 37816785 PMCID: PMC10564772 DOI: 10.1038/s41598-023-44263-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 10/05/2023] [Indexed: 10/12/2023] Open
Abstract
Light quality influence on barley development is poorly understood. We exposed three barley genotypes with either sensitive or insensitive response to two light sources producing different light spectra, fluorescent bulbs, and metal halide lamps, keeping constant light intensity, duration, and temperature. Through RNA-seq, we identified the main genes and pathways involved in the genotypic responses. A first analysis identified genotypic differences in gene expression of development-related genes, including photoreceptors and flowering time genes. Genes from the vernalization pathway of light quality-sensitive genotypes were affected by fluorescent light. In particular, vernalization-related repressors reacted differently: HvVRN2 did not experience relevant changes, whereas HvOS2 expression increased under fluorescent light. To identify the genes primarily related to light quality responses, and avoid the confounding effect of plant developmental stage, genes influenced by development were masked in a second analysis. Quantitative expression levels of PPD-H1, which influenced HvVRN1 and HvFT1, explained genotypic differences in development. Upstream mechanisms (light signaling and circadian clock) were also altered, but no specific genes linking photoreceptors and the photoperiod pathway were identified. The variety of light-quality sensitivities reveals the presence of possible mechanisms of adaptation of winter and facultative barley to latitudinal variation in light quality, which deserves further research.
Collapse
Affiliation(s)
- Álvaro Rodríguez Del Río
- Department of Genetics and Plant Breeding, Aula Dei Experimental Station, CSIC, Avda Montañana 1005, 50059, Zaragoza, Spain
- Centro de Biotecnología y Genómica de Plantas, UPM/INIA-CSIC, Madrid, Spain
| | - Arantxa Monteagudo
- Department of Genetics and Plant Breeding, Aula Dei Experimental Station, CSIC, Avda Montañana 1005, 50059, Zaragoza, Spain
| | - Bruno Contreras-Moreira
- Department of Genetics and Plant Breeding, Aula Dei Experimental Station, CSIC, Avda Montañana 1005, 50059, Zaragoza, Spain
- Fundación ARAID, Zaragoza, Spain
| | - Tibor Kiss
- Centre for Agriculture Research ELKH (ATK), Martonvásár, Hungary
- Center for Research and Development, Food and Wine Center of Excellence, Eszterházy Károly Catholic University, Eger, Hungary
| | - Marianna Mayer
- Centre for Agriculture Research ELKH (ATK), Martonvásár, Hungary
| | - Ildikó Karsai
- Centre for Agriculture Research ELKH (ATK), Martonvásár, Hungary
| | - Ernesto Igartua
- Department of Genetics and Plant Breeding, Aula Dei Experimental Station, CSIC, Avda Montañana 1005, 50059, Zaragoza, Spain.
| | - Ana M Casas
- Department of Genetics and Plant Breeding, Aula Dei Experimental Station, CSIC, Avda Montañana 1005, 50059, Zaragoza, Spain
| |
Collapse
|
12
|
Contreras-Moreira B, Saraf S, Naamati G, Casas AM, Amberkar SS, Flicek P, Jones AR, Dyer S. GET_PANGENES: calling pangenes from plant genome alignments confirms presence-absence variation. Genome Biol 2023; 24:223. [PMID: 37798615 PMCID: PMC10552430 DOI: 10.1186/s13059-023-03071-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023] Open
Abstract
Crop pangenomes made from individual cultivar assemblies promise easy access to conserved genes, but genome content variability and inconsistent identifiers hamper their exploration. To address this, we define pangenes, which summarize a species coding potential and link back to original annotations. The protocol get_pangenes performs whole genome alignments (WGA) to call syntenic gene models based on coordinate overlaps. A benchmark with small and large plant genomes shows that pangenes recapitulate phylogeny-based orthologies and produce complete soft-core gene sets. Moreover, WGAs support lift-over and help confirm gene presence-absence variation. Source code and documentation: https://github.com/Ensembl/plant-scripts .
Collapse
Affiliation(s)
- Bruno Contreras-Moreira
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK.
- Estación Experimental Aula Dei-CSIC, 50059, Zaragoza, Spain.
| | - Shradha Saraf
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Guy Naamati
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Ana M Casas
- Estación Experimental Aula Dei-CSIC, 50059, Zaragoza, Spain
| | - Sandeep S Amberkar
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Andrew R Jones
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Sarah Dyer
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK.
| |
Collapse
|
13
|
Wonneberger R, Schreiber M, Haaning A, Muehlbauer GJ, Waugh R, Stein N. Major chromosome 5H haplotype switch structures the European two-rowed spring barley germplasm of the past 190 years. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:174. [PMID: 37477711 PMCID: PMC10361897 DOI: 10.1007/s00122-023-04418-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/26/2023] [Indexed: 07/22/2023]
Abstract
KEY MESSAGE Selection over 70 years has led to almost complete fixation of a haplotype spanning ~ 250 Mbp of chomosome 5H in European two-rowed spring barleys, possibly originating from North Africa. Plant breeding and selection have shaped the genetic composition of modern crops over the past decades and centuries and have led to great improvements in agronomic and quality traits. Knowledge of the genetic composition of breeding germplasm is essential to make informed decisions in breeding programs. In this study, we characterized the structure and composition of 209 barley cultivars representative of the European two-rowed spring barley germplasm of the past 190 years. Utilizing high-density SNP marker data, we identified a distinct centromeric haplotype spanning a ~ 250 Mbp large region on chromosome 5H which likely was first introduced into the European breeding germplasm in the early to mid-twentieth century and has been non-recombining and under strong positive selection over the past 70 years. Almost all cultivars in our panel that were released after 2000 carry this new haplotype, suggesting that this region carries one or several genes conferring highly beneficial traits. Using the global barley collection of the German Federal ex situ gene bank at IPK Gatersleben, we found the new haplotype at high frequencies in six-rowed spring-type landraces from Northern Africa, from which it may have been introduced into modern European barley germplasm via southern European landraces. The presence of a 250 Mbp genomic region characterized by lack of recombination and high levels of fixation in modern barley germplasm has substantial implications for the genetic diversity of the modern barley germplasm and for barley breeding.
Collapse
Affiliation(s)
- Ronja Wonneberger
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstrasse 3, 06466, Seeland, Germany
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Miriam Schreiber
- Division of Plant Sciences, University of Dundee, James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
- Information and Computational Sciences, James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Allison Haaning
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gary J Muehlbauer
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| | - Robbie Waugh
- Division of Plant Sciences, University of Dundee, James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
- School of Agriculture and Wine & Waite Research Institute, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstrasse 3, 06466, Seeland, Germany.
- Center for Integrated Breeding Research (CiBreed), Georg-August-University, Göttingen, Germany.
| |
Collapse
|
14
|
Li T, Li Y, Shangguan H, Bian J, Luo R, Tian Y, Li Z, Nie X, Cui L. BarleyExpDB: an integrative gene expression database for barley. BMC PLANT BIOLOGY 2023; 23:170. [PMID: 37003963 PMCID: PMC10064564 DOI: 10.1186/s12870-023-04193-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND RNA-sequencing (RNA-seq) has been widely used to study the dynamic expression patterns of transcribed genes, which can lead to new biological insights. However, processing and analyzing these huge amounts of histological data remains a great challenge for wet labs and field researchers who lack bioinformatics experience and computational resources. RESULTS We present BarleyExpDB, an easy-to-operate, free, and web-accessible database that integrates transcriptional profiles of barley at different growth and developmental stages, tissues, and stress conditions, as well as differential expression of mutants and populations to build a platform for barley expression and visualization. The expression of a gene of interest can be easily queried by searching by known gene ID or sequence similarity. Expression data can be displayed as a heat map, along with functional descriptions as well as Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, Proteins Families Database, and Simple Modular Architecture Research Tool annotations. CONCLUSIONS BarleyExpDB will serve as a valuable resource for the barley research community to leverage the vast publicly available RNA-seq datasets for functional genomics research and crop molecular breeding.
Collapse
Affiliation(s)
- Tingting Li
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, 330045 Jiangxi China
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Yihan Li
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, 330045 Jiangxi China
| | - Hongbin Shangguan
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, 330045 Jiangxi China
| | - Jianxin Bian
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261325 Shandong China
| | - Ruihan Luo
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, 330045 Jiangxi China
| | - Yuan Tian
- Xintai Urban and Rural Development Group Co., Ltd, Taian, 271200 Shandong China
| | - Zhimin Li
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, 330045 Jiangxi China
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Licao Cui
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, 330045 Jiangxi China
| |
Collapse
|
15
|
Huang C, Butterly CR, Moody D, Pourkheirandish M. Mini review: Targeting below-ground plant performance to improve nitrogen use efficiency (NUE) in barley. Front Genet 2023; 13:1060304. [PMID: 36935938 PMCID: PMC10017981 DOI: 10.3389/fgene.2022.1060304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/19/2022] [Indexed: 03/06/2023] Open
Abstract
Nitrogen (N) fertilizer is one of the major inputs for grain crops including barley and its usage is increasing globally. However, N use efficiency (NUE) is low in cereal crops, leading to higher production costs, unfulfilled grain yield potential and environmental hazards. N uptake is initiated from plant root tips but a very limited number of studies have been conducted on roots relevant to NUE specifically. In this review, we used barley, the fourth most important cereal crop, as the primary study plant to investigate this topic. We first highlighted the recent progress and study gaps in genetic analysis results, primarily, the genome-wide association study (GWAS) regarding both biological and statistical considerations. In addition, different factors contributing to NUE are discussed in terms of root morphological and anatomical traits, as well as physiological mechanisms such as N transporter activities and hormonal regulation.
Collapse
Affiliation(s)
- Claire Huang
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Clayton R. Butterly
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - David Moody
- InterGrain Pty Ltd., Bibra Lake, WA, Australia
| | - Mohammad Pourkheirandish
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
16
|
Srikakulam N, Sridevi G, Pandi G. High-quality reference transcriptome construction improves RNA-seq quantification in Oryza sativa indica. Front Genet 2022; 13:995072. [PMID: 36246658 PMCID: PMC9558114 DOI: 10.3389/fgene.2022.995072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
The Reference Transcriptomic Dataset (RTD) is an accurate and comprehensive collection of transcripts originating from a given organism. It holds the key to precise transcript quantification and downstream analysis of differential expressions and regulations. Currently, transcriptome annotations for most crop plants are far from complete. For example, Oryza sativa indica (O. sativa indica) is reported to have 40,759 transcripts in the Ensembl database without alternative transcript isoforms and alternative splicing (AS) events. To generate a high-quality RTD, we conducted RNA sequencing of rice leaf samples collected at various time points during Rhizoctonia solani infection. The obtained reads were analyzed by adopting the recently developed computational analysis pipeline to assemble the RTD with increased transcript and AS diversity for O. sativa indica (IndicaRTD). After stringent quality filtering, the newly constructed transcriptome annotation was comprised of 122,968 non-redundant transcripts from 53,695 genes. This study identified many novel transcripts compared to Ensembl deposited data that are important for regulating molecular and physiological processes in the plant system. Currently, the assembled IndicaRTD must allow fast quantification of transcript and gene expression with high precision.
Collapse
Affiliation(s)
- Nagesh Srikakulam
- Laboratory of RNA Biology and Epigenomics, Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
- *Correspondence: Nagesh Srikakulam, ; Gopal Pandi,
| | - Ganapathi Sridevi
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | - Gopal Pandi
- Laboratory of RNA Biology and Epigenomics, Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
- *Correspondence: Nagesh Srikakulam, ; Gopal Pandi,
| |
Collapse
|