1
|
Zhu Y, Wang X, Liu R. Bioinformatics proved the existence of potential hub genes activating autophagy to participate in cartilage degeneration in osteonecrosis of the femoral head. J Mol Histol 2024; 55:539-554. [PMID: 38758521 DOI: 10.1007/s10735-024-10200-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/01/2024] [Indexed: 05/18/2024]
Abstract
The obvious degeneration of articular cartilage occurs in the late stage of osteonecrosis of the femoral head (ONFH), which aggravates the condition of ONFH. This study aimed to demonstrate aberrant activation of autophagy processes in ONFH chondrocytes through bioinformatics and to predict and identify relevant hub genes and pathways. Differentially expressed genes (DEGs) were identified using R software in the GSE74089 dataset from the GEO database. DEGs were crossed with the Human Autophagy Database (HADb) autophagy genes to screen out autophagy-related differential genes (AT-DEGs). GSEA, GSVA, GO, and KEGG pathway enrichment analyses of AT-DEGs were performed. The STRING database was used to analyze the protein-protein interaction (PPI) of the AT-DEGs network, and the MCODE and CytoHubba plugin in the Cytoscape software was used to analyze the key gene cluster module and screen the hub genes. The PPI network of hub genes was constructed using the GeneMANIA database, and functional enrichment and gene connectivity categories were analyzed. The expression levels of hub genes of related genes in the ONFH patients were verified in the dataset GSE123568, and the protein expression was verified by immunohistochemistry in tissues. The analysis of DEGs revealed abnormal autophagy in ONFH cartilage. AT-DEGs in ONFH have special enrichment in macroautophagy, autophagosome membrane, and phosphatidylinositol-3-phosphate binding. In the GSE123568 dataset, it was also found that ATG2B, ATG4B, and UVRAG were all significantly upregulated in ONFH patients. By immunohistochemistry, it was verified that ATG2B, ATG4B, and UVRAG were significantly overexpressed. These three genes regulate the occurrence and extension of autophagosomes through the PI3KC3C pathway. Finally, we determined that chondrocytes in ONFH undergo positive regulation of autophagy through the corresponding pathways involved in three genes: ATG2B, ATG4B, and UVRAG.
Collapse
Affiliation(s)
- Yingkang Zhu
- Department of Orthopedics, The Second Affiliated Hospital of Xi' an Jiaotong University, Xi'an, 710004, China
| | - Xianxuan Wang
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Ruiyu Liu
- Department of Orthopedics, The Second Affiliated Hospital of Xi' an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
2
|
He T, Ji C, Zhang W, Li X, Liu Y, Wang X, Zhang H, Wang J. The COPII coat protein SEC24D is required for autophagosome closure in mammals. FEBS Lett 2024. [PMID: 39056365 DOI: 10.1002/1873-3468.14983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 07/28/2024]
Abstract
Macroautophagy involves the encapsulation of cellular components within double-membrane autophagosomes for subsequent degradation in vacuoles or lysosomes. Coat protein complex II (COPII) vesicles serve as a membrane source for autophagosome formation. However, the specific role of SEC24D, an isoform of the COPII coat protein SEC24, in the macroautophagy pathway remains unclear. In this study, we demonstrate that SEC24D is indispensable for macroautophagy and important for autophagosome closure. Depletion of SEC24D leads to the accumulation of unsealed isolation membranes. Furthermore, under conditions of starvation, SEC24D interacts with casein kinase1 delta (CK1δ), a member of the casein kinase 1 family, and autophagy-related 9A (ATG9A). Collectively, our findings unveil the indispensable role of SEC24D in starvation-induced autophagy in mammalian cells.
Collapse
Affiliation(s)
- Tianlong He
- College of Chemistry and Life Science, Beijing University of Technology, China
| | - Cuicui Ji
- College of Chemistry and Life Science, Beijing University of Technology, China
| | - Wenting Zhang
- College of Chemistry and Life Science, Beijing University of Technology, China
| | - Xianghua Li
- College of Chemistry and Life Science, Beijing University of Technology, China
| | - Yukun Liu
- College of Chemistry and Life Science, Beijing University of Technology, China
| | - Xiaoli Wang
- College of Chemistry and Life Science, Beijing University of Technology, China
| | - Haolin Zhang
- College of Chemistry and Life Science, Beijing University of Technology, China
| | - Juan Wang
- College of Chemistry and Life Science, Beijing University of Technology, China
| |
Collapse
|
3
|
Corona-Rivera JR, Martínez-Duncker I, Morava E, Ranatunga W, Salinas-Marin R, González-Jaimes AM, Castillo-Reyes KA, Peña-Padilla C, Bobadilla-Morales L, Corona-Rivera A, Orozco-Vela M, Brukman-Jiménez SA. TRAPPC11-CDG muscular dystrophy: Review of 54 cases including a novel patient. Mol Genet Metab 2024; 142:108469. [PMID: 38564972 DOI: 10.1016/j.ymgme.2024.108469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
The trafficking protein particle (TRAPP) complex is a multisubunit protein complex that functions as a tethering factor involved in intracellular trafficking. TRAPPC11, a crucial subunit of this complex, is associated with pathogenic variants that cause a spectrum of disease, which can range from a limb girdle muscular dystrophy (LGMD) to developmental disability with muscle disease, movement disorder and global developmental delay (GDD)/intellectual disability (ID), or even a congenital muscular dystrophy (CMD). We reviewed the phenotype of all reported individuals with TRAPPC11-opathies, including an additional Mexican patient with novel compound heterozygous missense variants in TRAPPC11 (c.751 T > C and c.1058C > G), restricted to the Latino population. In these 54 patients muscular dystrophy signs are common (early onset muscle weakness, increased serum creatine kinase levels, and dystrophic changes in muscle biopsy). They present two main phenotypes, one with a slowly progressive LGMD with or without GDD/ID (n = 12), and another with systemic involvement characterized by short stature, GDD/ID, microcephaly, hypotonia, poor speech, seizures, cerebral atrophy, cerebellar abnormalities, movement disorder, scoliosis, liver disease, and cataracts (n = 42). In 6 of them CMD was identified. Obstructive hydrocephaly, retrocerebellar cyst, and talipes equinovarus found in the individual reported here has not been described in TRAPPC11 deficiency. As in previous patients, membrane trafficking assays in our patient showed defective abnormal endoplasmic reticulum-Golgi transport as well as decreased expression of LAMP2, and ICAM-1 glycoproteins. This supports previous statements that TRAPPC11-opathies are in fact a congenital disorder of glycosylation (CDG) with muscular dystrophy.
Collapse
Affiliation(s)
- Jorge Román Corona-Rivera
- Center for Registry and Research on Congenital Anomalies (CRIAC), Division of Pediatrics, Service of Genetics and Cytogenetic Unit, "Dr. Juan I. Menchaca" Civil Hospital of Guadalajara, Guadalajara, Jalisco, Mexico; "Dr. Enrique Corona-Rivera" Institute of Human Genetics, Department of Molecular Biology and Genomics, Health Sciences University Centre, University of Guadalajara, Guadalajara, Jalisco, Mexico.
| | - Iván Martínez-Duncker
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico.
| | - Eva Morava
- Department of Clinical Genomics and Laboratory of Medical Pathology, Mayo Clinic, Rochester, MN, USA
| | - Wasantha Ranatunga
- Department of Clinical Genomics and Laboratory of Medical Pathology, Mayo Clinic, Rochester, MN, USA
| | - Roberta Salinas-Marin
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Ana María González-Jaimes
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Katia Alejandra Castillo-Reyes
- Center for Registry and Research on Congenital Anomalies (CRIAC), Division of Pediatrics, Service of Genetics and Cytogenetic Unit, "Dr. Juan I. Menchaca" Civil Hospital of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Christian Peña-Padilla
- Center for Registry and Research on Congenital Anomalies (CRIAC), Division of Pediatrics, Service of Genetics and Cytogenetic Unit, "Dr. Juan I. Menchaca" Civil Hospital of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Lucina Bobadilla-Morales
- Center for Registry and Research on Congenital Anomalies (CRIAC), Division of Pediatrics, Service of Genetics and Cytogenetic Unit, "Dr. Juan I. Menchaca" Civil Hospital of Guadalajara, Guadalajara, Jalisco, Mexico; "Dr. Enrique Corona-Rivera" Institute of Human Genetics, Department of Molecular Biology and Genomics, Health Sciences University Centre, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Alfredo Corona-Rivera
- Center for Registry and Research on Congenital Anomalies (CRIAC), Division of Pediatrics, Service of Genetics and Cytogenetic Unit, "Dr. Juan I. Menchaca" Civil Hospital of Guadalajara, Guadalajara, Jalisco, Mexico; "Dr. Enrique Corona-Rivera" Institute of Human Genetics, Department of Molecular Biology and Genomics, Health Sciences University Centre, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Mireya Orozco-Vela
- Center for Registry and Research on Congenital Anomalies (CRIAC), Division of Pediatrics, Service of Genetics and Cytogenetic Unit, "Dr. Juan I. Menchaca" Civil Hospital of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Sinhue Alejandro Brukman-Jiménez
- Center for Registry and Research on Congenital Anomalies (CRIAC), Division of Pediatrics, Service of Genetics and Cytogenetic Unit, "Dr. Juan I. Menchaca" Civil Hospital of Guadalajara, Guadalajara, Jalisco, Mexico
| |
Collapse
|
4
|
Almousa H, Lewis SA, Bakhtiari S, Nordlie SH, Pagnozzi A, Magee H, Efthymiou S, Heim JA, Cornejo P, Zaki MS, Anwar N, Maqbool S, Rahman F, Neilson DE, Vemuri A, Jin SC, Yang XR, Heidari A, van Gassen K, Trimouille A, Thauvin-Robinet C, Liu J, Bruel AL, Tomoum H, Shata MO, Hashem MO, Toosi MB, Karimiani EG, Yeşil G, Lingappa L, Baruah D, Ebrahimzadeh F, Van-Gils J, Faivre L, Zamani M, Galehdari H, Sadeghian S, Shariati G, Mohammad R, van der Smagt J, Qari A, Vincent JB, Innes AM, Dursun A, Özgül RK, Akar HT, Bilguvar K, Mignot C, Keren B, Raveli C, Burglen L, Afenjar A, Kaat LD, van Slegtenhorst M, Alkuraya F, Houlden H, Padilla-Lopez S, Maroofian R, Sacher M, Kruer MC. TRAPPC6B biallelic variants cause a neurodevelopmental disorder with TRAPP II and trafficking disruptions. Brain 2024; 147:311-324. [PMID: 37713627 PMCID: PMC10766242 DOI: 10.1093/brain/awad301] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/11/2023] [Accepted: 08/10/2023] [Indexed: 09/17/2023] Open
Abstract
Highly conserved transport protein particle (TRAPP) complexes regulate subcellular trafficking pathways. Accurate protein trafficking has been increasingly recognized to be critically important for normal development, particularly in the nervous system. Variants in most TRAPP complex subunits have been found to lead to neurodevelopmental disorders with diverse but overlapping phenotypes. We expand on limited prior reports on TRAPPC6B with detailed clinical and neuroradiologic assessments, and studies on mechanisms of disease, and new types of variants. We describe 29 additional patients from 18 independent families with biallelic variants in TRAPPC6B. We identified seven homozygous nonsense (n = 12 patients) and eight canonical splice-site variants (n = 17 patients). In addition, we identified one patient with compound heterozygous splice-site/missense variants with a milder phenotype and one patient with homozygous missense variants. Patients displayed non-progressive microcephaly, global developmental delay/intellectual disability, epilepsy and absent expressive language. Movement disorders including stereotypies, spasticity and dystonia were also observed. Brain imaging revealed reductions in cortex, cerebellum and corpus callosum size with frequent white matter hyperintensity. Volumetric measurements indicated globally diminished volume rather than specific regional losses. We identified a reduced rate of trafficking into the Golgi apparatus and Golgi fragmentation in patient-derived fibroblasts that was rescued by wild-type TRAPPC6B. Molecular studies revealed a weakened interaction between mutant TRAPPC6B (c.454C>T, p.Q152*) and its TRAPP binding partner TRAPPC3. Patient-derived fibroblasts from the TRAPPC6B (c.454C>T, p.Q152*) variant displayed reduced levels of TRAPPC6B as well as other TRAPP II complex-specific members (TRAPPC9 and TRAPPC10). Interestingly, the levels of the TRAPPC6B homologue TRAPPC6A were found to be elevated. Moreover, co-immunoprecipitation experiments showed that TRAPPC6A co-precipitates equally with TRAPP II and TRAPP III, while TRAPPC6B co-precipitates significantly more with TRAPP II, suggesting enrichment of the protein in the TRAPP II complex. This implies that variants in TRAPPC6B may preferentially affect TRAPP II functions compared to TRAPP III functions. Finally, we assessed phenotypes in a Drosophila TRAPPC6B-deficiency model. Neuronal TRAPPC6B knockdown impaired locomotion and led to wing posture defects, supporting a role for TRAPPC6B in neuromotor function. Our findings confirm the association of damaging biallelic TRAPPC6B variants with microcephaly, intellectual disability, language impairments, and epilepsy. A subset of patients also exhibited dystonia and/or spasticity with impaired ambulation. These features overlap with disorders arising from pathogenic variants in other TRAPP subunits, particularly components of the TRAPP II complex. These findings suggest that TRAPPC6B is essential for brain development and function, and TRAPP II complex activity may be particularly relevant for mediating this function.
Collapse
Affiliation(s)
- Hashem Almousa
- Department of Biology, Concordia University, Montreal, Quebec H4B1R6, Canada
| | - Sara A Lewis
- Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
- Departments of Child Health, Cellular and Molecular Medicine, Genetics, and Neurology, University of Arizona College of Medicine—Phoenix, Phoenix, AZ 85004, USA
| | - Somayeh Bakhtiari
- Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
- Departments of Child Health, Cellular and Molecular Medicine, Genetics, and Neurology, University of Arizona College of Medicine—Phoenix, Phoenix, AZ 85004, USA
| | - Sandra Hinz Nordlie
- Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
- Departments of Child Health, Cellular and Molecular Medicine, Genetics, and Neurology, University of Arizona College of Medicine—Phoenix, Phoenix, AZ 85004, USA
| | - Alex Pagnozzi
- CSIRO Health and Biosecurity, The Australian e-Health Research Centre, Brisbane 4029, Australia
| | - Helen Magee
- Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
- Departments of Child Health, Cellular and Molecular Medicine, Genetics, and Neurology, University of Arizona College of Medicine—Phoenix, Phoenix, AZ 85004, USA
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Jennifer A Heim
- Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
| | - Patricia Cornejo
- Pediatric Neuroradiology Division, Pediatric Radiology, Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
- Department of Child Health, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
- Department of Radiology, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo 12622, Egypt
- Genetics Department, Armed Forces College of Medicine (AFCM), Cairo 4460015, Egypt
| | - Najwa Anwar
- Department of Developmental-Behavioural Paediatrics, The Children's Hospital and Institute of Child Health, Lahore 54000, Pakistan
| | - Shazia Maqbool
- Department of Developmental-Behavioural Paediatrics, The Children's Hospital and Institute of Child Health, Lahore 54000, Pakistan
| | - Fatima Rahman
- Department of Developmental-Behavioural Paediatrics, The Children's Hospital and Institute of Child Health, Lahore 54000, Pakistan
| | - Derek E Neilson
- Genetics and Metabolism, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
| | - Anusha Vemuri
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Sheng Chih Jin
- Department of Genetics, Washington University, St.Louis, MO 63110, USA
| | - Xiao-Ru Yang
- Department of Medical Genetics and Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, S.W. Calgary, AB T2N 4N1, Canada
| | - Abolfazl Heidari
- Reference Laboratory, Qazvin Medical University, Qazvin 34148-33245, Iran
| | - Koen van Gassen
- Division of Laboratories, Pharmacy and Biomedical Genetics, Section of Clinical Genetics, University Medical Center Utrecht (UMCU), 3584 CX Utrecht, Netherlands
| | - Aurélien Trimouille
- Laboratoire de Génétique Moléculaire, Service de Génétique Médicale, CHU Bordeaux—Hôpital Pellegrin, Place Amélie Raba Léon, 33000 Bordeaux, France
| | - Christel Thauvin-Robinet
- Department of Genetics and Reference Center for Development Disorders and Intellectual Disabilities, FHU TRANSLAD, CHU Dijon Bourgogne, 21000 Dijon, France
- Unité Fontctionnelle d’Innovation diagnostiques des maladies rares, FHU TRANSLAD, CHU Dijon Bourgogne, 21000 Dijon, France
- GAD ‘Génétique des Anomalies du Développement’, INSERM-Université de Bourgogne UMR1231, 21078 Dijon, France
| | - James Liu
- Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
- Departments of Child Health, Cellular and Molecular Medicine, Genetics, and Neurology, University of Arizona College of Medicine—Phoenix, Phoenix, AZ 85004, USA
| | - Ange-Line Bruel
- Unité Fontctionnelle d’Innovation diagnostiques des maladies rares, FHU TRANSLAD, CHU Dijon Bourgogne, 21000 Dijon, France
- GAD ‘Génétique des Anomalies du Développement’, INSERM-Université de Bourgogne UMR1231, 21078 Dijon, France
| | - Hoda Tomoum
- Department of Pediatrics, Ain Shams University, Cairo 11516, Egypt
| | | | - Mais O Hashem
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Mehran Beiraghi Toosi
- Pediatric Neurology Department, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad 13944-91388, Iran
- Neuroscience Research Center, Mashhad University of Medical Science, Mashhad 13944-91388, Iran
| | - Ehsan Ghayoor Karimiani
- Molecular and Clinical Sciences Institute, St.George’s, University of London, London SW17 0RE, UK
| | - Gözde Yeşil
- Istanbul Medical Faculty Department of Medical Genetics, Istanbul University, Istanbul 34452, Turkey
| | - Lokesh Lingappa
- Pediatric Neurology, Rainbow Children Hospital, Hyderabad 500034, India
| | - Debangana Baruah
- Pediatric Neurology, Rainbow Children Hospital, Hyderabad 500034, India
| | - Farnoosh Ebrahimzadeh
- Department of Internal Medicine, Mashhad University of Medical Sciences, Mashhad 13944-91388, Iran
| | - Julien Van-Gils
- Division of Laboratories, Pharmacy and Biomedical Genetics, Section of Clinical Genetics, University Medical Center Utrecht (UMCU), 3584 CX Utrecht, Netherlands
| | - Laurence Faivre
- Department of Genetics and Reference Center for Development Disorders and Intellectual Disabilities, FHU TRANSLAD, CHU Dijon Bourgogne, 21000 Dijon, France
| | - Mina Zamani
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Ahvaz 6155889467, Iran
| | - Hamid Galehdari
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran
| | - Saeid Sadeghian
- Department of Pediatric Neurology, Golestan Medical, Educational, and Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135733118, Iran
| | - Gholamreza Shariati
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Ahvaz 6155889467, Iran
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135733118, Iran
| | - Rahema Mohammad
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Jasper van der Smagt
- Division of Laboratories, Pharmacy and Biomedical Genetics, Section of Clinical Genetics, University Medical Center Utrecht (UMCU), 3584 CX Utrecht, Netherlands
| | - Alya Qari
- Medical Genomics Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - John B Vincent
- Molecular Neuropsychiatry & Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada
| | - A Micheil Innes
- Department of Medical Genetics and Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, S.W. Calgary, AB T2N 4N1, Canada
| | - Ali Dursun
- Department of Pediatric Metabolism, Hacettepe University, Faculty of Medicine & Institute of Child Health, Ankara 06800, Turkey
| | - R Köksal Özgül
- Department of Pediatric Metabolism, Hacettepe University, Faculty of Medicine & Institute of Child Health, Ankara 06800, Turkey
| | - Halil Tuna Akar
- Department of Pediatric Metabolism, Hacettepe University, Faculty of Medicine & Institute of Child Health, Ankara 06800, Turkey
| | - Kaya Bilguvar
- Department of Medical Genetics, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Turkey
- Department of Neurosurgery and Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Cyril Mignot
- Département de Génétique, APHP Sorbonne Université, Hôpital Trousseau & Groupe Hospitalier Pitié-Salpêtrière, 75013 Paris, France
- Centre de Référence Déficiences Intellectuelles de Causes Rares, 75012 Paris, France
| | - Boris Keren
- Département de Génétique, APHP Sorbonne Université, Hôpital Trousseau & Groupe Hospitalier Pitié-Salpêtrière, 75013 Paris, France
| | - Claudia Raveli
- APHP Sorbonne Université, Service de Neuropédiatrie, Hôpital Trousseau, 75012 Paris, France
| | - Lydie Burglen
- Département de Génétique, Centre de référence des malformations et maladies congénitales du cervelet, APHP. Sorbonne Université, Hôpital Trousseau, 75012 Paris, France
| | - Alexandra Afenjar
- Département de Génétique, Centre de référence des malformations et maladies congénitales du cervelet, APHP. Sorbonne Université, Hôpital Trousseau, 75012 Paris, France
| | - Laura Donker Kaat
- Department of Clinical Genetics, Erasmus Medical Center, 3000 Rotterdam, The Netherlands
| | | | - Fowzan Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Sergio Padilla-Lopez
- Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
- Departments of Child Health, Cellular and Molecular Medicine, Genetics, and Neurology, University of Arizona College of Medicine—Phoenix, Phoenix, AZ 85004, USA
| | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Michael Sacher
- Department of Biology, Concordia University, Montreal, Quebec H4B1R6, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A0C7, Canada
| | - Michael C Kruer
- Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
- Departments of Child Health, Cellular and Molecular Medicine, Genetics, and Neurology, University of Arizona College of Medicine—Phoenix, Phoenix, AZ 85004, USA
| |
Collapse
|
5
|
Papaioannou P, Wallace MJ, Malhotra N, Mohler PJ, El Refaey M. Biochemical Structure and Function of TRAPP Complexes in the Cardiac System. JACC Basic Transl Sci 2023; 8:1599-1612. [PMID: 38205348 PMCID: PMC10774597 DOI: 10.1016/j.jacbts.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/14/2023] [Indexed: 01/12/2024]
Abstract
Trafficking protein particle (TRAPP) is well reported to play a role in the trafficking of protein products within the Golgi and endoplasmic reticulum. Dysfunction in TRAPP has been associated with disorders in the nervous and cardiovascular systems, but the majority of literature focuses on TRAPP function in the nervous system solely. Here, we highlight the known pathways of TRAPP and hypothesize potential impacts of TRAPP dysfunction on the cardiovascular system, particularly the role of TRAPP as a guanine-nucleotide exchange factor for Rab1 and Rab11. We also review the various cardiovascular phenotypes associated with changes in TRAPP complexes and their subunits.
Collapse
Affiliation(s)
- Peter Papaioannou
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Division of Cardiac Surgery, Department of Surgery, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Michael J. Wallace
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Nipun Malhotra
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Division of Cardiac Surgery, Department of Surgery, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Peter J. Mohler
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Mona El Refaey
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Division of Cardiac Surgery, Department of Surgery, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
6
|
Justel M, Jou C, Sariego-Jamardo A, Juliá-Palacios NA, Ortez C, Poch ML, Hedrera-Fernandez A, Gomez-Martin H, Codina A, Dominguez-Carral J, Muxart J, Hernández-Laín A, Vila-Bedmar S, Zulaica M, Cancho-Candela R, Castro MDC, de la Osa-Langreo A, Peña-Valenceja A, Marcos-Vadillo E, Prieto-Matos P, Pascual-Pascual SI, López de Munain A, Camacho A, Estevez-Arias B, Musokhranova U, Olivella M, Oyarzábal A, Jimenez-Mallebrera C, Domínguez-González C, Nascimento A, García-Cazorla À, Natera-de Benito D. Expanding the phenotypic spectrum of TRAPPC11-related muscular dystrophy: 25 Roma individuals carrying a founder variant. J Med Genet 2023; 60:965-973. [PMID: 37197784 PMCID: PMC10579479 DOI: 10.1136/jmg-2022-109132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/28/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Limb-girdle muscular dystrophies (LGMD) are a heterogeneous group of genetically determined muscle disorders. TRAPPC11-related LGMD is an autosomal-recessive condition characterised by muscle weakness and intellectual disability. METHODS A clinical and histopathological characterisation of 25 Roma individuals with LGMD R18 caused by the homozygous TRAPPC11 c.1287+5G>A variant is reported. Functional effects of the variant on mitochondrial function were investigated. RESULTS The c.1287+5G>A variant leads to a phenotype characterised by early onset muscle weakness, movement disorder, intellectual disability and elevated serum creatine kinase, which is similar to other series. As novel clinical findings, we found that microcephaly is almost universal and that infections in the first years of life seem to act as triggers for a psychomotor regression and onset of seizures in several individuals with TRAPPC11 variants, who showed pseudometabolic crises triggered by infections. Our functional studies expanded the role of TRAPPC11 deficiency in mitochondrial function, as a decreased mitochondrial ATP production capacity and alterations in the mitochondrial network architecture were detected. CONCLUSION We provide a comprehensive phenotypic characterisation of the pathogenic variant TRAPPC11 c.1287+5G>A, which is founder in the Roma population. Our observations indicate that some typical features of golgipathies, such as microcephaly and clinical decompensation associated with infections, are prevalent in individuals with LGMD R18.
Collapse
Affiliation(s)
- Maria Justel
- Neuromuscular Unit, Department of Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
- Department of Paediatrics, Complejo asistencial de Salamanca, Salamanca, Spain
| | - Cristina Jou
- Applied Research in Neuromuscular Diseases, Sant Joan de Deu Research Institute, Barcelona, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Department of Pathology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Andrea Sariego-Jamardo
- Paediatric Neurology Unit, Hospital Universitario Marques de Valdecilla, Santander, Spain
| | - Natalia Alexandra Juliá-Palacios
- Neurometabolic Unit and Synaptic Metabolism Lab, Departments of Neurology, IPR (Institut Pediàtric de Recerca), CIBERER and MetabERN, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Carlos Ortez
- Neuromuscular Unit, Department of Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
- Applied Research in Neuromuscular Diseases, Sant Joan de Deu Research Institute, Barcelona, Spain
| | | | | | - Hilario Gomez-Martin
- Department of Paediatrics, Complejo Asistencial Universitario de Salamanca, Salamanca, Spain
| | - Anna Codina
- Applied Research in Neuromuscular Diseases, Sant Joan de Deu Research Institute, Barcelona, Spain
| | - Jana Dominguez-Carral
- Unit of Epilepsy, Sleep and Neurophysiology, Department of Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Jordi Muxart
- Department of Radiology, Hospital Sant Joan de Déu, Barcelona, Spain
| | | | - Sara Vila-Bedmar
- Neuromuscular Unit, Department of Neurology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Miren Zulaica
- Biodonostia, Neurosciences Area, Neuromuscular Diseases Laboratory, Hospital Universitario de Donostia, San Sebastian, Spain
| | - Ramon Cancho-Candela
- Paediatric Neurology Unit, Hospital Universitario Rio Hortega de Valladolid, Valladolid, Spain
| | | | | | | | - Elena Marcos-Vadillo
- Department of Clinical Biochemistry, Complejo Asistencial Universitario de Salamanca, Salamanca, Spain
| | - Pablo Prieto-Matos
- Department of Paediatrics, Complejo asistencial de Salamanca, Salamanca, Spain
| | | | - Adolfo López de Munain
- Biodonostia, Neurosciences Area, Neuromuscular Diseases Laboratory, Hospital Universitario de Donostia, San Sebastian, Spain
| | - Ana Camacho
- Paediatric Neurology Unit, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Berta Estevez-Arias
- Neuromuscular Unit, Department of Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
- Laboratory of Neurogenetics and Molecular Medicine-IPER, Sant Joan de Deu Research Institute, Barcelona, Spain
| | - Uliana Musokhranova
- Neurometabolic Unit and Synaptic Metabolism Lab, Departments of Neurology, IPR (Institut Pediàtric de Recerca), CIBERER and MetabERN, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Mireia Olivella
- Biosciences Department, Faculty of Sciences, Technology and Engineering, Universitat de Vic-Universitat Central de Catalunya, Vic, Spain
| | - Alfonso Oyarzábal
- Neurometabolic Unit and Synaptic Metabolism Lab, Departments of Neurology, IPR (Institut Pediàtric de Recerca), CIBERER and MetabERN, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Cecilia Jimenez-Mallebrera
- Applied Research in Neuromuscular Diseases, Sant Joan de Deu Research Institute, Barcelona, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Cristina Domínguez-González
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Neuromuscular Unit, Department of Neurology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Andrés Nascimento
- Neuromuscular Unit, Department of Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
- Applied Research in Neuromuscular Diseases, Sant Joan de Deu Research Institute, Barcelona, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Àngels García-Cazorla
- Neurometabolic Unit and Synaptic Metabolism Lab, Departments of Neurology, IPR (Institut Pediàtric de Recerca), CIBERER and MetabERN, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Daniel Natera-de Benito
- Neuromuscular Unit, Department of Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
- Applied Research in Neuromuscular Diseases, Sant Joan de Deu Research Institute, Barcelona, Spain
| |
Collapse
|
7
|
Suárez-Carrillo A, Álvarez-Córdoba M, Romero-González A, Talaverón-Rey M, Povea-Cabello S, Cilleros-Holgado P, Piñero-Pérez R, Reche-López D, Gómez-Fernández D, Romero-Domínguez JM, Munuera-Cabeza M, Díaz A, González-Granero S, García-Verdugo JM, Sánchez-Alcázar JA. Antioxidants Prevent Iron Accumulation and Lipid Peroxidation, but Do Not Correct Autophagy Dysfunction or Mitochondrial Bioenergetics in Cellular Models of BPAN. Int J Mol Sci 2023; 24:14576. [PMID: 37834028 PMCID: PMC11340724 DOI: 10.3390/ijms241914576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 10/15/2023] Open
Abstract
Neurodegeneration with brain iron accumulation (NBIA) is a group of rare neurogenetic disorders frequently associated with iron accumulation in the basal nuclei of the brain. Among NBIA subtypes, β-propeller protein-associated neurodegeneration (BPAN) is associated with mutations in the autophagy gene WDR45. The aim of this study was to demonstrate the autophagic defects and secondary pathological consequences in cellular models derived from two patients harboring WDR45 mutations. Both protein and mRNA expression levels of WDR45 were decreased in patient-derived fibroblasts. In addition, the increase of LC3B upon treatments with autophagy inducers or inhibitors was lower in mutant cells compared to control cells, suggesting decreased autophagosome formation and impaired autophagic flux. A transmission electron microscopy (TEM) analysis showed mitochondrial vacuolization associated with the accumulation of lipofuscin-like aggregates containing undegraded material. Autophagy dysregulation was also associated with iron accumulation and lipid peroxidation. In addition, mutant fibroblasts showed altered mitochondrial bioenergetics. Antioxidants such as pantothenate, vitamin E and α-lipoic prevented lipid peroxidation and iron accumulation. However, antioxidants were not able to correct the expression levels of WDR45, neither the autophagy defect nor cell bioenergetics. Our study demonstrated that WDR45 mutations in BPAN cellular models impaired autophagy, iron metabolism and cell bioenergetics. Antioxidants partially improved cell physiopathology; however, autophagy and cell bioenergetics remained affected.
Collapse
Affiliation(s)
- Alejandra Suárez-Carrillo
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| | - Ana Romero-González
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| | - Marta Talaverón-Rey
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| | - Suleva Povea-Cabello
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| | - Paula Cilleros-Holgado
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| | - Rocío Piñero-Pérez
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| | - Diana Reche-López
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| | - David Gómez-Fernández
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| | - José Manuel Romero-Domínguez
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| | - Manuel Munuera-Cabeza
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| | - Antonio Díaz
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, NY 10461, USA;
- Institute for Aging Studies, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Susana González-Granero
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia and CIBERNED-ISCIII, 46100 Valencia, Spain; (S.G.-G.); (J.M.G.-V.)
| | - José Manuel García-Verdugo
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia and CIBERNED-ISCIII, 46100 Valencia, Spain; (S.G.-G.); (J.M.G.-V.)
| | - José A. Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| |
Collapse
|
8
|
Hentrich L, Parnes M, Lotze TE, Coorg R, de Koning TJ, Nguyen KM, Yip CK, Jungbluth H, Koy A, Dafsari HS. Novel Genetic and Phenotypic Expansion in GOSR2-Related Progressive Myoclonus Epilepsy. Genes (Basel) 2023; 14:1860. [PMID: 37895210 PMCID: PMC10606070 DOI: 10.3390/genes14101860] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
Biallelic variants in the Golgi SNAP receptor complex member 2 gene (GOSR2) have been reported in progressive myoclonus epilepsy with neurodegeneration. Typical clinical features include ataxia and areflexia during early childhood, followed by seizures, scoliosis, dysarthria, and myoclonus. Here, we report two novel patients from unrelated families with a GOSR2-related disorder and novel genetic and clinical findings. The first patient, a male compound heterozygous for the GOSR2 splice site variant c.336+1G>A and the novel c.364G>A,p.Glu122Lys missense variant showed global developmental delay and seizures at the age of 2 years, followed by myoclonus at the age of 8 years with partial response to clonazepam. The second patient, a female homozygous for the GOSR2 founder variant p.Gly144Trp, showed only mild fine motor developmental delay and generalized tonic-clonic seizures triggered by infections during adolescence, with seizure remission on levetiracetam. The associated movement disorder progressed atypically slowly during adolescence compared to its usual speed, from initial intention tremor and myoclonus to ataxia, hyporeflexia, dysmetria, and dystonia. These findings expand the genotype-phenotype spectrum of GOSR2-related disorders and suggest that GOSR2 should be included in the consideration of monogenetic causes of dystonia, global developmental delay, and seizures.
Collapse
Affiliation(s)
- Lea Hentrich
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (L.H.)
- Max-Planck-Institute for Biology of Ageing, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), 50931 Cologne, Germany
| | - Mered Parnes
- Division of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; (M.P.); (T.E.L.)
| | - Timothy Edward Lotze
- Division of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; (M.P.); (T.E.L.)
| | - Rohini Coorg
- Division of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; (M.P.); (T.E.L.)
| | - Tom J. de Koning
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
- Pediatrics, Department of Clinical Sciences, Lund University, 221 00 Lund, Sweden
| | - Kha M. Nguyen
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (K.M.N.); (C.K.Y.)
| | - Calvin K. Yip
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (K.M.N.); (C.K.Y.)
| | - Heinz Jungbluth
- Department of Paediatric Neurology, Evelina’s Children Hospital, Guy’s & St. Thomas’ Hospital NHS Foundation Trust, London SE1 7EH, UK
- Randall Division of Cell and Molecular Biophysics, Muscle Signaling Section, King’s College London, London WC2R 2LS, UK
| | - Anne Koy
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (L.H.)
- Center for Rare Diseases, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Hormos Salimi Dafsari
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (L.H.)
- Max-Planck-Institute for Biology of Ageing, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), 50931 Cologne, Germany
- Department of Paediatric Neurology, Evelina’s Children Hospital, Guy’s & St. Thomas’ Hospital NHS Foundation Trust, London SE1 7EH, UK
- Randall Division of Cell and Molecular Biophysics, Muscle Signaling Section, King’s College London, London WC2R 2LS, UK
- Center for Rare Diseases, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| |
Collapse
|
9
|
Olivas TJ, Wu Y, Yu S, Luan L, Choi P, Guinn ED, Nag S, De Camilli PV, Gupta K, Melia TJ. ATG9 vesicles comprise the seed membrane of mammalian autophagosomes. J Cell Biol 2023; 222:e202208088. [PMID: 37115958 PMCID: PMC10148236 DOI: 10.1083/jcb.202208088] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 03/20/2023] [Accepted: 04/05/2023] [Indexed: 04/30/2023] Open
Abstract
As the autophagosome forms, its membrane surface area expands rapidly, while its volume is kept low. Protein-mediated transfer of lipids from another organelle to the autophagosome likely drives this expansion, but as these lipids are only introduced into the cytoplasmic-facing leaflet of the organelle, full membrane growth also requires lipid scramblase activity. ATG9 harbors scramblase activity and is essential to autophagosome formation; however, whether ATG9 is integrated into mammalian autophagosomes remains unclear. Here we show that in the absence of lipid transport, ATG9 vesicles are already competent to collect proteins found on mature autophagosomes, including LC3-II. Further, we use styrene-maleic acid lipid particles to reveal the nanoscale organization of protein on LC3-II membranes; ATG9 and LC3-II are each fully integrated into expanding autophagosomes. The ratios of these two proteins at different stages of maturation demonstrate that ATG9 proteins are not continuously integrated, but rather are present on the seed vesicles only and become diluted in the expanding autophagosome membrane.
Collapse
Affiliation(s)
- Taryn J. Olivas
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT, USA
| | - Yumei Wu
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT, USA
- Department of Neuroscience, School of Medicine, Yale University, New Haven, CT, USA
- Howard Hughes Medical Institute, School of Medicine, Yale University, New Haven, CT, USA
- Program in Cellular Neuroscience Neurodegeneration and Repair, School of Medicine, Yale University, New Haven, CT, USA
| | - Shenliang Yu
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT, USA
| | - Lin Luan
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT, USA
| | - Peter Choi
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT, USA
| | - Emily D. Guinn
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT, USA
| | - Shanta Nag
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT, USA
| | - Pietro V. De Camilli
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT, USA
- Department of Neuroscience, School of Medicine, Yale University, New Haven, CT, USA
- Howard Hughes Medical Institute, School of Medicine, Yale University, New Haven, CT, USA
- Program in Cellular Neuroscience Neurodegeneration and Repair, School of Medicine, Yale University, New Haven, CT, USA
| | - Kallol Gupta
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale University, West Haven, CT, USA
| | - Thomas J. Melia
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
10
|
Moruno-Manchon J, Noh B, McCullough L. Sex-biased autophagy as a potential mechanism mediating sex differences in ischemic stroke outcome. Neural Regen Res 2023; 18:31-37. [PMID: 35799505 PMCID: PMC9241419 DOI: 10.4103/1673-5374.340406] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Stroke is the second leading cause of death and a major cause of disability worldwide, and biological sex is an important determining factor in stroke incidence and pathology. From childhood through adulthood, men have a higher incidence of stroke compared with women. Abundant research has confirmed the beneficial effects of estrogen in experimental ischemic stroke but genetic factors such as the X-chromosome complement can also play an important role in determining sex differences in stroke. Autophagy is a self-degrading cellular process orchestrated by multiple core proteins, which leads to the engulfment of cytoplasmic material and degradation of cargo after autophagy vesicles fuse with lysosomes or endosomes. The levels and the activity of components of these signaling pathways and of autophagy-related proteins can be altered during ischemic insults. Ischemic stroke activates autophagy, however, whether inhibiting autophagy after stroke is beneficial in the brain is still under a debate. Autophagy is a potential mechanism that may contribute to differences in stroke progression between the sexes. Furthermore, the effects of manipulating autophagy may also differ between the sexes. Mechanisms that regulate autophagy in a sex-dependent manner in ischemic stroke remain unexplored. In this review, we summarize clinical and pre-clinical evidence for sex differences in stroke. We briefly introduce the autophagy process and summarize the effects of gonadal hormones in autophagy in the brain and discuss X-linked genes that could potentially regulate brain autophagy. Finally, we review pre-clinical studies that address the mechanisms that could mediate sex differences in brain autophagy after stroke.
Collapse
|
11
|
McEwan DG, Ryan KM. ATG2 and VPS13 proteins: molecular highways transporting lipids to drive membrane expansion and organelle communication. FEBS J 2022; 289:7113-7127. [PMID: 34783437 DOI: 10.1111/febs.16280] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/03/2021] [Accepted: 11/15/2021] [Indexed: 01/13/2023]
Abstract
Communication between organelles is an essential process that helps maintain cellular homeostasis and organelle contact sites have recently emerged as crucial mediators of this communication. The emergence of a class of molecular bridges that span the inter-organelle gaps has now been shown to direct the flow of lipid traffic from one lipid bilayer to another. One of the key components of these molecular bridges is the presence of an N-terminal Chorein/VPS13 domain. This is an evolutionarily conserved domain present in multiple proteins within the endocytic and autophagy trafficking pathways. Herein, we discuss the current state-of-the-art of this class of proteins, focusing on the role of these lipid transporters in the autophagy and endocytic pathways. We discuss the recent biochemical and structural advances that have highlighted the essential role Chorein-N domain containing ATG2 proteins play in driving the formation of the autophagosome and how lipids are transported from the endoplasmic reticulum to the growing phagophore. We also consider the VPS13 proteins, their role in organelle contacts and the endocytic pathway and highlight how disease-causing mutations disrupt these contact sites. Finally, we open the door to discuss other Chorein_N domain containing proteins, for instance, UHRF1BP1/1L, their role in disease and look towards prokaryote examples of Chorein_N-like domains. Taken together, recent advances have highlighted an exciting opportunity to delve deeper into inter-organelle communication and understand how lipids are transported between membrane bilayers and how this process is disrupted in multiple diseases.
Collapse
Affiliation(s)
| | - Kevin M Ryan
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
12
|
Means RE, Katz SG. Balancing life and death: BCL-2 family members at diverse ER-mitochondrial contact sites. FEBS J 2022; 289:7075-7112. [PMID: 34668625 DOI: 10.1111/febs.16241] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/11/2021] [Accepted: 10/19/2021] [Indexed: 01/13/2023]
Abstract
The outer mitochondrial membrane is a busy place. One essential activity for cellular survival is the regulation of membrane integrity by the BCL-2 family of proteins. Another critical facet of the outer mitochondrial membrane is its close approximation with the endoplasmic reticulum. These mitochondrial-associated membranes (MAMs) occupy a significant fraction of the mitochondrial surface and serve as key signaling hubs for multiple cellular processes. Each of these pathways may be considered as forming their own specialized MAM subtype. Interestingly, like membrane permeabilization, most of these pathways play critical roles in regulating cellular survival and death. Recently, the pro-apoptotic BCL-2 family member BOK has been found within MAMs where it plays important roles in their structure and function. This has led to a greater appreciation that multiple BCL-2 family proteins, which are known to participate in numerous functions throughout the cell, also have roles within MAMs. In this review, we evaluate several MAM subsets, their role in cellular homeostasis, and the contribution of BCL-2 family members to their functions.
Collapse
Affiliation(s)
- Robert E Means
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Samuel G Katz
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
13
|
Lu G, Wang Y, Shi Y, Zhang Z, Huang C, He W, Wang C, Shen H. Autophagy in health and disease: From molecular mechanisms to therapeutic target. MedComm (Beijing) 2022; 3:e150. [PMID: 35845350 PMCID: PMC9271889 DOI: 10.1002/mco2.150] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 02/05/2023] Open
Abstract
Macroautophagy/autophagy is an evolutionally conserved catabolic process in which cytosolic contents, such as aggregated proteins, dysfunctional organelle, or invading pathogens, are sequestered by the double-membrane structure termed autophagosome and delivered to lysosome for degradation. Over the past two decades, autophagy has been extensively studied, from the molecular mechanisms, biological functions, implications in various human diseases, to development of autophagy-related therapeutics. This review will focus on the latest development of autophagy research, covering molecular mechanisms in control of autophagosome biogenesis and autophagosome-lysosome fusion, and the upstream regulatory pathways including the AMPK and MTORC1 pathways. We will also provide a systematic discussion on the implication of autophagy in various human diseases, including cancer, neurodegenerative disorders (Alzheimer disease, Parkinson disease, Huntington's disease, and Amyotrophic lateral sclerosis), metabolic diseases (obesity and diabetes), viral infection especially SARS-Cov-2 and COVID-19, cardiovascular diseases (cardiac ischemia/reperfusion and cardiomyopathy), and aging. Finally, we will also summarize the development of pharmacological agents that have therapeutic potential for clinical applications via targeting the autophagy pathway. It is believed that decades of hard work on autophagy research is eventually to bring real and tangible benefits for improvement of human health and control of human diseases.
Collapse
Affiliation(s)
- Guang Lu
- Department of Physiology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Yu Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic MedicineSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Yin Shi
- Department of BiochemistryZhejiang University School of MedicineHangzhouChina
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic MedicineSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic MedicineSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn ResearchSouthwest HospitalArmy Medical UniversityChongqingChina
| | - Chuang Wang
- Department of Pharmacology, Provincial Key Laboratory of PathophysiologyNingbo University School of MedicineNingboZhejiangChina
| | - Han‐Ming Shen
- Department of Biomedical Sciences, Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision OncologyUniversity of MacauMacauChina
| |
Collapse
|
14
|
Gavazzi F, Pierce SR, Vithayathil J, Cunningham K, Anderson K, McCann J, Moll A, Muirhead K, Sherbini O, Prange E, Dubbs H, Tochen L, Fraser J, Helbig I, Lewin N, Thakur N, Adang LA. Psychometric outcome measures in beta-propeller protein-associated neurodegeneration (BPAN). Mol Genet Metab 2022; 137:26-32. [PMID: 35878504 PMCID: PMC9613602 DOI: 10.1016/j.ymgme.2022.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Beta-propeller protein-associated neurodegeneration (BPAN) is a rare neurodegenerative disorder characterized by iron accumulation in the brain with spectrum of neurodevelopmental and movement phenotypes. In anticipation of future clinical trials and to inform clinical care, there is an unmet need to capture the phenotypic diversity of this rare disorder and better define disease subtypes. METHODS A total of 27 individuals with BPAN were included in our natural history study, from which traditional outcome measures were obtained in 18 subjects. Demographic and diagnostic information, along with acquisition of basic developmental skills and overall neurologic severity were extracted from the medical records. Functional outcome measures were administered at the time of the evaluation or applied retrospectively at the last clinical encounter for patients who were not able to travel for in person. Based on age and functional level, the following assessments were administered: Leiter-3, Gross Motor Function Measure (GMFM)-66 Item Sets, Vineland-3, and Peabody-2. RESULTS Overall, cognitive function was more impaired compared to gross motor function. Onset of symptoms of BPAN within the first 6 months of life was associated with decreased gain of ambulation and gain of spoken language (ambulation: log-rank test p = 0.0015; gain of first word: p = 0.0015). There was no difference in age at seizure onset by age at initial symptom onset (p = 0.8823). Collection of prospective outcome measures was limited by attention and behavior in our patient population, reinforcing the complexity of phenotype assessment and inadequacy of available standardized tests. Overall, gross motor and adaptive behavior assessments were better able to capture the dynamic range of function across the BPAN population than the fine motor and non-verbal cognitive tests. Floor effects were noted across outcome measures in a subset of individuals for cognitive and adaptive behavior tests. CONCLUSION Our data suggest the distinct phenotypes of BPAN: a severe, early onset form and an attenuated form with higher cognitive capabilities. Early age at onset was a key factor in predicting future neurologic impairment.
Collapse
Affiliation(s)
- Francesco Gavazzi
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Samuel R Pierce
- Departmen of Physical Therapy, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Joseph Vithayathil
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kristin Cunningham
- Department of Occupational Therapy, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kim Anderson
- Department of Occupational Therapy, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jacob McCann
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ashley Moll
- Department of Occupational Therapy, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kayla Muirhead
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Omar Sherbini
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Erin Prange
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Holly Dubbs
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Laura Tochen
- Children's National Medical Center, Department of Neurology, 111 Michigan Ave NW, Washington, DC 20010, USA
| | - Jamie Fraser
- Rare Disease Institute, Division of Genetics and Metabolism, Children's National Hospital, Washington, DC, USA
| | - Ingo Helbig
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Naomi Lewin
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nivedita Thakur
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura A Adang
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
15
|
Dong X, Liang Z, Zhang J, Zhang Q, Xu Y, Zhang Z, Zhang L, Zhang B, Zhao Y. Trappc1 deficiency impairs thymic epithelial cell development by breaking endoplasmic reticulum homeostasis. Eur J Immunol 2022; 52:1789-1804. [PMID: 35908180 DOI: 10.1002/eji.202249915] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/28/2022] [Accepted: 07/26/2022] [Indexed: 11/05/2022]
Abstract
Thymic epithelial cells (TECs) are important for T cell development and immune tolerance establishment. Although comprehensive molecular regulation of TEC development has been studied, the role of transport protein particle complexes (Trappcs) in TECs is not clear. Using TEC-specific homozygous or heterozygous Trappc1 deleted mice model, we found that Trappc1 deficiency caused severe thymus atrophy with decreased cell number and blocked maturation of TECs. Mice with a TEC-specific Trappc1 deletion show poor thymic T cell output and have a greater percentage of activated/memory T cells, suffered from spontaneous autoimmune disorders. Our RNA-seq and molecular studies indicated that the decreased endoplasmic reticulum (ER) and Golgi apparatus, enhanced unfolded protein response (UPR) and subsequent Atf4-CHOP-mediated apoptosis, and reactive oxygen species (ROS)-mediated ferroptosis coordinately contributed to the reduction of Trappc1-deleted TECs. Additionally, reduced Aire+ mTECs accompanied by the decreased expression of Irf4, Irf8, and Tbx21 in Trappc1 deficiency mTECs, may further coordinately block the tissue-restricted antigen expression. In this study, we reveal that Trappc1 plays an indispensable role in TEC development and maturation and provide evidence for the importance of inter-organelle traffic and ER homeostasis in TEC development. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xue Dong
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences.,University of Chinese Academy of Sciences
| | - Zhanfeng Liang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences.,University of Chinese Academy of Sciences.,Beijing Institute for Stem Cell and Regeneration
| | - Jiayu Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences.,University of Chinese Academy of Sciences
| | - Qian Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences.,University of Chinese Academy of Sciences
| | - Yanan Xu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences.,University of Chinese Academy of Sciences
| | - Zhaoqi Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences.,University of Chinese Academy of Sciences
| | - Lianfeng Zhang
- Key Laboratory of Human Diseases and Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences.,University of Chinese Academy of Sciences.,Beijing Institute for Stem Cell and Regeneration
| |
Collapse
|
16
|
Courtellemont T, De Leo MG, Gopaldass N, Mayer A. CROP: a retromer-PROPPIN complex mediating membrane fission in the endo-lysosomal system. EMBO J 2022; 41:e109646. [PMID: 35466426 PMCID: PMC9108610 DOI: 10.15252/embj.2021109646] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 01/06/2023] Open
Abstract
Endo-lysosomal compartments exchange proteins by fusing, fissioning, and through endosomal transport carriers. Thereby, they sort many plasma membrane receptors and transporters and control cellular signaling and metabolism. How the membrane fission events are catalyzed is poorly understood. Here, we identify the novel CROP complex as a factor acting at this step. CROP joins members of two protein families: the peripheral subunits of retromer, a coat forming endosomal transport carriers, and membrane inserting PROPPINs. Integration into CROP potentiates the membrane fission activity of the PROPPIN Atg18 on synthetic liposomes and confers strong preference for binding PI(3,5)P2 , a phosphoinositide required for membrane fission activity. Disrupting CROP blocks fragmentation of lysosome-like yeast vacuoles in vivo. CROP-deficient mammalian endosomes accumulate micrometer-long tubules and fail to export cargo, suggesting that carriers attempt to form but cannot separate from these organelles. PROPPINs compete for retromer binding with the SNX-BAR proteins, which recruit retromer to the membrane during the formation of endosomal carriers. Transition from retromer-SNX-BAR complexes to retromer-PROPPIN complexes might hence switch retromer activities from cargo capture to membrane fission.
Collapse
Affiliation(s)
| | | | - Navin Gopaldass
- Department of BiochemistryUniversity of LausanneEpalingesSwitzerland
| | - Andreas Mayer
- Department of BiochemistryUniversity of LausanneEpalingesSwitzerland
| |
Collapse
|
17
|
Molecular regulation of autophagosome formation. Biochem Soc Trans 2022; 50:55-69. [PMID: 35076688 PMCID: PMC9022990 DOI: 10.1042/bst20210819] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/21/2021] [Accepted: 01/04/2022] [Indexed: 12/11/2022]
Abstract
Macroautophagy, hereafter autophagy, is a degradative process conserved among eukaryotes, which is essential to maintain cellular homeostasis. Defects in autophagy lead to numerous human diseases, including various types of cancer and neurodegenerative disorders. The hallmark of autophagy is the de novo formation of autophagosomes, which are double-membrane vesicles that sequester and deliver cytoplasmic materials to lysosomes/vacuoles for degradation. The mechanism of autophagosome biogenesis entered a molecular era with the identification of autophagy-related (ATG) proteins. Although there are many unanswered questions and aspects that have raised some controversies, enormous advances have been done in our understanding of the process of autophagy in recent years. In this review, we describe the current knowledge about the molecular regulation of autophagosome formation, with a particular focus on budding yeast and mammalian cells.
Collapse
|
18
|
Key Regulators of Autophagosome Closure. Cells 2021; 10:cells10112814. [PMID: 34831036 PMCID: PMC8616111 DOI: 10.3390/cells10112814] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/29/2021] [Accepted: 10/16/2021] [Indexed: 12/11/2022] Open
Abstract
Autophagy is an evolutionarily conserved pathway, in which cytoplasmic components are sequestered within double-membrane vesicles called autophagosomes and then transported into lysosomes or vacuoles for degradation. Over 40 conserved autophagy-related (ATG) genes define the core machinery for the five processes of autophagy: initiation, nucleation, elongation, closure, and fusion. In this review, we focus on one of the least well-characterized events in autophagy, namely the closure of the isolation membrane/phagophore to form the sealed autophagosome. This process is tightly regulated by ESCRT machinery, ATG proteins, Rab GTPase and Rab-related proteins, SNAREs, sphingomyelin, and calcium. We summarize recent progress in the regulation of autophagosome closure and discuss the key questions remaining to be addressed.
Collapse
|
19
|
Munot P, McCrea N, Torelli S, Manzur A, Sewry C, Chambers D, Feng L, Ala P, Zaharieva I, Ragge N, Roper H, Marton T, Cox P, Milev MP, Liang WC, Maruyama S, Nishino I, Sacher M, Phadke R, Muntoni F. TRAPPC11-related muscular dystrophy with hypoglycosylation of alpha-dystroglycan in skeletal muscle and brain. Neuropathol Appl Neurobiol 2021; 48:e12771. [PMID: 34648194 DOI: 10.1111/nan.12771] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 08/23/2021] [Accepted: 09/12/2021] [Indexed: 11/30/2022]
Abstract
AIMS TRAPPC11, a subunit of the transport protein particle (TRAPP) complex, is important for complex integrity and anterograde membrane transport from the endoplasmic reticulum (ER) to the ER-Golgi intermediate compartment. Several individuals with TRAPPC11 mutations have been reported with muscle weakness and other features including brain, liver, skeletal and eye involvement. A detailed analysis of brain and muscle pathology will further our understanding of the presentation and aetiology of TRAPPC11 disease. METHODS We describe five cases of early-onset TRAPPC11-related muscular dystrophy with a systematic review of muscle pathology in all five individuals, post-mortem brain pathology findings in one and membrane trafficking assays in another. RESULTS All affected individuals presented in infancy with muscle weakness, motor delay and elevated serum creatine kinase (CK). Additional features included cataracts, liver disease, intellectual disability, cardiomyopathy, movement disorder and structural brain abnormalities. Muscle pathology in all five revealed dystrophic changes, universal hypoglycosylation of alpha-dystroglycan and variably reduced dystrophin-associated complex proteins. Membrane trafficking assays showed defective Golgi trafficking in one individual. Neuropathological examination of one individual revealed cerebellar atrophy, granule cell hypoplasia, Purkinje cell (PC) loss, degeneration and dendrite dystrophy, reduced alpha-dystroglycan (IIH6) expression in PC and dentate neurones and absence of neuronal migration defects. CONCLUSIONS This report suggests that recessive mutations in TRAPPC11 are linked to muscular dystrophies with hypoglycosylation of alpha-dystroglycan. The structural cerebellar involvement that we document for the first time resembles the neuropathology reported in N-linked congenital disorders of glycosylation (CDG) such as PMM2-CDG, suggesting defects in multiple glycosylation pathways in this condition.
Collapse
Affiliation(s)
- Pinki Munot
- Dubowitz Neuromuscular Centre, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Nadine McCrea
- Dubowitz Neuromuscular Centre, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Silvia Torelli
- UCL, Dubowitz Neuromuscular Centre, Great Ormond Street Institute of Child Health, London, UK
| | - Adnan Manzur
- Dubowitz Neuromuscular Centre, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Caroline Sewry
- Dubowitz Neuromuscular Centre, Division of Neuropathology, UCL Institute of Neurology, London, UK
| | - Darren Chambers
- Dubowitz Neuromuscular Centre, Division of Neuropathology, UCL Institute of Neurology, London, UK
| | - Lucy Feng
- Dubowitz Neuromuscular Centre, Division of Neuropathology, UCL Institute of Neurology, London, UK
| | - Pierpaolo Ala
- UCL, Dubowitz Neuromuscular Centre, Great Ormond Street Institute of Child Health, London, UK
| | - Irina Zaharieva
- UCL, Dubowitz Neuromuscular Centre, Great Ormond Street Institute of Child Health, London, UK
| | - Nicola Ragge
- Birmingham Women's and Children's NHS Foundation Hospital Trust, West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham, UK
| | - Helen Roper
- Department of Paediatrics, Birmingham Heartlands Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Tamas Marton
- Department of Histopathology, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Phil Cox
- Department of Histopathology, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Miroslav P Milev
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Wen-Chen Liang
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shinsuke Maruyama
- Department of Paediatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Centre of Neurology and Psychiatry, Kodaira, Japan
| | - Michael Sacher
- Department of Biology, Concordia University, Montreal, Quebec, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Rahul Phadke
- Dubowitz Neuromuscular Centre, Division of Neuropathology, UCL Institute of Neurology, London, UK.,Division of Neuropathology, University College London Hospitals NHS Foundation Trust National Hospital for Neurology and Neurosurgery, London, UK
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.,UCL Great Ormond Street Institute of Child Health, NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| |
Collapse
|
20
|
Bueno-Arribas M, Blanca I, Cruz-Cuevas C, Escalante R, Navas MA, Vincent O. A conserved ATG2 binding site in WIPI4 and yeast Hsv2 is disrupted by mutations causing β-propeller protein-associated neurodegeneration. Hum Mol Genet 2021; 31:111-121. [PMID: 34368840 PMCID: PMC8682751 DOI: 10.1093/hmg/ddab225] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 01/18/2023] Open
Abstract
PROPPINs are phosphoinositide-binding β-propeller proteins that mediate membrane recruitment of other proteins and are involved in different membrane remodeling processes. The main role of PROPPINs is their function in autophagy, where they act at different steps in phagophore formation. The human PROPPIN WIPI4 (WDR45) forms a complex with ATG2 involved in phagophore elongation, and mutations in this gene cause β-propeller protein-associated neurodegeneration (BPAN). The yeast functional counterpart of WIPI4 is Atg18, although its closest sequence homolog is another member of the PROPPIN family, Hsv2, whose function remains largely undefined. Here, we provide evidence that Hsv2, like WIPI4 and Atg18, interacts with Atg2. We show that Hsv2 and a pool of Atg2 colocalize on endosomes under basal conditions and at the pre-autophagosomal structure (PAS) upon autophagy induction. We further show that Hsv2 drives the recruitment of Atg2 to endosomes while Atg2 mediates Hsv2 recruitment to the PAS. HSV2 overexpression results in mis-sorting and secretion of carboxypeptidase CPY, suggesting that the endosomal function of this protein is related to the endosome-to-Golgi recycling pathway. Furthermore, we show that the Atg2 binding site is conserved in Hsv2 and WIPI4 but not in Atg18. Notably, two WIPI4 residues involved in ATG2 binding are mutated in patients with BPAN, and there is a correlation between the inhibitory effect of these mutations on ATG2 binding and the severity of the disease.
Collapse
Affiliation(s)
| | - Irene Blanca
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Celia Cruz-Cuevas
- Instituto de Investigaciones Biomédicas CSIC-UAM 28029 Madrid, Spain
| | - Ricardo Escalante
- Instituto de Investigaciones Biomédicas CSIC-UAM 28029 Madrid, Spain
| | - María-Angeles Navas
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Olivier Vincent
- Instituto de Investigaciones Biomédicas CSIC-UAM 28029 Madrid, Spain
| |
Collapse
|
21
|
Joiner AMN, Phillips BP, Yugandhar K, Sanford EJ, Smolka MB, Yu H, Miller EA, Fromme JC. Structural basis of TRAPPIII-mediated Rab1 activation. EMBO J 2021; 40:e107607. [PMID: 34018207 PMCID: PMC8204860 DOI: 10.15252/embj.2020107607] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/07/2021] [Accepted: 04/11/2021] [Indexed: 12/17/2022] Open
Abstract
The GTPase Rab1 is a master regulator of the early secretory pathway and is critical for autophagy. Rab1 activation is controlled by its guanine nucleotide exchange factor, the multisubunit TRAPPIII complex. Here, we report the 3.7 Å cryo-EM structure of the Saccharomyces cerevisiae TRAPPIII complex bound to its substrate Rab1/Ypt1. The structure reveals the binding site for the Rab1/Ypt1 hypervariable domain, leading to a model for how the complex interacts with membranes during the activation reaction. We determined that stable membrane binding by the TRAPPIII complex is required for robust activation of Rab1/Ypt1 in vitro and in vivo, and is mediated by a conserved amphipathic α-helix within the regulatory Trs85 subunit. Our results show that the Trs85 subunit serves as a membrane anchor, via its amphipathic helix, for the entire TRAPPIII complex. These findings provide a structural understanding of Rab activation on organelle and vesicle membranes.
Collapse
Affiliation(s)
- Aaron MN Joiner
- Department of Molecular Biology and Genetics/Weill Institute for Cell and Molecular BiologyCornell UniversityIthacaNYUSA
| | | | - Kumar Yugandhar
- Department of Computational Biology/Weill Institute for Cell and Molecular BiologyCornell UniversityIthacaNYUSA
| | - Ethan J Sanford
- Department of Molecular Biology and Genetics/Weill Institute for Cell and Molecular BiologyCornell UniversityIthacaNYUSA
| | - Marcus B Smolka
- Department of Molecular Biology and Genetics/Weill Institute for Cell and Molecular BiologyCornell UniversityIthacaNYUSA
| | - Haiyuan Yu
- Department of Computational Biology/Weill Institute for Cell and Molecular BiologyCornell UniversityIthacaNYUSA
| | | | - J Christopher Fromme
- Department of Molecular Biology and Genetics/Weill Institute for Cell and Molecular BiologyCornell UniversityIthacaNYUSA
| |
Collapse
|
22
|
Barz S, Kriegenburg F, Sánchez-Martín P, Kraft C. Small but mighty: Atg8s and Rabs in membrane dynamics during autophagy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119064. [PMID: 34048862 PMCID: PMC8261831 DOI: 10.1016/j.bbamcr.2021.119064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/04/2021] [Accepted: 05/21/2021] [Indexed: 11/17/2022]
Abstract
Autophagy is a degradative pathway during which autophagosomes are formed that enwrap cytosolic material destined for turnover within the lytic compartment. Autophagosome biogenesis requires controlled lipid and membrane rearrangements to allow the formation of an autophagosomal seed and its subsequent elongation into a fully closed and fusion-competent double membrane vesicle. Different membrane remodeling events are required, which are orchestrated by the distinct autophagy machinery. An important player among these autophagy proteins is the small lipid-modifier Atg8. Atg8 proteins facilitate various aspects of autophagosome formation and serve as a binding platform for autophagy factors. Also Rab GTPases have been implicated in autophagosome biogenesis. As Atg8 proteins interact with several Rab GTPase regulators, they provide a possible link between autophagy progression and Rab GTPase activity. Here, we review central aspects in membrane dynamics during autophagosome biogenesis with a focus on Atg8 proteins and selected Rab GTPases.
Collapse
Affiliation(s)
- Saskia Barz
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany
| | - Franziska Kriegenburg
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Pablo Sánchez-Martín
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Claudine Kraft
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
23
|
Galindo A, Planelles-Herrero VJ, Degliesposti G, Munro S. Cryo-EM structure of metazoan TRAPPIII, the multi-subunit complex that activates the GTPase Rab1. EMBO J 2021; 40:e107608. [PMID: 34018214 PMCID: PMC8204870 DOI: 10.15252/embj.2020107608] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/30/2021] [Accepted: 04/11/2021] [Indexed: 12/19/2022] Open
Abstract
The TRAPP complexes are nucleotide exchange factors that play essential roles in membrane traffic and autophagy. TRAPPII activates Rab11, and TRAPPIII activates Rab1, with the two complexes sharing a core of small subunits that affect nucleotide exchange but being distinguished by specific large subunits that are essential for activity in vivo. Crystal structures of core subunits have revealed the mechanism of Rab activation, but how the core and the large subunits assemble to form the complexes is unknown. We report a cryo‐EM structure of the entire Drosophila TRAPPIII complex. The TRAPPIII‐specific subunits TRAPPC8 and TRAPPC11 hold the catalytic core like a pair of tongs, with TRAPPC12 and TRAPPC13 positioned at the joint between them. TRAPPC2 and TRAPPC2L link the core to the two large arms, with the interfaces containing residues affected by disease‐causing mutations. The TRAPPC8 arm is positioned such that it would contact Rab1 that is bound to the core, indicating how the arm could determine the specificity of the complex. A lower resolution structure of TRAPPII shows a similar architecture and suggests that the TRAPP complexes evolved from a single ur‐TRAPP.
Collapse
Affiliation(s)
| | | | | | - Sean Munro
- MRC Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
24
|
Rare Variants in Autophagy and Non-Autophagy Genes in Late-Onset Pompe Disease: Suggestions of Their Disease-Modifying Role in Two Italian Families. Int J Mol Sci 2021; 22:ijms22073625. [PMID: 33807278 PMCID: PMC8036926 DOI: 10.3390/ijms22073625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 12/30/2022] Open
Abstract
Pompe disease is an autosomal recessive disorder caused by a deficiency in the enzyme acid alpha-glucosidase. The late-onset form of Pompe disease (LOPD) is characterized by a slowly progressing proximal muscle weakness, often involving respiratory muscles. In LOPD, the levels of GAA enzyme activity and the severity of the clinical pictures may be highly variable among individuals, even in those who harbour the same combination of GAA mutations. The result is an unpredictable genotype–phenotype correlation. The purpose of this study was to identify the genetic factors responsible for the progression, severity and drug response in LOPD. We report here on a detailed clinical, morphological and genetic study, including a whole exome sequencing (WES) analysis of 11 adult LOPD siblings belonging to two Italian families carrying compound heterozygous GAA mutations. We disclosed a heterogeneous pattern of myopathic impairment, associated, among others, with cardiac defects, intracranial vessels abnormality, osteoporosis, vitamin D deficiency, obesity and adverse response to enzyme replacement therapy (ERT). We identified deleterious variants in the genes involved in autophagy, immunity and bone metabolism, which contributed to the severity of the clinical symptoms observed in the LOPD patients. This study emphasizes the multisystem nature of LOPD and highlights the polygenic nature of the complex phenotype disclosed in these patients.
Collapse
|
25
|
Melia TJ, Lystad AH, Simonsen A. Autophagosome biogenesis: From membrane growth to closure. J Cell Biol 2021; 219:151729. [PMID: 32357219 PMCID: PMC7265318 DOI: 10.1083/jcb.202002085] [Citation(s) in RCA: 169] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022] Open
Abstract
Autophagosome biogenesis involves de novo formation of a membrane that elongates to sequester cytoplasmic cargo and closes to form a double-membrane vesicle (an autophagosome). This process has remained enigmatic since its initial discovery >50 yr ago, but our understanding of the mechanisms involved in autophagosome biogenesis has increased substantially during the last 20 yr. Several key questions do remain open, however, including, What determines the site of autophagosome nucleation? What is the origin and lipid composition of the autophagosome membrane? How is cargo sequestration regulated under nonselective and selective types of autophagy? This review provides key insight into the core molecular mechanisms underlying autophagosome biogenesis, with a specific emphasis on membrane modeling events, and highlights recent conceptual advances in the field.
Collapse
Affiliation(s)
- Thomas J Melia
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Alf H Lystad
- Department of Molecular Medicine, Institute of Basic Medical Sciences and Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Anne Simonsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences and Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
26
|
De Leo MG, Berger P, Mayer A. WIPI1 promotes fission of endosomal transport carriers and formation of autophagosomes through distinct mechanisms. Autophagy 2021; 17:3644-3670. [PMID: 33685363 PMCID: PMC8632285 DOI: 10.1080/15548627.2021.1886830] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Autophagosome formation requires PROPPIN/WIPI proteins and monophosphorylated phosphoinositides, such as phosphatidylinositol-3-phosphate (PtdIns3P) or PtdIns5P. This process occurs in association with mammalian endosomes, where the PROPPIN WIPI1 has additional, undefined roles in vesicular traffic. To explore whether these functions are interconnected, we dissected routes and subreactions of endosomal trafficking requiring WIPI1. WIPI1 specifically acts in the formation and fission of tubulo-vesicular endosomal transport carriers. This activity supports the PtdIns(3,5)P2-dependent transport of endosomal cargo toward the plasma membrane, Golgi, and lysosomes, suggesting a general role of WIPI1 in endosomal protein exit. Three features differentiate the endosomal and macroautophagic/autophagic activities of WIPI1: phosphoinositide binding site II, the requirement for PtdIns(3,5)P2, and bilayer deformation through a conserved amphipathic α-helix. Their inactivation preserves autophagy but leads to a strong enlargement of endosomes, which accumulate micrometer-long endosomal membrane tubules carrying cargo proteins. WIPI1 thus supports autophagy and protein exit from endosomes by different modes of action. We propose that the type of phosphoinositides occupying its two lipid binding sites, the most unusual feature of PROPPIN/WIPI family proteins, switches between these effector functions. Abbreviations: EGF: epidermal growth factorEGFR: epidermal growth factor receptorKD: knockdownKO: knockoutPtdIns3P: phosphatidylinositol-3-phosphatePtdIns5P: phosphatidylinositol-5-phosphatePtdIns(3,5)P2: phosphatidylinositol-3,5-bisphosphateTF: transferrinTFRC: transferrin receptorWT: wildtype
Collapse
Affiliation(s)
| | - Philipp Berger
- Department of Biology and Chemistry, Laboratory of Nanoscale Biology, Paul-Scherrer-Institute, Villigen, Switzerland
| | - Andreas Mayer
- Département De Biochimie, Université De Lausanne, Lausanne, Epalinges, Switzerland
| |
Collapse
|
27
|
Ohnstad AE, Delgado JM, North BJ, Nasa I, Kettenbach AN, Schultz SW, Shoemaker CJ. Receptor-mediated clustering of FIP200 bypasses the role of LC3 lipidation in autophagy. EMBO J 2020; 39:e104948. [PMID: 33226137 PMCID: PMC7737610 DOI: 10.15252/embj.2020104948] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 09/10/2020] [Accepted: 09/17/2020] [Indexed: 12/22/2022] Open
Abstract
Autophagosome formation requires multiple autophagy-related (ATG) factors. However, we find that a subset of autophagy substrates remains robustly targeted to the lysosome in the absence of several core ATGs, including the LC3 lipidation machinery. To address this unexpected result, we performed genome-wide CRISPR screens identifying genes required for NBR1 flux in ATG7KO cells. We find that ATG7-independent autophagy still requires canonical ATG factors including FIP200. However, in the absence of LC3 lipidation, additional factors are required including TAX1BP1 and TBK1. TAX1BP1's ability to cluster FIP200 around NBR1 cargo and induce local autophagosome formation enforces cargo specificity and replaces the requirement for lipidated LC3. In support of this model, we define a ubiquitin-independent mode of TAX1BP1 recruitment to NBR1 puncta, highlighting that TAX1BP1 recruitment and clustering, rather than ubiquitin binding per se, is critical for function. Collectively, our data provide a mechanistic basis for reports of selective autophagy in cells lacking the lipidation machinery, wherein receptor-mediated clustering of upstream autophagy factors drives continued autophagosome formation.
Collapse
Affiliation(s)
- Amelia E Ohnstad
- Department of Biochemistry and Cell BiologyGeisel School of Medicine at DartmouthHanoverNHUSA
| | - Jose M Delgado
- Department of Biochemistry and Cell BiologyGeisel School of Medicine at DartmouthHanoverNHUSA
| | - Brian J North
- Department of Biochemistry and Cell BiologyGeisel School of Medicine at DartmouthHanoverNHUSA
| | - Isha Nasa
- Department of Biochemistry and Cell BiologyGeisel School of Medicine at DartmouthHanoverNHUSA
- Norris Cotton Cancer CenterLebanonNHUSA
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell BiologyGeisel School of Medicine at DartmouthHanoverNHUSA
- Norris Cotton Cancer CenterLebanonNHUSA
| | - Sebastian W Schultz
- Centre for Cancer Cell ReprogrammingFaculty of MedicineUniversity of OsloOsloNorway
- Department of Molecular Cell BiologyInstitute for Cancer ResearchOslo University HospitalOsloNorway
| | - Christopher J Shoemaker
- Department of Biochemistry and Cell BiologyGeisel School of Medicine at DartmouthHanoverNHUSA
| |
Collapse
|
28
|
Xu JL, Yuan L, Tang YC, Xu ZY, Xu HD, Cheng XD, Qin JJ. The Role of Autophagy in Gastric Cancer Chemoresistance: Friend or Foe? Front Cell Dev Biol 2020; 8:621428. [PMID: 33344463 PMCID: PMC7744622 DOI: 10.3389/fcell.2020.621428] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer is the third most common cause of cancer-related death worldwide. Drug resistance is the main inevitable and vital factor leading to a low 5-year survival rate for patients with gastric cancer. Autophagy, as a highly conserved homeostatic pathway, is mainly regulated by different proteins and non-coding RNAs (ncRNAs) and plays dual roles in drug resistance of gastric cancer. Thus, targeting key regulatory nodes in the process of autophagy by small molecule inhibitors or activators has become one of the most promising strategies for the treatment of gastric cancer in recent years. In this review, we provide a systematic summary focusing on the relationship between autophagy and chemotherapy resistance in gastric cancer. We comprehensively discuss the roles and molecular mechanisms of multiple proteins and the emerging ncRNAs including miRNAs and lncRNAs in the regulation of autophagy pathways and gastric cancer chemoresistance. We also summarize the regulatory effects of autophagy inhibitor and activators on gastric cancer chemoresistance. Understanding the vital roles of autophagy in gastric cancer chemoresistance will provide novel opportunities to develop promising therapeutic strategies for gastric cancer.
Collapse
Affiliation(s)
- Jing-Li Xu
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, China.,Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China.,The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Yuan
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, China.,Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China.,The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan-Cheng Tang
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong, China
| | - Zhi-Yuan Xu
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, China.,Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Han-Dong Xu
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, China.,Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China.,The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiang-Dong Cheng
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, China.,Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Jiang-Jiang Qin
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, China.,Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
29
|
Dudley LJ, Makar AN, Gammoh N. Membrane targeting of core autophagy players during autophagosome biogenesis. FEBS J 2020; 287:4806-4821. [PMID: 32301577 DOI: 10.1111/febs.15334] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/27/2020] [Accepted: 04/14/2020] [Indexed: 12/18/2022]
Abstract
Autophagosomes are vital organelles required to facilitate the lysosomal degradation of cytoplasmic cargo, thereby playing an important role in maintaining cellular homeostasis. A number of autophagy-related (ATG) protein complexes are recruited to the site of autophagosome biogenesis where they act to facilitate membrane growth and maturation. Regulated recruitment of ATG complexes to autophagosomal membranes is essential for their autophagic activities and is required to ensure the efficient engulfment of cargo destined for lysosomal degradation. In this review, we discuss our current understanding of the spatiotemporal hierarchy between ATG proteins, examining the mechanisms underlying their recruitment to membranes. A particular focus is placed on the relevance of phosphatidylinositol 3-phosphate and the extent to which the core autophagy players are reliant on this lipid for their localisation to autophagic membranes. In addition, open questions and potential future research directions regarding the membrane recruitment and displacement of ATG proteins are discussed here.
Collapse
Affiliation(s)
- Leo J Dudley
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, UK
| | - Agata N Makar
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, UK
| | - Noor Gammoh
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, UK
| |
Collapse
|
30
|
Bodnar B, DeGruttola A, Zhu Y, Lin Y, Zhang Y, Mo X, Hu W. Emerging role of NIK/IKK2-binding protein (NIBP)/trafficking protein particle complex 9 (TRAPPC9) in nervous system diseases. Transl Res 2020; 224:55-70. [PMID: 32434006 PMCID: PMC7442628 DOI: 10.1016/j.trsl.2020.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 02/05/2023]
Abstract
NFκB signaling and protein trafficking network play important roles in various biological and pathological processes. NIK-and-IKK2-binding protein (NIBP), also known as trafficking protein particle complex 9 (TRAPPC9), is a prototype member of a novel protein family, and has been shown to regulate both NFκB signaling pathway and protein transport/trafficking. NIBP is extensively expressed in the nervous system and plays an important role in regulating neurogenesis and neuronal differentiation. NIBP/TRAPPC9 mutations have been linked to an autosomal recessive intellectual disability syndrome, called NIBP Syndrome, which is characterized by nonsyndromic autosomal recessive intellectual disability along with other symptoms such as obesity, microcephaly, and facial dysmorphia. As more cases of NIBP Syndrome are identified, new light is being shed on the role of NIBP/TRAPPC9 in the central nervous system developments and diseases. NIBP is also involved in the enteric nervous system. This review will highlight the importance of NIBP/TRAPPC9 in central and enteric nervous system diseases, and the established possible mechanisms for developing a potential therapeutic.
Collapse
Affiliation(s)
- Brittany Bodnar
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania; MD/PhD and Biomedical Sciences Graduate Program, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Arianna DeGruttola
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania; MD/PhD and Biomedical Sciences Graduate Program, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Yuanjun Zhu
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania; Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania; Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing, China
| | - Yuan Lin
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania; Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Yonggang Zhang
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Xianming Mo
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Wenhui Hu
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania; MD/PhD and Biomedical Sciences Graduate Program, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania; Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania.
| |
Collapse
|
31
|
Al-Deri N, Okur V, Ahimaz P, Milev M, Valivullah Z, Hagen J, Sheng Y, Chung W, Sacher M, Ganapathi M. A novel homozygous variant in TRAPPC2L results in a neurodevelopmental disorder and disrupts TRAPP complex function. J Med Genet 2020; 58:592-601. [PMID: 32843486 DOI: 10.1136/jmedgenet-2020-107016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/25/2020] [Accepted: 06/26/2020] [Indexed: 11/04/2022]
Abstract
BACKGROUND Next-generation sequencing has facilitated the diagnosis of neurodevelopmental disorders with variable and non-specific clinical findings. Recently, a homozygous missense p.(Asp37Tyr) variant in TRAPPC2L, a core subunit of TRAPP complexes which function as tethering factors during membrane trafficking, was reported in two unrelated individuals with neurodevelopmental delay, post-infectious encephalopathy-associated developmental arrest, tetraplegia and accompanying rhabdomyolysis. METHODS We performed whole genome sequencing on members of an Ashkenazi Jewish pedigree to identify the underlying genetic aetiology of global developmental delay/intellectual disability in three affected siblings. To assess the effect of the identified TRAPPC2L variant, we performed biochemical and cell biological functional studies on the TRAPPC2L protein. RESULTS A rare homozygous predicted deleterious missense variant, p.(Ala2Gly), in TRAPPC2L was identified in the affected siblings and it segregated with the neurodevelopmental phenotype within the family. Using a yeast two-hybrid assay and in vitro binding, we demonstrate that the p.(Ala2Gly) variant, but not the p.(Asp37Tyr) variant, disrupted the interaction between TRAPPC2L and another core TRAPP protein, TRAPPC6a. Size exclusion chromatography suggested that this variant affects the assembly of TRAPP complexes. Employing two different membrane trafficking assays using fibroblasts from one of the affected siblings, we found a delay in traffic into and out of the Golgi. Similar to the p.(Asp37Tyr) variant, the p.(Ala2Gly) variant resulted in an increase in the levels of active RAB11. CONCLUSION Our data fill in a gap in the knowledge of TRAPP architecture with TRAPPC2L interacting with TRAPPC6a, positioning it as a putative adaptor for other TRAPP subunits. Collectively, our findings support the pathogenicity of the TRAPPC2L p.(Ala2Gly) variant.
Collapse
Affiliation(s)
- Noraldin Al-Deri
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Volkan Okur
- Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
| | - Priyanka Ahimaz
- Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
| | - Miroslav Milev
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Zaheer Valivullah
- Center for Mendelian Genomics, Broad Institute Harvard, Cambridge, Massachusetts, USA
| | - Jacob Hagen
- Department of Biomedical Sciences, Columbia University Medical Center, New York, New York, USA
| | - Yufeng Sheng
- Department of Biomedical Sciences, Columbia University Medical Center, New York, New York, USA
| | - Wendy Chung
- Department of Pediatrics, Columbia University Medical Center, New York, New York, USA.,Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Michael Sacher
- Department of Biology, Concordia University, Montreal, Quebec, Canada .,Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Mythily Ganapathi
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
32
|
Tang BL. RAB39B's role in membrane traffic, autophagy, and associated neuropathology. J Cell Physiol 2020; 236:1579-1592. [PMID: 32761840 DOI: 10.1002/jcp.29962] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/19/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022]
Abstract
Neuropathological disorders are increasingly associated with dysfunctions in neuronal membrane traffic and autophagy, with defects among members of the Rab family of small GTPases implicated. Mutations in the human Xq28 localized gene RAB39B have been associated with X-linked neurodevelopmental defects including macrocephaly, intellectual disability, autism spectrum disorder (ASD), as well as rare cases of early-onset Parkinson's disease (PD). Despite the finding that RAB39B regulates GluA2 trafficking and could thus influence synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunit composition, reasons for the wide-ranging neuropathological consequences associated with RAB39B defects have been unclear. Recent studies have now unraveled possible mechanisms underlying the neuropathological roles of this brain-enriched small GTPase. Studies in RAB39B knockout mice showed that RAB39B interacts with components of Class I phosphatidylinositol-3-kinase (PI3K) signaling. In its absence, the PI3K-AKT-mechanistic target of rapamycin signaling pathway in neural progenitor cells (NPCs) is hyperactivated, which promotes NPC proliferation, leading to macrocephaly and ASD. Pertaining to early-onset PD, a complex of C9orf72, Smith-Magenis syndrome chromosome region candidate 8 and WD repeat domain 41 that functions in autophagy has been identified as a guanine nucleotide exchange factor of RAB39B. Here, recent findings that have shed light on our mechanistic understanding of RAB39B's role in neurodevelopmental and neurodegenerative pathologies are reviewed. Caveats and unanswered questions are also discussed, and future perspectives outlined.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,NUS Graduate School of Integrative Sciences and Engineering, National University of Singapore, Singapore
| |
Collapse
|
33
|
Adang LA, Pizzino A, Malhotra A, Dubbs H, Williams C, Sherbini O, Anttonen AK, Lesca G, Linnankivi T, Laurencin C, Milh M, Perrine C, Schaaf CP, Poulat AL, Ville D, Hagelstrom T, Perry DL, Taft RJ, Goldstein A, Vossough A, Helbig I, Vanderver A. Phenotypic and Imaging Spectrum Associated With WDR45. Pediatr Neurol 2020; 109:56-62. [PMID: 32387008 PMCID: PMC7387198 DOI: 10.1016/j.pediatrneurol.2020.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/29/2020] [Accepted: 03/01/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND Mutations in the X-linked gene WDR45 cause neurodegeneration with brain iron accumulation type 5. Global developmental delay occurs at an early age with slow progression to dystonia, parkinsonism, and dementia due to progressive iron accumulation in the brain. METHODS We present 17 new cases and reviewed 106 reported cases of neurodegeneration with brain iron accumulation type 5. Detailed information related to developmental history and key time to event measures was collected. RESULTS Within this cohort, there were 19 males. Most individuals were molecularly diagnosed by whole-exome testing. Overall 10 novel variants were identified across 11 subjects. All individuals were affected by developmental delay, most prominently in verbal skills. Most individuals experienced a decline in motor and cognitive skills. Although most individuals were affected by seizures, the spectrum ranged from provoked seizures to intractable epilepsy. The imaging findings varied as well, often evolving over time. The classic iron accumulation in the globus pallidus and substantia nigra was noted in half of our cohort and was associated with older age of image acquisition, whereas myelination abnormalities were associated with younger age. CONCLUSIONS WDR45 mutations lead to a progressive and evolving disorder whose diagnosis is often delayed. Developmental delay and seizures predominate in early childhood, followed by a progressive decline of neurological function. There is variable expressivity in the clinical phenotypes of individuals with WDR45 mutations, suggesting that this gene should be considered in the diagnostic evaluation of children with myelination abnormalities, iron deposition, developmental delay, and epilepsy depending on the age at evaluation.
Collapse
Affiliation(s)
- Laura A. Adang
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA,Corresponding author: Laura Adang MD PhD
| | - Amy Pizzino
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alka Malhotra
- Illumina Clinical Services Laboratory, Illumina, Inc. San Diego, CA, USA
| | - Holly Dubbs
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Catherine Williams
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Omar Sherbini
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Anna-Kaisa Anttonen
- Folkhälsan Research Center, Helsinki, Finland,Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Gaetan Lesca
- Department of Medical genetics, Lyon University Hospital, Bron, France
| | - Tarja Linnankivi
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | | | | | | | | | - Anne-Lise Poulat
- Department of Pediatric Neurology, Lyon University Hospital, Bron, France
| | - Dorothee Ville
- Department of Pediatric Neurology, Lyon University Hospital, Bron, France
| | - Tanner Hagelstrom
- Illumina Clinical Services Laboratory, Illumina, Inc. San Diego, CA, USA
| | - Denise L. Perry
- Illumina Clinical Services Laboratory, Illumina, Inc. San Diego, CA, USA
| | - Ryan J. Taft
- Illumina Clinical Services Laboratory, Illumina, Inc. San Diego, CA, USA
| | - Amy Goldstein
- Division of Metabolism, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Arastoo Vossough
- Division of Neuroradiology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ingo Helbig
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Adeline Vanderver
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
34
|
Martello A, Lauriola A, Mellis D, Parish E, Dawson JC, Imrie L, Vidmar M, Gammoh N, Mitić T, Brittan M, Mills NL, Carragher NO, D'Arca D, Caporali A. Trichoplein binds PCM1 and controls endothelial cell function by regulating autophagy. EMBO Rep 2020; 21:e48192. [PMID: 32337819 PMCID: PMC7332983 DOI: 10.15252/embr.201948192] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 02/18/2020] [Accepted: 03/31/2020] [Indexed: 01/01/2023] Open
Abstract
Autophagy is an essential cellular quality control process that has emerged as a critical one for vascular homeostasis. Here, we show that trichoplein (TCHP) links autophagy with endothelial cell (EC) function. TCHP localizes to centriolar satellites, where it binds and stabilizes PCM1. Loss of TCHP leads to delocalization and proteasome-dependent degradation of PCM1, further resulting in degradation of PCM1's binding partner GABARAP. Autophagic flux under basal conditions is impaired in THCP-depleted ECs, and SQSTM1/p62 (p62) accumulates. We further show that TCHP promotes autophagosome maturation and efficient clearance of p62 within lysosomes, without affecting their degradative capacity. Reduced TCHP and high p62 levels are detected in primary ECs from patients with coronary artery disease. This phenotype correlates with impaired EC function and can be ameliorated by NF-κB inhibition. Moreover, Tchp knock-out mice accumulate of p62 in the heart and cardiac vessels correlating with reduced cardiac vascularization. Taken together, our data reveal that TCHP regulates endothelial cell function via an autophagy-mediated mechanism.
Collapse
Affiliation(s)
- Andrea Martello
- University/BHF Centre for Cardiovascular ScienceQMRIUniversity of EdinburghEdinburghUK
| | - Angela Lauriola
- Department of Biomedical, Metabolic and Neural SciencesUniversity of Modena & Reggio EmiliaModenaItaly
| | - David Mellis
- University/BHF Centre for Cardiovascular ScienceQMRIUniversity of EdinburghEdinburghUK
| | - Elisa Parish
- University/BHF Centre for Cardiovascular ScienceQMRIUniversity of EdinburghEdinburghUK
| | - John C Dawson
- Cancer Research UK Edinburgh CentreInstitute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| | - Lisa Imrie
- Centre for Synthetic and Systems Biology (SynthSys)University of EdinburghEdinburghUK
| | - Martina Vidmar
- University/BHF Centre for Cardiovascular ScienceQMRIUniversity of EdinburghEdinburghUK
| | - Noor Gammoh
- Cancer Research UK Edinburgh CentreInstitute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| | - Tijana Mitić
- University/BHF Centre for Cardiovascular ScienceQMRIUniversity of EdinburghEdinburghUK
| | - Mairi Brittan
- University/BHF Centre for Cardiovascular ScienceQMRIUniversity of EdinburghEdinburghUK
| | - Nicholas L Mills
- University/BHF Centre for Cardiovascular ScienceQMRIUniversity of EdinburghEdinburghUK
- Usher InstituteUniversity of EdinburghEdinburghUK
| | - Neil O Carragher
- Cancer Research UK Edinburgh CentreInstitute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| | - Domenico D'Arca
- Department of Biomedical, Metabolic and Neural SciencesUniversity of Modena & Reggio EmiliaModenaItaly
| | - Andrea Caporali
- University/BHF Centre for Cardiovascular ScienceQMRIUniversity of EdinburghEdinburghUK
| |
Collapse
|
35
|
Nakatogawa H. Mechanisms governing autophagosome biogenesis. Nat Rev Mol Cell Biol 2020; 21:439-458. [PMID: 32372019 DOI: 10.1038/s41580-020-0241-0] [Citation(s) in RCA: 457] [Impact Index Per Article: 114.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2020] [Indexed: 12/20/2022]
Abstract
Autophagosomes are double-membrane vesicles newly formed during autophagy to engulf a wide range of intracellular material and transport this autophagic cargo to lysosomes (or vacuoles in yeasts and plants) for subsequent degradation. Autophagosome biogenesis responds to a plethora of signals and involves unique and dynamic membrane processes. Autophagy is an important cellular mechanism allowing the cell to meet various demands, and its disruption compromises homeostasis and leads to various diseases, including metabolic disorders, neurodegeneration and cancer. Thus, not surprisingly, the elucidation of the molecular mechanisms governing autophagosome biogenesis has attracted considerable interest. Key molecules and organelles involved in autophagosome biogenesis, including autophagy-related (ATG) proteins and the endoplasmic reticulum, have been discovered, and their roles and relationships have been investigated intensely. However, several fundamental questions, such as what supplies membranes/lipids to build the autophagosome and how the membrane nucleates, expands, bends into a spherical shape and finally closes, have proven difficult to address. Nonetheless, owing to recent studies with new approaches and technologies, we have begun to unveil the mechanisms underlying these processes on a molecular level. We now know that autophagosome biogenesis is a highly complex process, in which multiple proteins and lipids from various membrane sources, supported by the formation of membrane contact sites, cooperate with biophysical phenomena, including membrane shaping and liquid-liquid phase separation, to ensure seamless segregation of the autophagic cargo. Together, these studies pave the way to obtaining a holistic view of autophagosome biogenesis.
Collapse
Affiliation(s)
- Hitoshi Nakatogawa
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|
36
|
Stamatakou E, Wróbel L, Hill SM, Puri C, Son SM, Fujimaki M, Zhu Y, Siddiqi F, Fernandez-Estevez M, Manni MM, Park SJ, Villeneuve J, Rubinsztein DC. Mendelian neurodegenerative disease genes involved in autophagy. Cell Discov 2020; 6:24. [PMID: 32377374 PMCID: PMC7198619 DOI: 10.1038/s41421-020-0158-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/11/2020] [Indexed: 12/13/2022] Open
Abstract
The lysosomal degradation pathway of macroautophagy (herein referred to as autophagy) plays a crucial role in cellular physiology by regulating the removal of unwanted cargoes such as protein aggregates and damaged organelles. Over the last five decades, significant progress has been made in understanding the molecular mechanisms that regulate autophagy and its roles in human physiology and diseases. These advances, together with discoveries in human genetics linking autophagy-related gene mutations to specific diseases, provide a better understanding of the mechanisms by which autophagy-dependent pathways can be potentially targeted for treating human diseases. Here, we review mutations that have been identified in genes involved in autophagy and their associations with neurodegenerative diseases.
Collapse
Affiliation(s)
- Eleanna Stamatakou
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Lidia Wróbel
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Sandra Malmgren Hill
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Claudia Puri
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Sung Min Son
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Motoki Fujimaki
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Ye Zhu
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Farah Siddiqi
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Marian Fernandez-Estevez
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Marco M. Manni
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - So Jung Park
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Julien Villeneuve
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - David Chaim Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| |
Collapse
|
37
|
Bozic M, van den Bekerom L, Milne BA, Goodman N, Roberston L, Prescott AR, Macartney TJ, Dawe N, McEwan DG. A conserved ATG2-GABARAP family interaction is critical for phagophore formation. EMBO Rep 2020; 21:e48412. [PMID: 32009292 PMCID: PMC7054675 DOI: 10.15252/embr.201948412] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 12/16/2019] [Accepted: 12/23/2019] [Indexed: 01/08/2023] Open
Abstract
The intracellular trafficking pathway, macroautophagy, is a recycling and disposal service that can be upregulated during periods of stress to maintain cellular homeostasis. An essential phase is the elongation and closure of the phagophore to seal and isolate unwanted cargo prior to lysosomal degradation. Human ATG2A and ATG2B proteins, through their interaction with WIPI proteins, are thought to be key players during phagophore elongation and closure, but little mechanistic detail is known about their function. We have identified a highly conserved motif driving the interaction between human ATG2 and GABARAP proteins that is in close proximity to the ATG2‐WIPI4 interaction site. We show that the ATG2A‐GABARAP interaction mutants are unable to form and close phagophores resulting in blocked autophagy, similar to ATG2A/ATG2B double‐knockout cells. In contrast, the ATG2A‐WIPI4 interaction mutant fully restored phagophore formation and autophagy flux, similar to wild‐type ATG2A. Taken together, we provide new mechanistic insights into the requirements for ATG2 function at the phagophore and suggest that an ATG2‐GABARAP/GABARAP‐L1 interaction is essential for phagophore formation, whereas ATG2‐WIPI4 interaction is dispensable.
Collapse
Affiliation(s)
- Mihaela Bozic
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Dundee, UK.,Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Luuk van den Bekerom
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Dundee, UK.,MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Beth A Milne
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Nicola Goodman
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Dundee, UK.,MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Lisa Roberston
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Alan R Prescott
- Dundee Imaging Facility, School of Life Sciences, University of Dundee, Dundee, UK
| | - Thomas J Macartney
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Nina Dawe
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - David G McEwan
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Dundee, UK.,Cancer Research UK Beatson Institute, Glasgow, UK
| |
Collapse
|
38
|
Van Bergen NJ, Guo Y, Al-Deri N, Lipatova Z, Stanga D, Zhao S, Murtazina R, Gyurkovska V, Pehlivan D, Mitani T, Gezdirici A, Antony J, Collins F, Willis MJH, Coban Akdemir ZH, Liu P, Punetha J, Hunter JV, Jhangiani SN, Fatih JM, Rosenfeld JA, Posey JE, Gibbs RA, Karaca E, Massey S, Ranasinghe TG, Sleiman P, Troedson C, Lupski JR, Sacher M, Segev N, Hakonarson H, Christodoulou J. Deficiencies in vesicular transport mediated by TRAPPC4 are associated with severe syndromic intellectual disability. Brain 2020; 143:112-130. [PMID: 31794024 PMCID: PMC6935753 DOI: 10.1093/brain/awz374] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/20/2019] [Accepted: 10/07/2019] [Indexed: 12/11/2022] Open
Abstract
The conserved transport protein particle (TRAPP) complexes regulate key trafficking events and are required for autophagy. TRAPPC4, like its yeast Trs23 orthologue, is a core component of the TRAPP complexes and one of the essential subunits for guanine nucleotide exchange factor activity for Rab1 GTPase. Pathogenic variants in specific TRAPP subunits are associated with neurological disorders. We undertook exome sequencing in three unrelated families of Caucasian, Turkish and French-Canadian ethnicities with seven affected children that showed features of early-onset seizures, developmental delay, microcephaly, sensorineural deafness, spastic quadriparesis and progressive cortical and cerebellar atrophy in an effort to determine the genetic aetiology underlying neurodevelopmental disorders. All seven affected subjects shared the same identical rare, homozygous, potentially pathogenic variant in a non-canonical, well-conserved splice site within TRAPPC4 (hg19:chr11:g.118890966A>G; TRAPPC4: NM_016146.5; c.454+3A>G). Single nucleotide polymorphism array analysis revealed there was no haplotype shared between the tested Turkish and Caucasian families suggestive of a variant hotspot region rather than a founder effect. In silico analysis predicted the variant to cause aberrant splicing. Consistent with this, experimental evidence showed both a reduction in full-length transcript levels and an increase in levels of a shorter transcript missing exon 3, suggestive of an incompletely penetrant splice defect. TRAPPC4 protein levels were significantly reduced whilst levels of other TRAPP complex subunits remained unaffected. Native polyacrylamide gel electrophoresis and size exclusion chromatography demonstrated a defect in TRAPP complex assembly and/or stability. Intracellular trafficking through the Golgi using the marker protein VSVG-GFP-ts045 demonstrated significantly delayed entry into and exit from the Golgi in fibroblasts derived from one of the affected subjects. Lentiviral expression of wild-type TRAPPC4 in these fibroblasts restored trafficking, suggesting that the trafficking defect was due to reduced TRAPPC4 levels. Consistent with the recent association of the TRAPP complex with autophagy, we found that the fibroblasts had a basal autophagy defect and a delay in autophagic flux, possibly due to unsealed autophagosomes. These results were validated using a yeast trs23 temperature sensitive variant that exhibits constitutive and stress-induced autophagic defects at permissive temperature and a secretory defect at restrictive temperature. In summary we provide strong evidence for pathogenicity of this variant in a member of the core TRAPP subunit, TRAPPC4 that associates with vesicular trafficking and autophagy defects. This is the first report of a TRAPPC4 variant, and our findings add to the growing number of TRAPP-associated neurological disorders.
Collapse
Affiliation(s)
- Nicole J Van Bergen
- Brain and Mitochondrial Research Group, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Yiran Guo
- Center for Applied Genomics (CAG) at the Children’s Hospital of Philadelphia (CHOP), Philadelphia, USA
| | - Noraldin Al-Deri
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Zhanna Lipatova
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Daniela Stanga
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Sarah Zhao
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Rakhilya Murtazina
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Valeriya Gyurkovska
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Alper Gezdirici
- Department of Medical Genetics, Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, 34303, Turkey
| | - Jayne Antony
- TY Nelson Department of Neurology and Neurosurgery, Children’s Hospital at Westmead, Sydney, Australia
| | - Felicity Collins
- Western Sydney Genetics Program, Children’s Hospital at Westmead, Sydney, Australia
- Medical Genomics Department, Royal Prince Alfred Hospital, Sydney, Australia
| | - Mary J H Willis
- Department of Pediatrics, Naval Medical Center San Diego, San Diego, California, USA
| | - Zeynep H Coban Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Jaya Punetha
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Jill V Hunter
- Department of Radiology, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Jawid M Fatih
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Ender Karaca
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sean Massey
- Brain and Mitochondrial Research Group, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, Australia
| | - Thisara G Ranasinghe
- Brain and Mitochondrial Research Group, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, Australia
| | - Patrick Sleiman
- Center for Applied Genomics (CAG) at the Children’s Hospital of Philadelphia (CHOP), Philadelphia, USA
| | - Chris Troedson
- TY Nelson Department of Neurology and Neurosurgery, Children’s Hospital at Westmead, Sydney, Australia
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Texas Children’s Hospital, Houston, Texas, 77030, USA
| | - Michael Sacher
- Department of Biology, Concordia University, Montreal, Quebec, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Nava Segev
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Hakon Hakonarson
- Center for Applied Genomics (CAG) at the Children’s Hospital of Philadelphia (CHOP), Philadelphia, USA
| | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Victorian Clinical Genetics Services, Royal Children’s Hospital, VIC, Australia
- Kids Research, The Children’s Hospital at Westmead, Sydney, NSW, Australia
| |
Collapse
|
39
|
Pinar M, Arias-Palomo E, de los Ríos V, Arst HN, Peñalva MA. Characterization of Aspergillus nidulans TRAPPs uncovers unprecedented similarities between fungi and metazoans and reveals the modular assembly of TRAPPII. PLoS Genet 2019; 15:e1008557. [PMID: 31869332 PMCID: PMC6946167 DOI: 10.1371/journal.pgen.1008557] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/07/2020] [Accepted: 12/06/2019] [Indexed: 12/22/2022] Open
Abstract
TRAnsport Protein Particle complexes (TRAPPs) are ubiquitous regulators of membrane traffic mediating nucleotide exchange on the Golgi regulatory GTPases RAB1 and RAB11. In S. cerevisiae and metazoans TRAPPs consist of two large oligomeric complexes: RAB11-activating TRAPPII and RAB1-activating TRAPPIII. These share a common core TRAPPI hetero-heptamer, absent in metazoans but detected in minor proportions in yeast, likely originating from in vitro-destabilized TRAPPII/III. Despite overall TRAPP conservation, the budding yeast genome has undergone extensive loss of genes, and lacks homologues of some metazoan TRAPP subunits. With nearly twice the total number of genes of S. cerevisiae, another ascomycete Aspergillus nidulans has also been used for studies on TRAPPs. We combined size-fractionation chromatography with single-step purification coupled to mass-spectrometry and negative-stain electron microscopy to establish the relative abundance, composition and architecture of Aspergillus TRAPPs, which consist of TRAPPII and TRAPPIII in a 2:1 proportion, plus a minor amount of TRAPPI. We show that Aspergillus TRAPPIII contains homologues of metazoan TRAPPC11, TRAPPC12 and TRAPPC13 subunits, absent in S. cerevisiae, and establish that these subunits are recruited to the complex by Tca17/TRAPPC2L, which itself binds to the ‘Trs33 side’ of the complex. Thus Aspergillus TRAPPs compositionally resemble mammalian TRAPPs to a greater extent than those in budding yeast. Exploiting the ability of constitutively-active (GEF-independent, due to accelerated GDP release) RAB1* and RAB11* alleles to rescue viability of null mutants lacking essential TRAPP subunits, we establish that the only essential role of TRAPPs is activating RAB1 and RAB11, and genetically classify each essential subunit according to their role(s) in TRAPPII (TRAPPII-specific subunits) or TRAPPII and TRAPPIII (core TRAPP subunits). Constitutively-active RAB mutant combinations allowed examination of TRAPP composition in mutants lacking essential subunits, which led to the discovery of a stable Trs120/Trs130/Trs65/Tca17 TRAPPII-specific subcomplex whose Trs20- and Trs33-dependent assembly onto core TRAPP generates TRAPPII. TRAPPs govern intracellular traffic across eukaryotes, activating the Golgi GTPases RAB1 and RAB11. Other genetically tractable fungi are emerging as alternatives to baker’s yeast for cell-biological studies. We exploit Aspergillus nidulans, a filamentous ascomycete that has a lifestyle highly demanding for exocytosis and, that unlike baker’s yeast, has not undergone extensive gene loss. We show that fungal and metazoan TRAPPs are more similar than previously thought, after identifying three A. nidulans subunits previously believed exclusive to metazoans and demonstrating that TRAPPI is very minor, if it exists at all. Also importantly we classified, using a novel genetic approach, essential TRAPP subunits according to their role in activating RAB1 and/or RAB11, which demonstrated that the only indispensable role for TRAPPs is mediating nucleotide exchange on these GTPases and led to the discovery of a stable four-subunit subcomplex that assembles onto the also stable seven-subunit core to form the TRAPPII holocomplex.
Collapse
Affiliation(s)
- Mario Pinar
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Madrid, Spain
| | - Ernesto Arias-Palomo
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas CSIC, Madrid, Spain
| | - Vivian de los Ríos
- Proteomics Facility, Centro de Investigaciones Biológicas CSIC, Madrid, Spain
| | - Herbert N. Arst
- Section of Microbiology, Imperial College London, London, United Kingdom
| | - Miguel A. Peñalva
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Madrid, Spain
- * E-mail:
| |
Collapse
|
40
|
Heo JM, Harper NJ, Paulo JA, Li M, Xu Q, Coughlin M, Elledge SJ, Harper JW. Integrated proteogenetic analysis reveals the landscape of a mitochondrial-autophagosome synapse during PARK2-dependent mitophagy. SCIENCE ADVANCES 2019; 5:eaay4624. [PMID: 31723608 PMCID: PMC6834391 DOI: 10.1126/sciadv.aay4624] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/16/2019] [Indexed: 05/08/2023]
Abstract
The PINK1 protein kinase activates the PARK2 ubiquitin ligase to promote mitochondrial ubiquitylation and recruitment of ubiquitin-binding mitophagy receptors typified by OPTN and TAX1BP1. Here, we combine proximity biotinylation of OPTN and TAX1BP1 with CRISPR-Cas9-based screens for mitophagic flux to develop a spatial proteogenetic map of PARK2-dependent mitophagy. Proximity labeling of OPTN allowed visualization of a "mitochondrial-autophagosome synapse" upon mitochondrial depolarization. Proximity proteomics of OPTN and TAX1BP1 revealed numerous proteins at the synapse, including both PARK2 substrates and autophagy components. Parallel mitophagic flux screens identified proteins with roles in autophagy, vesicle formation and fusion, as well as PARK2 targets, many of which were also identified via proximity proteomics. One protein identified in both approaches, HK2, promotes assembly of a high-molecular weight complex of PINK1 and phosphorylation of ubiquitin in response to mitochondrial damage. This work provides a resource for understanding the spatial and molecular landscape of PARK2-dependent mitophagy.
Collapse
Affiliation(s)
- Jin-Mi Heo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Nathan J. Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Mamie Li
- Department of Genetics, Harvard Medical School, Howard Hughes Medical Institute; Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Qikai Xu
- Department of Genetics, Harvard Medical School, Howard Hughes Medical Institute; Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Margaret Coughlin
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Stephen J. Elledge
- Department of Genetics, Harvard Medical School, Howard Hughes Medical Institute; Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - J. Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
- Corresponding author.
| |
Collapse
|
41
|
Milev MP, Stanga D, Schänzer A, Nascimento A, Saint-Dic D, Ortez C, Natera-de Benito D, Barrios DG, Colomer J, Badosa C, Jou C, Gallano P, Gonzalez-Quereda L, Töpf A, Johnson K, Straub V, Hahn A, Sacher M, Jimenez-Mallebrera C. Characterization of three TRAPPC11 variants suggests a critical role for the extreme carboxy terminus of the protein. Sci Rep 2019; 9:14036. [PMID: 31575891 PMCID: PMC6773699 DOI: 10.1038/s41598-019-50415-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/11/2019] [Indexed: 12/23/2022] Open
Abstract
TRAPPC11 was identified as a component of the TRAPP III complex that functions in membrane trafficking and autophagy. Variants in TRAPPC11 have been reported to be associated with a broad spectrum of phenotypes but all affected individuals display muscular pathology. Identifying additional variants will further our understanding of the clinical spectrum of phenotypes and will reveal regions of the protein critical for its functions. Here we report three individuals from unrelated families that have bi-allellic TRAPPC11 variants. Subject 1 harbors a compound heterozygous variant (c.1287 + 5G > A and c.3379_3380insT). The former variant results in a partial deletion of the foie gras domain (p.Ala372_Ser429del), while the latter variant results in a frame-shift and extension at the carboxy terminus (p.Asp1127Valfs*47). Subjects 2 and 3 both harbour a homozygous missense variant (c.2938G > A; p.Gly980Arg). Fibroblasts from all three subjects displayed membrane trafficking defects manifested as delayed endoplasmic reticulum (ER)-to-Golgi transport and/or a delay in protein exit from the Golgi. All three individuals also show a defect in glycosylation of an ER-resident glycoprotein. However, only the compound heterozygous subject displayed an autophagic flux defect. Collectively, our characterization of these individuals with bi-allelic TRAPPC11 variants highlights the functional importance of the carboxy-terminal portion of the protein.
Collapse
Affiliation(s)
- Miroslav P Milev
- Concordia University, Department of Biology, Montreal, Quebec, Canada
| | - Daniela Stanga
- Concordia University, Department of Biology, Montreal, Quebec, Canada
| | - Anne Schänzer
- Institute of Neuropathology, Justus Liebig University Giessen, Giessen, Germany
| | - Andrés Nascimento
- Neuromuscular Unit, Neuropaediatrics Department, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Barcelona, Spain.,U705 and U703 Center for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Djenann Saint-Dic
- Concordia University, Department of Biology, Montreal, Quebec, Canada
| | - Carlos Ortez
- Neuromuscular Unit, Neuropaediatrics Department, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Daniel Natera-de Benito
- Neuromuscular Unit, Neuropaediatrics Department, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Desiré González Barrios
- Servicio de Pediatría, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Jaume Colomer
- Neuromuscular Unit, Neuropaediatrics Department, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Carmen Badosa
- Neuromuscular Unit, Neuropaediatrics Department, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Cristina Jou
- U705 and U703 Center for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Pathology Department and Biobank, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Pia Gallano
- U705 and U703 Center for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Servicio de Genética, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Lidia Gonzalez-Quereda
- U705 and U703 Center for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Servicio de Genética, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Ana Töpf
- The John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | - Katherine Johnson
- The John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK.,Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Volker Straub
- The John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | - Andreas Hahn
- Department of Child Neurology, Justus Liebig University Giessen, Giessen, Germany.
| | - Michael Sacher
- Concordia University, Department of Biology, Montreal, Quebec, Canada. .,McGill University, Department of Anatomy and Cell Biology, Montreal, Quebec, Canada.
| | - Cecilia Jimenez-Mallebrera
- Neuromuscular Unit, Neuropaediatrics Department, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Barcelona, Spain. .,U705 and U703 Center for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
42
|
Lystad AH, Simonsen A. Mechanisms and Pathophysiological Roles of the ATG8 Conjugation Machinery. Cells 2019; 8:E973. [PMID: 31450711 PMCID: PMC6769624 DOI: 10.3390/cells8090973] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/18/2022] Open
Abstract
Since their initial discovery around two decades ago, the yeast autophagy-related (Atg)8 protein and its mammalian homologues of the light chain 3 (LC3) and γ-aminobutyric acid receptor associated proteins (GABARAP) families have been key for the tremendous expansion of our knowledge about autophagy, a process in which cytoplasmic material become targeted for lysosomal degradation. These proteins are ubiquitin-like proteins that become directly conjugated to a lipid in the autophagy membrane upon induction of autophagy, thus providing a marker of the pathway, allowing studies of autophagosome biogenesis and maturation. Moreover, the ATG8 proteins function to recruit components of the core autophagy machinery as well as cargo for selective degradation. Importantly, comprehensive structural and biochemical in vitro studies of the machinery required for ATG8 protein lipidation, as well as their genetic manipulation in various model organisms, have provided novel insight into the molecular mechanisms and pathophysiological roles of the mATG8 proteins. Recently, it has become evident that the ATG8 proteins and their conjugation machinery are also involved in intracellular pathways and processes not related to autophagy. This review focuses on the molecular functions of ATG8 proteins and their conjugation machinery in autophagy and other pathways, as well as their links to disease.
Collapse
Affiliation(s)
- Alf Håkon Lystad
- Department of Molecular Medicine, Institute of Basic Medical Sciences and Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 1112 Blindern, 0317 Oslo, Norway.
| | - Anne Simonsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences and Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 1112 Blindern, 0317 Oslo, Norway.
| |
Collapse
|