1
|
Zhao Y, Wang F, Lei X, Li Z, Cao Q, Jiang R, Xu C, Li K. High throughput sequencing reveals alterations in B cell receptor repertoires associated with the progression of hepatic cirrhosis to hepatocellular carcinoma. TUMORI JOURNAL 2024:3008916241290638. [PMID: 39482814 DOI: 10.1177/03008916241290638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is developed as a consequence of chronic liver cirrhosis, and both diseases are difficult to diagnose and differentiate. Accurate noninvasive biomarkers for HCC and liver cirrhosis are urgently needed. METHODS Here we used high-throughput sequencing to characterize the B cell receptor (BCR) repertoires from 36 HCC tumor samples and 10 liver cirrhosis (LC) tissue biopsies to understand the immune alterations during hepatic carcinogenesis. RESULTS The principal components analysis (PCA) showed that the pattern of BCR in HCC was distinct from that in LC. As measured by Clonality and Shannon indexes, the diversity of BCR repertoire was significantly lower in HCC than in LC (P < 0.01). CONCLUSION Our results corroborated that the BCR diversity and composition could be closely correlated with hepatic carcinogenesis. And BCR repertoire may be used to predict the progression of HCC and design targeting immunotherapy in the near future.
Collapse
Affiliation(s)
- Yingying Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University&Shandong provincial Qianfoshan Hospital, Jinan, 250013, China
| | - Fengyan Wang
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University&Shandong provincial Qianfoshan Hospital, Jinan, 250013, China
- Shandong Provincial Key Laboratory of Neuroprotective Drugs, Zibo 255400, China
| | - Xiaofei Lei
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University&Shandong provincial Qianfoshan Hospital, Jinan, 250013, China
| | - Ziqiang Li
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250013, China
| | - Qiwei Cao
- Department of Pathology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Clinical Pathology, Shandong Lung Cancer Institute, Shandong Institute of Nephrology, Jinan, 250013, China
| | - Runze Jiang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250013, China
| | - Changqing Xu
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University&Shandong provincial Qianfoshan Hospital, Jinan, 250013, China
| | - Kun Li
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University&Shandong provincial Qianfoshan Hospital, Jinan, 250013, China
| |
Collapse
|
2
|
Yue M, Li J, Li J, Hu T, Feng S, Cao J, Tang R, Wang P, Zhu F, Han L, Wu J, Cui X, Liu R. Comparative analysis of the immune repertoire between peripheral blood and bone marrow fluids in those infected by EBV and immunodeficiency: A retrospective case study. Medicine (Baltimore) 2024; 103:e39501. [PMID: 39312313 PMCID: PMC11419465 DOI: 10.1097/md.0000000000039501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/08/2024] [Indexed: 09/25/2024] Open
Abstract
High-throughput immune repertoire (IR) sequencing provides direct insight into the diversity of B cell receptor (BCR) and T cell receptor (TCR), with great potential to revolutionize the diagnosis, monitoring, and prevention of immune system-related disorders. In this study, multiplex PCR was applied to amplify the complementarity-determining regions of BCR and TCR, followed by comprehensive analysis by high-throughput sequencing. We compare the TCR (BCR) of bone marrow fluid (BMF) and peripheral blood (PB) samples from 17 patients in the Epstein-Barr and immunodeficiency groups, respectively. Our study shows that the diversity of the IR of blood samples is very similar to that of bone marrow samples statistically. However, the distributions of the monoclonal genes are significantly different in these 2 samples of most patients. This suggests that the BMFs can be replaced by the PB samples in diversity detection of IR to monitor the immune status of the body, while the detection of the BMFs is unreplaceable when the monoclonal change occurs. We used high-throughput sequencing to assess the TCR and BCR of the patients and provide a basis for the clinical analysis of PB and bone marrow samples and selection of disease diagnosis and monitoring methods.
Collapse
Affiliation(s)
- Mei Yue
- Department of Hematology, Children’s Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Juanjuan Li
- Department of Hematology, Children’s Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Junhui Li
- Department of Hematology, Children’s Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Tao Hu
- Department of Hematology, Children’s Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Shunqiao Feng
- Department of Hematology, Children’s Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Jing Cao
- Department of Hematology, Children’s Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Ruihong Tang
- Department of Hematology, Children’s Hospital of Capital Institute of Pediatrics, Beijing, China
| | | | | | - Lu Han
- MyGenostics Inc, Beijing, China
| | - Jian Wu
- MyGenostics Inc, Beijing, China
| | - Xiaodai Cui
- Department of Key Laboratory, Children’s Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Rong Liu
- Department of Hematology, Children’s Hospital of Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
3
|
Byun S, Lee J, Choi YH, Ko H, Lee C, Park JC, Kim SW, Lee H, Sharma A, Kim KS, Rudra D, Kim JK, Im SH. Gut Microbiota Defines Functional Direction of Colonic Regulatory T Cells with Unique TCR Repertoires. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:886-897. [PMID: 39101764 DOI: 10.4049/jimmunol.2300395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 07/03/2024] [Indexed: 08/06/2024]
Abstract
Intestinal microbiota and selected strains of commensal bacteria influence regulatory T (Treg) cell functionality in the colon. Nevertheless, whether and how microbiota changes the transcriptome profile and TCR specificities of colonic Tregs remain to be precisely defined. In this study, we have employed single-cell RNA sequencing and comparatively analyzed colonic Tregs from specific pathogen-free and germ-free (GF) mice. We found that microbiota shifts the activation trajectory of colonic Tregs toward a distinct phenotypic subset enriched in specific pathogen-free but not in GF mice. Moreover, microbiota induced the expansion of specific Treg clonotypes with shared transcriptional specificities. The microbiota-induced subset of colonic Tregs, identified as PD-1- CXCR3+ Tregs, displayed enhanced suppressive capabilities compared with colonic Tregs derived from GF mice, enhanced production of IL-10, and were the primary regulators of enteric inflammation in dextran sodium sulfate-induced colitis. These findings identify a hitherto unknown gut microbiota and immune cell interaction module that could contribute to the development of a therapeutic modality for intestinal inflammatory diseases.
Collapse
Affiliation(s)
- Seohyun Byun
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jusung Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology, Daegu, Republic of Korea
| | - Yoon Ha Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology, Daegu, Republic of Korea
| | - Haeun Ko
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Changhon Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - John Chulhoon Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Seung Won Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Haena Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Amit Sharma
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Kwang Soon Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Dipayan Rudra
- School of Life Science and Technology, ShanghaiTech University; Shanghai, People's Republic of China
| | - Jong Kyoung Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology, Daegu, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, Republic of Korea
| | - Sin-Hyeog Im
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, Republic of Korea
- ImmunoBiome Inc., Pohang, Republic of Korea
| |
Collapse
|
4
|
Tang L, Yao D, He Z, Ye S, Chen X, Huang Y, Han Q, Zeng X, Zheng X, Liu T, Wang Z, Zhao RC, Zheng G, Lu C. Distinct adaptive immune receptor feature of adipose-derived mesenchymal stem cells (AD-MSCs) treatment of psoriasis. Arch Dermatol Res 2024; 316:542. [PMID: 39162818 DOI: 10.1007/s00403-024-03296-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 06/24/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024]
Abstract
Psoriasis (Ps) is one of the most common chronic inflammatory skin disorders with its pathogenesis correlated with dysregulated innate and adaptive system. Even though biological agents have advanced the treatment of psoriasis, however, there are huge limitations, like high adverse reactions and relapse rate. Therefore, it is of great interest in searching clinical resolutions with better safety and efficacy. In the current study, we utilized the adipose-derived mesenchymal stem cell (AD-MSCs) to treat moderate/severe cases of psoriasis in a single-arm clinical study. This AD-MSC treatment has proven to be clinically safe and effective. Interestingly, a trend of adaptome improvement, including increased diversity, elevated uCDR3s and decreased large clone after AD-MSC treatment in a short (2 weeks) and long (12 weeks) terms. In conclusion, allogenic AD-MSC treatment has shown a good safety and efficacy in treating Ps and can effectively improve the compromised adaptive immune system of Ps patients.
Collapse
Affiliation(s)
- Lipeng Tang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510000, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510000, China
- Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510000, China
| | - Danni Yao
- Department of Dermatology, The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510000, China
| | - Ziyang He
- Department of Dermatology, The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510000, China
| | - Shuyan Ye
- Department of Dermatology, The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510000, China
| | - Xinsheng Chen
- Department of Dermatology, The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510000, China
| | - Yu Huang
- Lab of Stem Cell Biology and Innovative Research of Chinese Medicine, National Institute for Stem Cell Clinical Research, The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510000, China
| | - Qin Han
- School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, 100000, China
- Center for Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, Beijing, 100000, China
| | - Xiang Zeng
- Lab of Stem Cell Biology and Innovative Research of Chinese Medicine, National Institute for Stem Cell Clinical Research, The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510000, China
| | - Xirun Zheng
- Department of Pathology, The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510000, China
| | - Taohua Liu
- Department of Pathology, The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510000, China
| | - Zhe Wang
- Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510000, China.
| | - Robert Chunhua Zhao
- School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, 100000, China.
- Center for Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, Beijing, 100000, China.
| | - Guangjuan Zheng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510000, China.
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510000, China.
- Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510000, China.
- Department of Pathology, The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510000, China.
| | - Chuanjian Lu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510000, China.
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510000, China.
- Department of Dermatology, The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510000, China.
| |
Collapse
|
5
|
Lê Quý K, Chernigovskaya M, Stensland M, Singh S, Leem J, Revale S, Yadin DA, Nice FL, Povall C, Minns DH, Galson JD, Nyman TA, Snapkow I, Greiff V. Benchmarking and integrating human B-cell receptor genomic and antibody proteomic profiling. NPJ Syst Biol Appl 2024; 10:73. [PMID: 38997321 PMCID: PMC11245537 DOI: 10.1038/s41540-024-00402-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 07/01/2024] [Indexed: 07/14/2024] Open
Abstract
Immunoglobulins (Ig), which exist either as B-cell receptors (BCR) on the surface of B cells or as antibodies when secreted, play a key role in the recognition and response to antigenic threats. The capability to jointly characterize the BCR and antibody repertoire is crucial for understanding human adaptive immunity. From peripheral blood, bulk BCR sequencing (bulkBCR-seq) currently provides the highest sampling depth, single-cell BCR sequencing (scBCR-seq) allows for paired chain characterization, and antibody peptide sequencing by tandem mass spectrometry (Ab-seq) provides information on the composition of secreted antibodies in the serum. Yet, it has not been benchmarked to what extent the datasets generated by these three technologies overlap and complement each other. To address this question, we isolated peripheral blood B cells from healthy human donors and sequenced BCRs at bulk and single-cell levels, in addition to utilizing publicly available sequencing data. Integrated analysis was performed on these datasets, resolved by replicates and across individuals. Simultaneously, serum antibodies were isolated, digested with multiple proteases, and analyzed with Ab-seq. Systems immunology analysis showed high concordance in repertoire features between bulk and scBCR-seq within individuals, especially when replicates were utilized. In addition, Ab-seq identified clonotype-specific peptides using both bulk and scBCR-seq library references, demonstrating the feasibility of combining scBCR-seq and Ab-seq for reconstructing paired-chain Ig sequences from the serum antibody repertoire. Collectively, our work serves as a proof-of-principle for combining bulk sequencing, single-cell sequencing, and mass spectrometry as complementary methods towards capturing humoral immunity in its entirety.
Collapse
Grants
- The Leona M. and Harry B. Helmsley Charitable Trust (#2019PG-T1D011, to VG), UiO World-Leading Research Community (to VG), UiO: LifeScience Convergence Environment Immunolingo (to VG), EU Horizon 2020 iReceptorplus (#825821) (to VG), a Norwegian Cancer Society Grant (#215817, to VG), Research Council of Norway projects (#300740, (#311341, #331890 to VG), a Research Council of Norway IKTPLUSS project (#311341, to VG). This project has received funding from the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement No 101007799 (Inno4Vac). This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation programme and EFPIA (to VG).
- Mass spectrometry-based proteomic analyses were performed by the Proteomics Core Facility, Department of Immunology, University of Oslo/Oslo University Hospital, which is supported by the Core Facilities program of the South-Eastern Norway Regional Health Authority. This core facility is also a member of the National Network of Advanced Proteomics Infrastructure (NAPI), which is funded by the Research Council of Norway INFRASTRUKTUR-program (project number: 295910).
Collapse
Affiliation(s)
- Khang Lê Quý
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Maria Chernigovskaya
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Maria Stensland
- Proteomics Core Facility, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Sachin Singh
- Proteomics Core Facility, University of Oslo and Oslo University Hospital, Oslo, Norway
| | | | | | | | | | | | | | | | - Tuula A Nyman
- Proteomics Core Facility, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Igor Snapkow
- Department of Chemical Toxicology, Norwegian Institute of Public Health, Oslo, Norway
| | - Victor Greiff
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
6
|
Fang Y, Shen B, Dai Q, Xie Q, Li X, Wu W, Wang M. Composition and diversity analysis of the TCR CDR3 repertoire in patients with idiopathic orbital inflammation using high-throughput sequencing. BMC Ophthalmol 2023; 23:491. [PMID: 38044453 PMCID: PMC10694961 DOI: 10.1186/s12886-023-03248-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023] Open
Abstract
BACKGROUND Idiopathic orbital inflammation (IOI) is a nonspecific orbital inflammatory disease with the third highest prevalence among orbital diseases, and its pathogenesis is associated with T-cell-mediated immune responses. This study aimed to investigate the differences in T-cell receptor (TCR) expression between IOI patients and healthy subjects by high-throughput sequencing and to characterize TCR expression in patients with IOI and with respect to glucocorticoid response. METHODS A total of 19 subjects were enrolled in this study and were divided into the idiopathic orbital inflammation group (IOI group, n = 13) and the healthy control group (HC group, n = 6), and within the IOI group were further divided into the glucocorticoid therapy sensitive group (IOI(EF) group, n = 6) and the glucocorticoid therapy ineffective group (IOI(IN) group, n = 7) based on the degree of effectiveness to glucocorticoid therapy. High-throughput TCR sequencing was performed on peripheral blood mononuclear cells of IOI patients and healthy control individuals using 5' RACE technology combined with Unique Identifier (UID) digital tag correction technology. The TCR CDR3 region diversity, sharing patterns, and differential sequences between the IOI and HC groups, and between the IOI(EF) and IOI(IN) groups were analyzed. RESULTS It was found that the diversity of TCR CDR3 in the IOI group was significantly lower than that in the HC group, and the frequency of V gene use was significantly different between groups. The diversity of TCR CDR3 in patients in the IOI(EF) group was significantly lower than that in patients in the IOI(IN) group, and the frequency of V and J gene use was significantly different between the IOI(EF) group and the IOI(IN) group. Additionally, we found 133 nucleotide sequences shared in all IOI samples and screened two sequences with higher expression from them. CONCLUSIONS Our results suggested that abnormal clonal expansion of specific T-cells exists in IOI patients and that TCR diversity may had an impact on the prognosis of glucocorticoid-treated IOI. This study may contribute to a better understanding of the immune status of IOI and provide new insights for T-cell -associated IOI pathogenesis, diagnosis and treatment prediction.
Collapse
Affiliation(s)
- Yenan Fang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Department of Ophthalmology, Children's Hospital of Fudan University, National Children's Medical Center, No. 399 Wanyuan Road, Shanghai, 201102, China
| | - Bingyan Shen
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qin Dai
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qiqi Xie
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xinyu Li
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Wencan Wu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Min Wang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
7
|
Zhang J, Liu Z, Wang G, Yang X, Sui W, Guo H, Hou X. The dynamic TRβ/IGH CDR3 repertoire features in patients with liver transplantation. Transpl Immunol 2023; 81:101929. [PMID: 37683736 DOI: 10.1016/j.trim.2023.101929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
OBJECTIVE At present, little is known about the immune mechanism of liver transplantation caused by decompensated cirrhosis. Lymphocytes play an essential important role in the immune rejection of liver transplantation. In this study, we aimed to comprehensively analyze changes in complementary determinant 3 (CDR3) repertoire of T cell receptor β chain (TRβ) and immunoglobulin heavy chain (IGH) in liver transplantation patients and healthy controls (HC). METHODS High-throughput sequencing technology was used to study the characteristics of TRβ/IGH CDR3 repertoire, and identify the amino acid sequences of TRβ and IGH associated with liver transplantation patients and HC. RESULTS We found that some TRβ and IGH CDR3 repertoire characteristics differed between liver transplant patients and HC. The diversity of TRβ CDR3 increased in the liver transplantation group. First and seven days after live transplantation patients showed a lower degree of T cell clone amplification compared to the HC group. The CDR3 repertoire of the TRβ/IGH chain was certainly biased in the use of some V, D, and J gene segments, TRβ/IGH V-J combined frequency was also skewed and TRβ CDR3 clonotypes were shared at a higher degree in the liver transplantation patients. Importantly, one amino acid sequence in the decompensated cirrhosis group was significantly higher than that in the healthy group. It should be noted that the frequency of some CDR3 sequences is closely correlated with the different stages of liver transplantation, and these sequences may play a key role in liver transplantation. CONCLUSION Based on the above results, we can better understand the dynamic changes of TCβ/IGH CDR3 repertoire in patients during liver transplantation.
Collapse
Affiliation(s)
- Junning Zhang
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China
| | - Zhenyu Liu
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China
| | - Guangyu Wang
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China
| | - Xueli Yang
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China
| | - Weiguo Sui
- Guangxi Key Laboratory of Metabolic Diseases Research, Guilin No.924 Hospital, Guilin, Guangxi 541002, PR China
| | - Haonan Guo
- Department of Clinical Laboratory, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, China.
| | - Xianliang Hou
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China.
| |
Collapse
|
8
|
Elster C, Ommer-Bläsius M, Lang A, Vajen T, Pfeiler S, Feige M, Yau Pang T, Böttenberg M, Verheyen S, Lê Quý K, Chernigovskaya M, Kelm M, Winkels H, Schmidt SV, Greiff V, Gerdes N. Application and challenges of TCR and BCR sequencing to investigate T- and B-cell clonality in elastase-induced experimental murine abdominal aortic aneurysm. Front Cardiovasc Med 2023; 10:1221620. [PMID: 38034381 PMCID: PMC10686233 DOI: 10.3389/fcvm.2023.1221620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023] Open
Abstract
Background An abdominal aortic aneurysm (AAA) is a life-threatening cardiovascular disease. Although its pathogenesis is still poorly understood, recent evidence suggests that AAA displays autoimmune disease characteristics. Particularly, T cells responding to AAA-related antigens in the aortic wall may contribute to an initial immune response. Single-cell RNA (scRNA) T cell receptor (TCR) and B cell receptor (BCR) sequencing is a powerful tool for investigating clonality. However, difficulties such as limited numbers of isolated cells must be considered during implementation and data analysis, making biological interpretation challenging. Here, we perform a representative single-cell immune repertoire analysis in experimental murine AAA and show a reliable bioinformatic processing pipeline highlighting opportunities and limitations of this approach. Methods We performed scRNA TCR and BCR sequencing of isolated lymphocytes from the infrarenal aorta of male C57BL/6J mice 3, 7, 14, and 28 days after AAA induction via elastase perfusion of the aorta. Sham-operated mice at days 3 and 28 and non-operated mice served as controls. Results Comparison of complementarity-determining region (CDR3) length distribution of 179 B cells and 796 T cells revealed neither differences between AAA and control nor between the disease stages. We found no clonal expansion of B cells in AAA. For T cells, we identified several clones in 11 of 16 AAA samples and one of eight control samples. Immune receptor repertoire comparison indicated that only a few clones were shared between the individual AAA samples. The most frequently used V-genes in the TCR beta chain in AAA were TRBV3, TRBV19, and the splicing variant TRBV12-2 + TRBV13-2. Conclusion We found no clonal expansion of B cells but evidence for clonal expansion of T cells in elastase-induced AAA in mice. Our findings imply that a more precise characterization of TCR and BCR distribution requires a more extensive number of lymphocytes to prevent undersampling and potentially detect rare clones. Thus, further experiments are necessary to confirm our findings. In summary, this paper examines TCR and BCR sequencing results, identifies limitations and pitfalls, and offers guidance for future studies.
Collapse
Affiliation(s)
- Christin Elster
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Miriam Ommer-Bläsius
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Alexander Lang
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Tanja Vajen
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Susanne Pfeiler
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Milena Feige
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Tin Yau Pang
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
- Department of Biology, Institute for Computer Science, Heinrich Heine University, Düsseldorf, Germany
| | - Marius Böttenberg
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Sarah Verheyen
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Khang Lê Quý
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Maria Chernigovskaya
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Malte Kelm
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Holger Winkels
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Susanne V. Schmidt
- Institute of Innate Immunity, Medical Faculty and University Hospital, Rheinische Friedrich-Wilhelms-University, Bonn, Germany
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Victor Greiff
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Norbert Gerdes
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
9
|
Baysoy A, Bai Z, Satija R, Fan R. The technological landscape and applications of single-cell multi-omics. Nat Rev Mol Cell Biol 2023; 24:695-713. [PMID: 37280296 PMCID: PMC10242609 DOI: 10.1038/s41580-023-00615-w] [Citation(s) in RCA: 180] [Impact Index Per Article: 180.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 06/08/2023]
Abstract
Single-cell multi-omics technologies and methods characterize cell states and activities by simultaneously integrating various single-modality omics methods that profile the transcriptome, genome, epigenome, epitranscriptome, proteome, metabolome and other (emerging) omics. Collectively, these methods are revolutionizing molecular cell biology research. In this comprehensive Review, we discuss established multi-omics technologies as well as cutting-edge and state-of-the-art methods in the field. We discuss how multi-omics technologies have been adapted and improved over the past decade using a framework characterized by optimization of throughput and resolution, modality integration, uniqueness and accuracy, and we also discuss multi-omics limitations. We highlight the impact that single-cell multi-omics technologies have had in cell lineage tracing, tissue-specific and cell-specific atlas production, tumour immunology and cancer genetics, and in mapping of cellular spatial information in fundamental and translational research. Finally, we discuss bioinformatics tools that have been developed to link different omics modalities and elucidate functionality through the use of better mathematical modelling and computational methods.
Collapse
Affiliation(s)
- Alev Baysoy
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Zhiliang Bai
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Rahul Satija
- New York Genome Center, New York, NY, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
- Yale Stem Cell Center and Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA.
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
10
|
Mueller A, Zhao Y, Cicek H, Paust HJ, Sivayoganathan A, Linke A, Wegscheid C, Wiech T, Huber TB, Meyer-Schwesinger C, Bonn S, Prinz I, Panzer U, Tiegs G, Krebs CF, Neumann K. Transcriptional and Clonal Characterization of Cytotoxic T Cells in Crescentic Glomerulonephritis. J Am Soc Nephrol 2023; 34:1003-1018. [PMID: 36913357 PMCID: PMC10278817 DOI: 10.1681/asn.0000000000000116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/16/2023] [Indexed: 03/14/2023] Open
Abstract
SIGNIFICANCE STATEMENT T-cell infiltration is a hallmark of crescentic GN (cGN), often caused by ANCA-associated vasculitis. Pathogenic T-cell subsets, their clonality, and downstream effector mechanisms leading to kidney injury remain to be fully elucidated. Single-cell RNA sequencing and T-cell receptor sequencing revealed activated, clonally expanded cytotoxic CD4 + and CD8 + T cells in kidneys from patients with ANCA-associated cGN. In experimental cGN, kidney-infiltrating CD8 + T cells expressed the cytotoxic molecule, granzyme B (GzmB), which induced apoptosis in renal tissue cells by activation of procaspase-3, and aggravated disease pathology. These findings describe a pathogenic function of (clonally expanded) cytotoxic T cells in cGN and identify GzmB as a mediator and potential therapeutic target in immune-mediated kidney disease. BACKGROUND Crescentic GN (cGN) is an aggressive form of immune-mediated kidney disease that is an important cause of end stage renal failure. Antineutrophilic cytoplasmic antibody (ANCA)-associated vasculitis is a common cause. T cells infiltrate the kidney in cGN, but their precise role in autoimmunity is not known. METHODS Combined single-cell RNA sequencing and single-cell T-cell receptor sequencing were conducted on CD3 + T cells isolated from renal biopsies and blood of patients with ANCA-associated cGN and from kidneys of mice with experimental cGN. Functional and histopathological analyses were performed with Cd8a-/- and GzmB-/- mice. RESULTS Single-cell analyses identified activated, clonally expanded CD8 + and CD4 + T cells with a cytotoxic gene expression profile in the kidneys of patients with ANCA-associated cGN. Clonally expanded CD8 + T cells expressed the cytotoxic molecule, granzyme B (GzmB), in the mouse model of cGN. Deficiency of CD8 + T cells or GzmB ameliorated the course of cGN. CD8 + T cells promoted macrophage infiltration and GzmB activated procaspase-3 in renal tissue cells, thereby increasing kidney injury. CONCLUSIONS Clonally expanded cytotoxic T cells have a pathogenic function in immune-mediated kidney disease.
Collapse
Affiliation(s)
- Anne Mueller
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yu Zhao
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- bAIome–Center for Biomedical AI, Center for Molecular Neurobiology Hamburg (ZMNH), Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hakan Cicek
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Joachim Paust
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Amirrtavarshni Sivayoganathan
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexandra Linke
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Wegscheid
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Wiech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B. Huber
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Catherine Meyer-Schwesinger
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Bonn
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- bAIome–Center for Biomedical AI, Center for Molecular Neurobiology Hamburg (ZMNH), Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Immo Prinz
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Systems Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulf Panzer
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gisa Tiegs
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian F. Krebs
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katrin Neumann
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
11
|
Xiao C, Ren Z, Zhang B, Mao L, Zhu G, Gao L, Su J, Ye J, Long Z, Zhu Y, Chen P, Su X, Zhou T, Huang Y, Chen X, Xie C, Yuan J, Hu Y, Zheng J, Wang Z, Lou J, Yang X, Kuang Z, Zhang H, Wang P, Liang X, Luo OJ, Chen G. Insufficient epitope-specific T cell clones are responsible for impaired cellular immunity to inactivated SARS-CoV-2 vaccine in older adults. NATURE AGING 2023; 3:418-435. [PMID: 37117789 PMCID: PMC10154213 DOI: 10.1038/s43587-023-00379-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 02/03/2023] [Indexed: 04/30/2023]
Abstract
Aging is a critical risk factor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine efficacy. The immune responses to inactivated vaccine for older adults, and the underlying mechanisms of potential differences to young adults, are still unclear. Here we show that neutralizing antibody production by older adults took a longer time to reach similar levels in young adults after inactivated SARS-CoV-2 vaccination. We screened SARS-CoV-2 variant strains for epitopes that stimulate specific CD8 T cell response, and older adults exhibited weaker CD8 T-cell-mediated responses to these epitopes. Comparison of lymphocyte transcriptomes from pre-vaccinated and post-vaccinated donors suggested that the older adults had impaired antigen processing and presentation capability. Single-cell sequencing revealed that older adults had less T cell clone expansion specific to SARS-CoV-2, likely due to inadequate immune receptor repertoire size and diversity. Our study provides mechanistic insights for weaker response to inactivated vaccine by older adults and suggests the need for further vaccination optimization for the old population.
Collapse
Affiliation(s)
- Chanchan Xiao
- Department of Microbiology and Immunology; Institute of Geriatric Immunology; School of Medicine, Jinan University, Guangzhou, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China
- Guangzhou Laboratory, Guangzhou, China
| | - Zhiyao Ren
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, China
- Guangzhou Geriatric Hospital, Guangzhou, China
- NHC Key Laboratory of Male Reproduction and Genetics, Guangzhou, China
- Department of Central Laboratory, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China
| | - Bei Zhang
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, China
| | - Lipeng Mao
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, China
| | - Guodong Zhu
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China
- Guangzhou Geriatric Hospital, Guangzhou, China
| | - Lijuan Gao
- Department of Microbiology and Immunology; Institute of Geriatric Immunology; School of Medicine, Jinan University, Guangzhou, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China
| | - Jun Su
- Affiliated Huaqiao Hospital, Jinan University, Guangzhou, China
| | - Jiezhou Ye
- Department of Microbiology and Immunology; Institute of Geriatric Immunology; School of Medicine, Jinan University, Guangzhou, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China
| | - Ze Long
- Department of Microbiology and Immunology; Institute of Geriatric Immunology; School of Medicine, Jinan University, Guangzhou, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China
| | - Yue Zhu
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, China
| | - Pengfei Chen
- Department of Microbiology and Immunology; Institute of Geriatric Immunology; School of Medicine, Jinan University, Guangzhou, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China
| | - Xiangmeng Su
- Department of Microbiology and Immunology; Institute of Geriatric Immunology; School of Medicine, Jinan University, Guangzhou, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China
| | - Tong Zhou
- Department of Microbiology and Immunology; Institute of Geriatric Immunology; School of Medicine, Jinan University, Guangzhou, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China
| | - Yanhao Huang
- Department of Microbiology and Immunology; Institute of Geriatric Immunology; School of Medicine, Jinan University, Guangzhou, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China
| | - Xiongfei Chen
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Chaojun Xie
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Jun Yuan
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Yutian Hu
- Meng Yi Center Limited, Macau, China
| | - Jingshan Zheng
- Shenzhen Kangtai Biological Products Co. Ltd, Shenzhen, China
| | - Zhigang Wang
- Affiliated Huaqiao Hospital, Jinan University, Guangzhou, China
| | | | - Xiang Yang
- Leidebio Bioscience Co., Ltd., Guangzhou, China
| | - Zhiqiang Kuang
- Affiliated Huaqiao Hospital, Jinan University, Guangzhou, China
| | - Hongyi Zhang
- Department of Microbiology and Immunology; Institute of Geriatric Immunology; School of Medicine, Jinan University, Guangzhou, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China
| | - Pengcheng Wang
- Department of Microbiology and Immunology; Institute of Geriatric Immunology; School of Medicine, Jinan University, Guangzhou, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China.
| | - Xiaofeng Liang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China.
| | - Oscar Junhong Luo
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China.
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, China.
| | - Guobing Chen
- Department of Microbiology and Immunology; Institute of Geriatric Immunology; School of Medicine, Jinan University, Guangzhou, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China.
- Guangzhou Laboratory, Guangzhou, China.
- Affiliated Huaqiao Hospital, Jinan University, Guangzhou, China.
| |
Collapse
|
12
|
Ide H, Aoshi T, Saito M, Espulgar WV, Briones JC, Hosokawa M, Matsunaga H, Arikawa K, Takeyama H, Koyama S, Takamatsu H, Tamiya E. Linking antigen specific T-cell dynamics in a microfluidic chip to single cell transcription patterns. Biochem Biophys Res Commun 2023; 657:8-15. [PMID: 36963175 DOI: 10.1016/j.bbrc.2023.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
A new non-invasive screening profile has been realized that can aid in determining T-cell activation state at single-cell level. Production of activated T-cells with good specificity and stable proliferation is greatly beneficial for advancing adoptive immunotherapy as innate immunological cells are not effective in recognizing and eliminating cancer as expected. The screening method is realized by relating intracellular Ca2+ intensity and motility of T-cells interacting with APC (Antigen Presenting Cells) in a microfluidic chip. The system is tested using APC pulsed with OVA257-264 peptide and its modified affinities (N4, Q4, T4 and V4), and the T-cells from OT-1 mice. In addition, single cell RNA sequencing reveals the activation states of the cells and the clusters from the derived profiles can be indicative of the T-cell activation state. The presented system here can be versatile for a comprehensive application to proceed with T-cell-based immunotherapy and screen the antigen-specific T-cells with excellent efficiency and high proliferation.
Collapse
Affiliation(s)
- Hiroki Ide
- Graduate School of Engineering Osaka Univ, Japan; PhotoBIO Lab, AIST-Osaka Univ, Japan
| | - Taiki Aoshi
- Research Institute for Microbial Diseases, Osaka Univ, Japan
| | - Masato Saito
- PhotoBIO Lab, AIST-Osaka Univ, Japan; Life and Medical Photonics Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan.
| | | | - Jonathan Campos Briones
- Life and Medical Photonics Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Masahito Hosokawa
- Department of Life Science and Medical Bioscience, Waseda Univ, Japan; CBBD-OIL, AIST-Waseda Univ, Japan; Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda Univ, Japan; Research Organization for Nano and Life Innovation, Waseda Univ, Japan
| | - Hiroko Matsunaga
- Research Organization for Nano and Life Innovation, Waseda Univ, Japan
| | - Koji Arikawa
- Research Organization for Nano and Life Innovation, Waseda Univ, Japan
| | - Haruko Takeyama
- Department of Life Science and Medical Bioscience, Waseda Univ, Japan; CBBD-OIL, AIST-Waseda Univ, Japan; Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda Univ, Japan; Research Organization for Nano and Life Innovation, Waseda Univ, Japan
| | | | | | - Eiichi Tamiya
- PhotoBIO Lab, AIST-Osaka Univ, Japan; Institute of Scientific and Industrial Research, Osaka University, Japan
| |
Collapse
|
13
|
Sun K, Zhang Z, Wang D, Huang Y, Zhang J, Lian C. B cell-related tertiary lymphoid structure may exert inhibitory effects on lung adenocarcinoma and SARS-COV-2. Heliyon 2023; 9:e14334. [PMID: 36942234 PMCID: PMC10008815 DOI: 10.1016/j.heliyon.2023.e14334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/14/2023] Open
Abstract
Background The prognosis of lung adenocarcinoma (LUAD) is poor. Infection with coronavirus disease 2019 (COVID-19) may further worsen the outcome of LUAD. This study utilized the immune model and the COVID-19 receptor signal to identify the potential immune structure affecting the prognosis of COVID-19 and LUAD. Methods A prognostic model was established and verified. The correlation between immune cells and risk score was examined through a variety of immune calculation methods. Gene set variation analysis (GSVA) was used to explore the correlation between the immune signaling pathway, risk model, COVID-19 binding receptor (CO19ORS) signal, and different clinicopathological factors. Results The analysis showed that the prognosis of patients was better in the low-risk group versus the high-risk group. The tertiary lymphoid structure dominated by T and B cells (TLS1) can improve the prognosis of patients in the low-risk group. Interestingly, the CO19ORS was enriched only in females and aged >65 years. The age group >65 years is closely related to the tertiary lymphatic structure of the newborn (TLS2), while the female sex is closely related to the TLS2 and TLS1 signature. The two groups exhibited a high level of inflammation-related signal distribution. In the near future, I will collect LUAD and COVID-19 related organizations to verify the changes of 8 risk protein. Conclusion TLS1 structure may improve the prognosis of patients with LUAD and SARS-COV-2 (Severe acute respiratory syndrome coronavirus 2). This unexpected discovery provides new insight into the comprehensive treatment of patients with LUAD and SARS-COV-2.
Collapse
Affiliation(s)
- Kang Sun
- Research Center of Clinical Laboratory Science, Bengbu Medical College, Bengbu, 233030, China
| | - Zhiqiang Zhang
- Research Center of Clinical Laboratory Science, Bengbu Medical College, Bengbu, 233030, China
| | - Dongqin Wang
- Research Center of Clinical Laboratory Science, Bengbu Medical College, Bengbu, 233030, China
| | - Yinlong Huang
- Department of Genetics, School of Life Sciences, Bengbu Medical College, Bengbu, 233030, China
| | - Jing Zhang
- Department of Genetics, School of Life Sciences, Bengbu Medical College, Bengbu, 233030, China
| | - Chaoqun Lian
- Research Center of Clinical Laboratory Science, Bengbu Medical College, Bengbu, 233030, China
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, 233030, China
| |
Collapse
|
14
|
The Role of Pericytes in Regulation of Innate and Adaptive Immunity. Biomedicines 2023; 11:biomedicines11020600. [PMID: 36831136 PMCID: PMC9953719 DOI: 10.3390/biomedicines11020600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/03/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Pericytes are perivascular multipotent cells wrapping microvascular capillaries, where they support vasculature functioning, participate in tissue regeneration, and regulate blood flow. However, recent evidence suggests that in addition to traditionally credited structural function, pericytes also manifest immune properties. In this review, we summarise recent data regarding pericytes' response to different pro-inflammatory stimuli and their involvement in innate immune responses through expression of pattern-recognition receptors. Moreover, pericytes express various adhesion molecules, thus regulating trafficking of immune cells across vessel walls. Additionally, the role of pericytes in modulation of adaptive immunity is discussed. Finally, recent reports have suggested that the interaction with cancer cells evokes immunosuppression function in pericytes, thus facilitating immune evasion and facilitating cancer proliferation and metastasis. However, such complex and multi-faceted cross-talks of pericytes with immune cells also suggest a number of potential pericyte-based therapeutic methods and techniques for cancer immunotherapy and treatment of autoimmune and auto-inflammatory disorders.
Collapse
|
15
|
Zou J, Li B, Li D, Bao HF, She CH, Ye JF, Cai JF, Guan JL. Comprehensive analysis of T-cell receptor repertoires reveals antigen-driven T-cell clusters in patients with Behçet's syndrome. Eur J Immunol 2023; 53:e2250181. [PMID: 36747316 DOI: 10.1002/eji.202250181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/23/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023]
Abstract
T lymphocytes are the major components of adaptive immunity in Behçet's syndrome (BS) pathology. However, the precise mechanism of T-cell-induced inflammatory condition remains to be determined. We applied bulk sequencing of the T-cell receptor (TCR) β chain in peripheral blood samples from 45 patients with BS and 10 healthy donors as controls. TCR repertoires in BS patients displayed more clonality and less diversity than in healthy donors. Male patients exhibited lower diversity metrics of TCR and had a larger proportion in the top 10 clones than females (p = 0.016). There were no TCR clonality differences in other clinical features, such as age, disease duration, organ involvement, disease severity, and activity. By "Grouping of Lymphocyte Interactions by Paratope Hotspots" (GLIPH2) for antigen prediction, we found distinct 2477 clusters of TCR-β sequences that potentially recognize similar antigens shared between BS patients. We observed clonal T-cell expansion in BS patients. Sexual differences in TCR clonal expansion and public TCR groups deserve further study to reveal the underline T-cell-mediated immunity in BS.
Collapse
Affiliation(s)
- Jun Zou
- Division of Rheumatology and Immunology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Bin Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University, Shanghai, China
| | - Dan Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University, Shanghai, China
| | - Hua-Fang Bao
- Division of Rheumatology and Immunology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Chun-Hui She
- Division of Rheumatology and Immunology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Jing-Fen Ye
- Division of Rheumatology and Immunology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Jian-Fei Cai
- Division of Rheumatology and Immunology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Jian-Long Guan
- Division of Rheumatology and Immunology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
16
|
Ruiz Ortega M, Spisak N, Mora T, Walczak AM. Modeling and predicting the overlap of B- and T-cell receptor repertoires in healthy and SARS-CoV-2 infected individuals. PLoS Genet 2023; 19:e1010652. [PMID: 36827454 PMCID: PMC10075420 DOI: 10.1371/journal.pgen.1010652] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/05/2023] [Accepted: 02/02/2023] [Indexed: 02/26/2023] Open
Abstract
Adaptive immunity's success relies on the extraordinary diversity of protein receptors on B and T cell membranes. Despite this diversity, the existence of public receptors shared by many individuals gives hope for developing population-wide vaccines and therapeutics. Using probabilistic modeling, we show many of these public receptors are shared by chance in healthy individuals. This predictable overlap is driven not only by biases in the random generation process of receptors, as previously reported, but also by their common functional selection. However, the model underestimates sharing between repertoires of individuals infected with SARS-CoV-2, suggesting strong specific antigen-driven convergent selection. We exploit this discrepancy to identify COVID-associated receptors, which we validate against datasets of receptors with known viral specificity. We study their properties in terms of sequence features and network organization, and use them to design an accurate diagnostic tool for predicting SARS-CoV-2 status from repertoire data.
Collapse
Affiliation(s)
- María Ruiz Ortega
- Laboratoire de physique de l’École Normale Supérieure, CNRS, PSL University, Sorbonne Université, and Université de Paris, Paris, France
| | - Natanael Spisak
- Laboratoire de physique de l’École Normale Supérieure, CNRS, PSL University, Sorbonne Université, and Université de Paris, Paris, France
| | - Thierry Mora
- Laboratoire de physique de l’École Normale Supérieure, CNRS, PSL University, Sorbonne Université, and Université de Paris, Paris, France
| | - Aleksandra M. Walczak
- Laboratoire de physique de l’École Normale Supérieure, CNRS, PSL University, Sorbonne Université, and Université de Paris, Paris, France
| |
Collapse
|
17
|
Smirnova AO, Miroshnichenkova AM, Olshanskaya YV, Maschan MA, Lebedev YB, Chudakov DM, Mamedov IZ, Komkov A. The use of non-functional clonotypes as a natural calibrator for quantitative bias correction in adaptive immune receptor repertoire profiling. eLife 2023; 12:69157. [PMID: 36692004 PMCID: PMC9901932 DOI: 10.7554/elife.69157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 01/22/2023] [Indexed: 01/25/2023] Open
Abstract
High-throughput sequencing of adaptive immune receptor repertoires is a valuable tool for receiving insights in adaptive immunity studies. Several powerful TCR/BCR repertoire reconstruction and analysis methods have been developed in the past decade. However, detecting and correcting the discrepancy between real and experimentally observed lymphocyte clone frequencies are still challenging. Here, we discovered a hallmark anomaly in the ratio between read count and clone count-based frequencies of non-functional clonotypes in multiplex PCR-based immune repertoires. Calculating this anomaly, we formulated a quantitative measure of V- and J-genes frequency bias driven by multiplex PCR during library preparation called Over Amplification Rate (OAR). Based on the OAR concept, we developed an original software for multiplex PCR-specific bias evaluation and correction named iROAR: immune Repertoire Over Amplification Removal (https://github.com/smiranast/iROAR). The iROAR algorithm was successfully tested on previously published TCR repertoires obtained using both 5' RACE (Rapid Amplification of cDNA Ends)-based and multiplex PCR-based approaches and compared with a biological spike-in-based method for PCR bias evaluation. The developed approach can increase the accuracy and consistency of repertoires reconstructed by different methods making them more applicable for comparative analysis.
Collapse
Affiliation(s)
- Anastasia O Smirnova
- Skolkovo Institute of Science and TechnologyMoscowRussian Federation
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryMoscowRussian Federation
| | - Anna M Miroshnichenkova
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryMoscowRussian Federation
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and ImmunologyMoscowRussian Federation
| | - Yulia V Olshanskaya
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryMoscowRussian Federation
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and ImmunologyMoscowRussian Federation
| | - Michael A Maschan
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and ImmunologyMoscowRussian Federation
| | - Yuri B Lebedev
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryMoscowRussian Federation
- Pirogov Russian National Research Medical UniversityMoscowRussian Federation
| | - Dmitriy M Chudakov
- Skolkovo Institute of Science and TechnologyMoscowRussian Federation
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryMoscowRussian Federation
- Pirogov Russian National Research Medical UniversityMoscowRussian Federation
- Abu Dhabi Stem Cells CenterAbu DhabiUnited Arab Emirates
| | - Ilgar Z Mamedov
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryMoscowRussian Federation
- Pirogov Russian National Research Medical UniversityMoscowRussian Federation
| | - Alexander Komkov
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryMoscowRussian Federation
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and ImmunologyMoscowRussian Federation
| |
Collapse
|
18
|
Wong P, Cina DP, Sherwood KR, Fenninger F, Sapir-Pichhadze R, Polychronakos C, Lan J, Keown PA. Clinical application of immune repertoire sequencing in solid organ transplant. Front Immunol 2023; 14:1100479. [PMID: 36865546 PMCID: PMC9971933 DOI: 10.3389/fimmu.2023.1100479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/25/2023] [Indexed: 02/16/2023] Open
Abstract
Background Measurement of T cell receptor (TCR) or B cell receptor (BCR) gene utilization may be valuable in monitoring the dynamic changes in donor-reactive clonal populations following transplantation and enabling adjustment in therapy to avoid the consequences of excess immune suppression or to prevent rejection with contingent graft damage and to indicate the development of tolerance. Objective We performed a review of current literature to examine research in immune repertoire sequencing in organ transplantation and to assess the feasibility of this technology for clinical application in immune monitoring. Methods We searched MEDLINE and PubMed Central for English-language studies published between 2010 and 2021 that examined T cell/B cell repertoire dynamics upon immune activation. Manual filtering of the search results was performed based on relevancy and predefined inclusion criteria. Data were extracted based on study and methodology characteristics. Results Our initial search yielded 1933 articles of which 37 met the inclusion criteria; 16 of these were kidney transplant studies (43%) and 21 were other or general transplantation studies (57%). The predominant method for repertoire characterization was sequencing the CDR3 region of the TCR β chain. Repertoires of transplant recipients were found to have decreased diversity in both rejectors and non-rejectors when compared to healthy controls. Rejectors and those with opportunistic infections were more likely to have clonal expansion in T or B cell populations. Mixed lymphocyte culture followed by TCR sequencing was used in 6 studies to define an alloreactive repertoire and in specialized transplant settings to track tolerance. Conclusion Methodological approaches to immune repertoire sequencing are becoming established and offer considerable potential as a novel clinical tool for pre- and post-transplant immune monitoring.
Collapse
Affiliation(s)
- Paaksum Wong
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Davide P Cina
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Karen R Sherwood
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Franz Fenninger
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ruth Sapir-Pichhadze
- Department of Medicine, Division of Nephrology, McGill University, Montreal, QC, Canada.,Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada
| | - Constantin Polychronakos
- Department of Pediatrics, The Research Institute of the McGill University Health Centre and the Montreal Children's Hospital, Montreal, QC, Canada
| | - James Lan
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Paul A Keown
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
19
|
Chen X. From immune equilibrium to immunodynamics. Front Microbiol 2022; 13:1018817. [PMID: 36504800 PMCID: PMC9732466 DOI: 10.3389/fmicb.2022.1018817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/24/2022] [Indexed: 11/26/2022] Open
Abstract
Objective The immunology field has long been short of a universally applicable theoretical model that can quantitatively describe the immune response, and the theory of immune equilibrium (balance) is usually limited to the interpretation of the philosophical significance of immune phenomena. Therefore, it is necessary to establish a new immunological theory, namely, immunodynamic theory, to reanalyze the immune response. Methods By quantifying the immune dynamic equilibrium as the ratio of positive and negative immune power, the immune dynamic equilibrium equation was established. Then, the area under the curve of the positive and negative immune power was assumed to be equal in the whole process of immune response (regardless of correct or not), and through thought experiments based on this key hypothesis, a series of new concepts and expressions were derived, to establish a series of immunodynamic equations. Results New concepts of immune force and immune braking force and their expression equations, namely, the theoretical equations of immunodynamics, were derived through thought experiments, and the theoretical curves of immunodynamics were obtained according to these equations. Via the equivalent transformation of the theoretical equations and practical calculation of functional data, and by the methods of curve comparison and fitting, some practical equations of immunodynamics were established, and these practical equations were used to solve theoretical and practical problems that are related to the immunotherapy of infectious diseases and cancers. Conclusion The traditional theory of immune equilibrium has been mathematized and transformed from a philosophical category into a new concrete scientific theory, namely the theory of immunodynamics, which solves the dilemma that the traditional theory cannot guide individualized medical practice for a long time. This new theory may develop into one of the core theories of immunology in the future.
Collapse
Affiliation(s)
- Xiaoping Chen
- State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Lamvac (Guangzhou) Biomedical Technology Co., Ltd., Guangzhou, China
| |
Collapse
|
20
|
Koraichi MB, Touzel MP, Mazzolini A, Mora T, Walczak AM. NoisET: Noise Learning and Expansion Detection of T-Cell Receptors. J Phys Chem A 2022; 126:7407-7414. [PMID: 36178325 DOI: 10.1021/acs.jpca.2c05002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
High-throughput sequencing of T- and B-cell receptors makes it possible to track immune repertoires across time, in different tissues, in acute and chronic diseases and in healthy individuals. However, quantitative comparison between repertoires is confounded by variability in the read count of each receptor clonotype due to sampling, library preparation, and expression noise. We review methods for accounting for both biological and experimental noise and present an easy-to-use python package NoisET that implements and generalizes a previously developed Bayesian method. It can be used to learn experimental noise models for repertoire sequencing from replicates, and to detect responding clones following a stimulus. We test the package on different repertoire sequencing technologies and data sets. We review how such approaches have been used to identify responding clonotypes in vaccination and disease data. Availability: NoisET is freely available to use with source code at github.com/statbiophys/NoisET.
Collapse
Affiliation(s)
- Meriem Bensouda Koraichi
- Laboratoire de physique de l' École normale supérieure, CNRS, PSL University, Sorbonne Université, and Université de Paris, Paris75005, France
| | | | - Andrea Mazzolini
- Laboratoire de physique de l' École normale supérieure, CNRS, PSL University, Sorbonne Université, and Université de Paris, Paris75005, France
| | - Thierry Mora
- Laboratoire de physique de l' École normale supérieure, CNRS, PSL University, Sorbonne Université, and Université de Paris, Paris75005, France
| | - Aleksandra M Walczak
- Laboratoire de physique de l' École normale supérieure, CNRS, PSL University, Sorbonne Université, and Université de Paris, Paris75005, France
| |
Collapse
|
21
|
Zheng B, Yang Y, Chen L, Wu M, Zhou S. B-Cell Receptor Repertoire Sequencing: Deeper Digging into the Mechanisms and Clinical Aspects of Immune-mediated Diseases. iScience 2022; 25:105002. [PMID: 36157582 PMCID: PMC9494237 DOI: 10.1016/j.isci.2022.105002] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
B cells play an essential role in adaptive immunity and are intimately correlated with pleiotropic immune-mediated diseases. Each B cell occupies a unique B cell receptor (BCR), and all BCRs throughout our body form “BCR repertoire.” With the development of sequencing technology and coupled bioinformatics, accumulating evidence indicates that BCR repertoire largely varies under physiological and pathological conditions. Therefore, comprehensive grasp of BCR repertoire will provide new insights into the pathogenesis of immune-mediated diseases and help exploit efficient diagnostic and treatment strategies. In this review, we start with an overview of BCR repertoire and related sequencing technologies and summarize their current applications in immune-mediated diseases. We also underscore the challenges of this emerging field and propose promising future directions in advancing BCR repertoire exploration.
Collapse
Affiliation(s)
- Bohao Zheng
- Wuxi School of Medicine, Jiangnan University, Wuxi, P. R. China
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Yuqing Yang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Lin Chen
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Mengrui Wu
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
- Corresponding author
| |
Collapse
|
22
|
Hou X, Hong X, Ou M, Meng S, Wang T, Liao S, He J, Yu H, Liu L, Yin L, Liu D, Tang D, Dai Y. Analysis of Gene Expression and TCR/B Cell Receptor Profiling of Immune Cells in Primary Sjögren's Syndrome by Single-Cell Sequencing. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:238-249. [PMID: 35705251 DOI: 10.4049/jimmunol.2100803] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 04/18/2022] [Indexed: 01/07/2023]
Abstract
Primary Sjögren's syndrome (pSS) is a chronic autoimmune disease that is estimated to affect 35 million people worldwide and is characterized by lymphocytic infiltration, elevated circulating autoantibodies, and proinflammatory cytokines. The key immune cell subset changes and the TCR/BCR repertoire alterations in pSS patients remain unclear. In this study, we sought to comprehensively characterize the transcriptional changes in PBMCs of pSS patients by single-cell RNA sequencing and single-cell V(D)J sequencing. Naive CD8+ T cells and mucosal-associated invariant T cells were markedly decreased but regulatory T cells were increased in pSS patients. There were a large number of differentially expressed genes shared by multiple subpopulations of T cells and B cells. Abnormal signaling pathways, including Ag processing and presentation, the BCR signaling pathway, the TCR signaling pathway, and Epstein-Barr virus infection, were highly enriched in pSS patients. Moreover, there were obvious differences in the CD30, FLT3, IFN-II, IL-1, IL-2, IL-6, IL-10, RESISTIN, TGF-β, TNF, and VEGF signaling networks between pSS patients and healthy controls. Single-cell TCR and BCR repertoire analysis showed that there was a lower diversity of T cells in pSS patients than in healthy controls; however, there was no significant difference in the degree of clonal expansion, CDR3 length distribution, or degree of sequence sharing. Notably, our results further emphasize the functional importance of αβ pairing in determining Ag specificity. In conclusion, our analysis provides a comprehensive single-cell map of gene expression and TCR/BCR profiles in pSS patients for a better understanding of the pathogenesis, diagnosis, and treatment of pSS.
Collapse
Affiliation(s)
- Xianliang Hou
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.,The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Xiaoping Hong
- Department of Rheumatology and Immunology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Minglin Ou
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, China; and
| | - Shuhui Meng
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Tingting Wang
- Department of Rheumatology and Immunology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Shengyou Liao
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Jingquan He
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Haiyan Yu
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Lixiong Liu
- Department of Rheumatology and Immunology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Lianghong Yin
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Dongzhou Liu
- Department of Rheumatology and Immunology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China;
| | - Donge Tang
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China;
| | - Yong Dai
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China;
| |
Collapse
|
23
|
Kashima Y, Kaneko K, Reteng P, Yoshitake N, Runtuwene LR, Nagasawa S, Onishi M, Seki M, Suzuki A, Sugano S, Sakata-Yanagimoto M, Imai Y, Nakayama-Hosoya K, Kawana-Tachikawa A, Mizutani T, Suzuki Y. Intensive single-cell analysis reveals immune-cell diversity among healthy individuals. Life Sci Alliance 2022; 5:5/7/e202201398. [PMID: 35383111 PMCID: PMC8983398 DOI: 10.26508/lsa.202201398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 12/25/2022] Open
Abstract
Immune responses are different between individuals and personal health histories and unique environmental conditions should collectively determine the present state of immune cells. However, the molecular systems underlying such heterogeneity remain elusive. Here, we conducted a systematic time-lapse single-cell analysis, using 171 single-cell libraries and 30 mass cytometry datasets intensively for seven healthy individuals. We found substantial diversity in immune-cell profiles between different individuals. These patterns showed daily fluctuations even within the same individual. Similar diversities were also observed for the T-cell and B-cell receptor repertoires. Detailed immune-cell profiles at healthy statuses should give essential background information to understand their immune responses, when the individual is exposed to various environmental conditions. To demonstrate this idea, we conducted the similar analysis for the same individuals on the vaccination of influenza and SARS-CoV-2. In fact, we detected distinct responses to vaccines between individuals, although key responses are common. Single-cell immune-cell profile data should make fundamental data resource to understand variable immune responses, which are unique to each individual.
Collapse
Affiliation(s)
- Yukie Kashima
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Keiya Kaneko
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Patrick Reteng
- Division of Collaboration and Education, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Nina Yoshitake
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | | | - Satoi Nagasawa
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan.,Division of Breast and Endocrine Surgery, Department of Surgery, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Masaya Onishi
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Masahide Seki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Ayako Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Sumio Sugano
- Institute of Kashiwa-no-ha Omics Gate, Kashiwa, Japan.,Future Medicine Education and Research Organization at Chiba University, Chiba-city, Japan
| | | | - Yumiko Imai
- Laboratory of Regulation for Intractable Infectious Diseases, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | | | - Ai Kawana-Tachikawa
- AIDS Research Center, National Institute of Infectious Disease, Tokyo, Japan
| | - Taketoshi Mizutani
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
24
|
Pappalardo F, Russo G, Corsini E, Paini A, Worth A. Translatability and transferability of in silico models: Context of use switching to predict the effects of environmental chemicals on the immune system. Comput Struct Biotechnol J 2022; 20:1764-1777. [PMID: 35495116 PMCID: PMC9035946 DOI: 10.1016/j.csbj.2022.03.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 02/08/2023] Open
Abstract
Immunotoxicity hazard identification of chemicals aims to evaluate the potential for unintended effects of chemical exposure on the immune system. Perfluorinated alkylate substances (PFAS), such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), are persistent, globally disseminated environmental contaminants known to be immunotoxic. Elevated PFAS exposure is associated with lower antibody responses to vaccinations in children and in adults. In addition, some studies have reported a correlation between PFAS levels in the body and lower resistance to disease, in other words an increased risk of infections or cancers. In this context, modelling and simulation platforms could be used to simulate the human immune system with the aim to evaluate the adverse effects that immunotoxicants may have. Here, we show the conditions under which a mathematical model developed for one purpose and application (e.g., in the pharmaceutical domain) can be successfully translated and transferred to another (e.g., in the chemicals domain) without undergoing significant adaptation. In particular, we demonstrate that the Universal Immune System Simulator was able to simulate the effects of PFAS on the immune system, introducing entities and new interactions that are biologically involved in the phenomenon. This also revealed a potentially exploitable pathway for assessing immunotoxicity through a computational model.
Collapse
Affiliation(s)
- Francesco Pappalardo
- Department of Health and Drug Sciences, Università degli Studi di Catania, Italy
| | - Giulia Russo
- Department of Health and Drug Sciences, Università degli Studi di Catania, Italy
| | - Emanuela Corsini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Italy
| | - Alicia Paini
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Andrew Worth
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| |
Collapse
|
25
|
Side-Directed Release of Differential Extracellular Vesicle-associated microRNA Profiles from Bronchial Epithelial Cells of Healthy and Asthmatic Subjects. Biomedicines 2022; 10:biomedicines10030622. [PMID: 35327424 PMCID: PMC8945885 DOI: 10.3390/biomedicines10030622] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) are released by virtually all cells and may serve as intercellular communication structures by transmitting molecules such as proteins, lipids, and nucleic acids between cells. MicroRNAs (miRNAs) are an abundant class of vesicular RNA playing a pivotal role in regulating intracellular processes. In this work, we aimed to characterize vesicular miRNA profiles released in a side-directed manner by bronchial epithelial cells from healthy and asthmatic subjects using an air−liquid interface cell culture model. EVs were isolated from a culture medium collected from either the basolateral or apical cell side of the epithelial cell cultures and characterized by nano-flow cytometry (NanoFCM) and bead-based flow cytometry. EV-associated RNA profiles were assessed by small RNA sequencing and subsequent bioinformatic analyses. Furthermore, miRNA-associated functions and targets were predicted and miRNA network analyses were performed. EVs were released at higher numbers to the apical cell side of the epithelial cells and were considerably smaller in the apical compared to the basolateral compartment. EVs from both compartments showed a differential tetraspanins surface marker expression. Furthermore, 236 miRNAs were differentially expressed depending on the EV secretion side, regardless of the disease phenotype. On the apical cell side, 32 miRNAs were significantly altered in asthmatic versus healthy conditions, while on the basolateral cell side, 23 differentially expressed miRNAs could be detected. Downstream KEGG pathway analysis predicted mTOR and MAPK signaling pathways as potential downstream targets of apically secreted miRNAs. In contrast, miRNAs specifically detected at the basolateral side were associated with processes of T and B cell receptor signaling. The study proves a compartmentalized packaging of EVs by bronchial epithelial cells supposedly associated with site-specific functions of cargo miRNAs, which are considerably affected by disease conditions such as asthma.
Collapse
|
26
|
Ye J, Lai D, Cao D, Tan L, Hu L, Zha H, Yang J, Shu Q. Altered T-Cell Receptor β-Chain and Lactate Dehydrogenase Are Associated With the Immune Pathogenesis of Biliary Atresia. Front Med (Lausanne) 2022; 8:778500. [PMID: 35004747 PMCID: PMC8739481 DOI: 10.3389/fmed.2021.778500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/30/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Biliary atresia (BA) is considered to be an autoimmune-mediating inflammatory injury. The pathogenesis of BA has been proposed with the clonal transformation of T cells expressing analogous T-cell receptor β-chain variable regions (TRBVs). Methods: The TRBV profile of the peripheral blood mononuclear cells (PBMCs) in infants with BA and control infants (healthy donors, HDs), respectively, were characterized by using high-throughput sequencing (HTS). The diversity of T cells was analyzed based on the frequency of complementarity-determining region 3 (CDR3) or V(CDR3)J. Moreover, the correlation between absolute lymphocyte count (ALC) and lactate dehydrogenase (LDH) or diversity (clonality) indices, respectively, were analyzed for subjects with BA and HD. Results: The diversity indices of CDR3, V(CDR3)J in BA are lower than those in subjects with HD, in addition, there are significantly different levels of neutrophile, neutrophile/lymphocyte ratio (NLR), and LDH between groups of BA and HD. The correlation between ALC and diversity index is significant in subjects with HD but is not for subjects with BA. Conversely, the relationship between ALC and LDH is significant in subjects with BA but is not for subjects with HD. Moreover, 12 CDR3 motifs are deficient or lower expression in BA compared with that in the HD group. Conclusion: Our results demonstrate that the profile of TRBV repertoire is significantly different between subjects with BA and HD, and suggest that the immune imbalance and elevated LDH level are associated with the pathogenesis of BA. Moreover, the values of neutrophile, NLR, and LDH could be used for the differential diagnosis of BA.
Collapse
Affiliation(s)
- Jing Ye
- Department of Surgical ICU, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Dengming Lai
- Department of Neonatal Surgery, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Dan Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Linhua Tan
- Department of Surgical ICU, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Lei Hu
- Department of Surgical ICU, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Hua Zha
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiezuan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Shu
- Department of Thoracic and Cardiovascular Surgery, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
27
|
Analysis of TCR Repertoire by High-Throughput Sequencing Indicates the Feature of T Cell Immune Response after SARS-CoV-2 Infection. Cells 2021; 11:cells11010068. [PMID: 35011632 PMCID: PMC8750083 DOI: 10.3390/cells11010068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/13/2021] [Accepted: 12/24/2021] [Indexed: 01/10/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a global infectious disease caused by the SARS-CoV-2 coronavirus. T cells play an essential role in the body’s fighting against the virus invasion, and the T cell receptor (TCR) is crucial in T cell-mediated virus recognition and clearance. However, little has been known about the features of T cell response in convalescent COVID-19 patients. In this study, using 5′RACE technology and PacBio sequencing, we analyzed the TCR repertoire of COVID-19 patients after recovery for 2 weeks and 6 months compared with the healthy donors. The TCR clustering and CDR3 annotation were exploited to discover groups of patient-specific TCR clonotypes with potential SARS-CoV-2 antigen specificities. We first identified CD4+ and CD8+ T cell clones with certain clonal expansion after infection, and then observed the preferential recombination usage of V(D) J gene segments in CD4+ and CD8+ T cells of COVID-19 patients with different convalescent stages. More important, the TRBV6-5-TRBD2-TRBJ2-7 combination with high frequency was shared between CD4+ T and CD8+ T cells of different COVID-19 patients. Finally, we found the dominant characteristic motifs of the CDR3 sequence between recovered COVID-19 and healthy control. Our study provides novel insights on TCR in COVID-19 with different convalescent phases, contributing to our understanding of the immune response induced by SARS-CoV-2.
Collapse
|
28
|
Agathangelidis A, Vlachonikola E, Davi F, Langerak AW, Chatzidimitriou A. High-Throughput immunogenetics for precision medicine in cancer. Semin Cancer Biol 2021; 84:80-88. [PMID: 34757183 DOI: 10.1016/j.semcancer.2021.10.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 01/20/2023]
Abstract
Cancer is characterized by an extremely complex biological background, which hinders personalized therapeutic interventions. Precision medicine promises to overcome this obstacle through integrating information from different 'subsystems', including the host, the external environment, the tumor itself and the tumor micro-environment. Immunogenetics is an essential tool that allows dissecting both lymphoid cancer ontogeny at both a cell-intrinsic and a cell-extrinsic level, i.e. through characterizing micro-environmental interactions, with a view to precision medicine. This is particularly thanks to the introduction of powerful, high-throughput approaches i.e. next generation sequencing, which allow the comprehensive characterization of immune repertoires. Indeed, NGS immunogenetic analysis (Immune-seq) has emerged as key to both understanding cancer pathogenesis and improving the accuracy of clinical decision making in oncology. Immune-seq has applications in lymphoid malignancies, assisting in the diagnosis e.g. through differentiating from reactive conditions, as well as in disease monitoring through accurate assessment of minimal residual disease. Moreover, Immune-seq facilitates the study of T cell receptor clonal dynamics in critical clinical contexts, including transplantation as well as innovative immunotherapy for solid cancers. The clinical utility of Immune-seq represents the focus of the present contribution, where we highlight what can be achieved but also what must be addressed in order to maximally realize the promise of Immune-seq in precision medicine in cancer.
Collapse
Affiliation(s)
- Andreas Agathangelidis
- Centre for Research and Technology Hellas, Institute of Applied Biosciences, Thessaloniki, Greece; Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Elisavet Vlachonikola
- Centre for Research and Technology Hellas, Institute of Applied Biosciences, Thessaloniki, Greece; Department of Genetics and Molecular Biology, Faculty of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Frederic Davi
- Department of Hematology, APHP, Hôpital Pitié-Salpêtrière and Sorbonne University, Paris, France
| | - Anton W Langerak
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, Rotterdam, the Netherlands
| | - Anastasia Chatzidimitriou
- Centre for Research and Technology Hellas, Institute of Applied Biosciences, Thessaloniki, Greece; Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75236, Sweden.
| |
Collapse
|
29
|
The immune niche of the liver. Clin Sci (Lond) 2021; 135:2445-2466. [PMID: 34709406 DOI: 10.1042/cs20190654] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/17/2021] [Accepted: 10/08/2021] [Indexed: 12/19/2022]
Abstract
The liver is an essential organ that is critical for the removal of toxins, the production of proteins, and the maintenance of metabolic homeostasis. Behind each liver functional unit, termed lobules, hides a heterogeneous, complex, and well-orchestrated system. Despite parenchymal cells being most commonly associated with the liver's primary functionality, it has become clear that it is the immune niche of the liver that plays a central role in maintaining both local and systemic homeostasis by propagating hepatic inflammation and orchestrating its resolution. As such, the immunological processes that are at play in healthy and diseased livers are being investigated thoroughly in order to understand the underpinnings of inflammation and the potential avenues for restoring homeostasis. This review highlights recent advances in our understanding of the immune niche of the liver and provides perspectives for how the implementation of new transcriptomic, multimodal, and spatial technologies can uncover the heterogeneity, plasticity, and location of hepatic immune populations. Findings from these technologies will further our understanding of liver biology and create a new framework for the identification of therapeutic targets.
Collapse
|
30
|
The Value of Flow Cytometry Clonality in Large Granular Lymphocyte Leukemia. Cancers (Basel) 2021; 13:cancers13184513. [PMID: 34572739 PMCID: PMC8468916 DOI: 10.3390/cancers13184513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Large granular lymphocyte (LGL) leukemia, a lymphoproliferative disease, is characterized by an increased frequency of large-sized lymphocytes with typical expression of T-cell receptor (TCR) αβ, CD3, CD8, CD16, CD45RA, and CD57, and with the expansion of one to three subfamilies of the TCR variable β chain reflecting gene rearrangements. Molecular analysis remains the gold standard for confirmation of TCR clonality; however, flow cytometry is time and labor saving, and can be associated with simultaneous investigation of other surface markers. Moreover, Vβ usage by flow cytometry can be employed for monitoring clonal kinetics during treatment and follow-up of LGL leukemia patients. Abstract Large granular lymphocyte (LGL) leukemia is a lymphoproliferative disorder of mature T or NK cells frequently associated with autoimmune disorders and other hematological conditions, such as myelodysplastic syndromes. Immunophenotype of LGL cells is similar to that of effector memory CD8+ T cells with T-cell receptor (TCR) clonality defined by molecular and/or flow cytometric analysis. Vβ usage by flow cytometry can identify clonal TCR rearrangements at the protein level, and is fast, sensitive, and almost always available in every Hematology Center. Moreover, Vβ usage can be associated with immunophenotypic characterization of LGL clone in a multiparametric staining, and clonal kinetics can be easily monitored during treatment and follow-up. Finally, Vβ usage by flow cytometry might identify LGL clones silently underlying other hematological conditions, and routine characterization of Vβ skewing might identify recurrent TCR rearrangements that might trigger aberrant immune responses during hematological or autoimmune conditions.
Collapse
|
31
|
Yan D, Yang J, Ji Z, Wang J, Lu X, Huang Y, Zhong C, Li L. Profiling T cell receptor β-chain in responders after immunization with recombinant hepatitis B vaccine. J Gene Med 2021; 23:e3367. [PMID: 34048625 DOI: 10.1002/jgm.3367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/22/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND T cells with edited T cell receptor β-chain variable (TRBV) are involved in the immune response to recombinant hepatitis B surface antigen (rHBsAg) vaccine and the production of hepatitis B surface antibody (HBsAb). The immune repertoire (IR) profile and mechanism of vaccination positive responders (VPR) with rHBsAg are not fully understood. METHODS The IR of six VPRs (HBsAb+, HbsAg-) with rHBsAg vaccination was established by the high throughput sequencing technique and bioinformatics analysis and compared with those in five vaccination negative responders (VNRs) (HbsAb-, HbsAg-) who were also inoculated with rHBsAg. The repertoire features of the BV, BJ and V (CDR3) J genes and immune diversity in peripheral blood mononuclear cells, respectively, were analyzed for each subject. RESULTS There was no significant difference in sequencing amplification indices of each sample. However, TRBV15/BJ2-3 demonstrated significantly high expression levels in VPR compared to those in the VNR group (both p < 0.05). Further results showed that the BV15/BJ2-5 level was significantly increased for VPR compared to that of VNR group. Interestingly, the motif of CDR3 in TRBV15/BJ2-5 was mostly expressed as "GGETQ" or "GETQ". Additionally, there was no remarkable difference between the two groups of distribution with respect to the different clone expression levels of V (CDR3) J. CONCLUSIONS The features of IR in the VPR and VNR will contribute to the exploration of the mechanism of the positive response to rHBsAg, and also contribute to development of optimized hepatitis B vaccine, in addition to providing a partial interpretation of the VNR who has a relatively low infection with HBV.
Collapse
Affiliation(s)
- Dong Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; National Clinical Research Center for Infectious Diseases; the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiezuan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; National Clinical Research Center for Infectious Diseases; the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongkang Ji
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; National Clinical Research Center for Infectious Diseases; the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ju Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; National Clinical Research Center for Infectious Diseases; the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoqing Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; National Clinical Research Center for Infectious Diseases; the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yandi Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; National Clinical Research Center for Infectious Diseases; the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengli Zhong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; National Clinical Research Center for Infectious Diseases; the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; National Clinical Research Center for Infectious Diseases; the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
32
|
Trück J, Eugster A, Barennes P, Tipton CM, Luning Prak ET, Bagnara D, Soto C, Sherkow JS, Payne AS, Lefranc MP, Farmer A, Bostick M, Mariotti-Ferrandiz E. Biological controls for standardization and interpretation of adaptive immune receptor repertoire profiling. eLife 2021; 10:e66274. [PMID: 34037521 PMCID: PMC8154019 DOI: 10.7554/elife.66274] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/15/2021] [Indexed: 12/15/2022] Open
Abstract
Use of adaptive immune receptor repertoire sequencing (AIRR-seq) has become widespread, providing new insights into the immune system with potential broad clinical and diagnostic applications. However, like many high-throughput technologies, it comes with several problems, and the AIRR Community was established to understand and help solve them. We, the AIRR Community's Biological Resources Working Group, have surveyed scientists about the need for standards and controls in generating and annotating AIRR-seq data. Here, we review the current status of AIRR-seq, provide the results of our survey, and based on them, offer recommendations for developing AIRR-seq standards and controls, including future work.
Collapse
Affiliation(s)
- Johannes Trück
- University Children’s Hospital and the Children’s Research Center, University of ZurichZurichSwitzerland
| | - Anne Eugster
- CRTD Center for Regenerative Therapies Dresden, Faculty of Medicine, Technische Universität DresdenDresdenGermany
| | - Pierre Barennes
- Sorbonne Université U959, Immunology-Immunopathology-Immunotherapy (i3)ParisFrance
- AP-HP Hôpital Pitié-Salpêtrière, Biotherapy (CIC-BTi)ParisFrance
| | - Christopher M Tipton
- Lowance Center for Human Immunology, Emory University School of MedicineAtlantaUnited States
| | - Eline T Luning Prak
- Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Davide Bagnara
- University of Genoa, Department of Experimental MedicineGenoaItaly
| | - Cinque Soto
- The Vanderbilt Vaccine Center, Vanderbilt University Medical CenterNashvilleUnited States
- Department of Pediatrics, Vanderbilt University Medical CenterNashvilleUnited States
| | - Jacob S Sherkow
- College of Law, University of IllinoisChampaignUnited States
- Center for Advanced Studies in Biomedical Innovation Law, University of Copenhagen Faculty of LawCopenhagenDenmark
- Carl R. Woese Institute for Genomic Biology, University of IllinoisUrbana, IllinoisUnited States
| | - Aimee S Payne
- Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Marie-Paule Lefranc
- IMGT, The International ImMunoGeneTics Information System (IMGT), Laboratoire d'ImmunoGénétique Moléculaire (LIGM), Institut de Génétique Humaine (IGH), CNRS, University of MontpellierMontpellierFrance
- Laboratoire d'ImmunoGénétique Moléculaire (LIGM) CNRS, University of MontpellierMontpellierFrance
- Institut de Génétique Humaine (IGH), CNRS, University of MontpellierMontpellierFrance
| | | | | | | | | |
Collapse
|
33
|
Isacchini G, Sethna Z, Elhanati Y, Nourmohammad A, Walczak AM, Mora T. Generative models of T-cell receptor sequences. Phys Rev E 2021; 101:062414. [PMID: 32688532 DOI: 10.1103/physreve.101.062414] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/14/2020] [Indexed: 01/16/2023]
Abstract
T-cell receptors (TCR) are key proteins of the adaptive immune system, generated randomly in each individual, whose diversity underlies our ability to recognize infections and malignancies. Modeling the distribution of TCR sequences is of key importance for immunology and medical applications. Here, we compare two inference methods trained on high-throughput sequencing data: a knowledge-guided approach, which accounts for the details of sequence generation, supplemented by a physics-inspired model of selection; and a knowledge-free variational autoencoder based on deep artificial neural networks. We show that the knowledge-guided model outperforms the deep network approach at predicting TCR probabilities, while being more interpretable, at a lower computational cost.
Collapse
Affiliation(s)
- Giulio Isacchini
- Max Planck Institute for Dynamics and Self-organization, Am Faßberg 17, 37077 Göttingen, Germany.,Laboratoire de Physique de l'École Normale Supérieure (PSL University), CNRS, Sorbonne Université, and Université de Paris, 75005 Paris, France
| | - Zachary Sethna
- Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Yuval Elhanati
- Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Armita Nourmohammad
- Max Planck Institute for Dynamics and Self-organization, Am Faßberg 17, 37077 Göttingen, Germany.,Department of Physics, University of Washington, 3910 15th Avenue Northeast, Seattle, Washington 98195, USA.,Fred Hutchinson cancer Research Center, 1100 Fairview ave N, Seattle, Washington 98109, USA
| | - Aleksandra M Walczak
- Laboratoire de Physique de l'École Normale Supérieure (PSL University), CNRS, Sorbonne Université, and Université de Paris, 75005 Paris, France
| | - Thierry Mora
- Laboratoire de Physique de l'École Normale Supérieure (PSL University), CNRS, Sorbonne Université, and Université de Paris, 75005 Paris, France
| |
Collapse
|
34
|
Karapetyan L, Luke JJ, Davar D. Toll-Like Receptor 9 Agonists in Cancer. Onco Targets Ther 2020; 13:10039-10060. [PMID: 33116588 PMCID: PMC7553670 DOI: 10.2147/ott.s247050] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/16/2020] [Indexed: 12/19/2022] Open
Abstract
Toll-like receptor 9 (TLR9) is a pattern recognition receptor that is predominantly located intracellularly in immune cells, including dendritic cells, macrophages, natural killer cells, and other antigen-presenting cells (APC). The primary ligands for TLR9 receptors are unmethylated cytidine phosphate guanosine (CpG) oligodinucleotides (ODN). TLR9 agonists induce inflammatory processes that result in the enhanced uptake and killing of microorganisms and cancer cells as well as the generation of adaptive immune responses. Preclinical studies of TLR9 agonists suggested efficacy both as monotherapy and in combination with several agents, which led to clinical trials in patients with advanced cancer. In these studies, intravenous, intratumoral, and subcutaneous routes of administration have been tested; with anti-tumor responses in both treated and untreated metastatic sites. TLR9 agonist monotherapy is safe, although efficacy is minimal in advanced cancer patients; conversely, combinations appear to be more promising. Several ongoing phase I and II clinical trials are evaluating TLR9 agonists in combination with a variety of agents including chemotherapy, radiotherapy, targeted therapy, and immunotherapy agents. In this review article, we describe the distribution, structure and signaling of TLR9; discuss the results of preclinical studies of TLR9 agonists; and review ongoing clinical trials of TLR9 agonists singly and in combination in patients with advanced solid tumors.
Collapse
Affiliation(s)
- Lilit Karapetyan
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center (HCC), Pittsburgh, PA, USA
| | - Jason J Luke
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center (HCC), Pittsburgh, PA, USA.,Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Diwakar Davar
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center (HCC), Pittsburgh, PA, USA.,Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
35
|
Zhang L, Wang IM, Solban N, Cristescu R, Zeng G, Long B. Comprehensive investigation of T and B cell receptor repertoires in an MC38 tumor model following murine anti‑PD‑1 administration. Mol Med Rep 2020; 22:975-985. [PMID: 32468004 PMCID: PMC7339640 DOI: 10.3892/mmr.2020.11169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 04/20/2020] [Indexed: 11/15/2022] Open
Abstract
The MC38 (derived from carcinogen-induced colon adenocarcinoma) tumor model is sensitive to anti-programmed cell death-1 (anti-PD-1) treatment. However, there is no comprehensive description of the T and B cell receptor (TCR, BCR) repertoires of the MC38 tumor model following anti-PD-1 treatment, an improved understanding of which is highly important in the development of anti-PD-1 immunotherapy. The present study analyzed the TCR and BCR repertoires of three types of tissue, including tumor, spleen and tumor draining lymph node (DLN) from 20 MC38 syngeneic mice receiving murine anti-PD-1 (mDX400) treatment or mouse immunoglobulin G1 (mIgG1) control treatment. To obtain enough tissues for high-throughput sequencing, samples were collected on day 8 after the start of initial treatment. The usage frequencies of seven TCR β chain (TRB) V genes and one TRBJ gene were significantly different between mDX400- and mIgG1-group tumors. TCR repertoire diversity was significantly lower in mDX400-group tumors compared with mIgG1-group tumors, with the top 10 most frequent TCR clonotypes notably expanded in mDX400-group tumors. In addition, the proportion of high-frequency TCR clonotypes from mDX400-group tumors that were also present both in the DLN and spleen was significantly higher than that in mIgG1-group tumors. Among the highly expanded TCR clonotypes, one TCR clonotype was consistently expanded in >50% of the mDX400-group tumors compared with mIgG1-group tumors. Similarly, one BCR clonal family was highly expanded in >50% of mDX400-group tumor samples. The consistently expanded TCR and BCR clones were co-expanded in 29% of mDX400-group tumors. Moreover, mutation rates of immunoglobulin heavy chain sequences in the spleen within complementarity determining region 2 and framework region 3 were significantly higher in the mDX400 group than in the mIgG1 group. The findings of this study may contribute to an improved understanding of the molecular mechanisms of anti-PD-1 treatment.
Collapse
Affiliation(s)
- Lu Zhang
- Merck and Co., Inc., Kenilworth, NJ 07033, USA
| | - I-Ming Wang
- Merck and Co., Inc., Kenilworth, NJ 07033, USA
| | | | | | - Gefei Zeng
- Merck and Co., Inc., Kenilworth, NJ 07033, USA
| | - Brian Long
- Merck and Co., Inc., Kenilworth, NJ 07033, USA
| |
Collapse
|