1
|
Tobushi T, Floras JS. Sleep Apnea, Autonomic Disturbances, and Blood Pressure Variability. Hypertension 2024; 81:1837-1844. [PMID: 38957967 PMCID: PMC11319079 DOI: 10.1161/hypertensionaha.124.20433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Augmented blood pressure variability has emerged as a quantity predictive of adverse cardiovascular outcomes. Among the range of intrinsic and extrinsic factors shown to increase night-time, circadian, short-term, and long-term blood pressure variations, the presence and severity of obstructive sleep apnea have emerged as one of the most prevalent and potent. Obstructive sleep apnea alters acutely the normal nocturnal equilibrium between sympathetic and parasympathetic tone, magnifying nocturnal blood pressure oscillations, and induces sustained autonomic aftereffects with the capacity to amplify short-term and intersessional blood pressure variabilities. The object of this brief review is to synthesize the current understanding of the potential interrelations between obstructive sleep apnea, the acute and sustained autonomic disturbances that it elicits, and beat-to-beat blood pressure fluctuation during sleep, nocturnal dipping status, and day-to-day blood pressure variability and the consequences of these perturbations for cardiovascular risk.
Collapse
Affiliation(s)
- Tomoyuki Tobushi
- University Health Network and Sinai Health Division of Cardiology, Toronto General Hospital Research Institute, and Lunenfeld-Tanenbaum Research Institute, Faculty of Medicine, University of Toronto, ON, Canada (T.T., J.S.F.)
- Department of Internal Medicine, Kyushu University Beppu Hospital, Oita, Japan (T.T.)
| | - John S. Floras
- University Health Network and Sinai Health Division of Cardiology, Toronto General Hospital Research Institute, and Lunenfeld-Tanenbaum Research Institute, Faculty of Medicine, University of Toronto, ON, Canada (T.T., J.S.F.)
| |
Collapse
|
2
|
Kwon Y, Tzeng WS, Seo J, Logan JG, Tadic M, Lin GM, Martinez-Garcia MA, Pengo M, Liu X, Cho Y, Drager LF, Healy W, Hong GR. Obstructive sleep apnea and hypertension; critical overview. Clin Hypertens 2024; 30:19. [PMID: 39090691 PMCID: PMC11293186 DOI: 10.1186/s40885-024-00276-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/22/2024] [Indexed: 08/04/2024] Open
Abstract
Obstructive sleep apnea (OSA) and hypertension are two important modifiable risk factors for cardiovascular disease and mortality. Numerous studies have highlighted the interplay between these two conditions. We provide a critical review of the current literature on the role of the OSA as a risk factor for hypertension and its effect on blood pressure (BP). We discuss several key topics: the effect of OSA on nocturnal BP, BP response to continuous positive airway pressure (CPAP) treatment, CPAP effect on BP in refractory hypertension, the role of OSA in BP variability (BPV), and maladaptive cardiac remodeling mediated by OSA's effect on BP. Finally, we discuss the unique aspects of ethnicity and social determinants of health on OSA with a focus on Asian populations and the disparity in BP control and cardiovascular outcomes.
Collapse
Affiliation(s)
- Younghoon Kwon
- Department of Medicine, University of Washington, Seattle, WA, USA.
- Division of Cardiology, University of Washington, Seattle, WA, USA.
| | - William S Tzeng
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jiwon Seo
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Jeongok Gang Logan
- Department of Acute & Specialty Care, University of Virginia School of Nursing, Charlottesville, VA, USA
| | - Marijana Tadic
- Klinik Für Innere Medizin II, Universitätsklinikum Ulm, Ulm, Germany
| | - Gen-Min Lin
- Department of Medicine, Hualien Armed Forces General Hospital, Hualien, Taiwan
- Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | | | - Martino Pengo
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
- Department of Cardiology, Istituto Auxologico Italiano IRCCS, S.Luca Hospital, Milan, Italy
| | - Xiaoyue Liu
- Johns Hopkins School of Nursing, Johns Hopkins University, Baltimore, MD, USA
| | - Yeilim Cho
- Department of Sleep Medicine, University of Washington, Seattle, WA, USA
- Department of Sleep Medicine, Veteran's Affairs Puget Sound Healthcare System, Seattle, WA, USA
| | - Luciano F Drager
- Hypertension Unit, Heart Institute, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - William Healy
- Division of Pulmonary, Critical Care, Sleep Medicine, Medical College of Georgia, Augusta, GA, USA
| | - Geu-Ru Hong
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
3
|
Olea E, Valverde-Pérez E, Docio I, Prieto-Lloret J, Aaronson PI, Rocher A. Pulmonary Vascular Responses to Chronic Intermittent Hypoxia in a Guinea Pig Model of Obstructive Sleep Apnea. Int J Mol Sci 2024; 25:7484. [PMID: 39000591 PMCID: PMC11242077 DOI: 10.3390/ijms25137484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Experimental evidence suggests that chronic intermittent hypoxia (CIH), a major hallmark of obstructive sleep apnea (OSA), boosts carotid body (CB) responsiveness, thereby causing increased sympathetic activity, arterial and pulmonary hypertension, and cardiovascular disease. An enhanced circulatory chemoreflex, oxidative stress, and NO signaling appear to play important roles in these responses to CIH in rodents. Since the guinea pig has a hypofunctional CB (i.e., it is a natural CB knockout), in this study we used it as a model to investigate the CB dependence of the effects of CIH on pulmonary vascular responses, including those mediated by NO, by comparing them with those previously described in the rat. We have analyzed pulmonary artery pressure (PAP), the hypoxic pulmonary vasoconstriction (HPV) response, endothelial function both in vivo and in vitro, and vascular remodeling (intima-media thickness, collagen fiber content, and vessel lumen area). We demonstrate that 30 days of the exposure of guinea pigs to CIH (FiO2, 5% for 40 s, 30 cycles/h) induces pulmonary artery remodeling but does not alter endothelial function or the contractile response to phenylephrine (PE) in these arteries. In contrast, CIH exposure increased the systemic arterial pressure and enhanced the contractile response to PE while decreasing endothelium-dependent vasorelaxation to carbachol in the aorta without causing its remodeling. We conclude that since all of these effects are independent of CB sensitization, there must be other oxygen sensors, beyond the CB, with the capacity to alter the autonomic control of the heart and vascular function and structure in CIH.
Collapse
Affiliation(s)
- Elena Olea
- Departamento de Enfermería, Facultad de Enfermería Universidad de Valladolid, 47005 Valladolid, Spain
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid-CSIC, 47005 Valladolid, Spain
| | - Esther Valverde-Pérez
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid-CSIC, 47005 Valladolid, Spain
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, 47005 Valladolid, Spain
| | - Inmaculada Docio
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, 47005 Valladolid, Spain
| | - Jesus Prieto-Lloret
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid-CSIC, 47005 Valladolid, Spain
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, 47005 Valladolid, Spain
| | - Philip I Aaronson
- Department of Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, UK
| | - Asunción Rocher
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid-CSIC, 47005 Valladolid, Spain
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, 47005 Valladolid, Spain
| |
Collapse
|
4
|
Conde SV, Polotsky VY, Joseph V, Kinkead R. On the origins of sleep disordered breathing, cardiorespiratory and metabolic dysfunction: which came first, the chicken or the egg? J Physiol 2023; 601:5509-5525. [PMID: 36988138 PMCID: PMC10539476 DOI: 10.1113/jp284113] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
Sleep disordered breathing (SDB) is a complex, sex specific and highly heterogeneous group of respiratory disorders. Nevertheless, sleep fragmentation and repeated fluctuations of arterial blood gases for several hours per night are at the core of the problem; together, they impose significant stress to the organism with deleterious consequences on physical and mental health. SDB increases the risk of obesity, diabetes, depression and anxiety disorders; however, the same health issues are risk factors for SDB. So, which came first, the chicken or the egg? What causes the appearance of the first significant apnoeic events during sleep? These are important questions because although moderate to severe SDB affects ∼500 million adults globally, we still have a poor understanding of the origins of the disease, and the main treatments (and animal models) focus on the symptoms rather than the cause. Because obesity, metabolic dysfunction and stress-related neurological disorders generally appear progressively, we discuss how the development of these diseases can lead to specific anatomical and non-anatomical traits of SDB in males and females while considering the impacts of sex steroids. In light of the growing evidence indicating that the carotid bodies are important sensors of key metabolic and endocrine signals associated with stress and dysmetabolism, we propose that these organs play a key role in the process.
Collapse
Affiliation(s)
- Silvia V. Conde
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Vsevolod Y Polotsky
- Department of Anesthesiology and Critical Care Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Vincent Joseph
- Département de Pédiatrie, Université Laval & Research Center of the Québec Heart and Lung Institute, Québec, QC. Canada
| | - Richard Kinkead
- Département de Pédiatrie, Université Laval & Research Center of the Québec Heart and Lung Institute, Québec, QC. Canada
| |
Collapse
|
5
|
Cetin-Atalay R, Meliton AY, Ozcan C, Woods PS, Sun KA, Fang Y, Hamanaka RB, Mutlu GM. Loss of heme oxygenase 2 causes reduced expression of genes in cardiac muscle development and contractility and leads to cardiomyopathy in mice. PLoS One 2023; 18:e0292990. [PMID: 37844118 PMCID: PMC10578579 DOI: 10.1371/journal.pone.0292990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023] Open
Abstract
Obstructive sleep apnea (OSA) is a common breathing disorder that affects a significant portion of the adult population. In addition to causing excessive daytime sleepiness and neurocognitive effects, OSA is an independent risk factor for cardiovascular disease; however, the underlying mechanisms are not completely understood. Using exposure to intermittent hypoxia (IH) to mimic OSA, we have recently reported that mice exposed to IH exhibit endothelial cell (EC) activation, which is an early process preceding the development of cardiovascular disease. Although widely used, IH models have several limitations such as the severity of hypoxia, which does not occur in most patients with OSA. Recent studies reported that mice with deletion of hemeoxygenase 2 (Hmox2-/-), which plays a key role in oxygen sensing in the carotid body, exhibit spontaneous apneas during sleep and elevated levels of catecholamines. Here, using RNA-sequencing we investigated the transcriptomic changes in aortic ECs and heart tissue to understand the changes that occur in Hmox2-/- mice. In addition, we evaluated cardiac structure, function, and electrical properties by using echocardiogram and electrocardiogram in these mice. We found that Hmox2-/- mice exhibited aortic EC activation. Transcriptomic analysis in aortic ECs showed differentially expressed genes enriched in blood coagulation, cell adhesion, cellular respiration and cardiac muscle development and contraction. Similarly, transcriptomic analysis in heart tissue showed a differentially expressed gene set enriched in mitochondrial translation, oxidative phosphorylation and cardiac muscle development. Analysis of transcriptomic data from aortic ECs and heart tissue showed loss of Hmox2 gene might have common cellular network footprints on aortic endothelial cells and heart tissue. Echocardiographic evaluation showed that Hmox2-/- mice develop progressive dilated cardiomyopathy and conduction abnormalities compared to Hmox2+/+ mice. In conclusion, we found that Hmox2-/- mice, which spontaneously develop apneas exhibit EC activation and transcriptomic and functional changes consistent with heart failure.
Collapse
Affiliation(s)
- Rengul Cetin-Atalay
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Angelo Y. Meliton
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Cevher Ozcan
- Department of Medicine, Section of Cardiology, University of Chicago, Chicago, Illinois, United States of America
| | - Parker S. Woods
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Kaitlyn A. Sun
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Yun Fang
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Robert B. Hamanaka
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Gökhan M. Mutlu
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
6
|
Afsar B, Afsar RE. Hypoxia-inducible factors and essential hypertension: narrative review of experimental and clinical data. Pharmacol Rep 2023:10.1007/s43440-023-00497-x. [PMID: 37210694 DOI: 10.1007/s43440-023-00497-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023]
Abstract
Hypoxia-inducible factor (HIFs) is a new class of drug developed for the management of anemia in chronic kidney disease (CKD) patients. HIFs increase the production of erythropoietin in the kidney and liver, enhance the absorption and utilization of iron, and stimulate the maturation and proliferation of erythroid progenitor cells. Besides, HIFs regulate many physiologic processes by orchestrating the transcription of hundreds of genes. Essential hypertension (HT) is an epidemic worldwide. HIFs play a role in many biological processes involved in the regulation of blood pressure (BP). In the current review, we summarize pre-clinical and clinical studies investigating the relationship between HIFs and BP regulation in patients with CKD, conflicting issues, and discuss future potential strategies.
Collapse
Affiliation(s)
- Baris Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, Turkey.
| | - Rengin Elsurer Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
7
|
Yao Y, Chen J, Li X, Chen ZF, Li P. A carotid body-brainstem neural circuit mediates sighing in hypoxia. Curr Biol 2023; 33:827-837.e4. [PMID: 36750092 DOI: 10.1016/j.cub.2023.01.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 11/09/2022] [Accepted: 01/10/2023] [Indexed: 02/08/2023]
Abstract
Increased ventilation is a critical process that occurs when the body responds to a hypoxic environment. Sighs are long, deep breaths that prevent alveolar collapse, and their frequency is significantly increased by hypoxia. In this study, we first show that sighing is induced by hypoxia as a function of increased hypoxic severity and that hypoxia-induced sighing is capable of increasing the oxygen saturation in a mouse model. We next found that the gastrin-releasing peptide (Grp) expressing neurons in the nucleus of the solitary tract (NTS) are important in mediating hypoxia-induced sighing. Retrograde tracing from these Grp neurons reveals their direct afferent input from the petrosal ganglion neurons that innervate the carotid body, the major peripheral chemoreceptor that senses blood oxygen. Acute hypoxia preferentially activates these Grp neurons in the NTS. Photoactivation of these neurons through their projections in the inspiratory rhythm generator in the ventral medulla induces sighing, whereas genetic ablation or chemogenetic silencing of these neurons specifically diminishes the sighs, but not other respiratory responses, induced by hypoxia. Finally, the mice with reduced sighing in hypoxia exhibit an elevated heart-rate increase, which may compensate for maintaining the blood oxygen level. Therefore, we identified a neural circuit that connects the carotid body to the breathing control center in the ventral medulla with a specific function for hypoxia-induced sighing, which restores the oxygen level.
Collapse
Affiliation(s)
- Yilong Yao
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jingwen Chen
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xingyu Li
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhou-Feng Chen
- Department of Anesthesiology, Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Peng Li
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular and Integrative Physiology, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
8
|
Gibbons TD, Dempsey JA, Thomas KN, Ainslie PN, Wilson LC, Stothers TAM, Campbell HA, Cotter JD. Carotid body hyperexcitability underlies heat-induced hyperventilation in exercising humans. J Appl Physiol (1985) 2022; 133:1394-1406. [PMID: 36302157 DOI: 10.1152/japplphysiol.00435.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Physical activity is the most common source of heat strain for humans. The thermal strain of physical activity causes overbreathing (hyperventilation) and this has adverse physiological repercussions. The mechanisms underlying heat-induced hyperventilation during exercise are unknown, but recent evidence supports a primary role of carotid body hyperexcitability (increased tonic activity and sensitivity) underpinning hyperventilation in passively heated humans. In a repeated-measures crossover design, 12 healthy participants (6 female) completed two low-intensity cycling exercise conditions (25% maximal aerobic power) in randomized order, one with core temperature (TC) kept relatively stable near thermoneutrality, and the other with progressive heat strain to +2°C TC. To provide a complete examination of carotid body function under graded heat strain, carotid body tonic activity was assessed indirectly by transient hyperoxia, and its sensitivity estimated by responses to both isocapnic and poikilocapnic hypoxia. Carotid body tonic activity was increased by 220 ± 110% during cycling alone, and by 400 ± 290% with supplemental thermal strain to +1°C TC, and 600 ± 290% at +2°C TC (interaction, P = 0.0031). During exercise with heat stress at both +1°C and +2°C TC, carotid body suppression by hyperoxia decreased ventilation below the rates observed during exercise without heat stress (P < 0.0147). Carotid body sensitivity was increased by up to 230 ± 190% with exercise alone, and by 290 ± 250% with supplemental heating to +1°C TC and 510 ± 470% at +2°C TC (interaction, P = 0.0012). These data indicate that the carotid body is further activated and sensitized by heat strain during exercise and this largely explains the added drive to breathe.NEW & NOTEWORTHY Physical activity is the most common way humans increase their core temperature, and excess breathing in the heat can limit heat tolerance and performance, and may increase the risk of heat-related injury. Dose-dependent increases in carotid body tonic activity and sensitivity with core heating provide compelling evidence that carotid body hyperexcitability is the primary cause of heat-induced hyperventilation during exercise.
Collapse
Affiliation(s)
- Travis D Gibbons
- Centre for Heart, Lung and Vascular Health, University of British Columbia-Okanagan, School of Health and Exercise Science, Kelowna, British Columbia, Canada
| | - Jerome A Dempsey
- John Rankin Laboratory for Pulmonary Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Kate N Thomas
- Department of Surgical Sciences, University of Otago, Dunedin, New Zealand
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, University of British Columbia-Okanagan, School of Health and Exercise Science, Kelowna, British Columbia, Canada
| | - Luke C Wilson
- Department of Medicine, University of Otago, Dunedin, New Zealand
| | - Tiarna A M Stothers
- School of Physical Education, Sport & Exercise Sciences, University of Otago, Dunedin, New Zealand
| | - Holly A Campbell
- Department of Surgical Sciences, University of Otago, Dunedin, New Zealand
| | - James D Cotter
- School of Physical Education, Sport & Exercise Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
9
|
A Methodological Perspective on the Function and Assessment of Peripheral Chemoreceptors in Heart Failure: A Review of Data from Clinical Trials. Biomolecules 2022; 12:biom12121758. [PMID: 36551186 PMCID: PMC9775522 DOI: 10.3390/biom12121758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Augmented peripheral chemoreceptor sensitivity (PChS) is a common feature of many sympathetically mediated diseases, among others, and it is an important mechanism of the pathophysiology of heart failure (HF). It is related not only to the greater severity of symptoms, especially to dyspnea and lower exercise tolerance but also to a greater prevalence of complications and poor prognosis. The causes, mechanisms, and impact of the enhanced activity of peripheral chemoreceptors (PChR) in the HF population are subject to intense research. Several methodologies have been established and utilized to assess the PChR function. Each of them presents certain advantages and limitations. Furthermore, numerous factors could influence and modulate the response from PChR in studied subjects. Nevertheless, even with the impressive number of studies conducted in this field, there are still some gaps in knowledge that require further research. We performed a review of all clinical trials in HF human patients, in which the function of PChR was evaluated. This review provides an extensive synthesis of studies evaluating PChR function in the HF human population, including methods used, factors potentially influencing the results, and predictors of increased PChS.
Collapse
|
10
|
Cetin-Atalay R, Meliton AY, Sun KA, Glass ME, Woods PS, Peng YJ, Fang Y, Hamanaka RB, Prabhakar NR, Mutlu GM. Intermittent hypoxia inhibits epinephrine-induced transcriptional changes in human aortic endothelial cells. Sci Rep 2022; 12:17167. [PMID: 36229484 PMCID: PMC9561121 DOI: 10.1038/s41598-022-21614-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 09/29/2022] [Indexed: 02/02/2023] Open
Abstract
Obstructive sleep apnea (OSA) is an independent risk factor for cardiovascular disease. While intermittent hypoxia (IH) and catecholamine release play an important role in this increased risk, the mechanisms are incompletely understood. We have recently reported that IH causes endothelial cell (EC) activation, an early phenomenon in the development of cardiovascular disease, via IH-induced catecholamine release. Here, we investigated the effects of IH and epinephrine on gene expression in human aortic ECs using RNA-sequencing. We found a significant overlap between IH and epinephrine-induced differentially expressed genes (DEGs) including enrichment in leukocyte migration, cytokine-cytokine receptor interaction, cell adhesion and angiogenesis. Epinephrine caused higher number of DEGs compared to IH. Interestingly, IH when combined with epinephrine had an inhibitory effect on epinephrine-induced gene expression. Combination of IH and epinephrine induced MT1G (Metallothionein 1G), which has been shown to be highly expressed in ECs from parts of aorta (i.e., aortic arch) where atherosclerosis is more likely to occur. In conclusion, epinephrine has a greater effect than IH on EC gene expression in terms of number of genes and their expression level. IH inhibited the epinephrine-induced transcriptional response. Further investigation of the interaction between IH and epinephrine is needed to better understand how OSA causes cardiovascular disease.
Collapse
Affiliation(s)
- Rengul Cetin-Atalay
- grid.170205.10000 0004 1936 7822Department of Medicine, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Section of Pulmonary and Critical Care Medicine, University of Chicago, 5841 S. Maryland Avenue, MC6026, Chicago, IL 60637 USA
| | - Angelo Y. Meliton
- grid.170205.10000 0004 1936 7822Department of Medicine, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Section of Pulmonary and Critical Care Medicine, University of Chicago, 5841 S. Maryland Avenue, MC6026, Chicago, IL 60637 USA
| | - Kaitlyn A. Sun
- grid.170205.10000 0004 1936 7822Department of Medicine, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Section of Pulmonary and Critical Care Medicine, University of Chicago, 5841 S. Maryland Avenue, MC6026, Chicago, IL 60637 USA
| | - Mariel E. Glass
- grid.170205.10000 0004 1936 7822Department of Medicine, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Section of Pulmonary and Critical Care Medicine, University of Chicago, 5841 S. Maryland Avenue, MC6026, Chicago, IL 60637 USA
| | - Parker S. Woods
- grid.170205.10000 0004 1936 7822Department of Medicine, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Section of Pulmonary and Critical Care Medicine, University of Chicago, 5841 S. Maryland Avenue, MC6026, Chicago, IL 60637 USA
| | - Ying-Jie Peng
- grid.170205.10000 0004 1936 7822Department of Medicine, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Section of Emergency Medicine, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Institute for Integrative Physiology, University of Chicago, Chicago, IL USA
| | - Yun Fang
- grid.170205.10000 0004 1936 7822Department of Medicine, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Section of Pulmonary and Critical Care Medicine, University of Chicago, 5841 S. Maryland Avenue, MC6026, Chicago, IL 60637 USA ,grid.170205.10000 0004 1936 7822Institute for Integrative Physiology, University of Chicago, Chicago, IL USA
| | - Robert B. Hamanaka
- grid.170205.10000 0004 1936 7822Department of Medicine, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Section of Pulmonary and Critical Care Medicine, University of Chicago, 5841 S. Maryland Avenue, MC6026, Chicago, IL 60637 USA ,grid.170205.10000 0004 1936 7822Institute for Integrative Physiology, University of Chicago, Chicago, IL USA
| | - Nanduri R. Prabhakar
- grid.170205.10000 0004 1936 7822Department of Medicine, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Section of Emergency Medicine, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Institute for Integrative Physiology, University of Chicago, Chicago, IL USA
| | - Gökhan M. Mutlu
- grid.170205.10000 0004 1936 7822Department of Medicine, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Section of Pulmonary and Critical Care Medicine, University of Chicago, 5841 S. Maryland Avenue, MC6026, Chicago, IL 60637 USA ,grid.170205.10000 0004 1936 7822Institute for Integrative Physiology, University of Chicago, Chicago, IL USA
| |
Collapse
|
11
|
Janes TA, Ambrozio-Marques D, Fournier S, Joseph V, Soliz J, Kinkead R. Testosterone Supplementation Induces Age-Dependent Augmentation of the Hypoxic Ventilatory Response in Male Rats With Contributions From the Carotid Bodies. Front Physiol 2022; 12:781662. [PMID: 35002764 PMCID: PMC8741195 DOI: 10.3389/fphys.2021.781662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/03/2021] [Indexed: 12/30/2022] Open
Abstract
Excessive carotid body responsiveness to O2 and/or CO2/H+ stimuli contributes to respiratory instability and apneas during sleep. In hypogonadal men, testosterone supplementation may increase the risk of sleep-disordered breathing; however, the site of action is unknown. The present study tested the hypothesis that testosterone supplementation potentiates carotid body responsiveness to hypoxia in adult male rats. Because testosterone levels decline with age, we also determined whether these effects were age-dependent. In situ hybridization determined that androgen receptor mRNA was present in the carotid bodies and caudal nucleus of the solitary tract of adult (69 days old) and aging (193–206 days old) male rats. In urethane-anesthetized rats injected with testosterone propionate (2 mg/kg; i.p.), peak breathing frequency measured during hypoxia (FiO2 = 0.12) was 11% greater vs. the vehicle treatment group. Interestingly, response intensity following testosterone treatment was positively correlated with animal age. Exposing ex vivo carotid body preparations from young and aging rats to testosterone (5 nM, free testosterone) 90–120 min prior to testing showed that the carotid sinus nerve firing rate during hypoxia (5% CO2 + 95% N2; 15 min) was augmented in both age groups as compared to vehicle (<0.001% DMSO). Ventilatory measurements performed using whole body plethysmography revealed that testosterone supplementation (2 mg/kg; i.p.) 2 h prior reduced apnea frequency during sleep. We conclude that in healthy rats, age-dependent potentiation of the carotid body’s response to hypoxia by acute testosterone supplementation does not favor the occurrence of apneas but rather appears to stabilize breathing during sleep.
Collapse
Affiliation(s)
- Tara A Janes
- Department of Physiology, Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada.,Department of Pediatrics, Québec Heart and Lung Institute, Université Laval, Québec, QC, Canada
| | | | - Sébastien Fournier
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Vincent Joseph
- Department of Pediatrics, Québec Heart and Lung Institute, Université Laval, Québec, QC, Canada
| | - Jorge Soliz
- Department of Pediatrics, Québec Heart and Lung Institute, Université Laval, Québec, QC, Canada
| | - Richard Kinkead
- Department of Pediatrics, Québec Heart and Lung Institute, Université Laval, Québec, QC, Canada
| |
Collapse
|
12
|
Volynsky MA, Mamontov OV, Osipchuk AV, Zaytsev VV, Sokolov AY, Kamshilin AA. Study of cerebrovascular reactivity to hypercapnia by imaging photoplethysmography to develop a method for intraoperative assessment of the brain functional reserve. BIOMEDICAL OPTICS EXPRESS 2022; 13:184-196. [PMID: 35154863 PMCID: PMC8803018 DOI: 10.1364/boe.443477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/07/2021] [Accepted: 11/29/2021] [Indexed: 05/03/2023]
Abstract
Intraoperative assessment of cerebrovascular reactivity is a relevant problem of neurosurgery. To assess the functional reserve of cerebral blood flow, we suggest using imaging photoplethysmography for measuring changes in cortical perfusion caused by CO2 inhalation. Feasibility of the technique was demonstrated in three groups of anesthetized rats (n=21) with opened and closed cranial windows. Our study for the first time revealed that the hemodynamic response to hypercapnia strongly depends on the cranial state. However, it was shown that regardless of the direction of changes in local and systemic hemodynamics, the ratio of normalized changes in arterial blood pressure and cortical perfusion could be used as a measure of the cerebrovascular functional reserve.
Collapse
Affiliation(s)
- Maxim A. Volynsky
- School of Physics and Engineering, ITMO University, 49 Kronverksky av., 197101 St. Petersburg, Russia
- Laboratory of New Functional Materials for Photonics, Institute of Automation & Control Processes of the Far East Branch of the Russian Academy of Sciences, 5, Radio str., 690041 Vladivostok, Russia
- These authors contributed equally to this work
| | - Oleg V. Mamontov
- Laboratory of New Functional Materials for Photonics, Institute of Automation & Control Processes of the Far East Branch of the Russian Academy of Sciences, 5, Radio str., 690041 Vladivostok, Russia
- Department of Circulation Physiology, Almazov National Medical Research Centre, 2 Akkuratov str., 197341 St. Petersburg, Russia
- These authors contributed equally to this work
| | - Anastasiia V. Osipchuk
- Department of Neuropharmacology, Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, 6-8 Lev Tolstoy str., 197022 St. Petersburg, Russia
| | - Valery V. Zaytsev
- Laboratory of New Functional Materials for Photonics, Institute of Automation & Control Processes of the Far East Branch of the Russian Academy of Sciences, 5, Radio str., 690041 Vladivostok, Russia
- Department of Circulation Physiology, Almazov National Medical Research Centre, 2 Akkuratov str., 197341 St. Petersburg, Russia
| | - Alexey Y. Sokolov
- Department of Neuropharmacology, Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, 6-8 Lev Tolstoy str., 197022 St. Petersburg, Russia
- Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology of the Russian Academy of Sciences, 6 Makarov emb., 199034 St. Petersburg, Russia
| | - Alexei A. Kamshilin
- Laboratory of New Functional Materials for Photonics, Institute of Automation & Control Processes of the Far East Branch of the Russian Academy of Sciences, 5, Radio str., 690041 Vladivostok, Russia
- Department of Circulation Physiology, Almazov National Medical Research Centre, 2 Akkuratov str., 197341 St. Petersburg, Russia
| |
Collapse
|
13
|
Abstract
Obstructive sleep apnea (OSA) is a disease that results from loss of upper airway muscle tone leading to upper airway collapse during sleep in anatomically susceptible persons, leading to recurrent periods of hypoventilation, hypoxia, and arousals from sleep. Significant clinical consequences of the disorder cover a wide spectrum and include daytime hypersomnolence, neurocognitive dysfunction, cardiovascular disease, metabolic dysfunction, respiratory failure, and pulmonary hypertension. With escalating rates of obesity a major risk factor for OSA, the public health burden from OSA and its sequalae are expected to increase, as well. In this chapter, we review the mechanisms responsible for the development of OSA and associated neurocognitive and cardiometabolic comorbidities. Emphasis is placed on the neural control of the striated muscles that control the pharyngeal passages, especially regulation of hypoglossal motoneuron activity throughout the sleep/wake cycle, the neurocognitive complications of OSA, and the therapeutic options available to treat OSA including recent pharmacotherapeutic developments.
Collapse
Affiliation(s)
- Luu V Pham
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States.
| | - Jonathan Jun
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Vsevolod Y Polotsky
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
14
|
Sympathetic activation by obstructive sleep apnea: a challenging 'off-label' meta-analysis. J Hypertens 2022; 40:30-32. [PMID: 34857703 DOI: 10.1097/hjh.0000000000003058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Fukushi I, Takeda K, Pokorski M, Kono Y, Yoshizawa M, Hasebe Y, Nakao A, Mori Y, Onimaru H, Okada Y. Activation of Astrocytes in the Persistence of Post-hypoxic Respiratory Augmentation. Front Physiol 2021; 12:757731. [PMID: 34690820 PMCID: PMC8531090 DOI: 10.3389/fphys.2021.757731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
Acute hypoxia increases ventilation. After cessation of hypoxia loading, ventilation decreases but remains above the pre-exposure baseline level for a time. However, the mechanism of this post-hypoxic persistent respiratory augmentation (PHRA), which is a short-term potentiation of breathing, has not been elucidated. We aimed to test the hypothesis that astrocytes are involved in PHRA. To this end, we investigated hypoxic ventilatory responses by whole-body plethysmography in unanesthetized adult mice. The animals breathed room air, hypoxic gas mixture (7% O2, 93% N2) for 2min, and again room air for 10min before and after i.p. administration of low (100mg/kg) and high (300mg/kg) doses of arundic acid (AA), an astrocyte inhibitor. AA suppressed PHRA, with the high dose decreasing ventilation below the pre-hypoxic level. Further, we investigated the role of the astrocytic TRPA1 channel, a putative ventilatory hypoxia sensor, in PHRA using astrocyte-specific Trpa1 knockout (asTrpa1−/−) and floxed Trpa1 (Trpa1f/f) mice. In both Trpa1f/f and asTrpa1−/− mice, PHRA was noticeable, indicating that the astrocyte TRPA1 channel was not directly involved in PHRA. Taken together, these results indicate that astrocytes mediate the PHRA by mechanisms other than TRPA1 channels that are engaged in hypoxia sensing.
Collapse
Affiliation(s)
- Isato Fukushi
- Faculty of Health Sciences, Uekusa Gakuen University, Chiba, Japan.,Clinical Research Center, Murayama Medical Center, Musashimurayama, Japan
| | - Kotaro Takeda
- Clinical Research Center, Murayama Medical Center, Musashimurayama, Japan.,Faculty of Rehabilitation, School of Healthcare, Fujita Health University, Toyoake, Japan
| | - Mieczyslaw Pokorski
- Institute of Health Sciences, University of Opole, Opole, Poland.,Faculty of Health Sciences, The Jan Dlugosz University in Czestochowa, Czestochowa, Poland
| | - Yosuke Kono
- Clinical Research Center, Murayama Medical Center, Musashimurayama, Japan.,Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Masashi Yoshizawa
- Clinical Research Center, Murayama Medical Center, Musashimurayama, Japan.,Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Yohei Hasebe
- Clinical Research Center, Murayama Medical Center, Musashimurayama, Japan.,Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Akito Nakao
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Yasuo Mori
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Hiroshi Onimaru
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
| | - Yasumasa Okada
- Clinical Research Center, Murayama Medical Center, Musashimurayama, Japan
| |
Collapse
|
16
|
Floras JS. The 2021 Carl Ludwig Lecture. Unsympathetic autonomic regulation in heart failure: patient-inspired insights. Am J Physiol Regul Integr Comp Physiol 2021; 321:R338-R351. [PMID: 34259047 DOI: 10.1152/ajpregu.00143.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Defined as a structural or functional cardiac abnormality accompanied by symptoms, signs, or biomarkers of altered ventricular pressures or volumes, heart failure also is a state of autonomic disequilibrium. A large body of evidence affirms that autonomic disturbances are intrinsic to heart failure; basal or stimulated sympathetic nerve firing or neural norepinephrine (NE) release more often than not exceed homeostatic need, such that an initially adaptive adrenergic or vagal reflex response becomes maladaptive. The magnitude of such maladaptation predicts prognosis. This Ludwig lecture develops two theses: the elucidation and judiciously targeted amelioration of maladaptive autonomic disturbances offers opportunities to complement contemporary guideline-based heart failure therapy, and serendipitous single-participant insights, acquired in the course of experimental protocols with entirely different intent, can generate novel insight, inform mechanisms, and launch entirely new research directions. I précis six elements of our current synthesis of the causes and consequences of maladaptive sympathetic disequilibrium in heart failure, shaped by patient-inspired epiphanies: arterial baroreceptor reflex modulation, excitation stimulated by increased cardiac filling pressure, paradoxical muscle sympathetic activation as a peripheral neurogenic constraint on exercise capacity, renal sympathetic restraint of natriuresis, coexisting sleep apnea, and augmented chemoreceptor reflex sensitivity and then conclude by envisaging translational therapeutic opportunities.
Collapse
Affiliation(s)
- John S Floras
- University Health Network and Sinai Health Division of Cardiology, Toronto General Hospital Research Institute and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Cetin-Atalay R, Meliton AY, Wu D, Woods PS, Sun KA, Peng YJ, Nanduri J, Su X, Fang Y, Hamanaka RB, Prabhakar N, Mutlu GM. Intermittent Hypoxia-Induced Activation of Endothelial Cells Is Mediated via Sympathetic Activation-Dependent Catecholamine Release. Front Physiol 2021; 12:701995. [PMID: 34322038 PMCID: PMC8311436 DOI: 10.3389/fphys.2021.701995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/22/2021] [Indexed: 02/03/2023] Open
Abstract
Obstructive sleep apnea (OSA) is a common breathing disorder affecting a significant percentage of the adult population. OSA is an independent risk factor for cardiovascular disease (CVD); however, the underlying mechanisms are not completely understood. Since the severity of hypoxia correlates with some of the cardiovascular effects, intermittent hypoxia (IH) is thought to be one of the mechanisms by which OSA may cause CVD. Here, we investigated the effect of IH on endothelial cell (EC) activation, characterized by the expression of inflammatory genes, that is known to play an important role in the pathogenesis of CVD. Exposure of C57BL/6 mice to IH led to aortic EC activation, while in vitro exposure of ECs to IH failed to do so, suggesting that IH does not induce EC activation directly, but indirectly. One of the consequences of IH is activation of the sympathetic nervous system and catecholamine release. We found that exposure of mice to IH caused elevation of circulating levels of catecholamines. Inhibition of the IH-induced increase in catecholamines by pharmacologic inhibition or by adrenalectomy or carotid body ablation prevented the IH-induced EC activation in mice. Supporting a key role for catecholamines, epinephrine alone was sufficient to cause EC activation in vivo and in vitro. Together, these results suggested that IH does not directly induce EC activation, but does so indirectly via release of catecholamines. These results suggest that targeting IH-induced sympathetic nerve activity and catecholamine release may be a potential therapeutic target to attenuate the CV effects of OSA.
Collapse
Affiliation(s)
- Rengul Cetin-Atalay
- Department of Medicine, University of Chicago, Chicago, IL, United States.,Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL, United States
| | - Angelo Y Meliton
- Department of Medicine, University of Chicago, Chicago, IL, United States.,Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL, United States
| | - David Wu
- Department of Medicine, University of Chicago, Chicago, IL, United States.,Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL, United States
| | - Parker S Woods
- Department of Medicine, University of Chicago, Chicago, IL, United States.,Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL, United States
| | - Kaitlyn A Sun
- Department of Medicine, University of Chicago, Chicago, IL, United States.,Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL, United States
| | - Ying-Jie Peng
- Department of Medicine, University of Chicago, Chicago, IL, United States.,Section of Emergency Medicine, University of Chicago, Chicago, IL, United States.,Institute for Integrative Physiology, University of Chicago, Chicago, IL, United States
| | - Jayasri Nanduri
- Department of Medicine, University of Chicago, Chicago, IL, United States.,Section of Emergency Medicine, University of Chicago, Chicago, IL, United States.,Institute for Integrative Physiology, University of Chicago, Chicago, IL, United States
| | - Xiaoyu Su
- Department of Medicine, University of Chicago, Chicago, IL, United States.,Section of Emergency Medicine, University of Chicago, Chicago, IL, United States.,Institute for Integrative Physiology, University of Chicago, Chicago, IL, United States
| | - Yun Fang
- Department of Medicine, University of Chicago, Chicago, IL, United States.,Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL, United States.,Institute for Integrative Physiology, University of Chicago, Chicago, IL, United States
| | - Robert B Hamanaka
- Department of Medicine, University of Chicago, Chicago, IL, United States.,Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL, United States.,Institute for Integrative Physiology, University of Chicago, Chicago, IL, United States
| | - Nanduri Prabhakar
- Department of Medicine, University of Chicago, Chicago, IL, United States.,Section of Emergency Medicine, University of Chicago, Chicago, IL, United States.,Institute for Integrative Physiology, University of Chicago, Chicago, IL, United States
| | - Gökhan M Mutlu
- Department of Medicine, University of Chicago, Chicago, IL, United States.,Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL, United States.,Institute for Integrative Physiology, University of Chicago, Chicago, IL, United States
| |
Collapse
|
18
|
Taylor KS, Keir DA, Haruki N, Kimmerly DS, Millar PJ, Murai H, Floras JS. Comparison of Cortical Autonomic Network-Linked Sympathetic Excitation by Mueller Maneuvers and Breath-Holds in Subjects With and Without Obstructive Sleep Apnea. Front Physiol 2021; 12:678630. [PMID: 34122146 PMCID: PMC8188800 DOI: 10.3389/fphys.2021.678630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/16/2021] [Indexed: 11/15/2022] Open
Abstract
In healthy young volunteers, acquisition of blood oxygen level-dependent (BOLD) magnetic resonance (MR) and muscle sympathetic nerve (MSNA) signals during simulation of obstructive or central sleep apnea identified cortical cardiovascular autonomic regions in which the BOLD signal changed synchronously with acute noradrenergic excitation. In the present work, we tested the hypothesis that such Mueller maneuvers (MM) and breath-holds (BH) would elicit greater concomitant changes in mean efferent nerve firing and BOLD signal intensity in patients with moderate to severe obstructive sleep apnea (OSA) relative to age- and sex-matched individuals with no or only mild OSA (Apnea Hypopnea Index, AHI, <15 events/h). Forty-six participants, 24 with OSA [59 ± 8 years; AHI 31 ± 18 events/h (mean ± SD); seven women] and 22 without (58 ± 11 years; AHI 7 ± 4; nine women), performed a series of three MM and three BH, in randomly assigned order, twice: during continuous recording of MSNA from the right fibular nerve and, on a separate day, during T2∗-weighted echo planar functional MR imaging. MSNA at rest was greater in those with OSA (65 ± 19 vs. 48 ± 17 bursts per 100 heart beats; p < 0.01). MM and BH elicited similar heart rate, blood pressure, and MSNA responses in the two cohorts; group mean BOLD data were concordant, detecting no between-group differences in cortical autonomic region signal activities. The present findings do not support the concept that recurring episodes of cyclical apnea during sleep alter cortical or peripheral neural responsiveness to their simulation during wakefulness by volitional Mueller maneuvers or breath-holds.
Collapse
Affiliation(s)
- Keri S Taylor
- University Health Network and Mount Sinai Hospital Department of Medicine, Toronto General Hospital Research Institute and the Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Daniel A Keir
- University Health Network and Mount Sinai Hospital Department of Medicine, Toronto General Hospital Research Institute and the Department of Medicine, University of Toronto, Toronto, ON, Canada.,School of Kinesiology, The University of Western Ontario, London, ON, Canada
| | - Nobuhiko Haruki
- University Health Network and Mount Sinai Hospital Department of Medicine, Toronto General Hospital Research Institute and the Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Derek S Kimmerly
- University Health Network and Mount Sinai Hospital Department of Medicine, Toronto General Hospital Research Institute and the Department of Medicine, University of Toronto, Toronto, ON, Canada.,Division of Kinesiology, Faculty of Health, Dalhousie University, Halifax, NS, Canada
| | - Philip J Millar
- University Health Network and Mount Sinai Hospital Department of Medicine, Toronto General Hospital Research Institute and the Department of Medicine, University of Toronto, Toronto, ON, Canada.,Department of Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Hisayoshi Murai
- University Health Network and Mount Sinai Hospital Department of Medicine, Toronto General Hospital Research Institute and the Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - John S Floras
- University Health Network and Mount Sinai Hospital Department of Medicine, Toronto General Hospital Research Institute and the Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
19
|
Peng YJ, Su X, Wang B, Matthews T, Nanduri J, Prabhakar NR. Role of olfactory receptor78 in carotid body-dependent sympathetic activation and hypertension in murine models of chronic intermittent hypoxia. J Neurophysiol 2021; 125:2054-2067. [PMID: 33909496 DOI: 10.1152/jn.00067.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic intermittent hypoxia (CIH) is a hallmark manifestation of obstructive sleep apnea (OSA), a widespread breathing disorder. CIH-treated rodents exhibit activation of the sympathetic nervous system and hypertension. Heightened carotid body (CB) activity has been implicated in CIH-induced hypertension. CB expresses high abundance of olfactory receptor (Olfr) 78, a G-protein coupled receptor. Olfr 78 null mice exhibit impaired CB sensory nerve response to acute hypoxia. Present study examined whether Olfr78 participates in CB-dependent activation of the sympathetic nervous system and hypertension in CIH-treated mice and in hemeoxygenase (HO)-2 null mice experiencing CIH as a consequence of naturally occurring OSA. CIH-treated wild-type (WT) mice showed hypertension, biomarkers of sympathetic nerve activation, and enhanced CB sensory nerve response to hypoxia and sensory long-term facilitation (sLTF), and these responses were absent in CIH-treated Olfr78 null mice. HO-2 null mice showed higher apnea index (AI) (58 ± 1.2 apneas/h) than WT mice (AI = 8 ± 0.8 apneas/h) and exhibited elevated blood pressure (BP), elevated plasma norepinephrine (NE) levels, and heightened CB sensory nerve response to hypoxia and sLTF. The magnitude of hypertension correlated with AI in HO-2 null mice. In contrast, HO-2/Olfr78 double null mice showed absence of elevated BP and plasma NE levels and augmented CB response to hypoxia and sLTF. These results demonstrate that Olfr78 participates in sympathetic nerve activation and hypertension and heightened CB activity in two murine models of CIH.NEW & NOTEWORTHY Carotid body (CB) sensory nerve activation is essential for sympathetic nerve excitation and hypertension in rodents treated with chronic intermittent hypoxia (CIH) simulating blood O2 profiles during obstructive sleep apnea (OSA). Here, we report that CIH-treated mice and hemeoxygenase (HO)-2-deficient mice, which show OSA phenotype, exhibit sympathetic excitation, hypertension, and CB activation. These effects are absent in Olfr78 null and Olfr78/HO-2 double null mice.
Collapse
Affiliation(s)
- Ying-Jie Peng
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, University of Chicago, Chicago, Illinois
| | - Xiaoyu Su
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, University of Chicago, Chicago, Illinois
| | - Benjamin Wang
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, University of Chicago, Chicago, Illinois
| | - Timothy Matthews
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, University of Chicago, Chicago, Illinois
| | - Jayasri Nanduri
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, University of Chicago, Chicago, Illinois
| | - Nanduri R Prabhakar
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, University of Chicago, Chicago, Illinois
| |
Collapse
|
20
|
Floras JS. From Brain to Blood Vessel: Insights From Muscle Sympathetic Nerve Recordings: Arthur C. Corcoran Memorial Lecture 2020. Hypertension 2021; 77:1456-1468. [PMID: 33775112 DOI: 10.1161/hypertensionaha.121.16490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Multiunit recordings of postganglionic sympathetic outflow to muscle yield otherwise imperceptible insights into sympathetic neural modulation of human vascular resistance and blood pressure. This Corcoran Lecture will illustrate the utility of microneurography to investigate neurogenic cardiovascular regulation; review data concerning muscle sympathetic nerve activity of women and men with normal and high blood pressure; explore 2 concepts, central upregulation of muscle sympathetic outflow and cortical autonomic neuroplasticity; present sleep apnea as an imperfect model of neurogenic hypertension; and expose the paradox of sympathetic excitation without hypertension. In awake healthy normotensive individuals, resting muscle sympathetic nerve activity increases with age, sleep fragmentation, and obstructive apnea. Its magnitude is not signaled by heart rate. Age-related changes are nonlinear and differ by sex. In men, sympathetic nerve activity increases with age but without relation to their blood pressure, whereas in women, both rise concordantly after age 40. Mean values for muscle sympathetic nerve activity burst incidence are consistently higher in cohorts with hypertension than in matched normotensives, yet women's sympathetic nerve traffic can increase 3-fold between ages 30 and 70 without causing hypertension. Thus, increased sympathetic nerve activity may be necessary but is insufficient for primary hypertension. Moreover, its inhibition does not consistently decrease blood pressure. Despite a half-century of microneurographic research, large gaps remain in our understanding of the content of the sympathetic broadcast from brain to blood vessel and its specific individual consequences for circulatory regulation and cardiovascular, renal, and metabolic risk.
Collapse
Affiliation(s)
- John S Floras
- Sinai Health and University Health Network Division of Cardiology, Toronto General Hospital Research Institute, and the Department of Medicine, University of Toronto
| |
Collapse
|
21
|
Puri S, Panza G, Mateika JH. A comprehensive review of respiratory, autonomic and cardiovascular responses to intermittent hypoxia in humans. Exp Neurol 2021; 341:113709. [PMID: 33781731 PMCID: PMC8527806 DOI: 10.1016/j.expneurol.2021.113709] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/17/2021] [Accepted: 03/24/2021] [Indexed: 01/08/2023]
Abstract
This review explores forms of respiratory and autonomic plasticity, and associated outcome measures, that are initiated by exposure to intermittent hypoxia. The review focuses primarily on studies that have been completed in humans and primarily explores the impact of mild intermittent hypoxia on outcome measures. Studies that have explored two forms of respiratory plasticity, progressive augmentation of the hypoxic ventilatory response and long-term facilitation of ventilation and upper airway muscle activity, are initially reviewed. The role these forms of plasticity might have in sleep disordered breathing are also explored. Thereafter, the role of intermittent hypoxia in the initiation of autonomic plasticity is reviewed and the role this form of plasticity has in cardiovascular and hemodynamic responses during and following intermittent hypoxia is addressed. The role of these responses in individuals with sleep disordered breathing and spinal cord injury are subsequently addressed. Ultimately an integrated picture of the respiratory, autonomic and cardiovascular responses to intermittent hypoxia is presented. The goal of the integrated picture is to address the types of responses that one might expect in humans exposed to one-time and repeated daily exposure to mild intermittent hypoxia. This form of intermittent hypoxia is highlighted because of its potential therapeutic impact in promoting functional improvement and recovery in several physiological systems.
Collapse
Affiliation(s)
- Shipra Puri
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI 48201, United States of America; Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, United States of America
| | - Gino Panza
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI 48201, United States of America; Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, United States of America
| | - Jason H Mateika
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI 48201, United States of America; Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, United States of America; Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI 48201, United States of America.
| |
Collapse
|
22
|
Kim LJ, Polotsky VY. Carotid Body and Metabolic Syndrome: Mechanisms and Potential Therapeutic Targets. Int J Mol Sci 2020; 21:E5117. [PMID: 32698380 PMCID: PMC7404212 DOI: 10.3390/ijms21145117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/11/2020] [Accepted: 07/16/2020] [Indexed: 12/19/2022] Open
Abstract
The carotid body (CB) is responsible for the peripheral chemoreflex by sensing blood gases and pH. The CB also appears to act as a peripheral sensor of metabolites and hormones, regulating the metabolism. CB malfunction induces aberrant chemosensory responses that culminate in the tonic overactivation of the sympathetic nervous system. The sympatho-excitation evoked by CB may contribute to the pathogenesis of metabolic syndrome, inducing systemic hypertension, insulin resistance and sleep-disordered breathing. Several molecular pathways are involved in the modulation of CB activity, and their pharmacological manipulation may lead to overall benefits for cardiometabolic diseases. In this review, we will discuss the role of the CB in the regulation of metabolism and in the pathogenesis of the metabolic dysfunction induced by CB overactivity. We will also explore the potential pharmacological targets in the CB for the treatment of metabolic syndrome.
Collapse
Affiliation(s)
- Lenise J. Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA;
| | | |
Collapse
|
23
|
Kasai T, Taranto Montemurro L, Yumino D, Wang H, Floras JS, Newton GE, Mak S, Ruttanaumpawan P, Parker JD, Bradley TD. Inverse relationship of subjective daytime sleepiness to mortality in heart failure patients with sleep apnoea. ESC Heart Fail 2020; 7:2448-2454. [PMID: 32608195 PMCID: PMC7524079 DOI: 10.1002/ehf2.12808] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/20/2020] [Accepted: 05/14/2020] [Indexed: 12/27/2022] Open
Abstract
Aims Patients with sleep apnoea (SA) and heart failure (HF) are less sleepy than SA patients without HF. HF and SA both increase sympathetic nervous system activity (SNA). SNA can augment alertness. We previously showed that in HF patients, the degree of daytime sleepiness was not related to the severity of SA but was inversely related to SNA. Elevated SNA is associated with increased mortality in HF. Therefore, we hypothesized that in HF patients with SA, the degree of daytime sleepiness will be inversely related to mortality. Methods and results In a prospective cohort study, 218 consecutive patients with systolic HF had overnight polysomnography. Among them, 80 subjects with SA (apnoea–hypopnoea index ≥15) were followed for a mean of 28 months to determine all‐cause mortality rate. Subjective daytime sleepiness was assessed by the Epworth Sleepiness Scale (ESS). During follow‐up, 20 patients died. The 5 year death rate in patients with ESS less than 6 (i.e. less sleepy) was significantly higher than in patients with an ESS at or above the median of 6 (i.e. sleepier) [21.3 deaths/100 patient‐years vs. 6.2 deaths/100 patient‐years, unadjusted hazard ratio (HR) 2.94, 95% confidence interval (CI) 1.20 to 7.20, P = 0.018]. After adjusting for confounding factors that included sex, history of hypertension, and mean arterial oxyhaemoglobin saturation, compared with the sleepier patients, less sleepy patients had greater risk of mortality (HR 2.56, 95% CI 1.01 to 6.47, P = 0.047). As a continuous variable, ESS scores were inversely related to mortality risk (HR 0.86, 95% CI 0.75 to 0.98, P = 0.022). Conclusions In patients with HF and SA, the degree of subjective daytime sleepiness is inversely related to the mortality risk, suggesting that among HF patients with SA, those with the least daytime sleepiness are at greater risk of death. They may therefore have greater potential for mortality benefit from therapy of SA than those with greater daytime sleepiness.
Collapse
Affiliation(s)
- Takatoshi Kasai
- Sleep Research Laboratory of the Toronto Rehabilitation Institute, University of Toronto, Toronto, Ontario, Canada.,Centre for Sleep Medicine and Circadian Biology, University of Toronto, Toronto, Ontario, Canada.,Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Luigi Taranto Montemurro
- Sleep Research Laboratory of the Toronto Rehabilitation Institute, University of Toronto, Toronto, Ontario, Canada.,Centre for Sleep Medicine and Circadian Biology, University of Toronto, Toronto, Ontario, Canada
| | - Dai Yumino
- Sleep Research Laboratory of the Toronto Rehabilitation Institute, University of Toronto, Toronto, Ontario, Canada.,Centre for Sleep Medicine and Circadian Biology, University of Toronto, Toronto, Ontario, Canada
| | - Hanqiao Wang
- Sleep Research Laboratory of the Toronto Rehabilitation Institute, University of Toronto, Toronto, Ontario, Canada.,Centre for Sleep Medicine and Circadian Biology, University of Toronto, Toronto, Ontario, Canada
| | - John S Floras
- Department of Medicine of the Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada.,Department of Medicine, Toronto General Hospital of the University Health Network, 9N-943, 200 Elizabeth Street, Toronto, Ontario, M5G 2C4, Canada
| | - Gary E Newton
- Department of Medicine of the Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Susanna Mak
- Department of Medicine of the Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Pimon Ruttanaumpawan
- Sleep Research Laboratory of the Toronto Rehabilitation Institute, University of Toronto, Toronto, Ontario, Canada.,Centre for Sleep Medicine and Circadian Biology, University of Toronto, Toronto, Ontario, Canada
| | - John D Parker
- Department of Medicine of the Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada.,Department of Medicine, Toronto General Hospital of the University Health Network, 9N-943, 200 Elizabeth Street, Toronto, Ontario, M5G 2C4, Canada
| | - T Douglas Bradley
- Sleep Research Laboratory of the Toronto Rehabilitation Institute, University of Toronto, Toronto, Ontario, Canada.,Department of Medicine, Toronto General Hospital of the University Health Network, 9N-943, 200 Elizabeth Street, Toronto, Ontario, M5G 2C4, Canada.,Centre for Sleep Medicine and Circadian Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Abstract
Synchronization of molecular, metabolic, and cardiovascular circadian oscillations is fundamental to human health. Sleep-disordered breathing, which disrupts such temporal congruence, elicits hemodynamic, autonomic, chemical, and inflammatory disturbances with acute and long-term consequences for heart, brain, and circulatory and metabolic function. Sleep apnea afflicts a substantial proportion of adult men and women but is more prevalent in those with established cardiovascular diseases and especially fluid-retaining states. Despite the experimental, epidemiological, observational, and interventional evidence assembled in support of these concepts, this substantial body of work has had relatively modest pragmatic impact, thus far, on the discipline of cardiology. Contemporary estimates of cardiovascular risk still are derived typically from data acquired during wakefulness. The impact of sleep-related breathing disorders rarely is entered into such calculations or integrated into diagnostic disease-specific algorithms or therapeutic recommendations. Reasons for this include absence of apnea-related symptoms in most with cardiovascular disease, impediments to efficient diagnosis at the population level, debate as to target, suboptimal therapies, difficulties mounting large randomized trials of sleep-specific interventions, and the challenging results of those few prospective cardiovascular outcome trials that have been completed and reported. The objectives of this review are to delineate the bidirectional interrelationship between sleep-disordered breathing and cardiovascular disease, consider the findings and implications of observational and randomized trials of treatment, frame the current state of clinical equipoise, identify principal current controversies and potential paths to their resolution, and anticipate future directions.
Collapse
Affiliation(s)
- John S Floras
- From the University Health Network and Sinai Health System Division of Cardiology, Department of Medicine, University of Toronto, Ontario, Canada.
| |
Collapse
|
25
|
Castania JA, Katayama PL, Brognara F, Moraes DJA, Sabino JPJ, Salgado HC. Selective denervation of the aortic and carotid baroreceptors in rats. Exp Physiol 2019; 104:1335-1342. [PMID: 31161612 DOI: 10.1113/ep087764] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/03/2019] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? The traditional surgical approach for sino-aortic denervation in rats leads to simultaneous carotid baroreceptor and chemoreceptor deactivation, which does not permit their individual study in different situations. What is the main finding and its importance? We have described a new surgical approach capable of selective denervation of the arterial (aortic and carotid) baroreceptors, keeping the carotid bodies (chemoreceptors) intact. It is understood that this technique might be a useful tool for investigating the relative role of the baro- and chemoreceptors in several physiological and pathophysiological conditions. ABSTRACT Studies have demonstrated that the traditional surgical approach for sino-aortic denervation in rats leads to simultaneous carotid baroreceptor and chemoreceptor deactivation. The present study reports a new surgical approach to denervate the aortic and the carotid baroreceptors selectively, keeping the carotid bodies (peripheral chemoreceptors) intact. Wistar rats were subjected to specific aortic and carotid baroreceptor denervation (BAROS-X) or sham surgery (SHAM). Baroreflex activation was achieved by i.v. administration of phenylephrine, whereas peripheral chemoreflex activation was produced by i.v. administration of potassium cyanide. The SHAM and BAROS-X rats displayed significant hypertensive responses to phenylephrine administration. However, the reflex bradycardia following the hypertensive response caused by phenylephrine was remarkable in SHAM, but not significant in the BAROS-X animals, confirming the efficacy of the surgical procedure to abolish the baroreflex. In addition, the baroreflex activation elicited by phenylephrine increased carotid sinus nerve activity only in SHAM, but not in the BAROS-X animals, providing support to the notion that the baroreceptor afferents were absent. Instead, the classical peripheral chemoreflex hypertensive and bradycardic responses to potassium cyanide were similar in both groups, suggesting that the carotid body chemoreceptors were preserved after BAROS-X. In summary, we describe a new surgical approach in which only the baroreceptors are eliminated, while the carotid chemoreceptors are preserved. Therefore, it is understood that this procedure is potentially a useful tool for examining the relative roles of the arterial baroreceptors versus the chemoreceptors in several pathophysiological conditions, for instance, arterial hypertension and heart failure.
Collapse
Affiliation(s)
- Jaci A Castania
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Pedro L Katayama
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fernanda Brognara
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Davi J A Moraes
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - João Paulo J Sabino
- Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Helio C Salgado
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
26
|
Zubcevic J, Richards EM, Yang T, Kim S, Sumners C, Pepine CJ, Raizada MK. Impaired Autonomic Nervous System-Microbiome Circuit in Hypertension. Circ Res 2019; 125:104-116. [PMID: 31219753 PMCID: PMC6588177 DOI: 10.1161/circresaha.119.313965] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hypertension affects an estimated 103 million Americans, yet gaps in knowledge continue to limit its successful management. Rapidly emerging evidence is linking gut dysbiosis to many disorders and diseases including hypertension. The evolution of the -omics techniques has allowed determination of the abundance and potential function of gut bacterial species by next-generation bacterial sequencing, whereas metabolomics techniques report shifts in bacterial metabolites in the systemic circulation of hypertensive patients and rodent models of hypertension. The gut microbiome and host have evolved to exist in balance and cooperation, and there is extensive crosstalk between the 2 to maintain this balance, including during regulation of blood pressure. However, an understanding of the mechanisms of dysfunctional host-microbiome interactions in hypertension is still lacking. Here, we synthesize some of our recent data with published reports and present concepts and a rationale for our emerging hypothesis of a dysfunctional gut-brain axis in hypertension. Hopefully, this new information will improve the understanding of hypertension and help to address some of these knowledge gaps.
Collapse
Affiliation(s)
- Jasenka Zubcevic
- Department of Physiological Sciences, College of Veterinary Medicine; University of Florida, Gainesville FL32610
| | - Elaine M. Richards
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville FL32610
| | - Tao Yang
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville FL32610
| | - Seungbum Kim
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville FL32610
| | - Colin Sumners
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville FL32610
| | - Carl J Pepine
- Division of Cardiovascular Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville FL32610
| | - Mohan K Raizada
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville FL32610
| |
Collapse
|
27
|
Trembach N, Zabolotskikh I. The pathophysiology of complications after laparoscopic colorectal surgery: Role of baroreflex and chemoreflex impairment. ACTA ACUST UNITED AC 2019; 26:115-120. [PMID: 31146925 DOI: 10.1016/j.pathophys.2019.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 04/14/2019] [Accepted: 05/21/2019] [Indexed: 10/26/2022]
Abstract
INTRODUCTION The aim of this study was to assess the dynamics of baroreflex sensitivity (BRS) during laparoscopic colorectal surgery in patients with different chemoreflex sensitivity assessed with breath-holding test. METHODS The study included 80 patients (mean age, 68 ± 7 years) who underwent routine laparoscopic colorectal surgery under general/epidural anaesthesia. Patients were retrospectively divided into two groups: with normal (breath-holding duration ≥38 s, group N [n = 42]) or high (breath-holding duration <38 s, group H [n = 38]) chemoreflex sensitivity. BRS was initially evaluated after arterial catheter placement before induction, after induction, after pneumoperitoneum, after extubation, and 6 h and 24 h after extubation. RESULTS Average BRS was significantly lower in the group with high peripheral chemoreflex sensitivity at all time points. The use of pneumoperitoneum did not significantly influence BRS in either group. After the surgery and 6 h after extubation, no significant changes were observed. After 6 h of the surgery, 11.9% of patients in group N and 57.8% of those in group H (p < 0.05) had severe baroreflex dysfunction (BRS < 3 ms/mmHg). After 24 h, only two patients in group N (vs 13 [34.2%] in group H, p < 0.05) had this dysfunction. CONCLUSION Patients with high chemoreflex sensitivity have lower BRS, and it decreases further after anaesthesia induction. The recovery process can take up to 24 h, with an increased risk of perioperative complications in patients with high preoperative chemoreflex sensitivity. The use of pneumoperitoneum does not significantly affect BRS.
Collapse
Affiliation(s)
- Nikita Trembach
- Department of Anesthesiology, Intensive Care and Transfusiology, Kuban State Medical University, 350063, Krasnodar, Sedin str., 4, Russian Federation.
| | - Igor Zabolotskikh
- Department of Anesthesiology, Intensive Care and Transfusiology, Kuban State Medical University, 350063, Krasnodar, Sedin str., 4, Russian Federation.
| |
Collapse
|
28
|
Keir DA, Duffin J, Millar PJ, Floras JS. Simultaneous assessment of central and peripheral chemoreflex regulation of muscle sympathetic nerve activity and ventilation in healthy young men. J Physiol 2019; 597:3281-3296. [DOI: 10.1113/jp277691] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/13/2019] [Indexed: 12/20/2022] Open
Affiliation(s)
- Daniel A. Keir
- University Health Network and Mount Sinai Hospital Division of CardiologyDepartment of Medicine, University of Toronto Toronto Ontario Canada
| | - James Duffin
- Departments of Anaesthesia and PhysiologyUniversity of Toronto Toronto Ontario Canada
- Thornhill Research Inc. Toronto Ontario Canada
| | - Philip J. Millar
- University Health Network and Mount Sinai Hospital Division of CardiologyDepartment of Medicine, University of Toronto Toronto Ontario Canada
- Human Health and Nutritional ScienceUniversity of Guelph Guelph Ontario Canada
| | - John S. Floras
- University Health Network and Mount Sinai Hospital Division of CardiologyDepartment of Medicine, University of Toronto Toronto Ontario Canada
| |
Collapse
|
29
|
Lindsey BG, Nuding SC, Segers LS, Morris KF. Carotid Bodies and the Integrated Cardiorespiratory Response to Hypoxia. Physiology (Bethesda) 2019; 33:281-297. [PMID: 29897299 DOI: 10.1152/physiol.00014.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Advances in our understanding of brain mechanisms for the hypoxic ventilatory response, coordinated changes in blood pressure, and the long-term consequences of chronic intermittent hypoxia as in sleep apnea, such as hypertension and heart failure, are giving impetus to the search for therapies to "erase" dysfunctional memories distributed in the carotid bodies and central nervous system. We review current network models, open questions, sex differences, and implications for translational research.
Collapse
Affiliation(s)
- Bruce G Lindsey
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Sarah C Nuding
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Lauren S Segers
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Kendall F Morris
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida , Tampa, Florida
| |
Collapse
|
30
|
Huber K, Janoueix-Lerosey I, Kummer W, Rohrer H, Tischler AS. The sympathetic nervous system: malignancy, disease, and novel functions. Cell Tissue Res 2019; 372:163-170. [PMID: 29623426 DOI: 10.1007/s00441-018-2831-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Katrin Huber
- Department of Medicine, University of Fribourg, Route-Albert-Gockel 1, 1700, Fribourg, Switzerland.
| | - Isabelle Janoueix-Lerosey
- SIREDO Oncology Center (Care, Innovation and research for children and AYA with cancer), Inserm U830, PSL Research University, Equipe labellisée Ligue Nationale contre le cancer, Institut Curie, 26 rue d'Ulm, 75005, Paris, France
| | - Wolfgang Kummer
- Institute for Anatomy and Cell Biology, Justus Liebig University Giessen, Aulweg 123, 35385, Giessen, Germany
| | - Hermann Rohrer
- Institute for Clinical Neuroanatomy, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt/M, Germany
| | - Arthur S Tischler
- Department of Pathology and Laboratory Medicine, Tufts Medical Center and Tufts University School of Medicine, Boston, MA, 02111, USA
| |
Collapse
|
31
|
Abstract
People living at sea level experience intermittent hypoxia (IH) as a consequence of sleep apnea, which is a highly prevalent respiratory disorder. Sleep apnea patients and rodents exposed to IH exhibit autonomic dysfunction manifested as increased sympathetic nerve activity and hypertension. This article highlights physiologic basis of autonomic disturbances by IH, which involves abnormal activation of the carotid body (CB) chemo reflex by reactive oxygen species (ROS).We further evaluate major molecular mechanisms underlying IH-induced ROS generation including transcriptional activation of genes encoding pro-oxidant enzymes by hypoxia-inducible factor (HIF)-1 and transcriptional repression of anti-oxidant enzyme genes by DNA methylation. Lastly, evidence is presented for CB neural activity as a major regulator of HIF-1 activation and DNA methylation by IH in the chemo reflex pathway.
Collapse
|
32
|
Lucking EF, O'Connor KM, Strain CR, Fouhy F, Bastiaanssen TFS, Burns DP, Golubeva AV, Stanton C, Clarke G, Cryan JF, O'Halloran KD. Chronic intermittent hypoxia disrupts cardiorespiratory homeostasis and gut microbiota composition in adult male guinea-pigs. EBioMedicine 2018; 38:191-205. [PMID: 30446434 PMCID: PMC6306383 DOI: 10.1016/j.ebiom.2018.11.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/26/2018] [Accepted: 11/05/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Carotid body (peripheral oxygen sensor) sensitisation is pivotal in the development of chronic intermittent hypoxia (CIH)-induced hypertension. We sought to determine if exposure to CIH, modelling human sleep apnoea, adversely affects cardiorespiratory control in guinea-pigs, a species with hypoxia-insensitive carotid bodies. We reasoned that CIH-induced disruption of gut microbiota would evoke cardiorespiratory morbidity. METHODS Adult male guinea-pigs were exposed to CIH (6.5% O2 at nadir, 6 cycles.hour-1) for 8 h.day-1 for 12 consecutive days. FINDINGS CIH-exposed animals established reduced faecal microbiota species richness, with increased relative abundance of Bacteroidetes and reduced relative abundance of Firmicutes bacteria. Urinary corticosterone and noradrenaline levels were unchanged in CIH-exposed animals, but brainstem noradrenaline concentrations were lower compared with sham. Baseline ventilation was equivalent in CIH-exposed and sham animals; however, respiratory timing variability, sigh frequency and ventilation during hypoxic breathing were all lower in CIH-exposed animals. Baseline arterial blood pressure was unaffected by exposure to CIH, but β-adrenoceptor-dependent tachycardia and blunted bradycardia during phenylephrine-induced pressor responses was evident compared with sham controls. INTERPRETATION Increased carotid body chemo-afferent signalling appears obligatory for the development of CIH-induced hypertension and elevated chemoreflex control of breathing commonly reported in mammals, with hypoxia-sensitive carotid bodies. However, we reveal that exposure to modest CIH alters gut microbiota richness and composition, brainstem neurochemistry, and autonomic control of heart rate, independent of carotid body sensitisation, suggesting modulation of breathing and autonomic homeostasis via the microbiota-gut-brainstem axis. The findings have relevance to human sleep-disordered breathing. FUNDING The Department of Physiology, and APC Microbiome Ireland, UCC.
Collapse
Affiliation(s)
- Eric F Lucking
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - Karen M O'Connor
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland; Department of Anatomy & Neuroscience, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Conall R Strain
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Fiona Fouhy
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Thomaz F S Bastiaanssen
- Department of Anatomy & Neuroscience, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - David P Burns
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - Anna V Golubeva
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy & Neuroscience, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland.
| |
Collapse
|
33
|
Abstract
In this review, current understanding of the control of autonomic function is outlined and its development over the last 50 years highlighted. Using the control of the cardiovascular system as the primary tool, the importance of the patterning of autonomic outflows is shown to be crucial in both homeostasis and behaviour. Technical advances have made it possible to obtain a clearer idea of how the central nervous system evolves patterns of autonomic discharge that optimise autonomic changes to support motor and behavioural responses. The specific roles of sympathetic and parasympathetic preganglionic neurones and premotor neurones are surveyed and the importance of their roles in integrating afferent inputs that result from peripheral sensory inputs and drive from multiple levels of the neuraxis is outlined. The autonomic control of the viscera, including the urinogenital organs and other organs is discussed briefly. The current ability to use animal models to monitor and modulate autonomic neural discharge and simultaneously co-relate this with end-organ activity is shown to have translational potential. There is every prospect that these studies will lead to the identification of new therapies for pathophysiological conditions.
Collapse
Affiliation(s)
- John H Coote
- Department of Cardiovascular Sciences, Clinical Sciences Wing, Glenfield General Hospital, University of Leicester, Leicester, UK
| | - K Michael Spyer
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| |
Collapse
|
34
|
Sex differences in the respiratory-sympathetic coupling in rats exposed to chronic intermittent hypoxia. Respir Physiol Neurobiol 2018; 256:109-118. [DOI: 10.1016/j.resp.2017.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 09/02/2017] [Accepted: 09/06/2017] [Indexed: 02/06/2023]
|
35
|
Nogueira V, Brito-Alves J, Fontes D, Oliveira L, Lucca W, Tourneur Y, Wanderley A, da Silva GSF, Leandro C, Costa-Silva JH. Carotid body removal normalizes arterial blood pressure and respiratory frequency in offspring of protein-restricted mothers. Hypertens Res 2018; 41:1000-1012. [PMID: 30242293 DOI: 10.1038/s41440-018-0104-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 03/12/2018] [Accepted: 03/26/2018] [Indexed: 12/25/2022]
Abstract
The aim of this study is to evaluate the short-term and long-term effects elicited by carotid body removal (CBR) on ventilatory function and the development of hypertension in the offspring of malnourished rats. Wistar rats were fed a normo-protein (NP, 17% casein) or low-protein (LP, 8% casein) diet during pregnancy and lactation. At 29 days of age, the animals were submitted to CBR or a sham surgery, according to the following groups: NP-cbr, LP-cbr, NP-sham, or LP-sham. In the short-term, at 30 days of age, the respiratory frequency (RF) and immunoreactivity for Fos on the retrotrapezoid nucleus (RTN; brainstem site containing CO2 sensitive neurons) after exposure to CO2 were evaluated. In the long term, at 90 days of age, arterial pressure (AP), heart rate (HR), and cardiovascular variability were evaluated. In the short term, an increase in the baseline RF (~6%), response to CO2 (~8%), and Fos in the RTN (~27%) occurred in the LP-sham group compared with the NP-sham group. Interestingly, the CBR in the LP group normalized the RF in response to CO2 as well as RTN cell activation. In the long term, CBR reduced the mean AP by ~20 mmHg in malnourished rats. The normalization of the arterial pressure was associated with a decrease in the low-frequency (LF) oscillatory component of AP (~58%) and in the sympathetic tonus to the cardiovascular system (~29%). In conclusion, carotid body inputs in malnourished offspring may be responsible for the following: (i) enhanced respiratory frequency and CO2 chemosensitivity in early life and (ii) the production of autonomic imbalance and the development of hypertension.
Collapse
Affiliation(s)
- Viviane Nogueira
- Department of Physical Education and Sports Sciences, Federal University of Pernambuco, Vitória de Santo Antão, PE, Brazil
| | - Jose Brito-Alves
- Department of Physical Education and Sports Sciences, Federal University of Pernambuco, Vitória de Santo Antão, PE, Brazil
| | - Danilo Fontes
- Department of Physical Education and Sports Sciences, Federal University of Pernambuco, Vitória de Santo Antão, PE, Brazil
| | - Larissa Oliveira
- Department of Morphology, Federal University of Sergipe, Aracajú, SE, Brazil
| | - Waldecy Lucca
- Department of Morphology, Federal University of Sergipe, Aracajú, SE, Brazil
| | - Yves Tourneur
- Department of Physical Education and Sports Sciences, Federal University of Pernambuco, Vitória de Santo Antão, PE, Brazil.,Centre National de la Recherche Scientifique, Université Claude Bernard, Lyon 1, Lyon, France
| | - Almir Wanderley
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, PE, Brazil
| | - Glauber S F da Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Carol Leandro
- Department of Physical Education and Sports Sciences, Federal University of Pernambuco, Vitória de Santo Antão, PE, Brazil
| | - João Henrique Costa-Silva
- Department of Physical Education and Sports Sciences, Federal University of Pernambuco, Vitória de Santo Antão, PE, Brazil.
| |
Collapse
|
36
|
Holmes AP, Ray CJ, Pearson SA, Coney AM, Kumar P. Ecto-5'-nucleotidase (CD73) regulates peripheral chemoreceptor activity and cardiorespiratory responses to hypoxia. J Physiol 2018; 596:3137-3148. [PMID: 28560821 PMCID: PMC6068227 DOI: 10.1113/jp274498] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/25/2017] [Indexed: 12/17/2022] Open
Abstract
KEY POINTS Carotid body dysfunction is recognized as a cause of hypertension in a number of cardiorespiratory diseases states and has therefore been identified as a potential therapeutic target. Purinergic transmission is an important element of the carotid body chemotransduction pathway. We show that inhibition of ecto-5'-nucleotidase (CD73) in vitro reduces carotid body basal discharge and responses to hypoxia and mitochondrial inhibition. Additionally, inhibition of CD73 in vivo decreased the hypoxic ventilatory response, reduced the hypoxia-induced heart rate elevation and exaggerated the blood pressure decrease in response to hypoxia. Our data show CD73 to be a novel regulator of carotid body sensory function and therefore suggest that this enzyme may offer a new target for reducing carotid body activity in selected cardiovascular diseases. ABSTRACT Augmented sensory neuronal activity from the carotid body (CB) has emerged as a principal cause of hypertension in a number of cardiovascular related pathologies, including obstructive sleep apnoea, heart failure and diabetes. Development of new targets and pharmacological treatment strategies aiming to reduce CB sensory activity may thus improve outcomes in these key patient cohorts. The present study investigated whether ecto-5'-nucleotidase (CD73), an enzyme that generates adenosine, is functionally important in modifying CB sensory activity and cardiovascular respiratory responses to hypoxia. Inhibition of CD73 by α,β-methylene ADP (AOPCP) in the whole CB preparation in vitro reduced basal discharge frequency by 76 ± 5% and reduced sensory activity throughout graded hypoxia. AOPCP also significantly attenuated elevations in sensory activity evoked by mitochondrial inhibition. These effects were mimicked by antagonism of adenosine receptors with 8-(p-sulfophenyl) theophylline. Infusion of AOPCP in vivo significantly decreased the hypoxic ventilatory response (Δ V ̇ E control 74 ± 6%, Δ V ̇ E AOPCP 64 ± 5%, P < 0.05). AOPCP also modified cardiovascular responses to hypoxia, as indicated by reduced elevations in heart rate and exaggerated changes in femoral vascular conductance and mean arterial blood pressure. Thus we identify CD73 as a novel regulator of CB sensory activity. Future investigations are warranted to clarify whether inhibition of CD73 can effectively reduce CB activity in CB-mediated cardiovascular pathology.
Collapse
Affiliation(s)
| | - Clare J. Ray
- Institute of Clinical SciencesUniversity of BirminghamEdgbastonBirminghamUK
| | - Selina A. Pearson
- Mouse Pipelines, Wellcome Trust Sanger InstituteWellcome Genome CampusHinxtonCambridgeUK
| | - Andrew M. Coney
- Institute of Clinical SciencesUniversity of BirminghamEdgbastonBirminghamUK
| | - Prem Kumar
- Institute of Clinical SciencesUniversity of BirminghamEdgbastonBirminghamUK
| |
Collapse
|
37
|
Li T, Chen Y, Gua C, Wu B. Elevated Oxidative Stress and Inflammation in Hypothalamic Paraventricular Nucleus Are Associated With Sympathetic Excitation and Hypertension in Rats Exposed to Chronic Intermittent Hypoxia. Front Physiol 2018; 9:840. [PMID: 30026701 PMCID: PMC6041405 DOI: 10.3389/fphys.2018.00840] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/14/2018] [Indexed: 01/08/2023] Open
Abstract
Obstructive sleep apnea (OSA), characterized by recurrent collapse of the upper airway during sleep leading to chronic intermittent hypoxia (CIH), is an independent risk factor for hypertension. Sympathetic excitation has been shown to play a major role in the pathogenesis of OSA-associated hypertension. Accumulating evidence indicates that oxidative stress and inflammation in the hypothalamic paraventricular nucleus (PVN), a critical cardiovascular and autonomic center, mediate sympathetic excitation in many cardiovascular diseases. Here we tested the hypothesis that CIH elevates oxidative stress and inflammation in the PVN, which might be associated with sympathetic excitation and increased blood pressure in a rat model of CIH that mimics the oxygen profile in patients with OSA. Sprague-Dawley rats were pretreated with intracerebroventricular (ICV) infusion of vehicle or superoxide scavenger tempol, and then exposed to control or CIH for 7 days. Compared with control+vehicle rats, CIH+vehicle rats exhibited increased blood pressure, and increased sympathetic drive as indicated by the blood pressure response to ganglionic blockade and plasma norepinephrine levels. Pretreatment with ICV tempol prevented CIH-induced increases in blood pressure and sympathetic drive. Molecular studies revealed that expression of NAD(P)H oxidase subunits, production of reactive oxygen species, expression of proinflammatory cytokines and neuronal excitation in the PVN were elevated in CIH+vehicle rats, compared with control+vehicle rats, but were normalized or reduced in CIH rat pretreated with ICV tempol. Notably, CIH+vehicle rats also had increased systemic oxidative stress and inflammation, which were not altered by ICV tempol. The results suggest that CIH induces elevated oxidative stress and inflammation in the PVN, which lead to PVN neuronal excitation and are associated with sympathetic excitation and increased blood pressure. Central oxidative stress and inflammation may be novel targets for the prevention and treatment of hypertension in patients with OSA.
Collapse
Affiliation(s)
- Tiejun Li
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yanli Chen
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, China
| | - Chaojun Gua
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Baogang Wu
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
38
|
Morgan BJ, Teodorescu M, Pegelow DF, Jackson ER, Schneider DL, Plante DT, Gapinski JP, Hetzel SJ, Dopp JM. Effects of losartan and allopurinol on cardiorespiratory regulation in obstructive sleep apnoea. Exp Physiol 2018; 103:941-955. [PMID: 29750475 DOI: 10.1113/ep087006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/08/2018] [Indexed: 12/30/2022]
Abstract
NEW FINDINGS What is the central question of this study? In sleep apnoea, a putative link between intermittent hypoxia and hypertension is the generation of oxygen radicals by angiotensin II and xanthine oxidase within the chemoreflex arc and vasculature. We tested whether chemoreflex control of sympathetic outflow, hypoxic vasodilatation and blood pressure are altered by angiotensin blockade (losartan) and/or xanthine oxidase inhibition (allopurinol). What is the main finding and its importance? Both drugs lowered blood pressure without altering sympathetic outflow, reducing chemoreflex sensitivity or enhancing hypoxic vasodilatation. Losartan and allopurinol are effective therapies for achieving blood pressure control in sleep apnoea. ABSTRACT Chemoreflex sensitization produced by chronic intermittent hypoxia in rats is attenuated by angiotensin II type 1 receptor (AT1 R) blockade. Both AT1 R blockade and xanthine oxidase inhibition ameliorate chronic intermittent hypoxia-induced endothelial dysfunction. We hypothesized that treatment with losartan and allopurinol would reduce chemoreflex sensitivity and improve hypoxic vasodilatation in patients with obstructive sleep apnoea. Eighty-six hypertensive patients with apnoea-hypopnoea index ≥25 events h-1 and no other cardiovascular, pulmonary, renal or metabolic disease were randomly assigned to receive allopurinol, losartan or placebo for 6 weeks. Treatment with other medications and/or continuous positive airway pressure remained unchanged. Tests of chemoreflex sensitivity and hypoxic vasodilatation were performed during wakefulness before and after treatment. Ventilation (pneumotachography), muscle sympathetic nerve activity (microneurography), heart rate (electrocardiography), arterial oxygen saturation (pulse oximetry), blood pressure (sphygmomanometry), forearm blood flow (venous occlusion plethysmography) and cerebral flow velocity (transcranial Doppler ultrasound) were measured during eupnoeic breathing and graded reductions in inspired O2 tension. Losartan and allopurinol lowered arterial pressure measured during eupnoeic breathing and exposure to acute hypoxia. Neither drug altered the slopes of ventilatory, sympathetic or cardiovascular responses to acute hypoxia. We conclude that losartan and allopurinol are viable pharmacotherapeutic adjuncts for achieving blood pressure control in hypertensive obstructive sleep apnoea patients, even those who are adequately treated with continuous positive airway pressure.
Collapse
Affiliation(s)
- Barbara J Morgan
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA
| | - Mihaela Teodorescu
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - David F Pegelow
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
| | - Emily R Jackson
- Pharmacy Practice Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Devin L Schneider
- Pharmacy Practice Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - David T Plante
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Scott J Hetzel
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - John M Dopp
- Pharmacy Practice Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
39
|
Docio I, Olea E, Prieto-LLoret J, Gallego-Martin T, Obeso A, Gomez-Niño A, Rocher A. Guinea Pig as a Model to Study the Carotid Body Mediated Chronic Intermittent Hypoxia Effects. Front Physiol 2018; 9:694. [PMID: 29922183 PMCID: PMC5996279 DOI: 10.3389/fphys.2018.00694] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/18/2018] [Indexed: 12/12/2022] Open
Abstract
Clinical and experimental evidence indicates a positive correlation between chronic intermittent hypoxia (CIH), increased carotid body (CB) chemosensitivity, enhanced sympatho-respiratory coupling and arterial hypertension and cardiovascular disease. Several groups have reported that both the afferent and efferent arms of the CB chemo-reflex are enhanced in CIH animal models through the oscillatory CB activation by recurrent hypoxia/reoxygenation episodes. Accordingly, CB ablation or denervation results in the reduction of these effects. To date, no studies have determined the effects of CIH treatment in chemo-reflex sensitization in guinea pig, a rodent with a hypofunctional CB and lacking ventilatory responses to hypoxia. We hypothesized that the lack of CB hypoxia response in guinea pig would suppress chemo-reflex sensitization and thereby would attenuate or eliminate respiratory, sympathetic and cardiovascular effects of CIH treatment. The main purpose of this study was to assess if guinea pig CB undergoes overactivation by CIH and to correlate CIH effects on CB chemoreceptors with cardiovascular and respiratory responses to hypoxia. We measured CB secretory activity, ventilatory parameters, systemic arterial pressure and sympathetic activity, basal and in response to acute hypoxia in two groups of animals: control and 30 days CIH exposed male guinea pigs. Our results indicated that CIH guinea pig CB lacks activity elicited by acute hypoxia measured as catecholamine (CA) secretory response or intracellular calcium transients. Plethysmography data showed that only severe hypoxia (7% O2) and hypercapnia (5% CO2) induced a significant increased ventilatory response in CIH animals, together with higher oxygen consumption. Therefore, CIH exposure blunted hyperventilation to hypoxia and hypercapnia normalized to oxygen consumption. Increase in plasma CA and superior cervical ganglion CA content was found, implying a CIH induced sympathetic hyperactivity. CIH promoted cardiovascular adjustments by increasing heart rate and mean arterial blood pressure without cardiac ventricle hypertrophy. In conclusion, CIH does not sensitize CB chemoreceptor response to hypoxia but promotes cardiovascular adjustments probably not mediated by the CB. Guinea pigs could represent an interesting model to elucidate the mechanisms that underlie the long-term effects of CIH exposure to provide evidence for the role of the CB mediating pathological effects in sleep apnea diseases.
Collapse
Affiliation(s)
- Inmaculada Docio
- Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Valladolid, Spain
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, Valladolid, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Elena Olea
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, Valladolid, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Enfermería, Universidad de Valladolid, Valladolid, Spain
| | - Jesus Prieto-LLoret
- Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Valladolid, Spain
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, Valladolid, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Teresa Gallego-Martin
- Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Valladolid, Spain
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, Valladolid, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Obeso
- Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Valladolid, Spain
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, Valladolid, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Angela Gomez-Niño
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, Valladolid, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Biología Celular, Histología y Farmacología, Universidad de Valladolid, Valladolid, Spain
| | - Asuncion Rocher
- Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Valladolid, Spain
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, Valladolid, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
40
|
Mirzaei-Damabi N, Namvar GR, Yeganeh F, Hatam M. α 2 Receptors in the lateral parabrachial nucleus generates the pressor response of the cardiovascular chemoreflex, effects of GABA A receptor. Brain Res Bull 2018; 140:190-196. [PMID: 29775659 DOI: 10.1016/j.brainresbull.2018.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 04/24/2018] [Accepted: 05/08/2018] [Indexed: 11/29/2022]
Abstract
The lateral parabrachial nucleus (LPBN) is a pontine area involved in cardiovascular chemoreflex. This study was performed to find the effects of reversible synaptic blockade of the LPBN on the chemoreflex responses, and to find the roles of GABAA receptor and α2-adenoreceptor (α2-AR) in chemoreflex. It also aimed to seek possible interaction between GABA and noradrenergic systems of the LPBN in urethane-anesthetized male rats. Cardiovascular chemoreflex was activated by intravenous injection of potassium cyanide (KCN, 80 μg/kg). The cardiovascular responses of chemoreflex were evaluated before (control), 5 and 15 min after microinjection of each drug (100 nl) into the LPBN. Microinjections of cobalt chloride (5 mM), a reversible synaptic blocker, into the LPBN greatly attenuated the chemoreflex pressor and bradycardic responses indicating that the LPBN plays a main role in chemoreflex. Local injection of yohimbine (10 nmol), an α2-AR antagonist, attenuated the pressor response with no effect on bradycardic response, suggesting that α2-adrenoreceptors are involved in producing the pressor response of the chemoreflex. Microinjection of bicuculline methiodide (BMI, 100 pmol), a GABAA antagonist, into the LPBN augmented the pressor response and attenuated the bradycardic response, indicating that GABA inhibits the sympathetic output to the heart and vasculature. Sequential injection of yohimbine and BMI had no significant effect on the pressor response but attenuated the bradycardia. In conclusion, the LPBN is essential for the chemoreflex responses. The pressor response of the chemoreflex, at least partly, is produced by α2- adenoreceptors. GABA in the LPBN inhibits the cardiovascular system. Finally, there is no interaction between GABAergic and adrenergic neurons of the LPBN in producing the cardiovascular chemoreflex.
Collapse
Affiliation(s)
| | - Gholam Reza Namvar
- Dept. of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fahimeh Yeganeh
- Dept. of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoumeh Hatam
- Dept. of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
41
|
Moya EA, Arias P, Iturriaga R. Nitration of MnSOD in the Carotid Body and Adrenal Gland Induced by Chronic Intermittent Hypoxia. J Histochem Cytochem 2018; 66:753-765. [PMID: 29775122 DOI: 10.1369/0022155418776229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chronic intermittent hypoxia (CIH), main feature of obstructive sleep apnea, produces nitro-oxidative stress, which contributes to potentiate carotid body (CB) chemosensory discharges and sympathetic-adrenal-axis activity, leading to hypertension. The MnSOD enzymatic activity, a key enzyme on oxidative stress control, is reduced by superoxide-induced nitration. However, the effects of CIH-induced nitration on MnSOD enzymatic activity in the CB and adrenal gland are not known. We studied the effects of CIH on MnSOD protein and immunoreactive (MnSOD-ir) levels in the CB, adrenal gland and superior cervical ganglion (SCG), and on 3-nitrotyrosine (3-NT-ir), CuZnSOD (CuZnSOD-ir), MnSOD nitration, and its enzymatic activity in the CB and adrenal gland from male Sprague-Dawley rats exposed to CIH for 7 days. CIH increased 3-NT-ir in CB and adrenal gland, whereas MnSOD-ir increased in the CB and in adrenal cortex, but not in the whole adrenal medulla or SCG. CIH nitrated MnSOD in the CB and adrenal medulla, but its activity decreased in the adrenal gland. CuZnSOD-ir remained unchanged in both tissues. All changes observed were prevented by ascorbic acid treatment. Present results show that CIH for 7 days produced MnSOD nitration, but failed to reduce its activity in the CB, because of the increased protein level.
Collapse
Affiliation(s)
- Esteban A Moya
- Division of Physiology, Department of Medicine, University of California San Diego, La Jolla, California.,Laboratorio de Neurobiología, Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paulina Arias
- Laboratorio de Neurobiología, Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Iturriaga
- Laboratorio de Neurobiología, Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
42
|
Matsumoto T, Murase K, Tabara Y, Gozal D, Smith D, Minami T, Tachikawa R, Tanizawa K, Oga T, Nagashima S, Wakamura T, Komenami N, Setoh K, Kawaguchi T, Tsutsumi T, Takahashi Y, Nakayama T, Hirai T, Matsuda F, Chin K. Impact of sleep characteristics and obesity on diabetes and hypertension across genders and menopausal status: the Nagahama study. Sleep 2018; 41:4985386. [DOI: 10.1093/sleep/zsy071] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Indexed: 12/20/2022] Open
Affiliation(s)
- Takeshi Matsumoto
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kimihiko Murase
- Department of Respiratory Care and Sleep Control Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuharu Tabara
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - David Gozal
- Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL
| | - Dale Smith
- Department of Behavioral Sciences, Olivet Nazarene University, Bourbonnais
| | - Takuma Minami
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryo Tachikawa
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kiminobu Tanizawa
- Department of Respiratory Care and Sleep Control Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toru Oga
- Department of Respiratory Care and Sleep Control Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shunsuke Nagashima
- Nursing Science, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoko Wakamura
- Nursing Science, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naoko Komenami
- Department of Food and Nutrition, Kyoto Women’s University, Kyoto, Japan
| | - Kazuya Setoh
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takahisa Kawaguchi
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takanobu Tsutsumi
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshimitsu Takahashi
- Department of Health Informatics, Kyoto University School of Public Health, Kyoto, Japan
| | - Takeo Nakayama
- Department of Health Informatics, Kyoto University School of Public Health, Kyoto, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuo Chin
- Department of Respiratory Care and Sleep Control Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
43
|
Nurse CA, Leonard EM, Salman S. Role of glial-like type II cells as paracrine modulators of carotid body chemoreception. Physiol Genomics 2018. [PMID: 29521602 DOI: 10.1152/physiolgenomics.00142.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Mammalian carotid bodies (CB) are chemosensory organs that mediate compensatory cardiorespiratory reflexes in response to low blood PO2 (hypoxemia) and elevated CO2/H+ (acid hypercapnia). The chemoreceptors are glomus or type I cells that occur in clusters enveloped by neighboring glial-like type II cells. During chemoexcitation type I cells depolarize, leading to Ca2+-dependent release of several neurotransmitters, some excitatory and others inhibitory, that help shape the afferent carotid sinus nerve (CSN) discharge. Among the predominantly excitatory neurotransmitters are the purines ATP and adenosine, whereas dopamine (DA) is inhibitory in most species. There is a consensus that ATP and adenosine, acting via postsynaptic ionotropic P2X2/3 receptors and pre- and/or postsynaptic A2 receptors respectively, are major contributors to the increased CSN discharge during chemoexcitation. However, it has been proposed that the CB sensory output is also tuned by paracrine signaling pathways, involving glial-like type II cells. Indeed, type II cells express functional receptors for several excitatory neurochemicals released by type I cells including ATP, 5-HT, ACh, angiotensin II, and endothelin-1. Stimulation of the corresponding G protein-coupled receptors increases intracellular Ca2+, leading to the further release of ATP through pannexin-1 channels. Recent evidence suggests that other CB neurochemicals, e.g., histamine and DA, may actually inhibit Ca2+ signaling in subpopulations of type II cells. Here, we review evidence supporting neurotransmitter-mediated crosstalk between type I and type II cells of the rat CB. We also consider the potential contribution of paracrine signaling and purinergic catabolic pathways to the integrated sensory output of the CB during chemotransduction.
Collapse
Affiliation(s)
- Colin A Nurse
- Department of Biology, McMaster University , Hamilton, Ontario , Canada
| | - Erin M Leonard
- Department of Biology, McMaster University , Hamilton, Ontario , Canada
| | - Shaima Salman
- Department of Biology, McMaster University , Hamilton, Ontario , Canada
| |
Collapse
|
44
|
Reactive oxygen radicals and gaseous transmitters in carotid body activation by intermittent hypoxia. Cell Tissue Res 2018; 372:427-431. [PMID: 29470646 DOI: 10.1007/s00441-018-2807-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/23/2018] [Indexed: 01/16/2023]
Abstract
Sleep apnea is a prevalent respiratory disease characterized by periodic cessation of breathing during sleep causing intermittent hypoxia (IH). Sleep apnea patients and rodents exposed to IH exhibit elevated sympathetic nerve activity and hypertension. A heightened carotid body (CB) chemoreflex has been implicated in causing autonomic abnormalities in IH-treated rodents and in sleep apnea patients. The purpose of this article is to review the emerging evidence showing that interactions between reactive oxygen species (ROS) and gaseous transmitters as a mechanism cause hyperactive CB by IH. Rodents treated with IH exhibit markedly elevated ROS in the CB, which is due to transcriptional upregulation of pro-oxidant enzymes by hypoxia-inducible factor (HIF)-1 and insufficient transcriptional regulation of anti-oxidant enzymes by HIF-2. ROS, in turn, increases cystathionine γ-lyase (CSE)-dependent H2S production in the CB. Blockade of H2S synthesis prevents IH-evoked CB activation. However, the effects of ROS on H2S production are not due to direct effects on CSE enzyme activity but rather due to inactivation of heme oxygenase-2 (HO-2), a carbon monoxide (CO) producing enzyme. CO inhibits H2S production through inactivation of CSE by PKG-dependent phosphorylation. During IH, reduced CO production resulting from inactivation of HO-2 by ROS releases the inhibition of CO on CSE thereby increasing H2S. Inhibiting H2S synthesis prevented IH-evoked sympathetic activation and hypertension.
Collapse
|
45
|
Iturriaga R. Translating carotid body function into clinical medicine. J Physiol 2017; 596:3067-3077. [PMID: 29114876 DOI: 10.1113/jp275335] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 10/18/2017] [Indexed: 12/12/2022] Open
Abstract
The carotid body (CB) is considered the main O2 chemoreceptor, which contributes to cardiorespiratory homeostasis and ventilatory acclimatization. In clinical medicine, the most common pathologies associated with the CB are tumours. However, a growing body of evidence supports the novel idea that an enhanced CB chemosensory discharge contributes to the autonomic dysfunction and pathological consequences in obstructive sleep apnoea (OSA), hypertension, systolic heart failure (HF) and cardiometabolic diseases. Heightened CB chemosensory reactivity elicited by oxidative stress has been involved in sympathetic hyperactivity, cardiorespiratory instability, hypertension and insulin resistance. CB ablation, which reduces sympathetic hyperactivity, decreases hypertension in animal models of OSA and hypertension, eliminates breathing instability and improves animal survival in HF, and restores insulin tolerance in cardiometabolic models. Thus, data obtained from preclinical studies highlight the importance of the CB in the progression of sympathetic-related diseases, supporting the idea that appeasing the enhanced CB chemosensory drive may be useful in improving cardiovascular, respiratory and endocrine alterations. Accordingly, CB ablation has been proposed and used as a treatment for moderating resistant hypertension and HF-induced sympathetic hyperactivity in humans. First-in-human studies have shown that CB ablation reduces sympathetic overactivity, transiently reduces severe hypertension and improves quality of life in HF patients. Thus, CB ablation would be a useful therapy to reverse sympathetic overactivation in HF and severe hypertension, but caution is required before it is widely used due to the crucial physiological function played by the CB. Further studies in preclinical models are required to assess side-effects of CB ablation.
Collapse
Affiliation(s)
- Rodrigo Iturriaga
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
46
|
Influence of recent altitude exposure on sea level sympathetic neural & hemodynamic responses to orthostasis. Auton Neurosci 2017; 210:18-23. [PMID: 29174521 DOI: 10.1016/j.autneu.2017.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/20/2017] [Accepted: 11/20/2017] [Indexed: 11/21/2022]
Abstract
Although it has been shown that muscle sympathetic nerve activity increases during high altitude exposure, mechanisms of sympathoexcitation and blood pressure control after return from altitude are not well described. We hypothesized that: (1) living for 12days at 4300m (Pikes Peak, Colorado) would result in increased muscle sympathetic nerve activity 24h after return to sea level; (2) post-Pikes Peak sympathetic neural and hemodynamic responses to orthostasis would be decreased due to a potential 'ceiling effect' on sympathetic activity; and (3) the magnitude of individual increases in sympathetic nerve activity post-Pikes Peak would be inversely related to baseline sympathetic nerve activity before traveling to altitude. Muscle sympathetic nerve activity, heart rate and blood pressure were measured in 9 healthy individuals (24±8years) in supine, 30° and 45° head-up tilt positions. Measurements were conducted twice at sea level, once before (pre-Pikes Peak) a 12day residence at 4300m, and once within 24h of return (post-Pikes Peak). Supine muscle sympathetic nerve activity was higher (post: 27±5 vs pre: 17±6bursts/min) upon return from altitude (p<0.05). Individual values for pre-Pikes Peak sympathetic activity were inversely related to post-altitude sympathoexcitation (r=-0.69, p<0.05). There were no differences in neural or cardiovascular responses to tilt between pre and post- Pikes Peak (p>0.05). We conclude that 12days' residence at 4300m causes a sustained sympathoexcitation which does not impair the ability of muscle sympathetic nerves to respond appropriately to orthostasis.
Collapse
|
47
|
van Bilsen M, Patel HC, Bauersachs J, Böhm M, Borggrefe M, Brutsaert D, Coats AJS, de Boer RA, de Keulenaer GW, Filippatos GS, Floras J, Grassi G, Jankowska EA, Kornet L, Lunde IG, Maack C, Mahfoud F, Pollesello P, Ponikowski P, Ruschitzka F, Sabbah HN, Schultz HD, Seferovic P, Slart RHJA, Taggart P, Tocchetti CG, Van Laake LW, Zannad F, Heymans S, Lyon AR. The autonomic nervous system as a therapeutic target in heart failure: a scientific position statement from the Translational Research Committee of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 2017; 19:1361-1378. [PMID: 28949064 DOI: 10.1002/ejhf.921] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/23/2017] [Accepted: 05/24/2017] [Indexed: 12/20/2022] Open
Abstract
Despite improvements in medical therapy and device-based treatment, heart failure (HF) continues to impose enormous burdens on patients and health care systems worldwide. Alterations in autonomic nervous system (ANS) activity contribute to cardiac disease progression, and the recent development of invasive techniques and electrical stimulation devices has opened new avenues for specific targeting of the sympathetic and parasympathetic branches of the ANS. The Heart Failure Association of the European Society of Cardiology recently organized an expert workshop which brought together clinicians, trialists and basic scientists to discuss the ANS as a therapeutic target in HF. The questions addressed were: (i) What are the abnormalities of ANS in HF patients? (ii) What methods are available to measure autonomic dysfunction? (iii) What therapeutic interventions are available to target the ANS in patients with HF, and what are their specific strengths and weaknesses? (iv) What have we learned from previous ANS trials? (v) How should we proceed in the future?
Collapse
Affiliation(s)
- Marc van Bilsen
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Hospital, Maastricht, the Netherlands
| | - Hitesh C Patel
- National Institute for Health Research (NIHR) Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, London, UK.,National Heart and Lung Institute, Imperial College London, London, UK.,Baker Heart and Diabetes Institute, Melbourne, Vic, Australia
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Medical School Hannover, Hannover, Germany
| | - Michael Böhm
- Clinic for Internal Medicine III, Cardiology, Angiology and Intensive Internal Medicine, Homburg, Germany
| | - Martin Borggrefe
- First Department of Medicine, Cardiology Division, University Medical Centre Mannheim, Mannheim, Germany.,German Centre for Cardiovascular Research, Mannheim, Germany
| | - Dirk Brutsaert
- Department of Cardiology, Antwerp University, Antwerp, Belgium
| | - Andrew J S Coats
- Department of Medicine, Monash University, Melbourne, Vic, Australia.,Department of Medicine, University of Warwick, Coventry, UK
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | | | - Gerasimos S Filippatos
- Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens University Hospital Attikon, Athens, Greece
| | - John Floras
- University Health Network and Sinai Health System Division of Cardiology, Peter Munk Cardiac Centre, Toronto General and Lunenfeld-Tanenbaum Research Institutes, University of Toronto, Toronto, ON, Canada
| | - Guido Grassi
- Clinica Medica, Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy.,IRCCS Multimedica, Milan, Italy
| | - Ewa A Jankowska
- Department of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland.,Centre for Heart Diseases, Military Hospital, Wroclaw, Poland
| | - Lilian Kornet
- Medtronic, Inc., Bakken Research Centre, Maastricht, the Netherlands
| | - Ida G Lunde
- Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Christoph Maack
- Clinic for Internal Medicine III, Cardiology, Angiology and Intensive Internal Medicine, Homburg, Germany
| | - Felix Mahfoud
- Clinic for Internal Medicine III, Cardiology, Angiology and Intensive Internal Medicine, Homburg, Germany
| | | | - Piotr Ponikowski
- Department of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland.,Centre for Heart Diseases, Military Hospital, Wroclaw, Poland
| | - Frank Ruschitzka
- University Heart Centre, University Hospital Zurich, Zurich, Switzerland
| | - Hani N Sabbah
- Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Hospital, Detroit, MI, USA
| | - Harold D Schultz
- Department of Cellular and Integrative Physiology, University of Nebraska College of Medicine, Omaha, NE, USA
| | - Petar Seferovic
- Department of Cardiology, Belgrade University Medical Centre, Belgrade, Serbia
| | - Riemer H J A Slart
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands.,Department of Biomedical Photonic Imaging, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands
| | - Peter Taggart
- Department of Cardiovascular Science, University College London, Barts Heart Centre, London, UK
| | - Carlo G Tocchetti
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Linda W Van Laake
- Department of Cardiology, Heart and Lungs Division, and Regenerative Medicine Centre, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Faiez Zannad
- INSERM, Centre for Clinical Investigation 9501, Unit 961, University Hospital Centre, Nancy, France.,Department of Cardiology, Nancy University, University of the Lorraine, Nancy, France
| | - Stephane Heymans
- Netherlands Heart Institute, Utrecht, the Netherlands.,Department of Cardiovascular Sciences, Leuven University, Leuven, Belgium
| | - Alexander R Lyon
- National Institute for Health Research (NIHR) Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, London, UK.,National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
48
|
Cuéllar R, Montero S, Luquín S, García-Estrada J, Melnikov V, Virgen-Ortiz A, Lemus M, Pineda-Lemus M, de Álvarez-Buylla E. BDNF and AMPA receptors in the cNTS modulate the hyperglycemic reflex after local carotid body NaCN stimulation. Auton Neurosci 2017; 205:12-20. [PMID: 28254195 DOI: 10.1016/j.autneu.2017.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 11/29/2016] [Accepted: 02/01/2017] [Indexed: 11/30/2022]
Abstract
The application of sodium cyanide (NaCN) to the carotid body receptors (CBR) (CBR stimulation) induces rapid blood hyperglycemia and an increase in brain glucose retention. The commissural nucleus tractus solitarius (cNTS) is an essential relay nucleus in this hyperglycemic reflex; it receives glutamatergic afferents (that also release brain derived neurotrophic factor, BDNF) from the nodose-petrosal ganglia that relays CBR information. Previous work showed that AMPA in NTS blocks hyperglycemia and brain glucose retention after CBR stimulation. In contrast, BDNF, which attenuates glutamatergic AMPA currents in NTS, enhances these glycemic responses. Here we investigated the combined effects of BDNF and AMPA (and their antagonists) in NTS on the glycemic responses to CBR stimulation. Microinjections of BDNF plus AMPA into the cNTS before CBR stimulation in anesthetized rats, induced blood hyperglycemia and an increase in brain arteriovenous (a-v) of blood glucose concentration difference, which we infer is due to increased brain glucose retention. By contrast, the microinjection of the TrkB antagonist K252a plus AMPA abolished the glycemic responses to CBR stimulation similar to what is observed after AMPA pretreatments. In BDNF plus AMPA microinjections preceding CBR stimulation, the number of c-fos immunoreactive cNTS neurons increased. In contrast, in the rats microinjected with K252a plus AMPA in NTS, before CBR stimulation, c-fos expression in cNTS decreased. The expression of AMPA receptors GluR2/3 did not change in any of the studied groups. These results indicate that BDNF in cNTS plays a key role in the modulation of the hyperglycemic reflex initiated by CBR stimulation.
Collapse
Affiliation(s)
- R Cuéllar
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Ave. 25 de Julio 965, Colima 28045, Mexico; Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Mexico
| | - S Montero
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Ave. 25 de Julio 965, Colima 28045, Mexico; Facultad de Medicina, Universidad de Colima, Ave. Universidad 333, Colima 28040, Mexico
| | - S Luquín
- Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Mexico
| | - J García-Estrada
- Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Mexico; División de Investigación Quirúrgica, Centro de Investigación Biomédica de Occidente, IMSS, Guadalajara, Mexico
| | - V Melnikov
- Facultad de Medicina, Universidad de Colima, Ave. Universidad 333, Colima 28040, Mexico
| | - A Virgen-Ortiz
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Ave. 25 de Julio 965, Colima 28045, Mexico
| | - M Lemus
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Ave. 25 de Julio 965, Colima 28045, Mexico
| | - M Pineda-Lemus
- Facultad de Medicina, Universidad de Colima, Ave. Universidad 333, Colima 28040, Mexico
| | - E de Álvarez-Buylla
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Ave. 25 de Julio 965, Colima 28045, Mexico.
| |
Collapse
|
49
|
Taylor KS, Murai H, Millar PJ, Haruki N, Kimmerly DS, Morris BL, Tomlinson G, Bradley TD, Floras JS. Arousal From Sleep and Sympathetic Excitation During Wakefulness. Hypertension 2016; 68:1467-1474. [DOI: 10.1161/hypertensionaha.116.08212] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/05/2016] [Accepted: 09/11/2016] [Indexed: 02/07/2023]
Abstract
Obstructive apnea during sleep elevates the set point for efferent sympathetic outflow during wakefulness. Such resetting is attributed to hypoxia-induced upregulation of peripheral chemoreceptor and brain stem sympathetic function. Whether recurrent arousal from sleep also influences daytime muscle sympathetic nerve activity is unknown. We therefore tested, in a cohort of 48 primarily nonsleepy, middle-aged, male (30) and female (18) volunteers (age: 59±1 years, mean±SE), the hypothesis that the frequency of arousals from sleep (arousal index) would relate to daytime muscle sympathetic burst incidence, independently of the frequency of apnea or its severity. Polysomnography identified 24 as having either no or mild obstructive sleep apnea (apnea–hypopnea index <15 events/h) and 24 with moderate-to-severe obstructive sleep apnea (apnea–hypopnea index >15 events/h). Burst incidence correlated significantly with arousal index (
r
=0.53;
P
<0.001), minimum oxygen saturation (
r
=−0.43;
P
=0.002), apnea–hypopnea index (
r
=0.41;
P
=0.004), age (
r
=0.36;
P
=0.013), and body mass index (
r
=0.33;
P
=0.022) but not with oxygen desaturation index (
r
=0.28;
P
=0.056). Arousal index was the single strongest predictor of muscle sympathetic nerve activity burst incidence, present in all best subsets regression models. The model with the highest adjusted
R
2
(0.456) incorporated arousal index, minimum oxygen saturation, age, body mass index, and oxygen desaturation index but not apnea–hypopnea index. An apnea- and hypoxia-independent effect of sleep fragmentation on sympathetic discharge during wakefulness could contribute to intersubject variability, age-related increases in muscle sympathetic nerve activity, associations between sleep deprivation and insulin resistance or insomnia and future cardiovascular events, and residual adrenergic risk with persistence of hypertension should therapy eliminate obstructive apneas but not arousals.
Collapse
Affiliation(s)
- Keri S. Taylor
- From the University Health Network and Mount Sinai Hospital Department of Medicine, University of Toronto, Ontario, Canada
| | - Hisayoshi Murai
- From the University Health Network and Mount Sinai Hospital Department of Medicine, University of Toronto, Ontario, Canada
| | - Philip J. Millar
- From the University Health Network and Mount Sinai Hospital Department of Medicine, University of Toronto, Ontario, Canada
| | - Nobuhiko Haruki
- From the University Health Network and Mount Sinai Hospital Department of Medicine, University of Toronto, Ontario, Canada
| | - Derek S. Kimmerly
- From the University Health Network and Mount Sinai Hospital Department of Medicine, University of Toronto, Ontario, Canada
| | - Beverley L. Morris
- From the University Health Network and Mount Sinai Hospital Department of Medicine, University of Toronto, Ontario, Canada
| | - George Tomlinson
- From the University Health Network and Mount Sinai Hospital Department of Medicine, University of Toronto, Ontario, Canada
| | - T. Douglas Bradley
- From the University Health Network and Mount Sinai Hospital Department of Medicine, University of Toronto, Ontario, Canada
| | - John S. Floras
- From the University Health Network and Mount Sinai Hospital Department of Medicine, University of Toronto, Ontario, Canada
| |
Collapse
|
50
|
Welch BT, Petersen-Jones HG, Eugene AR, Brinjikji W, Kallmes DF, Curry TB, Joyner MJ, Limberg JK. Impact of sleep disordered breathing on carotid body size. Respir Physiol Neurobiol 2016; 236:5-10. [PMID: 27989890 DOI: 10.1016/j.resp.2016.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/18/2016] [Accepted: 10/27/2016] [Indexed: 12/11/2022]
Abstract
We tested the hypotheses that: (1) carotid body size can be measured by computed tomographic angiography (CTA) with high inter-observer agreement, and (2) patients with sleep apnea exhibit larger carotid bodies than those without sleep apnea. A chart review was conducted from patients who underwent neck CTA and polysomnography at the Mayo Clinic between January 2000 and February 2015. Widest axial measurements of the carotid bodies, performed independently by two radiologists, were possible in 81% of patients. Intra-class correlation coefficients ranged from 0.93 to 0.95 (Right carotid body: 0.93; Left: 0.94; Average: 0.95). Widest axial measurements of the carotid bodies were greater in patients with sleep apnea (n=32) compared to controls (n=46, P-value range 0.02-0.04). After adjusting for age, no differences in carotid body size were observed between the patient groups (P-value range 0.45-0.59). We conclude carotid body size can be detected by CTA with high inter-observer agreement; however, carotid body size is not increased in patients with sleep apnea.
Collapse
Affiliation(s)
- Brian T Welch
- Department of Radiology, Mayo Clinic, Rochester, MN, USA.
| | | | - Andy R Eugene
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA.
| | | | | | - Timothy B Curry
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA.
| | | | | |
Collapse
|