1
|
Nishihara M, Shinohara K, Ikeda S, Akahoshi T, Tsutsui H. Impact of sympathetic hyperactivity induced by brain microglial activation on organ damage in sepsis with chronic kidney disease. J Intensive Care 2024; 12:31. [PMID: 39223624 PMCID: PMC11367766 DOI: 10.1186/s40560-024-00742-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/12/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Sympathetic nerve activity (SNA) plays a central role in the pathogenesis of several diseases such as sepsis and chronic kidney disease (CKD). Activation of microglia in the paraventricular nucleus of the hypothalamus (PVN) has been implicated in SNA. The mechanisms responsible for the adverse prognosis observed in sepsis associated with CKD remain to be determined. Therefore, we aimed to clarify the impact of increased SNA resulting from microglial activation on hemodynamics and organ damage in sepsis associated with CKD. METHODS AND RESULTS In protocol 1, male Sprague-Dawley rats underwent either nephrectomy (Nx) or sham surgery followed by cecal ligation and puncture (CLP) or sham surgery. After CLP, Nx-CLP rats exhibited decreased blood pressure, increased heart rate, elevated serum creatinine and bilirubin levels, and decreased platelet count compared to Nx-Sham rats. Heart rate variability analysis revealed an increased low to high frequency (LF/HF) ratio in Nx-CLP rats, indicating increased SNA. Nx-CLP rats also had higher creatinine and bilirubin levels and lower platelet counts than sham-CLP rats after CLP. In protocol 2, Nx-CLP rats were divided into two subgroups: one received minocycline, an inhibitor of microglial activation, while the other received artificial cerebrospinal fluid (CSF) intracerebroventricularly via an osmotic minipump. The minocycline-treated group (Nx-mino-CLP) showed attenuated hypotensive and increased heart rate responses compared to the CSF-treated group (Nx-CSF-CLP), and the LF/HF ratio was also decreased. Echocardiography showed larger left ventricular dimensions and inferior vena cava in the Nx-mino-CLP group. In addition, creatinine and bilirubin levels were lower and platelet counts were higher in the Nx-mino-CLP group compared to the Nx-CSF-CLP group. CONCLUSIONS In septic rats with concomitant CKD, SNA was significantly enhanced and organ dysfunction was increased. It has been suggested that the mechanism of exacerbated organ dysfunction in these models may involve abnormal systemic hemodynamics, possibly triggered by activation of the central sympathetic nervous system through activation of microglia in the PVN.
Collapse
Affiliation(s)
- Masaaki Nishihara
- Emergency and Critical Care Center, Kyushu University Hospital, Fukuoka, Japan.
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Keisuke Shinohara
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shota Ikeda
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomohiko Akahoshi
- Emergency and Critical Care Center, Kyushu University Hospital, Fukuoka, Japan
- Department of Advanced Emergency and Disaster medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- School of Medicine and Graduate School, International University of Health and Welfare, Fukuoka, Japan
| |
Collapse
|
2
|
Sarkar A, Ajijola OA. Pathophysiologic Mechanisms in Cardiac Autonomic Nervous System and Arrhythmias. Card Electrophysiol Clin 2024; 16:261-269. [PMID: 39084719 DOI: 10.1016/j.ccep.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The autonomic nervous system, including the central nervous system and the cardiac plexus, maintains cardiac physiology. In diseased states, autonomic changes through neuronal remodeling generate electrical mechanisms of arrhythmia such as triggered activity or increased automaticity. This article will focus on the pathophysiological mechanisms of arrhythmia to highlight the role of the autonomic nervous system in disease and the related therapeutic interventions.
Collapse
Affiliation(s)
- Abdullah Sarkar
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research program of Excellence, Los Angeles, CA, USA
| | - Olujimi A Ajijola
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research program of Excellence, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Notley SR, Mitchell D, Taylor NAS. A century of exercise physiology: concepts that ignited the study of human thermoregulation. Part 1: Foundational principles and theories of regulation. Eur J Appl Physiol 2023; 123:2379-2459. [PMID: 37702789 DOI: 10.1007/s00421-023-05272-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 06/30/2023] [Indexed: 09/14/2023]
Abstract
This contribution is the first of a four-part, historical series encompassing foundational principles, mechanistic hypotheses and supported facts concerning human thermoregulation during athletic and occupational pursuits, as understood 100 years ago and now. Herein, the emphasis is upon the physical and physiological principles underlying thermoregulation, the goal of which is thermal homeostasis (homeothermy). As one of many homeostatic processes affected by exercise, thermoregulation shares, and competes for, physiological resources. The impact of that sharing is revealed through the physiological measurements that we take (Part 2), in the physiological responses to the thermal stresses to which we are exposed (Part 3) and in the adaptations that increase our tolerance to those stresses (Part 4). Exercising muscles impose our most-powerful heat stress, and the physiological avenues for redistributing heat, and for balancing heat exchange with the environment, must adhere to the laws of physics. The first principles of internal and external heat exchange were established before 1900, yet their full significance is not always recognised. Those physiological processes are governed by a thermoregulatory centre, which employs feedback and feedforward control, and which functions as far more than a thermostat with a set-point, as once was thought. The hypothalamus, today established firmly as the neural seat of thermoregulation, does not regulate deep-body temperature alone, but an integrated temperature to which thermoreceptors from all over the body contribute, including the skin and probably the muscles. No work factor needs to be invoked to explain how body temperature is stabilised during exercise.
Collapse
Affiliation(s)
- Sean R Notley
- Defence Science and Technology Group, Department of Defence, Melbourne, Australia
- School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Duncan Mitchell
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
- School of Human Sciences, University of Western Australia, Crawley, Australia
| | - Nigel A S Taylor
- Research Institute of Human Ecology, College of Human Ecology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Kishi T. Clarification of hypertension mechanisms provided by the research of central circulatory regulation. Hypertens Res 2023; 46:1908-1916. [PMID: 37277436 DOI: 10.1038/s41440-023-01335-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 06/07/2023]
Abstract
Sympathoexcitation, under the regulatory control of the brain, plays a pivotal role in the etiology of hypertension. Within the brainstem, significant structures involved in the modulation of sympathetic nerve activity include the rostral ventrolateral medulla (RVLM), caudal ventrolateral medulla (CVLM), nucleus tractus solitarius (NTS), and paraventricular nucleus (paraventricular). The RVLM, in particular, is recognized as the vasomotor center. Over the past five decades, fundamental investigations on central circulatory regulation have underscored the involvement of nitric oxide (NO), oxidative stress, the renin-angiotensin system, and brain inflammation in regulating the sympathetic nervous system. Notably, numerous significant findings have come to light through chronic experiments conducted in conscious subjects employing radio-telemetry systems, gene transfer techniques, and knockout methodologies. Our research has centered on elucidating the role of NO and angiotensin II type 1 (AT1) receptor-induced oxidative stress within the RVLM and NTS in regulating the sympathetic nervous system. Additionally, we have observed that various orally administered AT1 receptor blockers effectively induce sympathoinhibition by reducing oxidative stress via blockade of the AT1 receptor in the RVLM of hypertensive rats. Recent advances have witnessed the development of several clinical interventions targeting brain mechanisms. Nonetheless, Future and further basic and clinical research are needed.
Collapse
Affiliation(s)
- Takuya Kishi
- Department of Graduate School of Medicine (Cardiology), International University of Health and Welfare, Okawa, Japan.
| |
Collapse
|
5
|
Mille T, Bonilla A, Guillaud E, Bertrand SS, Menuet C, Cazalets JR. Muscarinic cholinergic modulation of cardiovascular variables in spinal cord injured rats. Exp Neurol 2023; 363:114369. [PMID: 36878399 DOI: 10.1016/j.expneurol.2023.114369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/16/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023]
Abstract
Spinal cord injury (SCI) leads not only to major impairments in sensorimotor control but also to dramatic dysregulation of autonomic functions including major cardiovascular disturbances. Consequently, individuals with SCI endure daily episodic hypo/hypertension and are at increased risk for cardiovascular disease. Several studies have suggested that an intrinsic spinal coupling mechanism between motor and sympathetic neuronal networks exist and that propriospinal cholinergic neurons may be responsible for a synchronized activation of both somatic and sympathetic outputs. We therefore investigated in the present study, the effect of cholinergic muscarinic agonists on cardiovascular parameters in freely moving adult rats after SCI. Female Sprague-Dawley rats were implanted with radiotelemetry sensors for long-term in vivo monitoring of blood pressure (BP). From BP signal, we calculated heart rate (HR) and respiratory frequency. We first characterized the physiological changes occurring after a SCI performed at the T3-T4 level in our experimental model system. We then investigated the effects on BP, HR and respiration, of the muscarinic agonist oxotremorine using one variant that crossed the blood brain barrier (Oxo-S) and one that does not (Oxo-M) in both Pre- and Post-SCI animals. After SCI, both HR and respiratory frequency increased. BP values exhibited an immediate profound drop before progressively increasing over the three-week post-lesion period but remained below control values. A spectral analysis of BP signal revealed the disappearance of the low frequency component of BP (0.3-0.6 Hz) referred to as Mayer waves after SCI. In Post-SCI animals, central effects mediated by Oxo-S led to an increase in HR and MAP, a slowdown in respiratory frequency and to an increased power in the 0.3-0.6 Hz frequency band. This study unravels some of the mechanisms by which muscarinic activation of spinal neurons could contribute to partial restoration of BP after SCI.
Collapse
Affiliation(s)
- Théo Mille
- Université de Bordeaux, CNRS UMR 5287, INCIA, Zone nord, Bat 2, 2e étage, 146 rue Léo Saignat, 33076 Bordeaux cedex, France
| | - Aurélie Bonilla
- Université de Bordeaux, CNRS UMR 5287, INCIA, Zone nord, Bat 2, 2e étage, 146 rue Léo Saignat, 33076 Bordeaux cedex, France
| | - Etienne Guillaud
- Université de Bordeaux, CNRS UMR 5287, INCIA, Zone nord, Bat 2, 2e étage, 146 rue Léo Saignat, 33076 Bordeaux cedex, France
| | - Sandrine S Bertrand
- Université de Bordeaux, CNRS UMR 5287, INCIA, Zone nord, Bat 2, 2e étage, 146 rue Léo Saignat, 33076 Bordeaux cedex, France
| | - Clément Menuet
- Institut de Neurobiologie de la Méditerranée, INMED UMR 1249, INSERM, Aix-Marseille Université, Marseille, France
| | - Jean-René Cazalets
- Université de Bordeaux, CNRS UMR 5287, INCIA, Zone nord, Bat 2, 2e étage, 146 rue Léo Saignat, 33076 Bordeaux cedex, France.
| |
Collapse
|
6
|
Truter N, Malan L, Essop MF. Glial cell activity in cardiovascular diseases and risk of acute myocardial infarction. Am J Physiol Heart Circ Physiol 2023; 324:H373-H390. [PMID: 36662577 DOI: 10.1152/ajpheart.00332.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Growing evidence indicates that the pathophysiological link between the brain and heart underlies cardiovascular diseases, specifically acute myocardial infarction (AMI). Astrocytes are the most abundant glial cells in the central nervous system and provide support/protection for neurons. Astrocytes and peripheral glial cells are emerging as key modulators of the brain-heart axis in AMI, by affecting sympathetic nervous system activity (centrally and peripherally). This review, therefore, aimed to gain an improved understanding of glial cell activity and AMI risk. This includes discussions on the potential role of contributing factors in AMI risk, i.e., autonomic nervous system dysfunction, glial-neurotrophic and ischemic risk markers [glial cell line-derived neurotrophic factor (GDNF), astrocytic S100 calcium-binding protein B (S100B), silent myocardial ischemia, and cardiac troponin T (cTnT)]. Consideration of glial cell activity and related contributing factors in certain brain-heart disorders, namely, blood-brain barrier dysfunction, myocardial ischemia, and chronic psychological stress, may improve our understanding regarding the pathological role that glial dysfunction can play in the development/onset of AMI. Here, findings demonstrated perturbations in glial cell activity and contributing factors (especially sympathetic activity). Moreover, emerging AMI risk included sympathovagal imbalance, low GDNF levels reflecting prothrombic risk, hypertension, and increased ischemia due to perfusion deficits (indicated by S100B and cTnT levels). Such perturbations impacted blood-barrier function and perfusion that were exacerbated during psychological stress. Thus, greater insights and consideration regarding such biomarkers may help drive future studies investigating brain-heart axis pathologies to gain a deeper understanding of astrocytic glial cell contributions and unlock potential novel therapies for AMI.
Collapse
Affiliation(s)
- Nina Truter
- Centre for Cardio-metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Cape Town, South Africa
| | - Leoné Malan
- Technology Transfer and Innovation-Support Office, North-West University, Potchefstroom, South Africa
| | - M Faadiel Essop
- Centre for Cardio-metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
7
|
Rostami B, Hatam M. Central Nucleus of Amygdala Mediate Pressor Response Elicited by Microinjection of Angiotensin II into the Parvocellular Paraventricular Nucleus in Rats. IRANIAN JOURNAL OF MEDICAL SCIENCES 2022; 47:272-279. [PMID: 35634519 PMCID: PMC9126897 DOI: 10.30476/ijms.2021.90015.2080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/17/2021] [Accepted: 06/05/2021] [Indexed: 12/03/2022]
Abstract
BACKGROUND The Paraventricular Hypothalamic Nucleus (PVN) coordinates autonomic and neuroendocrine systems to maintain homeostasis. Microinjection of angiotensin II (AngII) into the PVN has been previously shown to produce pressor and bradycardia responses. Anatomical evidence has indicated that a substantial proportion of PVN neurons is connected with the neurons in the central amygdala (CeA). The present study aimed to examine the possible contribution of the CeA in cardiovascular responses evoked by microinjection of AngII into the parvocellular portion of PVN (PVNp) before and after microinjection of cobalt chloride (CoCl2) into the CeA. METHODS The experiments were conducted at the Department of Physiology of Shiraz University of Medical Sciences, from April 2019 to November 2019. There were two groups of 21 eight-week-old urethane anesthetized male rats, namely saline (n=9 rats) and AngII (n=12 rats) groups. Drugs (100 nL) were microinjected via a single-glass micropipette into the PVNp and CeA. Their blood pressure (BP) and heart rate (HR) were recorded throughout the experiments. The mean arterial pressure (MAP) and heart rate (HR) were compared to the pre-injection values using paired t test, and to those of the saline group using independent t test. RESULTS Microinjection of AngII into the PVNp produced pressor response (P<0.0001) with no significant changes in HR (P=0.70). Blockade of CeA with CoCl2 attenuated the pressor response to microinjection of AngII into the PVNp (P<0.001). CONCLUSION In the PVNp, Ang II increased the rats' blood pressure. This response was in part mediated by the CeA. Our study suggested that these two nuclei cooperate to perform their cardiovascular functions.
Collapse
Affiliation(s)
- Bahar Rostami
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoumeh Hatam
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
8
|
Savić B, Murphy D, Japundžić-Žigon N. The Paraventricular Nucleus of the Hypothalamus in Control of Blood Pressure and Blood Pressure Variability. Front Physiol 2022; 13:858941. [PMID: 35370790 PMCID: PMC8966844 DOI: 10.3389/fphys.2022.858941] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/15/2022] [Indexed: 12/26/2022] Open
Abstract
The paraventricular nucleus (PVN) is a highly organized structure of the hypothalamus that has a key role in regulating cardiovascular and osmotic homeostasis. Functionally, the PVN is divided into autonomic and neuroendocrine (neurosecretory) compartments, both equally important for maintaining blood pressure (BP) and body fluids in the physiological range. Neurosecretory magnocellular neurons (MCNs) of the PVN are the main source of the hormones vasopressin (VP), responsible for water conservation and hydromineral balance, and oxytocin (OT), involved in parturition and milk ejection during lactation. Further, neurosecretory parvocellular neurons (PCNs) take part in modulation of the hypothalamic–pituitary–adrenal axis and stress responses. Additionally, the PVN takes central place in autonomic adjustment of BP to environmental challenges and contributes to its variability (BPV), underpinning the PVN as an autonomic master controller of cardiovascular function. Autonomic PCNs of the PVN modulate sympathetic outflow toward heart, blood vessels and kidneys. These pre-autonomic neurons send projections to the vasomotor nucleus of rostral ventrolateral medulla and to intermediolateral column of the spinal cord, where postganglionic fibers toward target organs arise. Also, PVN PCNs synapse with NTS neurons which are the end-point of baroreceptor primary afferents, thus, enabling the PVN to modify the function of baroreflex. Neuroendocrine and autonomic parts of the PVN are segregated morphologically but they work in concert when the organism is exposed to environmental challenges via somatodendritically released VP and OT by MCNs. The purpose of this overview is to address both neuroendocrine and autonomic PVN roles in BP and BPV regulation.
Collapse
Affiliation(s)
- Bojana Savić
- Laboratory for Cardiovascular Pharmacology and Toxicology, Faculty of Medicine, Institute of Pharmacology, Clinical Pharmacology and Toxicology, University of Belgrade, Belgrade, Serbia
| | - David Murphy
- Molecular Neuroendocrinology Research Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Nina Japundžić-Žigon
- Laboratory for Cardiovascular Pharmacology and Toxicology, Faculty of Medicine, Institute of Pharmacology, Clinical Pharmacology and Toxicology, University of Belgrade, Belgrade, Serbia
- *Correspondence: Nina Japundžić-Žigon,
| |
Collapse
|
9
|
Rupp SK, Stengel A. Interactions between nesfatin-1 and the autonomic nervous system-An overview. Peptides 2022; 149:170719. [PMID: 34953946 DOI: 10.1016/j.peptides.2021.170719] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022]
Abstract
Nesfatin-1, an 82-amino acid polypeptide derived from the precursor protein nucleobindin-2 (NUCB2), was first discovered in 2006 in the rat hypothalamus. The effects and distribution of nesfatin-1 immunopositive neurons in the brain and spinal cord point towards a role of NUCB2/nesfatin-1 in autonomic regulation. Therefore, studies which have been conducted to investigate the interplay between nesfatin-1 and the autonomic nervous system were examined, and the outcomes of this research were summarized. NUCB2/nesfatin-1 immunoreactivity is widely distributed in autonomic centers of the brain and spinal cord in both rodents and humans. In several regions of the hypothalamus, midbrain and brainstem, nesfatin-1 modulates autonomic functions. On the other hand, the autonomic nervous system also influences the activity of nesfatin-1 neurons. Here, the vagus nerve seems to be a crucial factor in the regulation of nesfatin-1. In summary, although data here is still sparse, there is a clear interplay between nesfatin-1 and the autonomic nervous system, the precise clarification of which still requires further research to gain more insight into these complex relationships.
Collapse
Affiliation(s)
- Sophia Kristina Rupp
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| | - Andreas Stengel
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany; Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
10
|
Li Y, Wang Y, Xue F, Feng X, Ba Z, Chen J, Zhou Z, Wang Y, Guan G, Yang G, Xi Z, Tian H, Liu Y, Tan J, Li G, Chen X, Yang M, Chen W, Zhu C, Zeng W. Programmable dual responsive system reconstructing nerve interaction with small-diameter tissue-engineered vascular grafts and inhibiting intimal hyperplasia in diabetes. Bioact Mater 2021; 7:466-477. [PMID: 34466746 PMCID: PMC8379357 DOI: 10.1016/j.bioactmat.2021.05.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 01/03/2023] Open
Abstract
Small-diameter tissue-engineered vascular grafts (sdTEVGs) with hyperglycemia resistance have not been constructed. The intimal hyperplasia caused by hyperglycemia remains problem to hinder the patency of sdTEVGs. Here, inspired by bionic regulation of nerve on vascular, we found the released neural exosomes could inhibit the abnormal phenotype transformation of vascular smooth muscle cells (VSMCs). The transformation was a prime culprit causing the intimal hyperplasia of sdTEVGs. To address this concern, sdTEVGs were modified with an on-demand programmable dual-responsive system of ultrathin hydrogels. An external primary Reactive Oxygen Species (ROS)-responsive Netrin-1 system was initially triggered by local inflammation to induce nerve remolding of the sdTEVGs overcoming the difficulty of nerve regeneration under hyperglycemia. Then, the internal secondary ATP-responsive DENND1A (guanine nucleotide exchange factor) system was turned on by the neurotransmitter ATP from the immigrated nerve fibers to stimulate effective release of neural exosomes. The results showed nerve fibers grow into the sdTEVGs in diabetic rats 30 days after transplantation. At day 90, the abnormal VSMCs phenotype was not detected in the sdTEVGs, which maintained long-time patency without intima hyperplasia. Our study provides new insights to construct vascular grafts resisting hyperglycemia damage. VSMCs undergo a phenotypic transformation under high glucose, which lead to intimal hyperplasia in sdTEVGs. Neural exosomes could inhibit the abnormal phenotype transformation of VSMCs from contractile to synthetic. SdTEVGs with on-demand programmable dual responsive system inhibited intimal hyperplasia in diabetes.
Collapse
Affiliation(s)
- Yanzhao Li
- Department of Anatomy, National and Regional Engineering Laboratory of Tissue Engineering, State and Local Joint Engineering Laboratory for Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Yeqin Wang
- Department of Cell Biology, Third Military Army Medical University, Chongqing, 400038, China
| | - Fangchao Xue
- Department of Cell Biology, Third Military Army Medical University, Chongqing, 400038, China
| | - Xuli Feng
- Innovative Drug Research Centre of Chongqing University, Chongqing, 401331, China
| | - Zhaojing Ba
- Department of Cell Biology, Third Military Army Medical University, Chongqing, 400038, China
| | - Junjie Chen
- Department of Cell Biology, Third Military Army Medical University, Chongqing, 400038, China
| | - Zhenhua Zhou
- Departments of Neurology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yanhong Wang
- Department of Cell Biology, Third Military Army Medical University, Chongqing, 400038, China
| | - Ge Guan
- Department of Anatomy, National and Regional Engineering Laboratory of Tissue Engineering, State and Local Joint Engineering Laboratory for Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Guanyuan Yang
- Department of Anatomy, National and Regional Engineering Laboratory of Tissue Engineering, State and Local Joint Engineering Laboratory for Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Ziwei Xi
- Department of Anatomy, National and Regional Engineering Laboratory of Tissue Engineering, State and Local Joint Engineering Laboratory for Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Hao Tian
- Department of Anatomy, National and Regional Engineering Laboratory of Tissue Engineering, State and Local Joint Engineering Laboratory for Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Yong Liu
- Department of Anatomy, National and Regional Engineering Laboratory of Tissue Engineering, State and Local Joint Engineering Laboratory for Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Ju Tan
- Department of Anatomy, National and Regional Engineering Laboratory of Tissue Engineering, State and Local Joint Engineering Laboratory for Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Gang Li
- Department of Anatomy, National and Regional Engineering Laboratory of Tissue Engineering, State and Local Joint Engineering Laboratory for Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Xiewan Chen
- Medical English Department, Third Military Medical University, Chongqing, 400038, China
| | - Mingcan Yang
- Department of Anatomy, National and Regional Engineering Laboratory of Tissue Engineering, State and Local Joint Engineering Laboratory for Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Wen Chen
- The 8th Medical Center of Chinese PLA General Hospital, Beijing, 100091, China
| | - Chuhong Zhu
- Department of Anatomy, National and Regional Engineering Laboratory of Tissue Engineering, State and Local Joint Engineering Laboratory for Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China.,The 8th Medical Center of Chinese PLA General Hospital, Beijing, 100091, China.,Department of Plastic and Aesthetic Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Wen Zeng
- Department of Cell Biology, Third Military Army Medical University, Chongqing, 400038, China.,Departments of Neurology, Southwest Hospital, Third Military Medical University, Chongqing, China.,State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing, China
| |
Collapse
|
11
|
Scalco A, Moro N, Mongillo M, Zaglia T. Neurohumoral Cardiac Regulation: Optogenetics Gets Into the Groove. Front Physiol 2021; 12:726895. [PMID: 34531763 PMCID: PMC8438220 DOI: 10.3389/fphys.2021.726895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/27/2021] [Indexed: 12/25/2022] Open
Abstract
The cardiac autonomic nervous system (ANS) is the main modulator of heart function, adapting contraction force, and rate to the continuous variations of intrinsic and extrinsic environmental conditions. While the parasympathetic branch dominates during rest-and-digest sympathetic neuron (SN) activation ensures the rapid, efficient, and repeatable increase of heart performance, e.g., during the "fight-or-flight response." Although the key role of the nervous system in cardiac homeostasis was evident to the eyes of physiologists and cardiologists, the degree of cardiac innervation, and the complexity of its circuits has remained underestimated for too long. In addition, the mechanisms allowing elevated efficiency and precision of neurogenic control of heart function have somehow lingered in the dark. This can be ascribed to the absence of methods adequate to study complex cardiac electric circuits in the unceasingly moving heart. An increasing number of studies adds to the scenario the evidence of an intracardiac neuron system, which, together with the autonomic components, define a little brain inside the heart, in fervent dialogue with the central nervous system (CNS). The advent of optogenetics, allowing control the activity of excitable cells with cell specificity, spatial selectivity, and temporal resolution, has allowed to shed light on basic neuro-cardiology. This review describes how optogenetics, which has extensively been used to interrogate the circuits of the CNS, has been applied to untangle the knots of heart innervation, unveiling the cellular mechanisms of neurogenic control of heart function, in physiology and pathology, as well as those participating to brain-heart communication, back and forth. We discuss existing literature, providing a comprehensive view of the advancement in the understanding of the mechanisms of neurogenic heart control. In addition, we weigh the limits and potential of optogenetics in basic and applied research in neuro-cardiology.
Collapse
Affiliation(s)
- Arianna Scalco
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Nicola Moro
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Marco Mongillo
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Tania Zaglia
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
12
|
Dobson GP. Trauma of major surgery: A global problem that is not going away. Int J Surg 2020; 81:47-54. [PMID: 32738546 PMCID: PMC7388795 DOI: 10.1016/j.ijsu.2020.07.017] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/27/2020] [Accepted: 07/03/2020] [Indexed: 12/21/2022]
Abstract
Globally, a staggering 310 million major surgeries are performed each year; around 40 to 50 million in USA and 20 million in Europe. It is estimated that 1-4% of these patients will die, up to 15% will have serious postoperative morbidity, and 5-15% will be readmitted within 30 days. An annual global mortality of around 8 million patients places major surgery comparable with the leading causes of death from cardiovascular disease and stroke, cancer and injury. If surgical complications were classified as a pandemic, like HIV/AIDS or coronavirus (COVID-19), developed countries would work together and devise an immediate action plan and allocate resources to address it. Seeking to reduce preventable deaths and post-surgical complications would save billions of dollars in healthcare costs. Part of the global problem resides in differences in institutional practice patterns in high- and low-income countries, and part from a lack of effective perioperative drug therapies to protect the patient from surgical stress. We briefly review the history of surgical stress and provide a path forward from a systems-based approach. Key to progress is recognizing that the anesthetized brain is still physiologically 'awake' and responsive to the sterile stressors of surgery. New intravenous drug therapies are urgently required after anesthesia and before the first incision to prevent the brain from switching to sympathetic overdrive and activating secondary injury progression such as hyperinflammation, coagulopathy, immune activation and metabolic dysfunction. A systems-based approach targeting central nervous system-mitochondrial coupling may help drive research to improve outcomes following major surgery in civilian and military medicine.
Collapse
Affiliation(s)
- Geoffrey P Dobson
- Heart, Trauma and Sepsis Research Laboratory, College of Medicine and Dentistry, James Cook University, Queensland, 4811, Australia.
| |
Collapse
|
13
|
Barman SM. 2019 Ludwig Lecture: Rhythms in sympathetic nerve activity are a key to understanding neural control of the cardiovascular system. Am J Physiol Regul Integr Comp Physiol 2020; 318:R191-R205. [PMID: 31664868 PMCID: PMC7052600 DOI: 10.1152/ajpregu.00298.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/25/2019] [Accepted: 10/25/2019] [Indexed: 02/07/2023]
Abstract
This review is based on the Carl Ludwig Distinguished Lecture, presented at the 2019 Experimental Biology Meeting in Orlando, FL, and provides a snapshot of >40 years of work done in collaboration with the late Gerard L. Gebber and colleagues to highlight the importance of considering the rhythmic properties of sympathetic nerve activity (SNA) and brain stem neurons when studying the neural control of autonomic regulation. After first providing some basic information about rhythms, I describe the patterns and potential functions of rhythmic activity recorded from sympathetic nerves under various physiological conditions. I review the evidence that these rhythms reflect the properties of central sympathetic neural networks that include neurons in the caudal medullary raphe, caudal ventrolateral medulla, caudal ventrolateral pons, medullary lateral tegmental field, rostral dorsolateral pons, and rostral ventrolateral medulla. The role of these brain stem areas in mediating steady-state and reflex-induced changes in SNA and blood pressure is discussed. Despite the common appearance of rhythms in SNA, these oscillatory characteristics are often ignored; instead, it is common to simply quantify changes in the amount of SNA to make conclusions about the function of the sympathetic nervous system in mediating responses to a variety of stimuli. This review summarizes work that highlights the need to include an assessment of the changes in the frequency components of SNA in evaluating the cardiovascular responses to various manipulations as well as in determining the role of different brain regions in the neural control of the cardiovascular system.
Collapse
Affiliation(s)
- Susan M Barman
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
14
|
Abstract
The interaction between the heart and brain is complex and integral to the maintenance of normal cardiovascular function. Even in the absence of coronary disease, acute neuronal injury can induce a variety of cardiac changes. Recent neuroimaging data revealed a network including the insular cortex, anterior cingulate gyrus, and amygdala playing a crucial role in the regulation of central autonomic nervous system. Damage in these areas has been associated with arrhythmia, myocardial injury, higher plasma levels of brain natriuretic peptide, catecholamines, and glucose. Some patients after brain injury may die due to occult cardiac damage and functional impairment in the acute phase. Heart failure adversely influences acute stroke mortality. Troponin and NT-proBNP are elevated in acute brain injury patients, in response to the activated renin–angiotensin–aldosterone system and other neurohumoral changes, as a protective mechanism for sympathoinhibitory activity. Such patients have been shown to be associated with higher short- and long-term mortality. While thrombolysis, neuroprotection, and other measures, alone or in combination, may limit the cerebral damage, attention should also be directed toward the myocardial protection. Early administration of cardioprotective medication aimed at reducing increased sympathetic tone may have a role in myocardial protection in stroke patients. For a full understanding of the brain–heart control, the consequences of disruption of this control, the true incidence of cardiac effects of stroke, and the evidence-based treatment options further research are needed.
Collapse
Affiliation(s)
- Ramachandran Gopinath
- Department of Anesthesiology and Intensive Care, Nizam's Institute of Medical Sciences, Hyderabad, Telangana, India
| | - Syama Sundar Ayya
- Department of Anesthesiology and Intensive Care, Nizam's Institute of Medical Sciences, Hyderabad, Telangana, India
| |
Collapse
|
15
|
Sourioux M, Bertrand SS, Cazalets JR. Cholinergic-mediated coordination of rhythmic sympathetic and motor activities in the newborn rat spinal cord. PLoS Biol 2018; 16:e2005460. [PMID: 29985914 PMCID: PMC6053244 DOI: 10.1371/journal.pbio.2005460] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 07/19/2018] [Accepted: 06/22/2018] [Indexed: 02/07/2023] Open
Abstract
Here, we investigated intrinsic spinal cord mechanisms underlying the physiological requirement for autonomic and somatic motor system coupling. Using an in vitro spinal cord preparation from newborn rat, we demonstrate that the specific activation of muscarinic cholinergic receptors (mAchRs) (with oxotremorine) triggers a slow burst rhythm in thoracic spinal segments, thereby revealing a rhythmogenic capability in this cord region. Whereas axial motoneurons (MNs) were rhythmically activated during both locomotor activity and oxotremorine-induced bursting, intermediolateral sympathetic preganglionic neurons (IML SPNs) exhibited rhythmicity solely in the presence of oxotremorine. This somato-sympathetic synaptic drive shared by MNs and IML SPNs could both merge with and modulate the locomotor synaptic drive produced by the lumbar motor networks. This study thus sheds new light on the coupling between somatic and sympathetic systems and suggests that an intraspinal network that may be conditionally activated under propriospinal cholinergic control constitutes at least part of the synchronizing mechanism.
Collapse
Affiliation(s)
| | | | - Jean-René Cazalets
- Université de Bordeaux, CNRS UMR 5287, Bordeaux, France
- * E-mail: (JRC); (SSB)
| |
Collapse
|
16
|
Feetham CH, O'Brien F, Barrett-Jolley R. Ion Channels in the Paraventricular Hypothalamic Nucleus (PVN); Emerging Diversity and Functional Roles. Front Physiol 2018; 9:760. [PMID: 30034342 PMCID: PMC6043726 DOI: 10.3389/fphys.2018.00760] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 05/30/2018] [Indexed: 12/11/2022] Open
Abstract
The paraventricular nucleus of the hypothalamus (PVN) is critical for the regulation of homeostatic function. Although also important for endocrine regulation, it has been referred to as the "autonomic master controller." The emerging consensus is that the PVN is a multifunctional nucleus, with autonomic roles including (but not limited to) coordination of cardiovascular, thermoregulatory, metabolic, circadian and stress responses. However, the cellular mechanisms underlying these multifunctional roles remain poorly understood. Neurones from the PVN project to and can alter the function of sympathetic control regions in the medulla and spinal cord. Dysfunction of sympathetic pre-autonomic neurones (typically hyperactivity) is linked to several diseases including hypertension and heart failure and targeting this region with specific pharmacological or biological agents is a promising area of medical research. However, to facilitate future medical exploitation of the PVN, more detailed models of its neuronal control are required; populated by a greater compliment of constituent ion channels. Whilst the cytoarchitecture, projections and neurotransmitters present in the PVN are reasonably well documented, there have been fewer studies on the expression and interplay of ion channels. In this review we bring together an up to date analysis of PVN ion channel studies and discuss how these channels may interact to control, in particular, the activity of the sympathetic system.
Collapse
Affiliation(s)
- Claire H Feetham
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Fiona O'Brien
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Richard Barrett-Jolley
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
17
|
Díaz J, Acosta J, González R, Cota J, Sifuentes E, Nebot À. Modeling the control of the central nervous system over the cardiovascular system using support vector machines. Comput Biol Med 2018; 93:75-83. [DOI: 10.1016/j.compbiomed.2017.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 11/22/2017] [Accepted: 12/13/2017] [Indexed: 11/30/2022]
|
18
|
Shen Z, Weng C, Zhang Z, Wang X, Yang K. Renal sympathetic denervation lowers arterial pressure in canines with obesity-induced hypertension by regulating GAD65 and AT 1R expression in rostral ventrolateral medulla. Clin Exp Hypertens 2017; 40:49-57. [PMID: 29172730 DOI: 10.1080/10641963.2017.1306542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
To explore the roles of glutamate acid decarboxylase 65 (GAD65) and angiotensin II type 1 receptor (AT1R) in the action of renal sympathetic denervation (RSD) on obesity-induced hypertension in canines. Thirty-two beagles were randomly divided into a hypertensive model (n = 22) and control (n = 10) groups. A hypertensive canine model was established by feeding a high-fat diet. Twenty hypertensive beagles were randomized equally to a sham-surgery and RSD-treated group receiving catheter-based radiofrequency RSD. Compared with the control group, the sham-surgery group exhibited significant increases in blood pressure, serum angiotensin II level, rostral ventrolateral medulla (RVLM) glutamate level, and AT1R mRNA and protein expression and decreases in γ-amino acid butyric acid (γ-GABA) level and GAD65 mRNA and protein expression in the RVLM (all P < 0.05). Treatment with RSD significantly attenuated the above abnormal alterations (all P < 0.05). Linear correlation analysis revealed that angiotensin II level was positively correlated with glutamate level (r = 0.804) and inversely correlated with γ-GABA level (r = -0.765). GAD65 protein expression was positively correlated with γ-GABA level (r = 0.782). Catheter-based radiofrequency RSD can decrease blood pressure in obesity-induced hypertensive canines. The antihypertensive mechanism might be linked to upregulation of GAD65 and downregulation of AT1R in the RVLM.
Collapse
Affiliation(s)
- Zhijie Shen
- a Department of Cardiology , The Third Xiangya Hospital of Central South University , Changsha , China
| | - Chunyan Weng
- a Department of Cardiology , The Third Xiangya Hospital of Central South University , Changsha , China
| | - Zhihui Zhang
- a Department of Cardiology , The Third Xiangya Hospital of Central South University , Changsha , China
| | - Xiaoyan Wang
- a Department of Cardiology , The Third Xiangya Hospital of Central South University , Changsha , China
| | - Kan Yang
- a Department of Cardiology , The Third Xiangya Hospital of Central South University , Changsha , China
| |
Collapse
|
19
|
Tahsili-Fahadan P, Geocadin RG. Heart-Brain Axis: Effects of Neurologic Injury on Cardiovascular Function. Circ Res 2017; 120:559-572. [PMID: 28154104 DOI: 10.1161/circresaha.116.308446] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/06/2017] [Accepted: 01/06/2017] [Indexed: 01/23/2023]
Abstract
A complex interaction exists between the nervous and cardiovascular systems. A large network of cortical and subcortical brain regions control cardiovascular function via the sympathetic and parasympathetic outflow. A dysfunction in one system may lead to changes in the function of the other. The effects of cardiovascular disease on the nervous system have been widely studied; however, our understanding of the effects of neurological disorders on the cardiovascular system has only expanded in the past 2 decades. Various pathologies of the nervous system can lead to a wide range of alterations in function and structure of the cardiovascular system ranging from transient and benign electrographic changes to myocardial injury, cardiomyopathy, and even cardiac death. In this article, we first review the anatomy and physiology of the central and autonomic nervous systems in regard to control of the cardiovascular function. The effects of neurological injury on cardiac function and structure will be summarized, and finally, we review neurological disorders commonly associated with cardiovascular manifestations.
Collapse
Affiliation(s)
- Pouya Tahsili-Fahadan
- From the Neurosciences Critical Care Division, Departments of Neurology, Anesthesiology & Critical Care Medicine, and Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Romergryko G Geocadin
- From the Neurosciences Critical Care Division, Departments of Neurology, Anesthesiology & Critical Care Medicine, and Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD.
| |
Collapse
|
20
|
Gao L, Zimmerman MC, Biswal S, Zucker IH. Selective Nrf2 Gene Deletion in the Rostral Ventrolateral Medulla Evokes Hypertension and Sympathoexcitation in Mice. Hypertension 2017; 69:1198-1206. [PMID: 28461605 DOI: 10.1161/hypertensionaha.117.09123] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 02/05/2017] [Accepted: 03/06/2017] [Indexed: 12/13/2022]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a master transcriptional regulator of redox homeostasis that impacts antioxidant gene expression. Central oxidative stress and reduced antioxidant enzyme expression in the rostral ventrolateral medulla (RVLM) contributed to sympathoexcitation in chronic heart failure. In the current study, we hypothesized that deletion of Nrf2 in the RVLM would increase sympathetic drive and blood pressure. Experiments were performed in Nrf2-floxed mice treated with microinjection of lentiviral-Cre-GFP or lentiviral-GFP into the RVLM. Two weeks after viral administration, Nrf2 message, protein, oxidative stress, cardiovascular function, and sympathetic outflow were evaluated. We found that (1) Nrf2 mRNA and protein in the RVLM were significantly lower in Cre mice compared with control GFP mice. Nrf2-targeted antioxidant enzymes were downregulated, whereas reactive oxygen species were elevated. (2) Blood pressure measurements indicated that Cre mice displayed a significant increase in blood pressure (mean arterial pressure, 123.7±3.8 versus 100.2±2.2 mm Hg; P<0.05, n=6), elevated urinary norepinephrine (NE) concentration (456.4±16.9 versus 356.5±19.9 ng/mL; P<0.05, n=6), and decreased spontaneous baroreflex gain (up sequences, 1.66±0.17 versus 3.61±0.22 ms/mm Hg; P<0.05, n=6; down sequences, 1.89±0.12 versus 2.98±0.19 ms/mm Hg; P<0.05, n=6). (3) Cre mice displayed elevated baseline renal sympathetic nerve activity and impaired inducible baroreflex function. These data suggest that Nrf2 gene deletion in the RVLM elevates blood pressure, increases sympathetic outflow, and impairs baroreflex function potentially by impaired antioxidant enzyme expression.
Collapse
Affiliation(s)
- Lie Gao
- From the Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha (L.G., M.C.Z., I.H.Z.); and Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD (S.B.)
| | - Matthew C Zimmerman
- From the Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha (L.G., M.C.Z., I.H.Z.); and Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD (S.B.)
| | - Shyam Biswal
- From the Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha (L.G., M.C.Z., I.H.Z.); and Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD (S.B.)
| | - Irving H Zucker
- From the Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha (L.G., M.C.Z., I.H.Z.); and Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD (S.B.).
| |
Collapse
|
21
|
Dempsey B, Le S, Turner A, Bokiniec P, Ramadas R, Bjaalie JG, Menuet C, Neve R, Allen AM, Goodchild AK, McMullan S. Mapping and Analysis of the Connectome of Sympathetic Premotor Neurons in the Rostral Ventrolateral Medulla of the Rat Using a Volumetric Brain Atlas. Front Neural Circuits 2017; 11:9. [PMID: 28298886 PMCID: PMC5331070 DOI: 10.3389/fncir.2017.00009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/06/2017] [Indexed: 01/27/2023] Open
Abstract
Spinally projecting neurons in the rostral ventrolateral medulla (RVLM) play a critical role in the generation of vasomotor sympathetic tone and are thought to receive convergent input from neurons at every level of the neuraxis; the factors that determine their ongoing activity remain unresolved. In this study we use a genetically restricted viral tracing strategy to definitively map their spatially diffuse connectome. We infected bulbospinal RVLM neurons with a recombinant rabies variant that drives reporter expression in monosynaptically connected input neurons and mapped their distribution using an MRI-based volumetric atlas and a novel image alignment and visualization tool that efficiently translates the positions of neurons captured in conventional photomicrographs to Cartesian coordinates. We identified prominent inputs from well-established neurohumoral and viscero-sympathetic sensory actuators, medullary autonomic and respiratory subnuclei, and supramedullary autonomic nuclei. The majority of inputs lay within the brainstem (88–94%), and included putative respiratory neurons in the pre-Bötzinger Complex and post-inspiratory complex that are therefore likely to underlie respiratory-sympathetic coupling. We also discovered a substantial and previously unrecognized input from the region immediately ventral to nucleus prepositus hypoglossi. In contrast, RVLM sympathetic premotor neurons were only sparsely innervated by suprapontine structures including the paraventricular nucleus, lateral hypothalamus, periaqueductal gray, and superior colliculus, and we found almost no evidence of direct inputs from the cortex or amygdala. Our approach can be used to quantify, standardize and share complete neuroanatomical datasets, and therefore provides researchers with a platform for presentation, analysis and independent reanalysis of connectomic data.
Collapse
Affiliation(s)
- Bowen Dempsey
- Faculty of Medicine and Health Sciences, Neurobiology of Vital Systems, Macquarie University Sydney, NSW, Australia
| | - Sheng Le
- Faculty of Medicine and Health Sciences, Neurobiology of Vital Systems, Macquarie University Sydney, NSW, Australia
| | - Anita Turner
- Faculty of Medicine and Health Sciences, Neurobiology of Vital Systems, Macquarie University Sydney, NSW, Australia
| | - Phil Bokiniec
- Faculty of Medicine and Health Sciences, Neurobiology of Vital Systems, Macquarie University Sydney, NSW, Australia
| | - Radhika Ramadas
- Faculty of Medicine and Health Sciences, Neurobiology of Vital Systems, Macquarie University Sydney, NSW, Australia
| | - Jan G Bjaalie
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo Oslo, Norway
| | - Clement Menuet
- Department of Physiology, University of Melbourne Melbourne, VIC, Australia
| | - Rachael Neve
- Viral Core Facility, McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, MA, USA
| | - Andrew M Allen
- Department of Physiology, University of Melbourne Melbourne, VIC, Australia
| | - Ann K Goodchild
- Faculty of Medicine and Health Sciences, Neurobiology of Vital Systems, Macquarie University Sydney, NSW, Australia
| | - Simon McMullan
- Faculty of Medicine and Health Sciences, Neurobiology of Vital Systems, Macquarie University Sydney, NSW, Australia
| |
Collapse
|
22
|
Yi QY, Qi J, Yu XJ, Li HB, Zhang Y, Su Q, Shi T, Zhang DM, Guo J, Feng ZP, Wang ML, Zhu GQ, Liu JJ, Shi XL, Kang YM. Paraventricular Nucleus Infusion of Epigallocatechin-3-O-Gallate Improves Renovascular Hypertension. Cardiovasc Toxicol 2017; 16:276-85. [PMID: 26162770 DOI: 10.1007/s12012-015-9335-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oxidative stress plays an important role in the pathogenesis of hypertension. Epigallocatechin-3-O-gallate (EGCG) is the main polyphenol present in green tea and is known for its potent antioxidant and anti-inflammatory properties. In the present study, we hypothesize that EGCG attenuates oxidative stress in the paraventricular nucleus of hypothalamus (PVN), thereby decreasing the blood pressure and sympathetic activity in renovascular hypertensive rats. After renovascular hypertension was induced in male Sprague-Dawley rats by the two-kidney one-clip (2K-1C) method, the rats received bilateral PVN infusion of EGCG (20 μg/h) or vehicle via osmotic minipump for 4 weeks. Our results were shown as follows: (1) Hypertension induced by 2K-1C was associated with the production of reactive oxygen species in the PVN; (2) chronic infusion of EGCG in the PVN decreased stress-related NAD(P)H oxidase subunit gp91(phox) and NOX-4 and increased the activity of antioxidant enzymes (SOD-1), also balanced the content of cytokines (IL-1β, IL-6, IL-10 and MCP-1) in the PVN, and attenuated the level of norepinephrine in plasma of 2K-1C rats. Our findings provide strong evidence that PVN infusion of EGCG inhibited renovascular hypertension progression through its potent anti-oxidative and anti-inflammatory activity in the PVN.
Collapse
Affiliation(s)
- Qiu-Yue Yi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.,Department of Cardiovascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jie Qi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Xiao-Jing Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Hong-Bao Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Yan Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Qing Su
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Tao Shi
- Department of Cardiovascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Dong-Mei Zhang
- Department of Physiology, Dalian Medical University, Dalian, 116044, China
| | - Jing Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Zhi-Peng Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Mo-Lin Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Guo-Qing Zhu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, 210029, China
| | - Jin-Jun Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Xiao-Lian Shi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China. .,Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
| |
Collapse
|
23
|
Nishihara M, Takesue K, Hirooka Y. Renal denervation enhances GABA-ergic input into the PVN leading to blood pressure lowering in chronic kidney disease. Auton Neurosci 2016; 204:88-97. [PMID: 27729205 DOI: 10.1016/j.autneu.2016.09.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 08/30/2016] [Accepted: 09/30/2016] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Sympathoexcitation plays an important role in the pathogenesis of hypertension in patients with chronic kidney disease (CKD). The paraventricular nucleus of the hypothalamus (PVN) in the brain controls sympathetic outflow through γ-amino butyric acid (GABA)-ergic mechanisms. Renal denervation (RDN) exerts a long-term antihypertensive effect in hypertension with CKD; however, the effects of RDN on sympathetic nerve activity and GABA-ergic modulation in the PVN are not clear. We aimed to elucidate whether RDN modulates sympathetic outflow through GABA-ergic mechanisms in the PVN in hypertensive mice with CKD. METHODS AND RESULTS In 5/6-nephrectomized male Institute of Cancer Research mice (Nx) at 4 weeks after nephrectomy, systolic blood pressure (SBP) was significantly increased, accompanied by sympathoexcitation. The Nx-mice underwent RDN or sham operation, and the mice were divided into three groups (Control, Nx-Sham, and Nx-RDN). At 2 weeks after RDN, SBP was significantly decreased and urinary sodium excretion was increased in Nx-RDN compared with Nx-Sham. Urinary norepinephrine excretion (uNE) levels did not differ significantly between Nx-RDN and Nx-Sham. At 6 weeks after RDN, SBP continued to decrease and uNE levels also decreased in Nx-RDN compared with Nx-Sham. Bicuculline microinjection into the PVN increased mean arterial pressure and lumbar sympathetic nerve activity in all groups. The pressor responses and change in lumbar sympathetic nerve activity were significantly attenuated in Nx-Sham, but were enhanced in Nx-RDN at 6 weeks after RDN. CONCLUSIONS The findings from the present study indicate that RDN has a prolonged antihypertensive effect and, at least in the late phase, decreases sympathetic nerve activity in association with enhanced GABA-ergic input into the PVN in mice with CKD.
Collapse
Affiliation(s)
- Masaaki Nishihara
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Ko Takesue
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yoshitaka Hirooka
- Department of Advanced Cardiovascular Regulation and Therapeutics for Cardiovascular Diseases, Kyushu University Center for Disruptive Cardiovascular Medicine, Fukuoka, Japan.
| |
Collapse
|
24
|
Taggart P, Critchley H, van Duijvendoden S, Lambiase PD. Significance of neuro-cardiac control mechanisms governed by higher regions of the brain. Auton Neurosci 2016; 199:54-65. [DOI: 10.1016/j.autneu.2016.08.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/19/2016] [Accepted: 08/20/2016] [Indexed: 12/24/2022]
|
25
|
Feetham CH, Nunn N, Barrett-Jolley R. The depressor response to intracerebroventricular hypotonic saline is sensitive to TRPV4 antagonist RN1734. Front Pharmacol 2015; 6:83. [PMID: 25954200 PMCID: PMC4407506 DOI: 10.3389/fphar.2015.00083] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/02/2015] [Indexed: 11/18/2022] Open
Abstract
Several reports have shown that the periventricular region of the brain, including the paraventricular nucleus (PVN), is critical to sensing and responding to changes in plasma osmolality. Further studies also implicate the transient receptor potential ion channel, type V4 (TRPV4) channel in this homeostatic behavior. In previous work we have shown that TRPV4 ion channels couple to calcium-activated potassium channels in the PVN to decrease action potential firing frequency in response to hypotonicity. In the present study we investigated whether, similarly, intracerebroventricular (ICV) application of hypotonic solutions modulated cardiovascular parameters, and if so whether this was sensitive to a TRPV4 channel inhibitor. We found that ICV injection of 270 mOsmol artificial cerebrospinal fluid (ACSF) decreased mean blood pressure, but not heart rate, compared to naïve mice or mice injected with 300 mOsmol ACSF. This effect was abolished by treatment with the TRPV4 inhibitor RN1734. These data suggest that periventricular targets within the brain are capable of generating depressor action in response to TRPV4 ion channel activation. Potentially, in the future, the TRPV4 channel, or the TRPV4–KCa coupling mechanism, may serve as a therapeutic target for treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Claire H Feetham
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool Liverpool, UK
| | - Nicolas Nunn
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool Liverpool, UK
| | - Richard Barrett-Jolley
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool Liverpool, UK
| |
Collapse
|
26
|
Feetham CH, Nunn N, Lewis R, Dart C, Barrett-Jolley R. TRPV4 and K(Ca) ion channels functionally couple as osmosensors in the paraventricular nucleus. Br J Pharmacol 2015; 172:1753-68. [PMID: 25421636 PMCID: PMC4376454 DOI: 10.1111/bph.13023] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 11/13/2014] [Accepted: 11/16/2014] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND PURPOSE Transient receptor potential vanilloid type 4 (TRPV4) and calcium-activated potassium channels (KCa ) mediate osmosensing in many tissues. Both TRPV4 and KCa channels are found in the paraventricular nucleus (PVN) of the hypothalamus, an area critical for sympathetic control of cardiovascular and renal function. Here, we have investigated whether TRPV4 channels functionally couple to KCa channels to mediate osmosensing in PVN parvocellular neurones and have characterized, pharmacologically, the subtype of KCa channel involved. EXPERIMENTAL APPROACH We investigated osmosensing roles for TRPV4 and KCa channels in parvocellular PVN neurones using cell-attached and whole-cell electrophysiology in mouse brain slices and rat isolated PVN neurons. Intracellular Ca(2+) was recorded using Fura-2AM. The system was modelled in the NEURON simulation environment. KEY RESULTS Hypotonic saline reduced action current frequency in hypothalamic slices; a response mimicked by TRPV4 channel agonists 4αPDD (1 μM) and GSK1016790A (100 nM), and blocked by inhibitors of either TRPV4 channels (RN1734 (5 μM) and HC067047 (300 nM) or the low-conductance calcium-activated potassium (SK) channel (UCL-1684 30 nM); iberiotoxin and TRAM-34 had no effect. Our model was compatible with coupling between TRPV4 and KCa channels, predicting the presence of positive and negative feedback loops. These predictions were verified using isolated PVN neurons. Both hypotonic challenge and 4αPDD increased intracellular Ca(2+) and UCL-1684 reduced the action of hypotonic challenge. CONCLUSIONS AND IMPLICATIONS There was functional coupling between TRPV4 and SK channels in parvocellular neurones. This mechanism contributes to osmosensing in the PVN and may provide a novel pharmacological target for the cardiovascular or renal systems.
Collapse
Affiliation(s)
- C H Feetham
- Institute of Ageing and Chronic Disease, Faculty of Health & Life Sciences, University of LiverpoolLiverpool, L69 3GA, UK
| | - N Nunn
- Faculty of Life Sciences, University of ManchesterManchester, M13 9PT, UK
| | - R Lewis
- Institute of Ageing and Chronic Disease, Faculty of Health & Life Sciences, University of LiverpoolLiverpool, L69 3GA, UK
| | - C Dart
- Institute of Ageing and Chronic Disease, Faculty of Health & Life Sciences, University of LiverpoolLiverpool, L69 3GA, UK
| | - R Barrett-Jolley
- Institute of Ageing and Chronic Disease, Faculty of Health & Life Sciences, University of LiverpoolLiverpool, L69 3GA, UK
| |
Collapse
|
27
|
Feetham CH, Barrett-Jolley R. NK1-receptor-expressing paraventricular nucleus neurones modulate daily variation in heart rate and stress-induced changes in heart rate variability. Physiol Rep 2014; 2:e12207. [PMID: 25472606 PMCID: PMC4332202 DOI: 10.14814/phy2.12207] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The paraventricular nucleus of the hypothalamus (PVN) is an established center of cardiovascular control, receiving projections from other nuclei of the hypothalamus such as the dorsomedial hypothalamus and the suprachiasmatic nucleus. The PVN contains a population of "pre-autonomic neurones" which project to the intermediolateralis of the spinal cord and increase sympathetic activity, blood pressure, and heart rate. These spinally projecting neurones express a number of membrane receptors including GABA and substance P NK1 receptors. Activation of NK1-expressing neurones increases heart rate, blood pressure, and sympathetic activity. However, their role in the pattern of overall cardiovascular control remains unknown. In this work, we use specific saporin lesion of NK1-expressing PVN rat neurones with SSP-SAP and telemetrically measure resting heart rate and heart rate variability (HRV) parameters in response to mild psychological stress. The HRV parameter "low frequency/high frequency ratio" is often used as an indicator of sympathetic activity and is significantly increased with psychological stress in control rats (0.84 ± 0.14 to 2.02 ± 0.15; P < 0.001; n = 3). We find the stress-induced increase in this parameter to be blunted in the SSP-SAP-lesioned rats (0.83 ± 0.09 to 0.93 ± 0.21; P > 0.05; n = 3). We also find a shift in daily variation of heart rate rhythm and conclude that NK1-expressing PVN neurones are involved with coupling of the cardiovascular system to daily heart rate variation and the sympathetic response to psychological stress.
Collapse
Affiliation(s)
- Claire H Feetham
- Institute of Ageing and Chronic Disease, Centre for Integrative Mammalian Biology, University of Liverpool, Liverpool, UK
| | - Richard Barrett-Jolley
- Institute of Ageing and Chronic Disease, Centre for Integrative Mammalian Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
28
|
Sleight P. A historical perspective on peripheral reflex cardiovascular control from animals to man. Exp Physiol 2014; 99:1017-26. [PMID: 24986973 DOI: 10.1113/expphysiol.2014.079434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although drug treatment of human hypertension has greatly improved, there is renewed interest in non-drug methods of blood pressure reduction. Animal experiments have now shown that arterial baroreflexes do control long-term blood pressure levels, particularly by nervously mediated renal excretion of sodium and water. This Paton Lecture provides a review of the historical development of knowledge of peripheral circulatory control in order to supplement prior Paton Lectures concerned with cerebral cortical and other areas of influence. I also discuss how improved understanding of nervous control of the circulation has led to current methods of non-drug blood pressure control in man by implanted carotid baroreceptor pacemakers or by renal denervation. Finally, the role of other therapy, particularly listening to music, is reviewed.
Collapse
|
29
|
Fajemiroye JO, da Silva EF, de Oliveira TS, de Oliveira LP, Akanmu MA, Ghedini PC, Pedrino GR, Costa EA. Hypotensive and vasorelaxant effects of (E) - methyl isoeugenol: a naturally occurring food flavour. Food Chem Toxicol 2014; 70:214-21. [PMID: 24842837 DOI: 10.1016/j.fct.2014.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/16/2014] [Accepted: 05/11/2014] [Indexed: 01/04/2023]
Abstract
Application of naturally occurring (E) - methyl isoeugenol (MIE) as food flavour has been widely accepted despite the growing concerns over cardiovascular issue. Hence, we sought to investigate hypotensive property of MIE and the involvement of central and/or peripheral mechanism (s). Variation in mean arterial pressure (MAP), heart rate (HR), systolic blood pressure (SBP), baroreflex sensitivity of normotensive rats and vascular reactivity were recorded. MIE (1.11, 2.25 or 4.50mg/kg, iv) elicited dose-related decrease in MAP (-16.9±1.13; -19.0±4.18 or -27.2±3.65mmHg, respectively) and an increase in HR (17.4±1.79; 24.4±5.11 or 29.9±6.62 bmp, respectively). MIE 25 or 50mg/kg (p.o) reduced the SBP (-13.6±4.18 or -16.6±5.60mmHg, respectively) without altering baroreflex sensitivity. The hypotensive effect of MIE remained unaltered by WAY100635 (antagonist of 5-HT1A) and L-NAME (NO synthase inhibitor). Intracerebroventricular injection of MIE did not change MAP. MIE elicited endothelium independent vasorelaxation (endothelium-intact vessels, Emax 92.5±1.75%; Endothelium-denuded vessels, Emax 91.4±2.79%). MIE blocked CaCl2 or BAY K8644 (L-type voltage gated calcium channel activator)-induced vascular contractions. Our findings showed evidence of hypotensive and vasorelaxation effects of MIE with involvement of calcium channel.
Collapse
Affiliation(s)
- James O Fajemiroye
- Department of Physiological Sciences, Federal University of Goiás, Campus Samambaia, 74001-970 Goiânia-GO, Brazil.
| | - Elaine F da Silva
- Department of Physiological Sciences, Federal University of Goiás, Campus Samambaia, 74001-970 Goiânia-GO, Brazil
| | - Thiago S de Oliveira
- Department of Physiological Sciences, Federal University of Goiás, Campus Samambaia, 74001-970 Goiânia-GO, Brazil
| | - Lanussy P de Oliveira
- Department of Physiological Sciences, Federal University of Goiás, Campus Samambaia, 74001-970 Goiânia-GO, Brazil
| | - Moses A Akanmu
- Department of Pharmacology, Obafemi Awolowo University Ile Ife, P.O. Box 1282, Osun State, Nigeria
| | - Paulo C Ghedini
- Department of Physiological Sciences, Federal University of Goiás, Campus Samambaia, 74001-970 Goiânia-GO, Brazil
| | - Gustavo R Pedrino
- Department of Physiological Sciences, Federal University of Goiás, Campus Samambaia, 74001-970 Goiânia-GO, Brazil
| | - Elson A Costa
- Department of Physiological Sciences, Federal University of Goiás, Campus Samambaia, 74001-970 Goiânia-GO, Brazil
| |
Collapse
|
30
|
Child N, Hanson B, Bishop M, Rinaldi CA, Bostock J, Western D, Cooklin M, O'Neil M, Wright M, Razavi R, Gill J, Taggart P. Effect of mental challenge induced by movie clips on action potential duration in normal human subjects independent of heart rate. Circ Arrhythm Electrophysiol 2014; 7:518-23. [PMID: 24833641 DOI: 10.1161/circep.113.000909] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Mental stress and emotion have long been associated with ventricular arrhythmias and sudden death in animal models and humans. The effect of mental challenge on ventricular action potential duration (APD) in conscious healthy humans has not been reported. METHODS AND RESULTS Activation recovery intervals measured from unipolar electrograms as a surrogate for APD (n=19) were recorded from right and left ventricular endocardium during steady-state pacing, whilst subjects watched an emotionally charged film clip. To assess the possible modulating role of altered respiration on APD, the subjects then repeated the same breathing pattern they had during the stress, but without the movie clip. Hemodynamic parameters (mean, systolic, and diastolic blood pressure, and rate of pressure increase) and respiration rate increased during the stressful part of the film clip (P=0.001). APD decreased during the stressful parts of the film clip, for example, for global right ventricular activation recovery interval at end of film clip 193.8 ms (SD, 14) versus 198.0 ms (SD, 13) during the matched breathing control (end film left ventricle 199.8 ms [SD, 16] versus control 201.6 ms [SD, 15]; P=0.004). Respiration rate increased during the stressful part of the film clip (by 2 breaths per minute) and was well matched in the respective control period without any hemodynamic or activation recovery interval changes. CONCLUSIONS Our results document for the first time direct recordings of the effect of a mental challenge protocol on ventricular APD in conscious humans. The effect of mental challenge on APD was not secondary to emotionally induced altered respiration or heart rate.
Collapse
Affiliation(s)
- Nicholas Child
- From the Department of Cardiology, Guy's and St. Thomas's Hospital, London, United Kingdom (N.C., C.A.R., J.B., M.C., M.O., M.W., R.R., J.G.); Department of Cardiovascular Imaging, Division of Imaging Sciences and Biomedical Engineering, King's College, London, United Kingdom (N.C., M.B., R.R.); Department of Mechanical Engineering, University College London, London, United Kingdom (B.H., D.W.); and Neurocardiology Unit, University College London Hospitals, London, United Kingdom (P.T.)
| | - Ben Hanson
- From the Department of Cardiology, Guy's and St. Thomas's Hospital, London, United Kingdom (N.C., C.A.R., J.B., M.C., M.O., M.W., R.R., J.G.); Department of Cardiovascular Imaging, Division of Imaging Sciences and Biomedical Engineering, King's College, London, United Kingdom (N.C., M.B., R.R.); Department of Mechanical Engineering, University College London, London, United Kingdom (B.H., D.W.); and Neurocardiology Unit, University College London Hospitals, London, United Kingdom (P.T.)
| | - Martin Bishop
- From the Department of Cardiology, Guy's and St. Thomas's Hospital, London, United Kingdom (N.C., C.A.R., J.B., M.C., M.O., M.W., R.R., J.G.); Department of Cardiovascular Imaging, Division of Imaging Sciences and Biomedical Engineering, King's College, London, United Kingdom (N.C., M.B., R.R.); Department of Mechanical Engineering, University College London, London, United Kingdom (B.H., D.W.); and Neurocardiology Unit, University College London Hospitals, London, United Kingdom (P.T.)
| | - Christopher A Rinaldi
- From the Department of Cardiology, Guy's and St. Thomas's Hospital, London, United Kingdom (N.C., C.A.R., J.B., M.C., M.O., M.W., R.R., J.G.); Department of Cardiovascular Imaging, Division of Imaging Sciences and Biomedical Engineering, King's College, London, United Kingdom (N.C., M.B., R.R.); Department of Mechanical Engineering, University College London, London, United Kingdom (B.H., D.W.); and Neurocardiology Unit, University College London Hospitals, London, United Kingdom (P.T.)
| | - Julian Bostock
- From the Department of Cardiology, Guy's and St. Thomas's Hospital, London, United Kingdom (N.C., C.A.R., J.B., M.C., M.O., M.W., R.R., J.G.); Department of Cardiovascular Imaging, Division of Imaging Sciences and Biomedical Engineering, King's College, London, United Kingdom (N.C., M.B., R.R.); Department of Mechanical Engineering, University College London, London, United Kingdom (B.H., D.W.); and Neurocardiology Unit, University College London Hospitals, London, United Kingdom (P.T.)
| | - David Western
- From the Department of Cardiology, Guy's and St. Thomas's Hospital, London, United Kingdom (N.C., C.A.R., J.B., M.C., M.O., M.W., R.R., J.G.); Department of Cardiovascular Imaging, Division of Imaging Sciences and Biomedical Engineering, King's College, London, United Kingdom (N.C., M.B., R.R.); Department of Mechanical Engineering, University College London, London, United Kingdom (B.H., D.W.); and Neurocardiology Unit, University College London Hospitals, London, United Kingdom (P.T.)
| | - Michael Cooklin
- From the Department of Cardiology, Guy's and St. Thomas's Hospital, London, United Kingdom (N.C., C.A.R., J.B., M.C., M.O., M.W., R.R., J.G.); Department of Cardiovascular Imaging, Division of Imaging Sciences and Biomedical Engineering, King's College, London, United Kingdom (N.C., M.B., R.R.); Department of Mechanical Engineering, University College London, London, United Kingdom (B.H., D.W.); and Neurocardiology Unit, University College London Hospitals, London, United Kingdom (P.T.)
| | - Mark O'Neil
- From the Department of Cardiology, Guy's and St. Thomas's Hospital, London, United Kingdom (N.C., C.A.R., J.B., M.C., M.O., M.W., R.R., J.G.); Department of Cardiovascular Imaging, Division of Imaging Sciences and Biomedical Engineering, King's College, London, United Kingdom (N.C., M.B., R.R.); Department of Mechanical Engineering, University College London, London, United Kingdom (B.H., D.W.); and Neurocardiology Unit, University College London Hospitals, London, United Kingdom (P.T.)
| | - Matthew Wright
- From the Department of Cardiology, Guy's and St. Thomas's Hospital, London, United Kingdom (N.C., C.A.R., J.B., M.C., M.O., M.W., R.R., J.G.); Department of Cardiovascular Imaging, Division of Imaging Sciences and Biomedical Engineering, King's College, London, United Kingdom (N.C., M.B., R.R.); Department of Mechanical Engineering, University College London, London, United Kingdom (B.H., D.W.); and Neurocardiology Unit, University College London Hospitals, London, United Kingdom (P.T.)
| | - Reza Razavi
- From the Department of Cardiology, Guy's and St. Thomas's Hospital, London, United Kingdom (N.C., C.A.R., J.B., M.C., M.O., M.W., R.R., J.G.); Department of Cardiovascular Imaging, Division of Imaging Sciences and Biomedical Engineering, King's College, London, United Kingdom (N.C., M.B., R.R.); Department of Mechanical Engineering, University College London, London, United Kingdom (B.H., D.W.); and Neurocardiology Unit, University College London Hospitals, London, United Kingdom (P.T.)
| | - Jaswinder Gill
- From the Department of Cardiology, Guy's and St. Thomas's Hospital, London, United Kingdom (N.C., C.A.R., J.B., M.C., M.O., M.W., R.R., J.G.); Department of Cardiovascular Imaging, Division of Imaging Sciences and Biomedical Engineering, King's College, London, United Kingdom (N.C., M.B., R.R.); Department of Mechanical Engineering, University College London, London, United Kingdom (B.H., D.W.); and Neurocardiology Unit, University College London Hospitals, London, United Kingdom (P.T.)
| | - Peter Taggart
- From the Department of Cardiology, Guy's and St. Thomas's Hospital, London, United Kingdom (N.C., C.A.R., J.B., M.C., M.O., M.W., R.R., J.G.); Department of Cardiovascular Imaging, Division of Imaging Sciences and Biomedical Engineering, King's College, London, United Kingdom (N.C., M.B., R.R.); Department of Mechanical Engineering, University College London, London, United Kingdom (B.H., D.W.); and Neurocardiology Unit, University College London Hospitals, London, United Kingdom (P.T.).
| |
Collapse
|
31
|
Dombrowski K, Laskowitz D. Cardiovascular manifestations of neurologic disease. HANDBOOK OF CLINICAL NEUROLOGY 2014; 119:3-17. [PMID: 24365284 DOI: 10.1016/b978-0-7020-4086-3.00001-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cardiac manifestations of neurologic diseases are common in clinical practice. There are numerous anatomic and pathophysiologic links between the normal and abnormal function of both systems. There are a number of brain-heart interactions which affect the care of patients as well as help guide therapeutic development. This is exemplified in the area of vascular neurology where knowledge of the brain-heart connection is essential not only for bedside management but where collaborative efforts between neurology and cardiology are key in developing new strategies for ischemic stroke prevention and treatment, atrial fibrillation, and interventional techniques. This chapter will focus on cardiac manifestations of neurologic disease, with special emphasis on vascular and intensive care neurology, epilepsy, and neurodegenerative and peripheral nervous system diseases.
Collapse
Affiliation(s)
- Keith Dombrowski
- Department of Medicine (Neurology), Duke University Medical Center, Durham, NC, USA.
| | - Daniel Laskowitz
- Department of Medicine (Neurology), Duke University Medical Center, Durham, NC, USA; Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
32
|
Geraldes V, Gonçalves-Rosa N, Liu B, Paton JFR, Rocha I. Chronic depression of hypothalamic paraventricular neuronal activity produces sustained hypotension in hypertensive rats. Exp Physiol 2013; 99:89-100. [PMID: 24142454 DOI: 10.1113/expphysiol.2013.074823] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Changes in the sympathetic nervous system are responsible for the initiation, development and maintenance of hypertension. An important central sympathoexcitatory region is the paraventricular nucleus (PVN) of the hypothalamus, which may become more active in hypertensive conditions, as shown in acute studies previously. Our objective was to depress PVN neuronal activity chronically by the overexpression of an inwardly rectifying potassium channel (hKir2.1), while evaluating the consequences on blood pressure (BP) and its reflex regulation. In spontaneously hypertensive rats (SHRs) and Wistar rats (WKY) lentiviral vectors (LVV-hKir2.1; LV-TREtight-Kir-cIRES-GFP5 4 × 10(9) IU and LV-Syn-Eff-G4BS-Syn-Tetoff 6.2 × 10(9) IU in a ratio 1:4) were stereotaxically microinjected bilaterally into the PVN. Sham-treated SHRs and WKY received bilateral PVN microinjections of LVV-eGFP (LV-Syn-Eff-G4BS-Syn-Tetoff 6.2 × 10(9) IU and LV-TREtight-GFP 5.7 × 10(9) IU in a ratio 1:4). Blood pressure was monitored continuously by radio-telemetry and evaluated over 75 days. Baroreflex gain was evaluated using phenylephrine (25 μg ml(-1), i.v.), whereas lobeline (25 μg ml(-1), i.v.) was used to stimulate peripheral chemoreceptors. In SHRs but not normotensive WKY rats, LVV-hKir2.1 expression in the PVN produced time-dependent and significant decreases in systolic (from 158 ± 3 to 132 ± 6 mmHg; P < 0.05) and diastolic BP (from 135 ± 4 to 113 ± 5 mmHg; P < 0.05). The systolic BP low-frequency band was reduced (from 0.79 ± 0.13 to 0.42 ± 0.09 mmHg(2); P < 0.05), suggesting reduced sympathetic vasomotor tone. Baroreflex gain was increased and peripheral chemoreflex depressed after PVN microinjection of LVV-hKir2.1. We conclude that the PVN plays a major role in long-term control of BP and sympathetic nervous system activity in SHRs. This is associated with reductions in both peripheral chemosensitivity and respiratory-induced sympathetic modulation and an improvement in baroreflex sensitivity. Our results support the PVN as a powerful site to control BP in neurogenic hypertension.
Collapse
Affiliation(s)
- Vera Geraldes
- I. Rocha: Instituto de Fisiologia, Faculdade de Medicina de Lisboa, Av Prof Egas Moniz, 1649-028 Lisbon, Portugal.
| | | | | | | | | |
Collapse
|
33
|
Pedrino GR, Calderon AS, Andrade MA, Cravo SL, Toney GM. Discharge of RVLM vasomotor neurons is not increased in anesthetized angiotensin II-salt hypertensive rats. Am J Physiol Heart Circ Physiol 2013; 305:H1781-9. [PMID: 24124187 DOI: 10.1152/ajpheart.00657.2013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurons of the rostral ventrolateral medulla (RVLM) are critical for generating and regulating sympathetic nerve activity (SNA). Systemic administration of ANG II combined with a high-salt diet induces hypertension that is postulated to involve elevated SNA. However, a functional role for RVLM vasomotor neurons in ANG II-salt hypertension has not been established. Here we tested the hypothesis that RVLM vasomotor neurons have exaggerated resting discharge in rats with ANG II-salt hypertension. Rats in the hypertensive (HT) group consumed a high-salt (2% NaCl) diet and received an infusion of ANG II (150 ng·kg(-1)·min(-1) sc) for 14 days. Rats in the normotensive (NT) group consumed a normal salt (0.4% NaCl) diet and were infused with normal saline. Telemetric recordings in conscious rats revealed that mean arterial pressure (MAP) was significantly increased in HT compared with NT rats (P < 0.001). Under anesthesia (urethane/chloralose), MAP remained elevated in HT compared with NT rats (P < 0.01). Extracellular single unit recordings in HT (n = 28) and NT (n = 22) rats revealed that barosensitive RVLM neurons in both groups (HT, 23 cells; NT, 34 cells) had similar cardiac rhythmicity and resting discharge. However, a greater (P < 0.01) increase of MAP was needed to silence discharge of neurons in HT (17 cells, 44 ± 5 mmHg) than in NT (28 cells, 29 ± 3 mmHg) rats. Maximum firing rates during arterial baroreceptor unloading were similar across groups. We conclude that heightened resting discharge of sympathoexcitatory RVLM neurons is not required for maintenance of neurogenic ANG II-salt hypertension.
Collapse
Affiliation(s)
- Gustavo R Pedrino
- Department of Physiological Science, Universidade Federal de Goiás, Goiânia, Brazil
| | | | | | | | | |
Collapse
|
34
|
Kishi T. Regulation of the sympathetic nervous system by nitric oxide and oxidative stress in the rostral ventrolateral medulla: 2012 Academic Conference Award from the Japanese Society of Hypertension. Hypertens Res 2013; 36:845-51. [DOI: 10.1038/hr.2013.73] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/01/2013] [Accepted: 03/26/2013] [Indexed: 02/07/2023]
|
35
|
Blood pressure regulation VIII: resistance vessel tone and implications for a pro-atherogenic conduit artery endothelial cell phenotype. Eur J Appl Physiol 2013; 114:531-44. [PMID: 23860841 DOI: 10.1007/s00421-013-2684-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 06/15/2013] [Indexed: 10/26/2022]
Abstract
Dysfunction of the endothelium is proposed as the primary initiator of atherosclerotic peripheral artery disease, which occurs mainly in medium- to large-sized conduit arteries of the lower extremities (e.g., iliac, femoral, popliteal arteries). In this review article, we propose the novel concept that conduit artery endothelial cell phenotype is determined, in part, by microvascular tone in skeletal muscle resistance arteries through both changes in arterial blood pressure as well as upstream conduit artery shear stress patterns. First, we summarize the literature supporting the involvement of sympathetic nerve activity (SNA) and nitric oxide (NO) in the modulation of microvascular tone and arterial blood pressure. We then focus on the role of elevated blood pressure and shear stress profiles in modulating conduit artery endothelial cell phenotype. Last, we discuss findings from classic and emerging studies indicating that increased vascular resistance, as it occurs in the context of increased SNA and/or reduced NO bioavailability, is associated with greater oscillatory shear stress (e.g., increased retrograde shear) in upstream conduit arteries. The ideas put forth in this review set the stage for a new paradigm concerning the mechanistic link between increased microvascular tone and development of conduit artery endothelial dysfunction and thus increased risk for peripheral artery disease. Indeed, a vast amount of evidence supports the notion that excessive blood pressure and oscillatory shear stress are potent pro-atherogenic signals to the endothelium.
Collapse
|
36
|
Nunn N, Feetham CH, Martin J, Barrett-Jolley R, Plagge A. Elevated blood pressure, heart rate and body temperature in mice lacking the XLαs protein of the Gnas locus is due to increased sympathetic tone. Exp Physiol 2013; 98:1432-45. [PMID: 23748904 PMCID: PMC4223506 DOI: 10.1113/expphysiol.2013.073064] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Imbalances of energy homeostasis are often associated with cardiovascular complications. Previous work has shown that Gnasxl-deficient mice have a lean and hypermetabolic phenotype, with increased sympathetic stimulation of adipose tissue. The Gnasxl transcript from the imprinted Gnas locus encodes the trimeric G-protein subunit XLαs, which is expressed in brain regions that regulate energy homeostasis and sympathetic nervous system (SNS) activity. To determine whether Gnasxl knock-out (KO) mice display additional SNS-related phenotypes, we have now investigated the cardiovascular system. The Gnasxl KO mice were ∼20 mmHg hypertensive in comparison to wild-type (WT) littermates (P ≤ 0.05) and hypersensitive to the sympatholytic drug reserpine. Using telemetry, we detected an increased waking heart rate in conscious KOs (630 ± 10 versus 584 ± 12 beats min(-1), KO versus WT, P ≤ 0.05). Body temperature was also elevated (38.1 ± 0.3 versus 36.9 ± 0.4°C, KO versus WT, P ≤ 0.05). To investigate autonomic nervous system influences, we used heart rate variability analyses. We empirically defined frequency power bands using atropine and reserpine and verified high-frequency (HF) power and low-frequency (LF) LF/HF power ratio to be indicators of parasympathetic and sympathetic activity, respectively. The LF/HF power ratio was greater in KOs and more sensitive to reserpine than in WTs, consistent with elevated SNS activity. In contrast, atropine and exendin-4, a centrally acting agonist of the glucagon-like peptide-1 receptor, which influences cardiovascular physiology and metabolism, reduced HF power equally in both genotypes. This was associated with a greater increase in heart rate in KOs. Mild stress had a blunted effect on the LF/HF ratio in KOs consistent with elevated basal sympathetic activity. We conclude that XLαs is required for the inhibition of sympathetic outflow towards cardiovascular and metabolically relevant tissues.
Collapse
Affiliation(s)
- Nicolas Nunn
- A. Plagge: Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool L69 3BX, UK. . R. Barrett-Jolley: Institute of Ageing and Chronic Disease, 4th floor UCD Building, University of Liverpool, Daulby Str., Liverpool, L69 3GA, UK.
| | | | | | | | | |
Collapse
|
37
|
Yamaguchi K. Tachycardic responses to stimulation of β-adrenoceptors in the brain parenchyma in conscious rats. Neurosci Res 2013; 76:213-23. [PMID: 23735424 DOI: 10.1016/j.neures.2013.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/17/2013] [Accepted: 05/20/2013] [Indexed: 01/13/2023]
Abstract
This study aimed to investigate how stimulation of β-adrenoceptors in the anteroventral third ventricular region (AV3V; a pivotal forebrain area for autonomic functions) and other brain regions affects heart rate (HR) in conscious rats. Topical injections of the β-adrenergic agonist isoproterenol (Isop) into the AV3V caused dose-related and reversible increases in HR. Only its highest dose utilized significantly affected blood pressure (BP), inducing a decrease. The tachycardia due to AV3V Isop lasted significantly longer than that elicited by hypotension, and was inhibited by AV3V administration of the β-adrenergic antagonist propranolol or systemic infusion of a ganglion blocker hexamethonium. Plasma noradrenaline indicative of sympathetic nerve activity increased in parallel with rises in HR after the AV3V application of Isop. When Isop was locally injected into various brain regions other than the AV3V, region-related effectiveness in provoking tachycardia was observed that tended to be large in limbic structures and the hypothalamic paraventricular nucleus. No region responded to Isop applications with decreases in HR. These results suggest that β-adrenoceptors in the AV3V and other brain regions may be able to produce tachycardia by enhancing, at least in part, the efferent sympathetic nerve activity controlling cardiac function.
Collapse
Affiliation(s)
- Ken'ichi Yamaguchi
- Department of Homeostatic Regulation and Development, Niigata University Graduate School of Medical and Dental Sciences, Niigata City 951-8510, Japan.
| |
Collapse
|
38
|
Stornetta RL, Macon CJ, Nguyen TM, Coates MB, Guyenet PG. Cholinergic neurons in the mouse rostral ventrolateral medulla target sensory afferent areas. Brain Struct Funct 2013; 218:455-75. [PMID: 22460939 PMCID: PMC3459297 DOI: 10.1007/s00429-012-0408-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 03/14/2012] [Indexed: 02/07/2023]
Abstract
The rostral ventrolateral medulla (RVLM) primarily regulates respiration and the autonomic nervous system. Its medial portion (mRVLM) contains many choline acetyltransferase (ChAT)-immunoreactive (ir) neurons of unknown function. We sought to clarify the role of these cholinergic cells by tracing their axonal projections. We first established that these neurons are neither parasympathetic preganglionic neurons nor motor neurons because they did not accumulate intraperitoneally administered Fluorogold. We traced their axonal projections by injecting a Cre-dependent vector (floxed-AAV2) expressing either GFP or mCherrry into the mRVLM of ChAT-Cre mice. Transduced neurons expressing GFP or mCherry were confined to the injection site and were exclusively ChAT-ir. Their axonal projections included the dorsal column nuclei, medullary trigeminal complex, cochlear nuclei, superior olivary complex and spinal cord lamina III. For control experiments, the floxed-AAV2 (mCherry) was injected into the RVLM of dopamine beta-hydroxylase-Cre mice. In these mice, mCherry was exclusively expressed by RVLM catecholaminergic neurons. Consistent with data from rats, these catecholaminergic neurons targeted brain regions involved in autonomic and endocrine regulation. These regions were almost totally different from those innervated by the intermingled mRVLM-ChAT neurons. This study emphasizes the advantages of using Cre-driver mouse strains in combination with floxed-AAV2 to trace the axonal projections of chemically defined neuronal groups. Using this technique, we revealed previously unknown projections of mRVLM-ChAT neurons and showed that despite their close proximity to the cardiorespiratory region of the RVLM, these cholinergic neurons regulate sensory afferent information selectively and presumably have little to do with respiration or circulatory control.
Collapse
Affiliation(s)
- Ruth L Stornetta
- Department of Pharmacology, University of Virginia Health System, P.O. Box 800735, 1300 Jefferson Park Avenue, Charlottesville, VA 22908-0735, USA.
| | | | | | | | | |
Collapse
|
39
|
Baroreflex control of renal sympathetic nerve activity in mice with cardiac hypertrophy. Auton Neurosci 2012; 170:62-5. [DOI: 10.1016/j.autneu.2012.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 07/16/2012] [Accepted: 08/07/2012] [Indexed: 11/19/2022]
|
40
|
Kishi T, Hirooka Y. Oxidative stress in the brain causes hypertension via sympathoexcitation. Front Physiol 2012; 3:335. [PMID: 22934082 PMCID: PMC3429101 DOI: 10.3389/fphys.2012.00335] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 07/30/2012] [Indexed: 12/31/2022] Open
Abstract
Activation of the sympathetic nervous system (SNS) has an important role in the pathogenesis of hypertension, and is determined by the brain. Previous many studies have demonstrated that oxidative stress, mainly produced by angiotensin II type 1 (AT(1)) receptor and nicotinamide adenine dinucleotide phosphate (NAD (P) H) oxidase, in the autonomic brain regions was involved in the activation of the SNS of hypertension. In this concept, we have investigated the role of oxidative stress in the rostral ventrolateral medulla (RVLM), which is known as the cardiovascular center in the brainstem, in the activation of the SNS, and demonstrated that AT(1) receptor and NAD (P) H oxidase-induced oxidative stress in the RVLM causes sympathoexcitation in hypertensive rats. The mechanisms in which brain oxidative stress causes sympathoexcitation have been investigated, such as the interactions with nitric oxide (NO), effects on the signal transduction, or inflammations. Interestingly, the environmental factors of high salt intake and high calorie diet may also increase the oxidative stress in the brain, particularly in the RVLM, thereby activating the central sympathetic outflow and increasing the risk of hypertension. Furthermore, several orally administered AT(1) receptor blockers have been found to cause sympathoinhibition via reduction of oxidative stress through the inhibition of central AT(1) receptor. In conclusion, we must consider that AT(1) receptor and the related oxidative stress production in the brain cause the activation of SNS in hypertension, and that AT(1) receptor in the brain could be novel therapeutic target of the treatments for hypertension.
Collapse
Affiliation(s)
- Takuya Kishi
- Department of Advanced Therapeutics for Cardiovascular Diseases, Kyushu University Graduate School of Medical Sciences Fukuoka, Japan
| | | |
Collapse
|
41
|
Affleck VS, Coote JH, Pyner S. The projection and synaptic organisation of NTS afferent connections with presympathetic neurons, GABA and nNOS neurons in the paraventricular nucleus of the hypothalamus. Neuroscience 2012; 219:48-61. [PMID: 22698695 PMCID: PMC3409377 DOI: 10.1016/j.neuroscience.2012.05.070] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 05/02/2012] [Accepted: 05/07/2012] [Indexed: 01/17/2023]
Abstract
Elevated sympathetic nerve activity, strongly associated with cardiovascular disease, is partly generated from the presympathetic neurons of the paraventricular nucleus of the hypothalamus (PVN). The PVN-presympathetic neurons regulating cardiac and vasomotor sympathetic activity receive information about cardiovascular status from receptors in the heart and circulation. These receptors signal changes via afferent neurons terminating in the nucleus tractus solitarius (NTS), some of which may result in excitation or inhibition of PVN-presympathetic neurons. Understanding the anatomy and neurochemistry of NTS afferent connections within the PVN could provide important clues to the impairment in homeostasis cardiovascular control associated with disease. Transynaptic labelling has shown the presence of neuronal nitric oxide synthase (nNOS)-containing neurons and GABA interneurons that terminate on presympathetic PVN neurons any of which may be the target for NTS afferents. So far NTS connections to these diverse neuronal pools have not been demonstrated and were investigated in this study. Anterograde (biotin dextran amine – BDA) labelling of the ascending projection from the NTS and retrograde (fluorogold – FG or cholera toxin B subunit – CTB) labelling of PVN presympathetic neurons combined with immunohistochemistry for GABA and nNOS was used to identify the terminal neuronal targets of the ascending projection from the NTS. It was shown that NTS afferent terminals are apposed to either PVN-GABA interneurons or to nitric oxide producing neurons or even directly to presympathetic neurons. Furthermore, there was evidence that some NTS axons were positive for vesicular glutamate transporter 2 (vGLUT2). The data provide an anatomical basis for the different functions of cardiovascular receptors that mediate their actions via the NTS–PVN pathways.
Collapse
Affiliation(s)
- V S Affleck
- School of Biological & Biomedical Sciences, Durham University, Durham DH1 3LE, UK
| | | | | |
Collapse
|
42
|
McMullan S, Pilowsky PM. Sympathetic premotor neurones project to and are influenced by neurones in the contralateral rostral ventrolateral medulla of the rat in vivo. Brain Res 2012; 1439:34-43. [PMID: 22264491 DOI: 10.1016/j.brainres.2011.12.058] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 12/08/2011] [Accepted: 12/28/2011] [Indexed: 02/07/2023]
Abstract
The tonic activity of bulbospinal neurones in the rostral ventrolateral medulla (RVLM) is thought to underlie basal sympathetic nerve activity. A key research objective is to delineate the mechanisms that contribute to the firing of these neurones. In the current study we investigate the hypothesis that inputs arising in the contralateral RVLM converge on barosensitive bulbospinal neurones and contribute to their discharge pattern. Extracellular recordings were made from 24 barosensitive bulbospinal neurones in urethane anaesthetised, vagotomised and artificially ventilated rats during activation (glutamate or D,L-homocysteic acid microinjection, 50 nl, 50mM, or monopolar electrical stimulation) or inhibition (microinjection of GABA receptor agonists muscimol or isoguvacine, 50 nl, 10mM) of the contralateral RVLM. Chemical RVLM activation strongly increased (10/17) or inhibited (6/17) the spontaneous activity of neurones recorded in the contralateral RVLM. Electrical RVLM stimulation evoked a combination of short latency (median 6 ms) inhibitory and longer latency (median 9.1 ms, P<0.01) excitatory orthodromic responses in contralateral sympathetic premotor neurones and in some cases evoked antidromic action potentials that collided with spontaneous spikes. RVLM inhibition increased the discharge rate of sympathetic premotor neurones in the contralateral brainstem by 21 ± 13% (P<0.05) and reduced the variability of unit firing by 37 ± 12% (n=5, p<0.05). These findings indicate that sympathetic premotor neurones receive inhibitory and excitatory input from the contralateral RVLM, that inhibitory inputs predominate under baseline conditions, and that a population of sympathetic premotor neurones project to the contralateral RVLM in addition to their spinal targets.
Collapse
Affiliation(s)
- Simon McMullan
- Australian School of Advanced Medicine, Macquarie University, NSW, Australia.
| | | |
Collapse
|
43
|
Clapham JC. Central control of thermogenesis. Neuropharmacology 2011; 63:111-23. [PMID: 22063719 DOI: 10.1016/j.neuropharm.2011.10.014] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 10/18/2011] [Accepted: 10/24/2011] [Indexed: 01/26/2023]
Abstract
In mammals and birds, conservation of body heat at around 37 °C is vital to life. Thermogenesis is the production of this heat which can be obligatory, as in basal metabolic rate, or it can be facultative such as the response to cold. A complex regulatory system has evolved which senses environmental or core temperature and integrates this information in hypothalamic regions such as the preoptic area and dorsomedial hypothalamus. These areas then send the appropriate signals to generate and conserve heat (or dissipate it). In this review, the importance of the sympathetic nervous system is discussed in relation to its role in basal metabolic rate and adaptive thermogenesis with a particular emphasis to human obesity. The efferent sympathetic pathway does not uniformly act on all tissues; different tissues can receive different levels of sympathetic drive at the same time. This is an important concept in the discussion of the pharmacotherapy of obesity. Despite decades of work the medicine chest contains only one pill for the long term treatment of obesity, orlistat, a lipase inhibitor that prevents the absorption of lipid from the gut and is itself not systemically absorbed. The central controlling system for thermogenesis has many potential intervention points. Several drugs, previously marketed, awaiting approval or in the earlier stages of development may have a thermogenic effect via activation of the sympathetic nervous system at some point in the thermoregulatory circuit and are discussed in this review. If the balance is weighted to the "wrong" side there is the burden of increased cardiovascular risk while a shift to the "right" side, if possible, will afford a thermogenic benefit that is conducive to weight loss maintenance. This article is part of a Special Issue entitled 'Central Control Food Intake'
Collapse
Affiliation(s)
- John C Clapham
- AstraZeneca R&D, Alderley Park, Macclesfield, SK10 4TG, UK.
| |
Collapse
|
44
|
Taggart P, Boyett MR, Logantha SJRJ, Lambiase PD. Anger, emotion, and arrhythmias: from brain to heart. Front Physiol 2011; 2:67. [PMID: 22022314 PMCID: PMC3196868 DOI: 10.3389/fphys.2011.00067] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 09/14/2011] [Indexed: 01/01/2023] Open
Abstract
Strong emotion and mental stress are now recognized as playing a significant role in severe and fatal ventricular arrhythmias. The mechanisms, although incompletely understood, include central processing at the cortical and brain stem level, the autonomic nerves and the electrophysiology of the myocardium. Each of these is usually studied separately by investigators from different disciplines. However, many are regulatory processes which incorporate interactive feedforward and feedback mechanisms. In this review we consider the whole as an integrated interactive brain-heart system.
Collapse
Affiliation(s)
- Peter Taggart
- Neurocardiology Research Unit, Department of Medicine, University College LondonLondon, UK
| | - Mark R. Boyett
- Cardiovascular Medicine, University of ManchesterManchester, UK
| | | | - Pier D. Lambiase
- Department of Cardiology, University College London HospitalsLondon, UK
| |
Collapse
|
45
|
Nunn N, Womack M, Dart C, Barrett-Jolley R. Function and pharmacology of spinally-projecting sympathetic pre-autonomic neurones in the paraventricular nucleus of the hypothalamus. Curr Neuropharmacol 2011; 9:262-77. [PMID: 22131936 PMCID: PMC3131718 DOI: 10.2174/157015911795596531] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 09/01/2010] [Accepted: 09/14/2010] [Indexed: 12/16/2022] Open
Abstract
The paraventricular nucleus (PVN) of the hypothalamus has been described as the "autonomic master controller". It co-ordinates critical physiological responses through control of the hypothalamic-pituitary-adrenal (HPA)-axis, and by modulation of the sympathetic and parasympathetic branches of the central nervous system. The PVN comprises several anatomical subdivisions, including the parvocellular/ mediocellular subdivision, which contains neurones projecting to the medulla and spinal cord. Consensus indicates that output from spinally-projecting sympathetic pre-autonomic neurones (SPANs) increases blood pressure and heart rate, and dysfunction of these neurones has been directly linked to elevated sympathetic activity during heart failure. The influence of spinally-projecting SPANs on cardiovascular function high-lights their potential as targets for future therapeutic drug development. Recent studies have demonstrated pharmacological control of these spinally-projecting SPANs with glutamate, GABA, nitric oxide, neuroactive steroids and a number of neuropeptides (including angiotensin, substance P, and corticotrophin-releasing factor). The underlying mechanism of control appears to be a state of tonic inhibition by GABA, which is then strengthened or relieved by the action of other modulators. The physiological function of spinally-projecting SPANs has been subject to some debate, and they may be involved in physiological stress responses, blood volume regulation, glucose regulation, thermoregulation and/or circadian rhythms. This review describes the pharmacology of PVN spinally-projecting SPANs and discusses their likely roles in cardiovascular control.
Collapse
Affiliation(s)
| | | | | | - Richard Barrett-Jolley
- Centre for Integrative Mammalian Biology, University of Liverpool, Brownlow Hill & Crown St. Liverpool, L69 7ZJ, UK
| |
Collapse
|
46
|
Kolcz J, Tomkiewicz-Pajak L, Wojcik E, Podolec P, Skalski J. Prognostic significance and correlations of neurohumoral factors in early and late postoperative period after Fontan procedure. Interact Cardiovasc Thorac Surg 2011; 13:40-5. [PMID: 21422153 DOI: 10.1510/icvts.2010.251959] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We focused on neurohumoral activity and its clinical correlates early and late after fenestrated, lateral intra-atrial total cavopulmonary connection (TCPC). Between 2007 and 2010, we prospectively studied 28 early and 48 late postoperative TCPC patients. Plasma concentrations of vasopressin, endothelin-1, proBNP, proANP were determined. We reviewed clinical data to determine relationship between neurohumoral activation and clinical status after TCPC. There was a significant influence of preoperative ventricular end-diastolic pressure (VEDP) (P=0.008) and vasopressin concentration (P=0.02) on the appearance of prolonged pleural effusions. A significant correlation between a combined predictor (a product of preoperative vasopressin concentration and VEDP) and time of effusions (r=0.59, P=0.006) was found. The mean respiratory equivalent of carbon dioxide at peak exercise (VE/VCO(2peak)) was significantly lower in patients operated before the second year of life compared to patients operated after two years of age (27.5±1.39 vs. 48.6±3.86; P=0.039). There was a significant correlation of endothelin-1 (r=0.84; P=0.008) and proBNP (r=0.88; P=0.02) concentrations with VE/VCO(2peak). The prolonged postoperative pleural effusions can be predicted based on the product of preoperative vasopressin concentration and VEDP. Exercise performance is related to the age at TCPC. Endothelin-1 and proBNP can be useful for identification of high-risk Fontan patients.
Collapse
Affiliation(s)
- Jacek Kolcz
- Department of Pediatric Cardiac Surgery, Polish-American Children's Hospital, Jagiellonian University, Wielicka St. 265, 30-663 Krakow, Poland.
| | | | | | | | | |
Collapse
|
47
|
Chen CC, Fan YP, Shin HS, Su CK. Basal sympathetic activity generated in neonatal mouse brainstem-spinal cord preparation requires T-type calcium channel subunit α1H. Exp Physiol 2011; 96:486-94. [DOI: 10.1113/expphysiol.2010.056085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
Oxidative stress in the cardiovascular center has a pivotal role in the sympathetic activation in hypertension. Hypertens Res 2011; 34:407-12. [PMID: 21346766 DOI: 10.1038/hr.2011.14] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Activation of the sympathetic nervous system has an important role in the pathogenesis of hypertension. However, the precise mechanisms involved are not fully understood. Oxidative stress may be important in hypertension as well as in other cardiovascular disorders. We investigated the role of oxidative stress, particularly in the rostral ventrolateral medulla (RVLM), which is known as the cardiovascular center in the brainstem, in the activation of the sympathetic nervous system in hypertension. We observed that the reactive oxygen species (ROS) production increases in the RVLM in hypertensive rats, thereby enhancing the central sympathetic outflow, which leads to hypertension. Furthermore, the environmental factors of high salt intake and a high-calorie diet may also increase the ROS production in the RVLM, thereby activating the central sympathetic outflow and increasing the risk of hypertension. The activation of the nicotinamide adenine dinucleotide phosphate oxidase via the angiotensin type 1 (AT1) receptors is suggested to be the major source of ROS production, and an altered downstream signaling pathway is involved in the activation of the RVLM neurons, leading to enhanced central sympathetic outflow and hypertension. Thus, the brain AT1 receptors may be novel therapeutic targets, and, in fact, oral treatment with angiotensin receptor blockers has been found to inhibit the central AT1 receptors, despite the blood-brain barrier.
Collapse
|
49
|
Mueller PJ, Mischel NA, Scislo TJ. Differential activation of adrenal, renal, and lumbar sympathetic nerves following stimulation of the rostral ventrolateral medulla of the rat. Am J Physiol Regul Integr Comp Physiol 2011; 300:R1230-40. [PMID: 21346240 DOI: 10.1152/ajpregu.00713.2010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Under acute and chronic conditions, the sympathetic nervous system can be activated in a differential and even selective manner. Activation of the rostral ventrolateral medulla (RVLM) has been implicated in differential control of sympathetic outputs based on evidence primarily in the cat. Although several studies indicate that differential control of sympathetic outflow occurs in other species, only a few studies have addressed whether the RVLM is capable of producing varying patterns of sympathetic activation in the rat. Therefore, the purpose of the present study was to determine whether activation of the RVLM results in simultaneous and differential increases in preganglionic adrenal (pre-ASNA), renal (RSNA), and lumbar (LSNA) sympathetic nerve activities. In urethane-chloralose anesthetized rats, pre-ASNA, RSNA, and LSNA were recorded simultaneously in all animals. Microinjections of selected concentrations and volumes of glutamate increased pre-ASNA, RSNA, and LSNA concurrently and differentially. Pre-ASNA and RSNA (in most cases) exhibited greater increases compared with LSNA on a percentage basis. By varying the volume or location of the glutamate microinjections, we also identified individual examples of differential and selective activation of these nerves. Decreases in arterial pressure or bilateral blockade of RVLM GABA(A) receptors also revealed differential activation, with the latter having a 3- to 4-fold greater effect on sympathetic activity. Our data provide evidence that activation of the rat RVLM increases renal, lumbar, and preganglionic adrenal sympathetic nerve activities concurrently, differentially, and, in some cases, selectively.
Collapse
Affiliation(s)
- Patrick J Mueller
- Dept. of Physiology, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI 48201, USA.
| | | | | |
Collapse
|
50
|
Saari TI, Uusi-Oukari M, Ahonen J, Olkkola KT. Enhancement of GABAergic activity: neuropharmacological effects of benzodiazepines and therapeutic use in anesthesiology. Pharmacol Rev 2011; 63:243-67. [PMID: 21245208 DOI: 10.1124/pr.110.002717] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
GABA is the major inhibitory neurotransmitter in the central nervous system (CNS). The type A GABA receptor (GABA(A)R) system is the primary pharmacological target for many drugs used in clinical anesthesia. The α1, β2, and γ2 subunit-containing GABA(A)Rs located in the various parts of CNS are thought to be involved in versatile effects caused by inhaled anesthetics and classic benzodiazepines (BZD), both of which are widely used in clinical anesthesiology. During the past decade, the emergence of tonic inhibitory conductance in extrasynaptic GABA(A)Rs has coincided with evidence showing that these receptors are highly sensitive to the sedatives and hypnotics used in anesthesia. Anesthetic enhancement of tonic GABAergic inhibition seems to be preferentially increased in regions shown to be important in controlling memory, awareness, and sleep. This review focuses on the physiology of the GABA(A)Rs and the pharmacological properties of clinically used BZDs. Although classic BZDs are widely used in anesthesiological practice, there is a constant need for new drugs with more favorable pharmacokinetic and pharmacodynamic effects and fewer side effects. New hypnotics are currently developed, and promising results for one of these, the GABA(A)R agonist remimazolam, have recently been published.
Collapse
Affiliation(s)
- Teijo I Saari
- Department of Anesthesiology, Intensive Care, Emergency Care and Pain Medicine, Turku University Hospital, P.O. Box 52 (Kiinamyllynkatu 4-8), FI-20520 Turku, Finland.
| | | | | | | |
Collapse
|