1
|
Chadha Y, Khurana A, Schmoller KM. Eukaryotic cell size regulation and its implications for cellular function and dysfunction. Physiol Rev 2024; 104:1679-1717. [PMID: 38900644 PMCID: PMC11495193 DOI: 10.1152/physrev.00046.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/24/2024] [Accepted: 06/19/2024] [Indexed: 06/22/2024] Open
Abstract
Depending on cell type, environmental inputs, and disease, the cells in the human body can have widely different sizes. In recent years, it has become clear that cell size is a major regulator of cell function. However, we are only beginning to understand how the optimization of cell function determines a given cell's optimal size. Here, we review currently known size control strategies of eukaryotic cells and the intricate link of cell size to intracellular biomolecular scaling, organelle homeostasis, and cell cycle progression. We detail the cell size-dependent regulation of early development and the impact of cell size on cell differentiation. Given the importance of cell size for normal cellular physiology, cell size control must account for changing environmental conditions. We describe how cells sense environmental stimuli, such as nutrient availability, and accordingly adapt their size by regulating cell growth and cell cycle progression. Moreover, we discuss the correlation of pathological states with misregulation of cell size and how for a long time this was considered a downstream consequence of cellular dysfunction. We review newer studies that reveal a reversed causality, with misregulated cell size leading to pathophysiological phenotypes such as senescence and aging. In summary, we highlight the important roles of cell size in cellular function and dysfunction, which could have major implications for both diagnostics and treatment in the clinic.
Collapse
Affiliation(s)
- Yagya Chadha
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Arohi Khurana
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Kurt M Schmoller
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
2
|
Mebrahtu A, Smith IC, Liu S, Abusara Z, Leonard TR, Joumaa V, Herzog W. Reconsidering assumptions in the analysis of muscle fibre cross-sectional area. J Exp Biol 2024; 227:jeb248187. [PMID: 39319442 DOI: 10.1242/jeb.248187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
Cross-sectional area (CSA) is a fundamental variable in characterizing muscle mechanical properties. Typically, the CSA of a single muscle fibre is assessed by measuring either one or two diameters, and assuming the cross-section is either circular or elliptical in shape. However, fibre cross-sections have irregular shapes. The accuracy and precision of CSAs determined using circular and elliptical shape assumptions are unclear for mammalian skinned muscle fibres. Second harmonic generation imaging of skinned rabbit soleus fibres revealed that the circular assumption overstated real CSA by 5.3±25.9% whereas the elliptical assumption overstated real CSA by 2.8±6.9%. A preferred rotational alignment can bias the circular assumption, as real CSA was overstated by 22.1±24.8% when using the larger fibre diameter and understated by 11.4±13% when using the smaller fibre diameter. With 73% lower variable error and reduced bias, the elliptical assumption is superior to the circular assumption when assessing the CSA of skinned mammalian fibres.
Collapse
Affiliation(s)
- Abel Mebrahtu
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada, T2N 1N4
| | - Ian C Smith
- Ottawa Hospital Research Institute, 1053 Carling Ave, Ottawa, ON, Canada, K1Y 4E9
| | - Shuyue Liu
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada, T2N 1N4
| | - Ziad Abusara
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada, T2N 1N4
| | - Timothy R Leonard
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada, T2N 1N4
| | - Venus Joumaa
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada, T2N 1N4
| | - Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada, T2N 1N4
| |
Collapse
|
3
|
Bourgeois Yoshioka CK, Takenaka-Ninagawa N, Goto M, Miki M, Watanabe D, Yamamoto M, Aoyama T, Sakurai H. Cell transplantation-mediated dystrophin supplementation efficacy in Duchenne muscular dystrophy mouse motor function improvement demonstrated by enhanced skeletal muscle fatigue tolerance. Stem Cell Res Ther 2024; 15:313. [PMID: 39300595 PMCID: PMC11414159 DOI: 10.1186/s13287-024-03922-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 09/04/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is an incurable neuromuscular disease leading to progressive skeletal muscle weakness and fatigue. Cell transplantation in murine models has shown promise in supplementing the lack of the dystrophin protein in DMD muscles. However, the establishment of novel, long-term, relevant methods is needed to assess its efficiency on the DMD motor function. By applying newly developed methods, this study aimed to evaluate the functional and molecular effects of cell therapy-mediated dystrophin supplementation on DMD muscles. METHODS Dystrophin was supplemented in the gastrocnemius of a 5-week-old immunodeficient DMD mouse model (Dmd-null/NSG) by intramuscular xenotransplantation of healthy human immortalized myoblasts (Hu5/KD3). A long-term time-course comparative study was conducted between wild-type, untreated DMD, and dystrophin supplemented-DMD mouse muscle functions and histology. A novel GO-ATeam2 transgenic DMD mouse model was also generated to assess in vivo real-time ATP levels in gastrocnemius muscles during repeated contractions. RESULTS We found that 10.6% dystrophin supplementation in DMD muscles was sufficient to prevent low values of gastrocnemius maximal isometric contraction torque (MCT) at rest, while muscle fatigue tolerance, assessed by MCT decline after treadmill running, was fully ameliorated in 21-week-old transplanted mice. None of the dystrophin-supplemented fibers were positive for muscle damage markers after treadmill running, with 85.4% demonstrating the utilization of oxidative metabolism. Furthermore, ATP levels in response to repeated muscle contractions tended to improve, and mitochondrial activity was significantly enhanced in dystrophin supplemented-fibers. CONCLUSIONS Cell therapy-mediated dystrophin supplementation efficiently improved DMD muscle functions, as evaluated using newly developed evaluation methods. The enhanced muscle fatigue tolerance in 21-week-old mice was associated with the preferential regeneration of damage-resistant and oxidative fibers, highlighting increased mitochondrial activity, after cell transplantation. These findings significantly contribute to a more in-depth understanding of DMD pathogenesis.
Collapse
Affiliation(s)
- Clémence Kiho Bourgeois Yoshioka
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- Department of Advanced Physical Therapy, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Nana Takenaka-Ninagawa
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
- Department of Rehabilitation Medicine, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
| | - Megumi Goto
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Mayuho Miki
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- Department of Advanced Physical Therapy, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Daiki Watanabe
- Graduate School of Sport and Health Sciences, Osaka University of Health and Sport Sciences, 1-1 Asashirodai, Kumatori-cho, Sennan-gun, Osaka, 590-0496, Japan
- Department of Research Promotion and Management, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Masamichi Yamamoto
- Department of Research Promotion and Management, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Tomoki Aoyama
- Department of Advanced Physical Therapy, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hidetoshi Sakurai
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
4
|
Song K, Park HY, Choi S, Song S, Rim H, Yoon MJ, Yoo YJ, Lee H, Im S. Sarcopenia Diagnostic Technique Based on Artificial Intelligence Using Bio-signal of Neuromuscular System: A Proof-of-Concept Study. BRAIN & NEUROREHABILITATION 2024; 17:e12. [PMID: 39113918 PMCID: PMC11300961 DOI: 10.12786/bn.2024.17.e12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 06/10/2024] [Indexed: 08/10/2024] Open
Abstract
In this paper, we propose an artificial intelligence (AI)-based sarcopenia diagnostic technique for stroke patients utilizing bio-signals from the neuromuscular system. Handgrip, skeletal muscle mass index, and gait speed are prerequisite components for sarcopenia diagnoses. However, measurement of these parameters is often challenging for most hemiplegic stroke patients. For these reasons, there is an imperative need to develop a sarcopenia diagnostic technique that requires minimal volitional participation but nevertheless still assesses the muscle changes related to sarcopenia. The proposed AI diagnostic technique collects motor unit responses from stroke patients in a resting state via stimulated muscle contraction signals (SMCSs) recorded from surface electromyography while applying electrical stimulation to the muscle. For this study, we extracted features from SMCS collected from stroke patients and trained our AI model for sarcopenia diagnosis. We validated the performance of the trained AI models for each gender against other diagnostic parameters. The accuracy of the AI sarcopenia model was 96%, and 95% for male and females, respectively. Through these results, we were able to provide preliminary proof that SMCS could be a potential surrogate biomarker to reflect sarcopenia in stroke patients.
Collapse
Affiliation(s)
- Kwangsub Song
- Department of AI Research, EXOSYSTEMS, Seongnam, Korea
| | - Hae-Yeon Park
- Department of Rehabilitation Medicine, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sangui Choi
- Department of AI Research, EXOSYSTEMS, Seongnam, Korea
| | - Seungyup Song
- Department of Rehabilitation Medicine, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hanee Rim
- Department of Rehabilitation Medicine, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Mi-Jeong Yoon
- Department of Rehabilitation Medicine, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yeun Jie Yoo
- Department of Rehabilitation Medicine, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hooman Lee
- Department of AI Research, EXOSYSTEMS, Seongnam, Korea
| | - Sun Im
- Department of Rehabilitation Medicine, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
5
|
Wearing SC, Hooper SL, Langton CM, Keiner M, Horstmann T, Crevier-Denoix N, Pourcelot P. The Biomechanics of Musculoskeletal Tissues during Activities of Daily Living: Dynamic Assessment Using Quantitative Transmission-Mode Ultrasound Techniques. Healthcare (Basel) 2024; 12:1254. [PMID: 38998789 PMCID: PMC11241410 DOI: 10.3390/healthcare12131254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
The measurement of musculoskeletal tissue properties and loading patterns during physical activity is important for understanding the adaptation mechanisms of tissues such as bone, tendon, and muscle tissues, particularly with injury and repair. Although the properties and loading of these connective tissues have been quantified using direct measurement techniques, these methods are highly invasive and often prevent or interfere with normal activity patterns. Indirect biomechanical methods, such as estimates based on electromyography, ultrasound, and inverse dynamics, are used more widely but are known to yield different parameter values than direct measurements. Through a series of literature searches of electronic databases, including Pubmed, Embase, Web of Science, and IEEE Explore, this paper reviews current methods used for the in vivo measurement of human musculoskeletal tissue and describes the operating principals, application, and emerging research findings gained from the use of quantitative transmission-mode ultrasound measurement techniques to non-invasively characterize human bone, tendon, and muscle properties at rest and during activities of daily living. In contrast to standard ultrasound imaging approaches, these techniques assess the interaction between ultrasound compression waves and connective tissues to provide quantifiable parameters associated with the structure, instantaneous elastic modulus, and density of tissues. By taking advantage of the physical relationship between the axial velocity of ultrasound compression waves and the instantaneous modulus of the propagation material, these techniques can also be used to estimate the in vivo loading environment of relatively superficial soft connective tissues during sports and activities of daily living. This paper highlights key findings from clinical studies in which quantitative transmission-mode ultrasound has been used to measure the properties and loading of bone, tendon, and muscle tissue during common physical activities in healthy and pathological populations.
Collapse
Affiliation(s)
- Scott C. Wearing
- School of Medicine and Health, Technical University of Munich, 80992 Munich, Bavaria, Germany
| | - Sue L. Hooper
- School of Health, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - Christian M. Langton
- Griffith Centre of Rehabilitation Engineering, Griffith University, Southport, QLD 4222, Australia
| | - Michael Keiner
- Department of Exercise and Training Science, German University of Health and Sport, 85737 Ismaning, Bavaria, Germany
| | - Thomas Horstmann
- School of Medicine and Health, Technical University of Munich, 80992 Munich, Bavaria, Germany
| | | | - Philippe Pourcelot
- INRAE, BPLC Unit, Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France
| |
Collapse
|
6
|
Robergs R, O’Malley B, Torrens S, Siegler J. The missing hydrogen ion, part-2: Where the evidence leads to. SPORTS MEDICINE AND HEALTH SCIENCE 2024; 6:94-100. [PMID: 38463661 PMCID: PMC10918345 DOI: 10.1016/j.smhs.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/19/2023] [Accepted: 01/09/2024] [Indexed: 03/12/2024] Open
Abstract
The purpose of this manuscript was to present the evidence for why cells do not produce metabolic acids. In addition, evidence that opposes common viewpoints and arguments used to support the cellular production of lactic acid (HLa) or liver keto-acids have been provided. Organic chemistry reveals that many molecules involved in cellular energy catabolism contain functional groups classified as acids. The two main acidic functional groups of these molecules susceptible to ∼H+ release are the carboxyl and phosphoryl structures, though the biochemistry and organic chemistry of molecules having these structures reveal they are produced in a non-acidic ionic (negatively charged) structure, thereby preventing pH dependent ∼H+ release. Added evidence from the industrial production of HLa further reveals that lactate (La-) is produced followed by an acidification step that converts La- to HLa due to pH dependent ∼H+ association. Interestingly, there is a plentiful list of other molecules that are classified as acids and compared to HLa have similar values for their H+ dissociation constant (pKd). For many metabolic conditions, the cumulative turnover of these molecules is far higher than for La-. The collective evidence documents the non-empirical basis for the construct of the cellular production of HLa, or any other metabolic acid.
Collapse
Affiliation(s)
- Robert Robergs
- School of Exercise and Nutrition Sciences, Queensland University of Technology, Kelvin Grove, Queensland, 4059, Australia
| | - Bridgette O’Malley
- School of Exercise and Nutrition Sciences, Queensland University of Technology, Kelvin Grove, Queensland, 4059, Australia
| | - Sam Torrens
- School of Exercise and Nutrition Sciences, Queensland University of Technology, Kelvin Grove, Queensland, 4059, Australia
| | - Jason Siegler
- ASU Health Futures Center, College of Health Solutions, Arizona State University, 6161 East Mayo Blvd, Phoenix, 85054, Arizona, USA
| |
Collapse
|
7
|
Umehara T, Kaneguchi A, Watanabe K, Katayama N, Teramoto H, Kuwahara D, Kaneyashiki R, Mizuno T, Kito N, Kakehashi M. Improvement of muscle quality assessed using the phase angle is influenced by recovery of knee extension strength in patients with hip fractures. Clin Nutr 2024; 43:773-780. [PMID: 38335802 DOI: 10.1016/j.clnu.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 01/24/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND AND AIMS Studies reported that knee extension strength on the operated side in patients with hip fractures was not recovered to the level on the non-operated side 6 months after surgery or later. In a cross-sectional study, we revealed that a reduction in isometric knee extension muscle strength on the operated side in patients with hip fractures approximately 6 months after surgery was associated with not only a reduction in skeletal muscle mass but also a reduction in muscle quality, characterized by a reduction in the phase angle (PhA). Furthermore, the mechanisms of knee extension strength improvement can be clarified in more detail using the minimal significant change as the index of recovery. However, no longitudinal studies have examined the factors for knee extension strength improvement based on the minimal significant change in patients with hip fractures 6 months after surgery. This study aimed to longitudinally examine the factors influencing the recovery of knee extension strength based on the minimal significant change in patients with hip fractures between 2 weeks and approximately 6 months after surgery. METHODS In this study, the outcomes used were basic and medical information, PhA, skeletal muscle index (SMI), pain, one-leg standing time, movement control during one-leg standing, and walking speed. For PhA, SMI, pain, one-leg standing time, movement control during one-leg standing, and walking speed, the amount of change was calculated by subtracting the data at 2 weeks from the data at 6 months. Group classification was determined by dividing the patients into two groups using a previous study as a reference: recovery group if the knee extension strength value approximately 6 months after surgery minus that 2 weeks after surgery was ≥3.3 kgf and non-recovery group if the value was <3.3 kgf. Logistic regression analysis was performed to explore the association between the recovery and non-recovery groups. RESULTS The recovery group contained 55 patients, while the non-recovery group comprised 35 patients. The only significant factor associated with knee extension muscle strength in the recovery group was the amount of change in PhA. The odds ratio for the amount of change in PhA was 2.26. The discrimination rate of the model was 62.5%. CONCLUSIONS Our results suggest that recovery of knee extension strength in patients with hip fractures after surgery was mainly because of improvements in muscle quality, not improvements in muscle mass or pain.
Collapse
Affiliation(s)
- Takuya Umehara
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, Japan.
| | - Akinori Kaneguchi
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, Japan
| | - Keita Watanabe
- Department of Rehabilitation, Kure Kyosai Hospital, Nishichuo 2-3-28, Kure, Hiroshima, Japan
| | - Nobuhisa Katayama
- Department of Rehabilitation, Kure Kyosai Hospital, Nishichuo 2-3-28, Kure, Hiroshima, Japan
| | - Hidefumi Teramoto
- Department of Orthopedics Surgery, Kure Kyosai Hospital, Nishichuo 2-3-28, Kure, Hiroshima, Japan
| | - Daisuke Kuwahara
- Department of Rehabilitation, Saiseikai Kure Hospital, Sanjo 2-1-13, Kure, Hiroshima, Japan
| | - Ryo Kaneyashiki
- Department of Rehabilitation, Saiseikai Kure Hospital, Sanjo 2-1-13, Kure, Hiroshima, Japan
| | - Toshiyuki Mizuno
- Department of Orthopedics Surgery, Saiseikai Kure Hospital, Sanjo 2-1-13, Kure, Hiroshima, Japan
| | - Nobuhiro Kito
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, Japan
| | - Masayuki Kakehashi
- Department of Health Informatics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Hiroshima, Japan
| |
Collapse
|
8
|
Mallard J, Hucteau E, Bender L, Moinard‐Butot F, Rochelle E, Boutonnet L, Grandperrin A, Schott R, Pflumio C, Trensz P, Kalish‐Weindling M, Charles A, Gény B, Favret F, Pivot X, Hureau TJ, Pagano AF. A single chemotherapy administration induces muscle atrophy, mitochondrial alterations and apoptosis in breast cancer patients. J Cachexia Sarcopenia Muscle 2024; 15:292-305. [PMID: 38183352 PMCID: PMC10834353 DOI: 10.1002/jcsm.13414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND Breast cancer patients are commonly treated with sequential administrations of epirubicin-cyclophosphamide (EC) and paclitaxel (TAX). The chronic effect of this treatment induces skeletal muscle alterations, but the specific effect of each chemotherapy agent is unknown. This study aimed to investigate the effect of EC or TAX administration on skeletal muscle homeostasis in breast cancer patients. METHODS Twenty early breast cancer patients undergoing EC followed by TAX chemotherapies were included. Two groups of 10 women were established and performed vastus lateralis skeletal muscle biopsies either before the first administration (pre) of EC (50 ± 14 years) or TAX (50 ± 16 years) and 4 days later (post). Mitochondrial respiratory capacity recording, reactive oxygen species production, western blotting and histological analyses were performed. RESULTS Decrease in muscle fibres cross-sectional area was only observed post-EC (-25%; P < 0.001), associated with a reduction in mitochondrial respiratory capacity for the complex I (CI)-linked substrate state (-32%; P = 0.001), oxidative phosphorylation (OXPHOS) by CI (-35%; P = 0.002), CI&CII (-26%; P = 0.022) and CII (-24%; P = 0.027). If H2 O2 production was unchanged post-EC, an increase was observed post-TAX for OXPHOS by CII (+25%; P = 0.022). We found a decrease in makers of mitochondrial content, as shown post-EC by a decrease in the protein levels of citrate synthase (-53%; P < 0.001) and VDAC (-39%; P < 0.001). Despite no changes in markers of mitochondrial fission, a decrease in the expression of a marker of mitochondrial inner-membrane fusion was found post-EC (OPA1; -60%; P < 0.001). We explored markers of mitophagy and found reductions post-EC in the protein levels of PINK1 (-63%; P < 0.001) and Parkin (-56%; P = 0.005), without changes post-TAX. An increasing trend in Bax protein level was found post-EC (+96%; P = 0.068) and post-TAX (+77%; P = 0.073), while the Bcl-2 level was decreased only post-EC (-52%; P = 0.007). If an increasing trend in TUNEL-positive signal was observed post-EC (+68%; P = 0.082), upregulation was highlighted post-TAX (+86%; P < 0.001), suggesting activation of the apoptosis process. CONCLUSIONS We demonstrated that a single administration of EC induced, in only 4 days, skeletal muscle atrophy and mitochondrial alterations in breast cancer patients. These alterations were characterized by reductions in mitochondrial function and content as well as impairment of mitochondrial dynamics and an increase in apoptosis. TAX administration did not worsen these alterations as this group had already received EC during the preceding weeks. However, it resulted in an increased apoptosis, likely in response to the increased H2 O2 production.
Collapse
Affiliation(s)
- Joris Mallard
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondrie, Stress oxydant et Plasticité musculaire”University of StrasbourgStrasbourgFrance
- Faculty of Sport SciencesUniversity of StrasbourgStrasbourgFrance
- Institut de Cancérologie Strasbourg Europe (ICANS)StrasbourgFrance
| | - Elyse Hucteau
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondrie, Stress oxydant et Plasticité musculaire”University of StrasbourgStrasbourgFrance
- Faculty of Sport SciencesUniversity of StrasbourgStrasbourgFrance
- Institut de Cancérologie Strasbourg Europe (ICANS)StrasbourgFrance
| | - Laura Bender
- Institut de Cancérologie Strasbourg Europe (ICANS)StrasbourgFrance
| | | | - Emma Rochelle
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondrie, Stress oxydant et Plasticité musculaire”University of StrasbourgStrasbourgFrance
- Faculty of Sport SciencesUniversity of StrasbourgStrasbourgFrance
| | - Lauréline Boutonnet
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondrie, Stress oxydant et Plasticité musculaire”University of StrasbourgStrasbourgFrance
| | - Antoine Grandperrin
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondrie, Stress oxydant et Plasticité musculaire”University of StrasbourgStrasbourgFrance
- Faculty of Sport SciencesUniversity of StrasbourgStrasbourgFrance
| | - Roland Schott
- Institut de Cancérologie Strasbourg Europe (ICANS)StrasbourgFrance
| | - Carole Pflumio
- Institut de Cancérologie Strasbourg Europe (ICANS)StrasbourgFrance
| | - Philippe Trensz
- Institut de Cancérologie Strasbourg Europe (ICANS)StrasbourgFrance
| | | | - Anne‐Laure Charles
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondrie, Stress oxydant et Plasticité musculaire”University of StrasbourgStrasbourgFrance
- Faculty of medicineUniversity of StrasbourgStrasbourgFrance
| | - Bernard Gény
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondrie, Stress oxydant et Plasticité musculaire”University of StrasbourgStrasbourgFrance
- Faculty of medicineUniversity of StrasbourgStrasbourgFrance
- Department of Physiology and Functional ExplorationsUniversity Hospital of StrasbourgStrasbourgFrance
| | - Fabrice Favret
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondrie, Stress oxydant et Plasticité musculaire”University of StrasbourgStrasbourgFrance
- Faculty of Sport SciencesUniversity of StrasbourgStrasbourgFrance
| | - Xavier Pivot
- Institut de Cancérologie Strasbourg Europe (ICANS)StrasbourgFrance
| | - Thomas J. Hureau
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondrie, Stress oxydant et Plasticité musculaire”University of StrasbourgStrasbourgFrance
- Faculty of Sport SciencesUniversity of StrasbourgStrasbourgFrance
| | - Allan F. Pagano
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondrie, Stress oxydant et Plasticité musculaire”University of StrasbourgStrasbourgFrance
- Faculty of Sport SciencesUniversity of StrasbourgStrasbourgFrance
| |
Collapse
|
9
|
Dutra YM, Lopes JPF, Murias JM, Zagatto AM. Within- and between-day reliability and repeatability of neuromuscular function assessment in females and males. J Appl Physiol (1985) 2023; 135:1372-1383. [PMID: 37916269 DOI: 10.1152/japplphysiol.00539.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/03/2023] Open
Abstract
The study evaluated the reliability and repeatability of the force and surface electromyography activity (EMG) outcomes obtained through voluntary and electrically evoked contractions of knee extensors in females (n = 18) and males (n = 20) and compared these data between sexes. Maximal isometric voluntary contractions (iMVCs) of knee extensors associated with electrical stimulation of the femoral nerve were performed over 4 days (48-h interval), with the first day involving familiarization procedures, the second involving three trials (1-h interval), and the third and fourth involving just one trial. The intraclass correlation coefficient (ICC), coefficient of variation (CV), and repeatability of outcomes from within- and between-day trials were determined for each sex. Females presented lower maximal voluntary force during iMVC (iMVCForce) and associated vastus lateralis EMG activity (root mean square, RMSVL), force evoked by potentiated doublet high-frequency (Db100Force) and single stimuli (Qtw), and M-wave amplitude than males (P ≤ 0.01, partial eta squared ≥0.94). Voluntary activation (VA) and RMSVL/M-wave amplitude did not differ between sexes. iMVCForce, VA, Db100Force, Qtw, and M-wave amplitude were the most reliable outcomes in within-day trials, with similar results between sexes (ICC > 0.62; CV < 6.4%; repeatability: 12.2%-22.6%). When investigating between-day trials, the iMVCForce, VA, Db100Force, and Qtw were the most reliable (ICC > 0.66; CV < 7.5%; repeatability: 13.2%-33.45%) with similar results between sexes. In conclusion, females presented lower iMVCForce and evoked response than males. Although reliability and repeatability statistics vary between trials, data (e.g., from EMG or force signal), and sexes, most of the outcomes obtained through this technique are reliable in females and males.NEW & NOTEWORTHY Although reliability and repeatability of knee extensors vary according to the type of neuromuscular function outcome (e.g., from force or EMG responses), the trial intervals (i.e., hours or days), and the sex of the participant, most force and EMG outcomes obtained through these neuromuscular assessment protocols present ICC > 0.75, very good CV (<10%), and repeatability <25% in within- and between-day trials in both sexes.
Collapse
Affiliation(s)
- Yago Medeiros Dutra
- Department of Physical Education, Laboratory of Physiology and Sport Performance (LAFIDE), School of Sciences, São Paulo State University (UNESP), Bauru, Brazil
| | - João Pedro Fialho Lopes
- Department of Physical Education, Laboratory of Physiology and Sport Performance (LAFIDE), School of Sciences, São Paulo State University (UNESP), Bauru, Brazil
| | - Juan M Murias
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Alessandro Moura Zagatto
- Department of Physical Education, Laboratory of Physiology and Sport Performance (LAFIDE), School of Sciences, São Paulo State University (UNESP), Bauru, Brazil
| |
Collapse
|
10
|
Smith IC, Herzog W. Assumptions about the cross-sectional shape of skinned muscle fibers can distort the relationship between muscle force and cross-sectional area. J Appl Physiol (1985) 2023; 135:1036-1040. [PMID: 37732377 DOI: 10.1152/japplphysiol.00383.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/28/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023] Open
Abstract
Comparisons of muscle force output are often performed after normalization to muscle physiological cross-sectional area (CSA). Differences in force per CSA (i.e., specific force) suggest the presence of physiological differences in contractile function. Permeabilized mammalian skeletal muscle fibers frequently exhibit substantial declines in specific force with increasing CSA, suggesting that smaller fibers are intrinsically stronger than larger fibers of the same group. However, the potential for CSA assessment error to account for CSA-dependent differences in specific force has not received adequate attention. Assessment of fiber CSA typically involves measurement of fiber width and perhaps also height, and CSA is calculated by assuming the cross sections are either circular or elliptical with major and minor axes aligned with the optical measurement system. Differences between the assumed and real cross-sectional shapes would cause variability in the ratio of assessed CSA (aCSA) to real CSA (rCSA). This variability can insidiously bias aCSA such that large aCSAs typically overstate rCSAs of the fibers they represent, and small aCSAs typically understate the rCSAs of the fibers they represent. As aCSA is the denominator for the specific force calculation, scatterplots of specific force versus aCSA would be expected to show declines in specific force as aCSA increases without a corresponding effect in a scatterplot of specific force versus rCSA. When comparing active and passive muscle forces between data subsets defined by aCSA, the impact of CSA assessment error should be considered before exploring other physiological mechanisms.
Collapse
Affiliation(s)
- Ian C Smith
- NeuroMuscular Centre, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Alberta, Canada
| |
Collapse
|
11
|
van der Wal E, Iuliano A, In 't Groen SLM, Bholasing AP, Priesmann D, Sharma P, den Hamer B, Saggiomo V, Krüger M, Pijnappel WWMP, de Greef JC. Highly contractile 3D tissue engineered skeletal muscles from human iPSCs reveal similarities with primary myoblast-derived tissues. Stem Cell Reports 2023; 18:1954-1971. [PMID: 37774701 PMCID: PMC10656354 DOI: 10.1016/j.stemcr.2023.08.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 10/01/2023] Open
Abstract
Skeletal muscle research is transitioning toward 3D tissue engineered in vitro models reproducing muscle's native architecture and supporting measurement of functionality. Human induced pluripotent stem cells (hiPSCs) offer high yields of cells for differentiation. It has been difficult to differentiate high-quality, pure 3D muscle tissues from hiPSCs that show contractile properties comparable to primary myoblast-derived tissues. Here, we present a transgene-free method for the generation of purified, expandable myogenic progenitors (MPs) from hiPSCs grown under feeder-free conditions. We defined a protocol with optimal hydrogel and medium conditions that allowed production of highly contractile 3D tissue engineered skeletal muscles with forces similar to primary myoblast-derived tissues. Gene expression and proteomic analysis between hiPSC-derived and primary myoblast-derived 3D tissues revealed a similar expression profile of proteins involved in myogenic differentiation and sarcomere function. The protocol should be generally applicable for the study of personalized human skeletal muscle tissue in health and disease.
Collapse
Affiliation(s)
- Erik van der Wal
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Alessandro Iuliano
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands; Department of Pediatrics, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands
| | - Stijn L M In 't Groen
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands; Department of Pediatrics, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands
| | - Anjali P Bholasing
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands; Department of Pediatrics, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands
| | - Dominik Priesmann
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Preeti Sharma
- Physical Chemistry and Soft Matter, Wageningen University and Research, 6708 WE Wageningen, the Netherlands
| | - Bianca den Hamer
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Vittorio Saggiomo
- Department of BioNanoTechnology, Wageningen University and Research, 6708 WG Wageningen, the Netherlands
| | - Marcus Krüger
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - W W M Pim Pijnappel
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands; Department of Pediatrics, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands.
| | - Jessica C de Greef
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands.
| |
Collapse
|
12
|
Santoso AP, Rosado-Mendez I, Guerrero QW, Hall TJ. A Geometric Model of Ultrasound Backscatter to Describe Microstructural Anisotropy of Tissue. ULTRASONIC IMAGING 2023; 45:206-214. [PMID: 37102708 PMCID: PMC11296378 DOI: 10.1177/01617346231171147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Methods to assess ultrasound backscatter anisotropy from clinical array transducers have recently been developed. However, they do not provide information about the anisotropy of microstructural features of the specimens. This work develops a simple geometric model, referred to as the secant model, of backscatter coefficient anisotropy. Specifically, we evaluate anisotropy of the frequency dependence of the backscatter coefficient parameterized in terms of effective scatterer size. We assess the model in phantoms with known scattering sources and in a skeletal muscle, a well-known anisotropic tissue. We demonstrate that the secant model can determine the orientation of the anisotropic scatterers, as well as accurately determining effective scatterer sizes, and it may classify isotropic versus anisotropic scatterers. The secant model may find utility in monitoring disease progression as well as characterizing normal tissue architectures.
Collapse
Affiliation(s)
- Andrew P. Santoso
- Department of Medical Physics, University of Wisconsin, Madison, WI, USA
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ivan Rosado-Mendez
- Department of Medical Physics, University of Wisconsin, Madison, WI, USA
- Department of Radiology, University of Wisconsin, Madison, WI, USA
| | - Quinton W. Guerrero
- Department of Medical Physics, University of Wisconsin, Madison, WI, USA
- Georgia Tech Research Institute, Georgia Institute of Technology, Atlanta, GA, USA
| | - Timothy J. Hall
- Department of Medical Physics, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
13
|
Irisawa H, Mizushima T. Assessment of changes in muscle mass, strength, and quality and activities of daily living in elderly stroke patients. Int J Rehabil Res 2022; 45:161-167. [PMID: 35170496 PMCID: PMC9071026 DOI: 10.1097/mrr.0000000000000523] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/31/2022] [Indexed: 11/25/2022]
Abstract
Whether poststroke rehabilitation improves muscle mass and quality along with the recovery of muscle strength is not clear. In this study, we examined the changes in muscle strength, muscle mass, and muscle quality in patients undergoing poststroke rehabilitation and assessed the relationship of these variables with improvement in activities of daily living (ADL). This prospective study was conducted at stroke rehabilitation unit in Japan. Muscle mass and quality were assessed using bioelectrical impedance analysis (BIA). ADLs were assessed using the functional independence measure (FIM). Grip strength of the nonaffected and affected sides was measured using hand dynamometer. All measurements were performed at admission to the stroke rehabilitation unit and at 4 weeks thereafter. We assessed changes in motor FIM items and examined the relationships among the measured variables. This study included 179 patients. Patients received stroke rehabilitation 7 days a week individually. Muscle strength and quality significantly increased after 4 weeks on both the sides. Muscle mass decreased after 4 weeks; however, there was no significant difference between the two time points. Changes in muscle strength and quality showed a significant correlation with improvement in ADLs [r = 0.66 (male), 0.45 (female) and 0.55 (male), 0.31 (female), respectively]; however, muscle mass showed no correlation with improvement in ADLs. Poststroke rehabilitation improves muscle strength and quality, as well as ADLs. Muscle mass is not an appropriate measure to assess the effects of stroke rehabilitation; it is desirable to instead use muscle strength and quality to assess stroke rehabilitation.
Collapse
Affiliation(s)
- Hiroshi Irisawa
- Department of Rehabilitation Medicine, Dokkyo Medical University, Mibu, Japan
| | - Takashi Mizushima
- Department of Rehabilitation Medicine, Dokkyo Medical University, Mibu, Japan
| |
Collapse
|
14
|
Relationship between Nutritional Status, Body Composition, Muscle Strength, and Functional Recovery in Patients with Proximal Femur Fracture. Nutrients 2022; 14:nu14112298. [PMID: 35684096 PMCID: PMC9183158 DOI: 10.3390/nu14112298] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/28/2022] [Accepted: 05/28/2022] [Indexed: 12/10/2022] Open
Abstract
Sarcopenia is a major issue among the elderly. However, the effects of nutritional status and body composition on functional recovery in patients with proximal femur fractures (PFF) remain unclear. Hence, this study aimed to investigate the effects of nutritional status, body composition (skeletal muscle mass and muscle quality measured by phase angle [PhA] values), and muscle strength on the improvement in activities of daily living (ADL) in patients with PFF. We enrolled patients with PFF admitted to a rehabilitation unit. Nutritional status, body composition, grip strength, and motor Functional Independence Measure (FIM) score were assessed on admission day and at 4 weeks thereafter. Of 148 patients, 84 had femoral neck fractures, and 64 had trochanteric fractures. The mean motor FIM score was 49.2 points at admission and 64.9 points after 4 weeks. In multivariate analysis, higher geriatric nutritional risk index and PhA measured by anthropometry were associated with a significantly higher FIM score after 4 weeks. Muscle strength and quality changes significantly correlated with ADL improvement. Poor nutritional status and decreased muscle strength and quality interfered with ADL recovery. Nutritional management before injury and from the acute phase, and rehabilitation to maintain skeletal muscle status, are important for ADL recovery.
Collapse
|
15
|
Vesga-Castro C, Aldazabal J, Vallejo-Illarramendi A, Paredes J. Contractile force assessment methods for in vitro skeletal muscle tissues. eLife 2022; 11:e77204. [PMID: 35604384 PMCID: PMC9126583 DOI: 10.7554/elife.77204] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/27/2022] [Indexed: 02/06/2023] Open
Abstract
Over the last few years, there has been growing interest in measuring the contractile force (CF) of engineered muscle tissues to evaluate their functionality. However, there are still no standards available for selecting the most suitable experimental platform, measuring system, culture protocol, or stimulation patterns. Consequently, the high variability of published data hinders any comparison between different studies. We have identified that cantilever deflection, post deflection, and force transducers are the most commonly used configurations for CF assessment in 2D and 3D models. Additionally, we have discussed the most relevant emerging technologies that would greatly complement CF evaluation with intracellular and localized analysis. This review provides a comprehensive analysis of the most significant advances in CF evaluation and its critical parameters. In order to compare contractile performance across experimental platforms, we have used the specific force (sF, kN/m2), CF normalized to the calculated cross-sectional area (CSA). However, this parameter presents a high variability throughout the different studies, which indicates the need to identify additional parameters and complementary analysis suitable for proper comparison. We propose that future contractility studies in skeletal muscle constructs report detailed information about construct size, contractile area, maturity level, sarcomere length, and, ideally, the tetanus-to-twitch ratio. These studies will hopefully shed light on the relative impact of these variables on muscle force performance of engineered muscle constructs. Prospective advances in muscle tissue engineering, particularly in muscle disease models, will require a joint effort to develop standardized methodologies for assessing CF of engineered muscle tissues.
Collapse
Affiliation(s)
- Camila Vesga-Castro
- University of Navarra, Tecnun School of Engineering, Manuel de LardizábalSan SebastianSpain
- University of Navarra, Biomedical Engineering Center, Campus UniversitarioPamplonaSpain
- Group of Neurosciences, Department of Pediatrics, UPV/EHU, Hospital Donostia - IIS BiodonostiaSan SebastianSpain
| | - Javier Aldazabal
- University of Navarra, Tecnun School of Engineering, Manuel de LardizábalSan SebastianSpain
- University of Navarra, Biomedical Engineering Center, Campus UniversitarioPamplonaSpain
| | - Ainara Vallejo-Illarramendi
- Group of Neurosciences, Department of Pediatrics, UPV/EHU, Hospital Donostia - IIS BiodonostiaSan SebastianSpain
- CIBERNED, Instituto de Salud Carlos III, Ministry of Science, Innovation, and UniversitiesMadridSpain
| | - Jacobo Paredes
- University of Navarra, Tecnun School of Engineering, Manuel de LardizábalSan SebastianSpain
- University of Navarra, Biomedical Engineering Center, Campus UniversitarioPamplonaSpain
| |
Collapse
|
16
|
Cieri RL, Dick TJM, Morris JS, Clemente CJ. Scaling of fibre area and fibre glycogen concentration in the hindlimb musculature of monitor lizards: implications for locomotor performance with increasing body size. J Exp Biol 2022; 225:274383. [PMID: 35258618 DOI: 10.1242/jeb.243380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/22/2022]
Abstract
A considerable biomechanical challenge faces larger terrestrial animals as the demands of body support scale with body mass (Mb), while muscle force capacity is proportional to muscle cross-sectional area, which scales with Mb2/3. How muscles adjust to this challenge might be best understood by examining varanids, which vary by five orders of magnitude in size without substantial changes in posture or body proportions. Muscle mass, fascicle length and physiological cross-sectional area all scale with positive allometry, but it remains unclear, however, how muscles become larger in this clade. Do larger varanids have more muscle fibres, or does individual fibre cross-sectional area (fCSA) increase? It is also unknown if larger animals compensate by increasing the proportion of fast-twitch (higher glycogen concentration) fibres, which can produce higher force per unit area than slow-twitch fibres. We investigated muscle fibre area and glycogen concentration in hindlimb muscles from varanids ranging from 105 g to 40,000 g. We found that fCSA increased with modest positive scaling against body mass (Mb0.197) among all our samples, and ∝Mb0.278 among a subset of our data consisting of never-frozen samples only. The proportion of low-glycogen fibres decreased significantly in some muscles but not others. We compared our results with the scaling of fCSA in different groups. Considering species means, fCSA scaled more steeply in invertebrates (∝Mb0.575), fish (∝Mb0.347) and other reptiles (∝Mb0.308) compared with varanids (∝Mb0.267), which had a slightly higher scaling exponent than birds (∝Mb0.134) and mammals (∝Mb0.122). This suggests that, while fCSA generally increases with body size, the extent of this scaling is taxon specific, and may relate to broad differences in locomotor function, metabolism and habitat between different clades.
Collapse
Affiliation(s)
- Robert L Cieri
- School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - Taylor J M Dick
- School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia.,School of Biomedical Sciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Jeremy S Morris
- Department of Biology, Wofford College, Spartanburg, SC 29303, USA
| | - Christofer J Clemente
- School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia.,School of Biomedical Sciences, University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
17
|
Rice PE, Nimphius S, Abbiss C, Zwetsloot K, Nishikawa K. Micro-biopsies: a less invasive technique for investigating human muscle fiber mechanics. J Exp Biol 2022; 225:274562. [DOI: 10.1242/jeb.243643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/23/2022] [Indexed: 11/20/2022]
Abstract
The purpose of this investigation was to demonstrate that muscle fiber mechanics can be assessed on micro-biopsies obtained from human medial gastrocnemii. Three micro-biopsy samples were collected from female dancers (n=15). Single fibers and fiber bundles were isolated and passively stretched from 2.4 µm to 3.0 µm at 0.015 µm•s−1 and 0.04 µm•s−1 (n=50 fibers total) and in five increments at 0.12 µm•s−1 (n=42 fibers total). Muscle fibers were then activated isometrically at 2.4 µm (n=4 fibers total) and 3.0 µm (n=3 fibers total). Peak stress and steady state stress were significantly greater (p<0.0001) after stretching at 0.04 µm•s−1 than 0.015 µm•s−1. Furthermore, peak stresses and steady state stresses increased non-linearly with fiber length (p<0.0001). We conclude that active and passive muscle fiber mechanics can be investigated using tissue from micro-biopsies.
Collapse
Affiliation(s)
- Paige E. Rice
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
- Department of Health and Exercise Science, Wake Forest University, Winston Salem, NC, USA
| | - Sophia Nimphius
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Chris Abbiss
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Kevin Zwetsloot
- Department of Health and Exercise Science, Appalachian State University, Boone, NC, USA
| | - Kiisa Nishikawa
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| |
Collapse
|
18
|
Kalakoutis M, Di Giulio I, Douiri A, Ochala J, Harridge SDR, Woledge RC. Methodological considerations in measuring specific force in human single skinned muscle fibres. Acta Physiol (Oxf) 2021; 233:e13719. [PMID: 34286921 DOI: 10.1111/apha.13719] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 02/02/2023]
Abstract
Chemically skinned fibres allow the study of human muscle contractile function in vitro. A particularly important parameter is specific force (SF), that is, maximal isometric force divided by cross-sectional area, representing contractile quality. Although SF varies substantially between studies, the magnitude and cause of this variability remains puzzling. Here, we aimed to summarize and explore the cause of variability in SF between studies. A systematic search was conducted in Medline, Embase and Web of Science databases in June 2020, yielding 137 data sets from 61 publications which studied healthy, young adults. Five-fold differences in mean SF data were observed. Adjustments to the reported data for key methodological differences allowed between-study comparisons to be made. However, adjustment for fibre shape, swelling and sarcomere length failed to significantly reduce SF variance (I2 = 96%). Interestingly, grouping papers based on shared authorship did reveal consistency within research groups. In addition, lower SF was found to be associated with higher phosphocreatine concentrations in the fibre activating solution and with Triton X-100 being used as a skinning agent. Although the analysis showed variance across the literature, the ratio of SF in single fibres containing myosin heavy chain isoforms IIA or I was found to be consistent across research groups. In conclusion, whilst the skinned fibre technique is reliable for studying in vitro force generation of single fibres, the composition of the solution used to activate fibres, which differs between research groups, is likely to heavily influence SF values.
Collapse
Affiliation(s)
- Michaeljohn Kalakoutis
- Centre for Human and Applied Physiological Sciences Faculty of Life Sciences & Medicine King’s College London London UK
| | - Irene Di Giulio
- Centre for Human and Applied Physiological Sciences Faculty of Life Sciences & Medicine King’s College London London UK
| | - Abdel Douiri
- School of Population Health and Environmental Sciences King’s College London London UK
| | - Julien Ochala
- Centre for Human and Applied Physiological Sciences Faculty of Life Sciences & Medicine King’s College London London UK
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Stephen D. R. Harridge
- Centre for Human and Applied Physiological Sciences Faculty of Life Sciences & Medicine King’s College London London UK
| | - Roger C. Woledge
- Centre for Human and Applied Physiological Sciences Faculty of Life Sciences & Medicine King’s College London London UK
| |
Collapse
|
19
|
Smith IC, Ostertag C, O'Reilly JJ, Rios JL, Klancic T, MacDonald GZ, Collins KH, Reimer RA, Herzog W. Contractility of permeabilized rat vastus intermedius muscle fibres following high-fat, high-sucrose diet consumption. Appl Physiol Nutr Metab 2021; 46:1389-1399. [PMID: 34139131 DOI: 10.1139/apnm-2021-0238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Obesity is a worldwide health concern associated with impaired physical function. It is not clear if contractile protein dysfunction contributes to the impairment of muscle function observed with obesity. The purpose of this study was to examine if diet-induced obesity affects contractile function of chemically permeabilized vastus intermedius fibres of male Sprague-Dawley rats expressing fast myosin heavy chain (MHC) IIa or slow MHC I. Rats consumed either a high-fat, high sucrose (HFHS) diet or a standard (CHOW) diet beginning as either weanlings (7-week duration: WEAN7 cohort, or 14-week duration: WEAN14 cohort) or young adults (12-week duration: ADULT12 cohort, 24-week duration: ADULT24 cohort). HFHS-fed rats had higher (P < 0.05) whole-body adiposity (derived from dual-energy X-ray absorptiometry) than CHOW-fed rats in all cohorts. Relative to CHOW diet groups, the HFHS diet was associated with impaired force production in (a) MHC I fibres in the ADULT24 cohort; and (b) MHC IIa fibres in the ADULT12 and ADULT24 cohorts combined. However, the HFHS diet did not significantly affect the Ca2+-sensitivity of force production, unloaded shortening velocity, or ratio of active force to active stiffness in any cohort. We conclude that diet-induced obesity can impair force output of permeabilized muscle fibres of adult rats. Novelty: We assessed contractile function of permeabilized skeletal muscle fibres in a rat model of diet-induced obesity. The high-fat, high-sucrose diet was associated with impaired force output of fibres expressing MHC I or MHC IIa in some cohorts of rats. Other measures of contractile function were not significantly affected by diet.
Collapse
Affiliation(s)
- Ian C Smith
- Human Performance Lab, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Curtis Ostertag
- Human Performance Lab, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Jennifer J O'Reilly
- Human Performance Lab, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Jaqueline L Rios
- Human Performance Lab, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Teja Klancic
- Human Performance Lab, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Graham Z MacDonald
- Human Performance Lab, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Kelsey H Collins
- Human Performance Lab, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Raylene A Reimer
- Human Performance Lab, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Walter Herzog
- Human Performance Lab, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Biomechanics Laboratory, School of Sports, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| |
Collapse
|
20
|
Why exercise builds muscles: titin mechanosensing controls skeletal muscle growth under load. Biophys J 2021; 120:3649-3663. [PMID: 34389312 PMCID: PMC8456289 DOI: 10.1016/j.bpj.2021.07.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/29/2021] [Accepted: 07/23/2021] [Indexed: 12/22/2022] Open
Abstract
Muscles sense internally generated and externally applied forces, responding to these in a coordinated hierarchical manner at different timescales. The center of the basic unit of the muscle, the sarcomeric M-band, is perfectly placed to sense the different types of load to which the muscle is subjected. In particular, the kinase domain of titin (TK) located at the M-band is a known candidate for mechanical signaling. Here, we develop a quantitative mathematical model that describes the kinetics of TK-based mechanosensitive signaling and predicts trophic changes in response to exercise and rehabilitation regimes. First, we build the kinetic model for TK conformational changes under force: opening, phosphorylation, signaling, and autoinhibition. We find that TK opens as a metastable mechanosensitive switch, which naturally produces a much greater signal after high-load resistance exercise than an equally energetically costly endurance effort. Next, for the model to be stable and give coherent predictions, in particular for the lag after the onset of an exercise regime, we have to account for the associated kinetics of phosphate (carried by ATP) and for the nonlinear dependence of protein synthesis rates on muscle fiber size. We suggest that the latter effect may occur via the steric inhibition of ribosome diffusion through the sieve-like myofilament lattice. The full model yields a steady-state solution (homeostasis) for muscle cross-sectional area and tension and, a quantitatively plausible hypertrophic response to training, as well as atrophy after an extended reduction in tension.
Collapse
|
21
|
Berry DB, Englund EK, Galinsky V, Frank LR, Ward SR. Varying diffusion time to discriminate between simulated skeletal muscle injury models using stimulated echo diffusion tensor imaging. Magn Reson Med 2021; 85:2524-2536. [PMID: 33226163 PMCID: PMC8204931 DOI: 10.1002/mrm.28598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE Evaluate the relationship between muscle microstructure, diffusion time (Δ), and the diffusion tensor (DT) to identify the optimal Δ where changes in muscle fiber size may be detected. METHODS The DT was simulated in models with histology informed geometry over a range of Δ with a stimulated echo DT imaging (DTI) sequence using the numerical simulation application DifSim. The difference in the DT at each Δ between healthy and injured skeletal muscle models was calculated, to identify the optimal Δ at which changes in muscle fiber size may be detected. The random permeable barrier model (RPBM) was used to estimate muscle microstructure from the simulated DT measurements, which were compared to the ground truth. RESULTS Across all models, fractional anisotropy provided greater contrast between injured and control models than diffusivity measurements. Compared to control models, in atrophic injury models, the greatest difference in the DT was found between 90 ms and 250 ms. In models with acute edema, the contrast between injured and control muscle increased with increasing diffusion time, although these models had smaller mean fiber areas. RPBM systematically underestimated fiber size but accurately estimated surface area-to-volume ratio of simulated models. CONCLUSION These findings may better inform pulse sequence parameter selection when performing DTI experiments in vivo. If only a single diffusion experiment can be performed, the selected Δ should be ~170 ms to maximize the ability to discriminate between different injury models. Ideally several diffusion times between 90 ms and 500 ms should be sampled in order to maximize diffusion contrast, particularly when the disease process is unknown.
Collapse
Affiliation(s)
- David B. Berry
- Department of Nanoengineering, University of California San Diego, San Diego, California, USA
| | - Erin K. Englund
- Department of Orthopaedic Surgery, University of California San Diego, San Diego, California, USA
| | - Vitaly Galinsky
- Department of Electrical and Computer Engineering, University of California San Diego, San Diego, California, USA
- Center for Scientific Computation in Imaging, University of California San Diego, San Diego, California, USA
| | - Lawrence R. Frank
- Center for Scientific Computation in Imaging, University of California San Diego, San Diego, California, USA
- Center for Functional MRI, University of California San Diego, San Diego, California, USA
| | - Samuel R. Ward
- Department of Orthopaedic Surgery, University of California San Diego, San Diego, California, USA
- Department of Radiology, University of California San Diego, San Diego, California, USA
- Department of Bioengineering, University of California San Diego, San Diego, California, USA
| |
Collapse
|
22
|
Noonan AM, Zwambag DP, Mazara N, Weersink E, Power GA, Brown SHM. Fiber Type and Size as Sources of Variation in Human Single Muscle Fiber Passive Elasticity. J Biomech Eng 2020; 142:081008. [PMID: 32494817 DOI: 10.1115/1.4047423] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Indexed: 12/16/2022]
Abstract
Studies on single muscle fiber passive material properties often report relatively large variation in elastic modulus (or normalized stiffness), and it is not clear where this variation arises. This study was designed to determine if the stiffness, normalized to both fiber cross-sectional area and length, is inherently different between types 1 and 2 muscle fibers. Vastus lateralis fibers (n = 93), from ten young men, were mechanically tested using a cumulative stretch-relaxation protocol. SDS-PAGE classified fibers as types 1 or 2. While there was a difference in normalized stiffness between fiber types (p = 0.0019), an unexpected inverse relationship was found between fiber diameter and normalized stiffness (r = -0.64; p < 0.001). As fiber type and diameter are not independent, a one-way analysis of covariance (ANCOVA) including fiber diameter as a covariate was run; this eliminated the effect of fiber type on normalized stiffness (p = 0.1935). To further explore the relationship between fiber size and elastic properties, we tested whether stiffness was linearly related to fiber cross-sectional area, as would be expected for a homogenous material. Passive stiffness was not linearly related to fiber area (p < 0.001), which can occur if single muscle fibers are better represented as composite materials. The rule of mixtures for composite materials was used to explore whether the presence of a stiff perimeter-based fiber component could explain the observed results. The model (R2 = 0.38) predicted a perimeter-based normalized stiffness of 8800 ± 2600 kPa/μm, which is within the range of basement membrane moduli reported in the literature.
Collapse
Affiliation(s)
- Alex M Noonan
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Derek P Zwambag
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Nicole Mazara
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Erin Weersink
- Sports Medicine, Health and Performance Centre, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Geoffrey A Power
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Stephen H M Brown
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Rd East, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
23
|
Irisawa H, Mizushima T. Correlation of Body Composition and Nutritional Status with Functional Recovery in Stroke Rehabilitation Patients. Nutrients 2020; 12:nu12071923. [PMID: 32610491 PMCID: PMC7400130 DOI: 10.3390/nu12071923] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/19/2020] [Accepted: 06/28/2020] [Indexed: 01/10/2023] Open
Abstract
Previous studies have suggested that the nutritional status after stroke is independently associated with long-term outcomes and that sarcopenia delays poststroke rehabilitation and worsens the prognosis. However, many stroke patients have a deteriorated nutritional status and a decreased muscle mass in the acute phase. This prospective study included 179 patients who were admitted to the stroke rehabilitation unit. We performed bioelectrical impedance analysis and determined the Geriatric Nutritional Risk Index (GNRI) to assess muscle mass and the nutritional status on admission. Furthermore, we analyzed the activities of daily living using the Functional Independence Measure (FIM) at the time of admission and four weeks later. Furthermore, we evaluated the change in motor FIM items and examined the relationship with the data. Multiple regression analysis revealed that a high muscle rate (skeletal muscle mass/body weight) (odds ratio OR = 2.43), high phase angle (OR = 3.32), and high GNRI (OR = 2.57) were significantly associated with motor FIM items at four weeks in male and female patients. Muscle mass maintenance through nutritional management and early rehabilitation in the acute period of stroke is essential for functional recovery in stroke patients.
Collapse
Affiliation(s)
- Hiroshi Irisawa
- Department of Rehabilitation Medicine, Dokkyo Medical University, 880, Kitakobayashi, Mibu, Shimotsuga, Tochigi 3210293, Japan;
- Department of Rehabilitation Medicine, Setagaya Memorial Hospital, 2-30-10, Noge, Setagaya, Tokyo 1580092, Japan
- Correspondence: ; Tel.: +81-282872170
| | - Takashi Mizushima
- Department of Rehabilitation Medicine, Dokkyo Medical University, 880, Kitakobayashi, Mibu, Shimotsuga, Tochigi 3210293, Japan;
| |
Collapse
|
24
|
Purslow PP. The Structure and Role of Intramuscular Connective Tissue in Muscle Function. Front Physiol 2020; 11:495. [PMID: 32508678 PMCID: PMC7248366 DOI: 10.3389/fphys.2020.00495] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/23/2020] [Indexed: 12/12/2022] Open
Abstract
Extracellular matrix (ECM) structures within skeletal muscle play an important, but under-appreciated, role in muscle development, function and adaptation. Each individual muscle is surrounded by epimysial connective tissue and within the muscle there are two distinct extracellular matrix (ECM) structures, the perimysium and endomysium. Together, these three ECM structures make up the intramuscular connective tissue (IMCT). There are large variations in the amount and composition of IMCT between functionally different muscles. Although IMCT acts as a scaffold for muscle fiber development and growth and acts as a carrier for blood vessels and nerves to the muscle cells, the variability in IMCT between different muscles points to a role in the variations in active and passive mechanical properties of muscles. Some traditional measures of the contribution of endomysial IMCT to passive muscle elasticity relied upon tensile measurements on single fiber preparations. These types of measurements may now be thought to be missing the important point that endomysial IMCT networks within a muscle fascicle coordinate forces and displacements between adjacent muscle cells by shear and that active contractile forces can be transmitted by this route (myofascial force transmission). The amount and geometry of the perimysial ECM network separating muscle fascicles varies more between different muscle than does the amount of endomysium. While there is some evidence for myofascial force transmission between fascicles via the perimysium, the variations in this ECM network appears to be linked to the amount of shear displacements between fascicles that must necessarily occur when the whole muscle contracts and changes shape. Fast growth of muscle by fiber hypertrophy is not always associated with a high turnover of ECM components, but slower rates of growth and muscle wasting may be associated with IMCT remodeling. A hypothesis arising from this observation is that the level of cell signaling via shear between integrin and dystroglycan linkages on the surface of the muscle cells and the overlying endomysium may be the controlling factor for IMCT turnover, although this idea is yet to be tested.
Collapse
Affiliation(s)
- Peter P Purslow
- Centro de Investigacion Veterinaria de Tandil, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
| |
Collapse
|
25
|
Arjunan SP, Siddiqi A, Swaminathan R, Kumar DK. Implementation and experimental validation of surface electromyogram and force model of Tibialis Anterior muscle for examining muscular factors. Proc Inst Mech Eng H 2020; 234:200-209. [DOI: 10.1177/0954411919890150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study reports a surface electromyogram and force of contraction model. The objective was to investigate the effect of changes in the size, type and number of motor units in the Tibialis Anterior muscle to surface electromyogram and force of dorsiflexion. A computational model to simulate surface electromyogram and associated force of contraction by the Tibialis Anterior muscle was developed. This model was simulated for isometric dorsiflexion, and comparative experiments were conducted for validation. Repeated simulations were performed to investigate the different parameters and evaluate inter-experimental variability. An equivalence statistical test and the Bland–Altman method were used to observe the significance between the simulated and experimental data. Simulated and experimentally recorded data had high similarity for the three measures: maximal power of power spectral density ( p < 0.0001), root mean square of surface electromyogram ( p < 0.0001) and force recorded at the footplate ( p < 0.03). Inter-subject variability in the experimental results was in-line with the variability in the repeated simulation results. This experimentally validated computational model for the surface electromyogram and force of the Tibialis Anterior muscle is significant as it allows the examination of three important muscular factors associated with ageing and disease: size, fibre type and number of motor units.
Collapse
Affiliation(s)
| | - Ariba Siddiqi
- Biosignals Lab, School of Engineering, RMIT University, Melbourne, VIC, Australia
| | | | | |
Collapse
|
26
|
Nozik Y, Hallock LA, Ho D, Mandava S, Mitchell C, Li TH, Bajcsy R. OpenArm 2.0: Automated Segmentation of 3D Tissue Structures for Multi-Subject Study of Muscle Deformation Dynamics. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:982-988. [PMID: 31946058 DOI: 10.1109/embc.2019.8857669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We present a novel neural-network-based pipeline for segmentation of 3D muscle and bone structures from localized 2D ultrasound data of the human arm. Building from the U-Net [1] neural network framework, we examine various data augmentation techniques and training data sets to both optimize the network's performance on our data set and hypothesize strategies to better select training data, minimizing manual annotation time while maximizing performance. We then employ this pipeline to generate the OpenArm 2.0 data set, the first factorial set of multi-subject, multi-angle, multi-force scans of the arm with full volumetric annotation of the biceps and humerus. This data set has been made available on SimTK (https://simtk.org/projects/openarm) to enable future exploration of muscle force modeling, improved musculoskeletal graphics, and assistive device control.
Collapse
|
27
|
Khodabukus A, Madden L, Prabhu NK, Koves TR, Jackman CP, Muoio DM, Bursac N. Electrical stimulation increases hypertrophy and metabolic flux in tissue-engineered human skeletal muscle. Biomaterials 2019; 198:259-269. [PMID: 30180985 PMCID: PMC6395553 DOI: 10.1016/j.biomaterials.2018.08.058] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/05/2018] [Accepted: 08/27/2018] [Indexed: 02/08/2023]
Abstract
In vitro models of contractile human skeletal muscle hold promise for use in disease modeling and drug development, but exhibit immature properties compared to native adult muscle. To address this limitation, 3D tissue-engineered human muscles (myobundles) were electrically stimulated using intermittent stimulation regimes at 1 Hz and 10 Hz. Dystrophin in myotubes exhibited mature membrane localization suggesting a relatively advanced starting developmental maturation. One-week stimulation significantly increased myobundle size, sarcomeric protein abundance, calcium transient amplitude (∼2-fold), and tetanic force (∼3-fold) resulting in the highest specific force generation (19.3mN/mm2) reported for engineered human muscles to date. Compared to 1 Hz electrical stimulation, the 10 Hz stimulation protocol resulted in greater myotube hypertrophy and upregulated mTORC1 and ERK1/2 activity. Electrically stimulated myobundles also showed a decrease in fatigue resistance compared to control myobundles without changes in glycolytic or mitochondrial protein levels. Greater glucose consumption and decreased abundance of acetylcarnitine in stimulated myobundles indicated increased glycolytic and fatty acid metabolic flux. Moreover, electrical stimulation of myobundles resulted in a metabolic shift towards longer-chain fatty acid oxidation as evident from increased abundances of medium- and long-chain acylcarnitines. Taken together, our study provides an advanced in vitro model of human skeletal muscle with improved structure, function, maturation, and metabolic flux.
Collapse
Affiliation(s)
| | - Lauran Madden
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Neel K Prabhu
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Timothy R Koves
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | | | - Deborah M Muoio
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
28
|
Galazzo L, Nogara L, LoVerso F, Polimeno A, Blaauw B, Sandri M, Reggiani C, Carbonera D. Changes in the fraction of strongly attached cross bridges in mouse atrophic and hypertrophic muscles as revealed by continuous wave electron paramagnetic resonance. Am J Physiol Cell Physiol 2019; 316:C722-C730. [PMID: 30865515 DOI: 10.1152/ajpcell.00438.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Electron paramagnetic resonance (EPR), coupled with site-directed spin labeling, has been proven to be a particularly suitable technique to extract information on the fraction of myosin heads strongly bound to actin upon muscle contraction. The approach can be used to investigate possible structural changes occurring in myosin of fiber s altered by diseases and aging. In this work, we labeled myosin at position Cys707, located in the SH1-SH2 helix in the myosin head cleft, with iodoacetamide spin label, a spin label that is sensitive to the reorientational motion of this protein during the ATPase cycle and characterized the biochemical states of the labeled myosin head by means of continuous wave EPR. After checking the sensitivity and the power of the technique on different muscles and species, we investigated whether changes in the fraction of strongly bound myosin heads might explain the contractile alterations observed in atrophic and hypertrophic murine muscles. In both conditions, the difference in contractile force could not be justified simply by the difference in muscle mass. Our results showed that in atrophic muscles the decrease in force generation was attributable to a lower fraction of strongly bound cross bridges during maximal activation. In contrast in hypertrophic muscles, the increase in force generation was likely due to several factors, as pointed out by the comparison of the EPR experiments with the tension measurements on single skinned fibers.
Collapse
Affiliation(s)
- Laura Galazzo
- Department of Chemical Sciences, University of Padova , Padua , Italy
| | | | | | - Antonino Polimeno
- Department of Chemical Sciences, University of Padova , Padua , Italy
| | - Bert Blaauw
- Venetian Institute of Molecular Medicine , Padua , Italy
| | - Marco Sandri
- Venetian Institute of Molecular Medicine , Padua , Italy.,Department of Biomedical Sciences, University of Padova , Padua , Italy
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padova , Padua , Italy
| | | |
Collapse
|
29
|
Wackerhage H, Schoenfeld BJ, Hamilton DL, Lehti M, Hulmi JJ. Stimuli and sensors that initiate skeletal muscle hypertrophy following resistance exercise. J Appl Physiol (1985) 2018; 126:30-43. [PMID: 30335577 DOI: 10.1152/japplphysiol.00685.2018] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
One of the most striking adaptations to exercise is the skeletal muscle hypertrophy that occurs in response to resistance exercise. A large body of work shows that a mammalian target of rapamycin complex 1 (mTORC1)-mediated increase of muscle protein synthesis is the key, but not sole, mechanism by which resistance exercise causes muscle hypertrophy. While much of the hypertrophy signaling cascade has been identified, the initiating, resistance exercise-induced and hypertrophy-stimulating stimuli have remained elusive. For the purpose of this review, we define an initiating, resistance exercise-induced and hypertrophy-stimulating signal as "hypertrophy stimulus," and the sensor of such a signal as "hypertrophy sensor." In this review we discuss our current knowledge of specific mechanical stimuli, damage/injury-associated and metabolic stress-associated triggers, as potential hypertrophy stimuli. Mechanical signals are the prime hypertrophy stimuli candidates, and a filamin-C-BAG3-dependent regulation of mTORC1, Hippo, and autophagy signaling is a plausible albeit still incompletely characterized hypertrophy sensor. Other candidate mechanosensing mechanisms are nuclear deformation-initiated signaling or several mechanisms related to costameres, which are the functional equivalents of focal adhesions in other cells. While exercise-induced muscle damage is probably not essential for hypertrophy, it is still unclear whether and how such muscle damage could augment a hypertrophic response. Interventions that combine blood flow restriction and especially low load resistance exercise suggest that resistance exercise-regulated metabolites could be hypertrophy stimuli, but this is based on indirect evidence and metabolite candidates are poorly characterized.
Collapse
Affiliation(s)
- Henning Wackerhage
- Department of Sport and Exercise Sciences, Technical University of Munich , Munich , Germany
| | | | - D Lee Hamilton
- Faculty of Health, School of Exercise and Nutrition Sciences, Deakin University , Victoria , Australia
| | - Maarit Lehti
- LIKES Research Centre for Physical Activity and Health , Jyväskylä , Finland
| | - Juha J Hulmi
- Neuromuscular Research Center, Biology of Physical Activity, Faculty of Sport and Health Sciences, University of Jyväskylä , Jyväskylä , Finland
| |
Collapse
|
30
|
Siddiqi A, Poosapadi Arjunan S, Kumar DK. Computational model to investigate the relative contributions of different neuromuscular properties of tibialis anterior on force generated during ankle dorsiflexion. Med Biol Eng Comput 2018; 56:1413-1423. [PMID: 29335929 DOI: 10.1007/s11517-018-1788-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 01/06/2018] [Indexed: 10/18/2022]
Abstract
This study describes a new model of the force generated by tibialis anterior muscle with three new features: single-fiber action potential, twitch force, and pennation angle. This model was used to investigate the relative effects and interaction of ten age-associated neuromuscular parameters. Regression analysis (significance level of 0.05) between the neuromuscular properties and corresponding simulated force produced at the footplate was performed. Standardized slope coefficients were computed to rank the effect of the parameters. The results show that reduction in the average firing rate is the reason for the sharp decline in the force and other factors, such as number of muscle fibers, specific force, pennation angle, and innervation ratio. The fast fiber ratio affects the simulated force through two significant interactions. This study has ranked the individual contributions of the neuromuscular factors to muscle strength decline of the TA and identified firing rate decline as the biggest cause followed by decrease in muscle fiber number and specific force. The strategy for strength preservation for the elderly should focus on improving firing rate. Graphical abstract Neuromuscular properties of Tibialis Anterior on force generated during ankle dorsiflexion.
Collapse
Affiliation(s)
- Ariba Siddiqi
- Biosignals Laboratory, School of Engineering, RMIT University, GPO Box 2476, Melbourne, VIC, Australia
| | - Sridhar Poosapadi Arjunan
- Biosignals Laboratory, School of Engineering, RMIT University, GPO Box 2476, Melbourne, VIC, Australia.
| | - Dinesh Kant Kumar
- Biosignals Laboratory, School of Engineering, RMIT University, GPO Box 2476, Melbourne, VIC, Australia
| |
Collapse
|
31
|
Are Ultrasonographic Measures of Cervical Flexor Muscles Correlated With Flexion Endurance in Chronic Neck Pain and Asymptomatic Participants? Am J Phys Med Rehabil 2017. [DOI: 10.1097/phm.0000000000000778] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
32
|
Lee YB, Kim SJ, Kim EM, Byun H, Chang HK, Park J, Choi YS, Shin H. Microcontact printing of polydopamine on thermally expandable hydrogels for controlled cell adhesion and delivery of geometrically defined microtissues. Acta Biomater 2017; 61:75-87. [PMID: 28760620 DOI: 10.1016/j.actbio.2017.07.040] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/10/2017] [Accepted: 07/27/2017] [Indexed: 02/07/2023]
Abstract
Scaffold-free harvest of microtissue with a defined structure has received a great deal of interest in cell-based assay and regenerative medicine. In this study, we developed thermally expandable hydrogels with spatially controlled cell adhesive patterns for rapid harvest of geometrically controlled microtissue. We patterned polydopamine (PD) on to the hydrogel via microcontact printing (μCP), in linear shapes with widths of 50, 100 and 200μm. The hydrogels facilitated formation of spatially controlled strip-like microtissue of human dermal fibroblasts (HDFBs). It was possible to harvest and translocate microtissues with controlled widths of 61.4±14.7, 104.3±15.6, and 186.6±22.3μm from the hydrogel to glass substrates by conformal contact upon expansion of the hydrogel in response to a temperature change from 37 to 4°C, preserving high viability, extracellular matrix, and junction proteins. Microtissues were readily translocated in vivo to the subcutaneous tissue of mouse. The microtissues were further utilized as a simple assay model for monitoring of contraction in response to ROCK1 inhibitor. Collectively, micro-sized patterning of PD on the thermally expandable hydrogels via μCP holds promise for the development of microtissue harvesting systems that can be employed to ex vivo tissue assay and cell-based therapy. STATEMENT OF SIGNIFICANCE Harvest of artificial tissue with controlled cellular arrangement independently from external materials has been widely studied in cell-based assay and regenerative medicine. In this study, we developed scaffold-free harvest system of microtissues with anisotropic arrangement and controlled width by exploiting thermally expandable hydrogels with cell-adhesive patterns of polydopamine formed by simple microcontact printing. Cultured strips of human dermal fibroblasts on the hydrogels were rapidly delivered to various targets ranging from flat coverglass to mice subcutaneous tissue by thermal expansion of the hydrogel at 4°C for 10min. These were further utilized as a drug screening model responding to ROCK1 inhibitor, which imply its versatile applicability.
Collapse
|
33
|
Harris-Love MO, Seamon BA, Teixeira C, Ismail C. Ultrasound estimates of muscle quality in older adults: reliability and comparison of Photoshop and ImageJ for the grayscale analysis of muscle echogenicity. PeerJ 2016; 4:e1721. [PMID: 26925339 PMCID: PMC4768702 DOI: 10.7717/peerj.1721] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/31/2016] [Indexed: 12/25/2022] Open
Abstract
Background. Quantitative diagnostic ultrasound imaging has been proposed as a method of estimating muscle quality using measures of echogenicity. The Rectangular Marquee Tool (RMT) and the Free Hand Tool (FHT) are two types of editing features used in Photoshop and ImageJ for determining a region of interest (ROI) within an ultrasound image. The primary objective of this study is to determine the intrarater and interrater reliability of Photoshop and ImageJ for the estimate of muscle tissue echogenicity in older adults via grayscale histogram analysis. The secondary objective is to compare the mean grayscale values obtained using both the RMT and FHT methods across both image analysis platforms. Methods. This cross-sectional observational study features 18 community-dwelling men (age = 61.5 ± 2.32 years). Longitudinal views of the rectus femoris were captured using B-mode ultrasound. The ROI for each scan was selected by 2 examiners using the RMT and FHT methods from each software program. Their reliability is assessed using intraclass correlation coefficients (ICCs) and the standard error of the measurement (SEM). Measurement agreement for these values is depicted using Bland-Altman plots. A paired t-test is used to determine mean differences in echogenicity expressed as grayscale values using the RMT and FHT methods to select the post-image acquisition ROI. The degree of association among ROI selection methods and image analysis platforms is analyzed using the coefficient of determination (R (2)). Results. The raters demonstrated excellent intrarater and interrater reliability using the RMT and FHT methods across both platforms (lower bound 95% CI ICC = .97-.99, p < .001). Mean differences between the echogenicity estimates obtained with the RMT and FHT methods was .87 grayscale levels (95% CI [.54-1.21], p < .0001) using data obtained with both programs. The SEM for Photoshop was .97 and 1.05 grayscale levels when using the RMT and FHT ROI selection methods, respectively. Comparatively, the SEM values were .72 and .81 grayscale levels, respectively, when using the RMT and FHT ROI selection methods in ImageJ. Uniform coefficients of determination (R (2) = .96-.99, p < .001) indicate strong positive associations among the grayscale histogram analysis measurement conditions independent of the ROI selection methods and imaging platform. Conclusion. Our method for evaluating muscle echogenicity demonstrated a high degree of intrarater and interrater reliability using both the RMT and FHT methods across 2 common image analysis platforms. The minimal measurement error exhibited by the examiners demonstrates that the ROI selection methods used with Photoshop and ImageJ are suitable for the post-acquisition image analysis of tissue echogenicity in older adults.
Collapse
Affiliation(s)
- Michael O. Harris-Love
- Muscle Morphology, Mechanics and Performance Laboratory, Clinical Research Center, Washington DC Veterans Affairs Medical Center, Washington, DC, United States
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, George Washington University, Washington, DC, United States
- Geriatrics and Extended Care Service, Washington DC Veterans Affairs Medical Center, Washington, DC, United States
| | - Bryant A. Seamon
- Muscle Morphology, Mechanics and Performance Laboratory, Clinical Research Center, Washington DC Veterans Affairs Medical Center, Washington, DC, United States
- Physical Medicine & Rehabilitation Service, Washington DC Veterans Affairs Medical Center, Washington, DC, United States
| | - Carla Teixeira
- Muscle Morphology, Mechanics and Performance Laboratory, Clinical Research Center, Washington DC Veterans Affairs Medical Center, Washington, DC, United States
- The School of Kinesiology and Health Studies, Queen’s University, Kingston, Ontario, Canada
| | - Catheeja Ismail
- Muscle Morphology, Mechanics and Performance Laboratory, Clinical Research Center, Washington DC Veterans Affairs Medical Center, Washington, DC, United States
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, George Washington University, Washington, DC, United States
| |
Collapse
|
34
|
Ismail C, Zabal J, Hernandez HJ, Woletz P, Manning H, Teixeira C, DiPietro L, Blackman MR, Harris-Love MO. Diagnostic ultrasound estimates of muscle mass and muscle quality discriminate between women with and without sarcopenia. Front Physiol 2015; 6:302. [PMID: 26578974 PMCID: PMC4625057 DOI: 10.3389/fphys.2015.00302] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/12/2015] [Indexed: 01/24/2023] Open
Abstract
Introduction: Age-related changes in muscle mass and muscle tissue composition contribute to diminished strength in older adults. The objectives of this study are to examine if an assessment method using mobile diagnostic ultrasound augments well-known determinants of lean body mass (LBM) to aid sarcopenia staging, and if a sonographic measure of muscle quality is associated with muscle performance. Methods: Twenty community-dwelling female subjects participated in the study (age = 43.4 ± 20.9 years; BMI: 23.8, interquartile range: 8.5). Dual energy X-ray absorptiometry (DXA) and diagnostic ultrasound morphometry were used to estimate LBM. Muscle tissue quality was estimated via the echogenicity using grayscale histogram analysis. Peak force was measured with grip dynamometry and scaled for body size. Bivariate and multiple regression analyses were used to determine the association of the predictor variables with appendicular lean mass (aLM/ht2), and examine the relationship between scaled peak force values and muscle echogenicity. The sarcopenia LBM cut point value of 6.75 kg/m2 determined participant assignment into the Normal LBM and Low LBM subgroups. Results: The selected LBM predictor variables were body mass index (BMI), ultrasound morphometry, and age. Although BMI exhibited a significant positive relationship with aLM/ht2 (adj. R2 = 0.61, p < 0.001), the strength of association improved with the addition of ultrasound morphometry and age as predictor variables (adj. R2 = 0.85, p < 0.001). Scaled peak force was associated with age and echogenicity (adj. R2 = 0.53, p < 0.001), but not LBM. The Low LBM subgroup of women (n = 10) had higher scaled peak force, lower BMI, and lower echogenicity values in comparison to the Normal LBM subgroup (n = 10; p < 0.05). Conclusions: Diagnostic ultrasound morphometry values are associated with LBM, and improve the BMI predictive model for aLM/ht2 in women. In addition, ultrasound proxy measures of muscle quality are more strongly associated with strength than muscle mass within the study sample.
Collapse
Affiliation(s)
- Catheeja Ismail
- Muscle Morphology, Mechanics and Performance Laboratory, Clinical Research Center - Human Performance Research Unit, Veterans Affairs Medical Center Washington, DC, USA ; Department of Medicine, School of Medicine and Health Sciences, The George Washington University Washington, DC, USA
| | - Johannah Zabal
- Department of Physical Therapy and Health Care Sciences, School of Medicine and Health Sciences, The George Washington University Washington, DC, USA ; Department of Health Sciences, Malek School of Health Professions, Marymount University Arlington, VA, USA
| | - Haniel J Hernandez
- Muscle Morphology, Mechanics and Performance Laboratory, Clinical Research Center - Human Performance Research Unit, Veterans Affairs Medical Center Washington, DC, USA ; Physical Medicine and Rehabilitation Service, Veterans Affairs Medical Center Washington, DC, USA
| | - Paula Woletz
- Muscle Morphology, Mechanics and Performance Laboratory, Clinical Research Center - Human Performance Research Unit, Veterans Affairs Medical Center Washington, DC, USA
| | - Heather Manning
- Department of Exercise and Nutritional Sciences, Milken Institute School of Public Health, The George Washington University Washington, DC, USA
| | - Carla Teixeira
- Muscle Morphology, Mechanics and Performance Laboratory, Clinical Research Center - Human Performance Research Unit, Veterans Affairs Medical Center Washington, DC, USA ; The School of Kinesiology and Health Studies, Queen's University Kingston, ON, Canada
| | - Loretta DiPietro
- Department of Exercise and Nutritional Sciences, Milken Institute School of Public Health, The George Washington University Washington, DC, USA
| | - Marc R Blackman
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University Washington, DC, USA ; Departments of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University Washington, DC, USA ; Departments of Medicine and Rehabilitation Medicine, Georgetown University School of Medicine Washington, DC, USA ; The Johns Hopkins University School of Medicine, Johns Hopkins University Baltimore, MD, USA ; Research Service, Veterans Affairs Medical Center Washington, DC, USA
| | - Michael O Harris-Love
- Muscle Morphology, Mechanics and Performance Laboratory, Clinical Research Center - Human Performance Research Unit, Veterans Affairs Medical Center Washington, DC, USA ; Department of Exercise and Nutritional Sciences, Milken Institute School of Public Health, The George Washington University Washington, DC, USA ; Research Service, Veterans Affairs Medical Center Washington, DC, USA
| |
Collapse
|
35
|
Miller MS, Bedrin NG, Ades PA, Palmer BM, Toth MJ. Molecular determinants of force production in human skeletal muscle fibers: effects of myosin isoform expression and cross-sectional area. Am J Physiol Cell Physiol 2015; 308:C473-84. [PMID: 25567808 DOI: 10.1152/ajpcell.00158.2014] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Skeletal muscle contractile performance is governed by the properties of its constituent fibers, which are, in turn, determined by the molecular interactions of the myofilament proteins. To define the molecular determinants of contractile function in humans, we measured myofilament mechanics during maximal Ca(2+)-activated and passive isometric conditions in single muscle fibers with homogenous (I and IIA) and mixed (I/IIA and IIA/X) myosin heavy chain (MHC) isoforms from healthy, young adult male (n = 5) and female (n = 7) volunteers. Fibers containing only MHC II isoforms (IIA and IIA/X) produced higher maximal Ca(2+)-activated forces over the range of cross-sectional areas (CSAs) examined than MHC I fibers, resulting in higher (24-42%) specific forces. The number and/or stiffness of the strongly bound myosin-actin cross bridges increased in the higher force-producing MHC II isoforms and, in all isoforms, better predicted force than CSA. In men and women, cross-bridge kinetics, in terms of myosin attachment time and rate of myosin force production, were independent of CSA, although women had faster (7-15%) kinetics. The relative proportion of cross bridges and/or their stiffness was reduced as fiber size increased, causing a decline in specific force. Results from our examination of molecular mechanisms across the range of physiological CSAs explain the variation in specific force among the different fiber types in human skeletal muscle, which may have relevance to understanding how various physiological and pathophysiological conditions modulate single-fiber and whole muscle contractility.
Collapse
Affiliation(s)
- Mark S Miller
- Department of Molecular Physiology and Biophysics, College of Medicine, University of Vermont, Burlington, Vermont; Department of Kinesiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst, Massachusetts
| | - Nicholas G Bedrin
- Department of Molecular Physiology and Biophysics, College of Medicine, University of Vermont, Burlington, Vermont
| | - Philip A Ades
- Department of Medicine, College of Medicine, University of Vermont, Burlington, Vermont; and
| | - Bradley M Palmer
- Department of Molecular Physiology and Biophysics, College of Medicine, University of Vermont, Burlington, Vermont
| | - Michael J Toth
- Department of Molecular Physiology and Biophysics, College of Medicine, University of Vermont, Burlington, Vermont; Department of Medicine, College of Medicine, University of Vermont, Burlington, Vermont; and
| |
Collapse
|
36
|
Miller MS, Callahan DM, Toth MJ. Skeletal muscle myofilament adaptations to aging, disease, and disuse and their effects on whole muscle performance in older adult humans. Front Physiol 2014; 5:369. [PMID: 25309456 PMCID: PMC4176476 DOI: 10.3389/fphys.2014.00369] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 09/07/2014] [Indexed: 12/02/2022] Open
Abstract
Skeletal muscle contractile function declines with aging, disease, and disuse. In vivo muscle contractile function depends on a variety of factors, but force, contractile velocity and power generating capacity ultimately derive from the summed contribution of single muscle fibers. The contractile performance of these fibers are, in turn, dependent upon the isoform and function of myofilament proteins they express, with myosin protein expression and its mechanical and kinetic characteristics playing a predominant role. Alterations in myofilament protein biology, therefore, may contribute to the development of functional limitations and disability in these conditions. Recent studies suggest that these conditions are associated with altered single fiber performance due to decreased expression of myofilament proteins and/or changes in myosin-actin cross-bridge interactions. Furthermore, cellular and myofilament-level adaptations are related to diminished whole muscle and whole body performance. Notably, the effect of these various conditions on myofilament and single fiber function tends to be larger in older women compared to older men, which may partially contribute to their higher rates of disability. To maintain functionality and provide the most appropriate and effective countermeasures to aging, disease, and disuse in both sexes, a more thorough understanding is needed of the contribution of myofilament adaptations to functional disability in older men and women and their contribution to tissue level function and mobility impairment.
Collapse
Affiliation(s)
- Mark S Miller
- Department of Kinesiology, School of Public Health and Health Sciences, University of Massachusetts Amherst, MA, USA
| | - Damien M Callahan
- Department of Molecular Physiology and Biophysics, College of Medicine, University of Vermont Burlington, VT, USA
| | - Michael J Toth
- Department of Molecular Physiology and Biophysics, College of Medicine, University of Vermont Burlington, VT, USA ; Department of Medicine, College of Medicine, University of Vermont Burlington, VT, USA
| |
Collapse
|
37
|
Kohn TA, Noakes TD. Lion (Panthera leo) and caracal (Caracal caracal) type IIx single muscle fibre force and power exceed that of trained humans. J Exp Biol 2013; 216:960-9. [PMID: 23155088 PMCID: PMC3587382 DOI: 10.1242/jeb.078485] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 11/06/2012] [Indexed: 11/20/2022]
Abstract
This study investigated for the first time maximum force production, shortening velocity (Vmax) and power output in permeabilised single muscle fibres at 12°C from lion, Panthera leo (Linnaeus 1758), and caracal, Caracal caracal (Schreber 1776), and compared the values with those from human cyclists. Additionally, the use and validation of previously frozen tissue for contractile experiments is reported. Only type IIx muscle fibres were identified in the caracal sample, whereas type IIx and only two type I fibres were found in the lion sample. Only pure type I and IIa, and hybrid type IIax fibres were identified in the human samples - there were no pure type IIx fibres. Nevertheless, compared with all the human fibre types, the lion and caracal fibres were smaller (P<0.01) in cross-sectional area (human: 6194±230 μm(2), lion: 3008±151 μm(2), caracal: 2583±221 μm(2)). On average, the felid type IIx fibres produced significantly greater force (191-211 kN m(-2)) and ~3 times more power (29.0-30.3 kN m(-2) fibre lengths s(-1)) than the human IIax fibres (100-150 kN m(-2), 4-11 kN m(-2) fibre lengths s(-1)). Vmax values of the lion type IIx fibres were also higher than those of human type IIax fibres. The findings suggest that the same fibre type may differ substantially between species and potential explanations are discussed.
Collapse
Affiliation(s)
- Tertius A Kohn
- UCT/MRC Research Unit for Exercise Science and Sports Medicine, Department of Human Biology, PO Box 115, University of Cape Town, Newlands, 7725, South Africa.
| | | |
Collapse
|
38
|
Matsakas A, Macharia R, Otto A, Elashry MI, Mouisel E, Romanello V, Sartori R, Amthor H, Sandri M, Narkar V, Patel K. Exercise training attenuates the hypermuscular phenotype and restores skeletal muscle function in the myostatin null mouse. Exp Physiol 2011; 97:125-40. [DOI: 10.1113/expphysiol.2011.063008] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|