1
|
Alhalabi B, Joseph A, Kumar D. The Impact of Red Beetroot Products on Glycemic Profiles: A Systematic Review of Human Evidence. Curr Nutr Rep 2024; 13:598-610. [PMID: 38760619 DOI: 10.1007/s13668-024-00546-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2024] [Indexed: 05/19/2024]
Abstract
PURPOSE OF REVIEW Low-glycemic diets are crucial, particularly for individuals with diet-related diseases such as obesity and diabetes. Therefore, observing the impact of multiple forms of red beetroot-based products on the glycemic profiles of humans under various health conditions has arguably become significant due to beetroot's high fiber content, antioxidants, inorganic nitrates, etc., which this review aims to summarize. RECENT FINDINGS The relevant articles published between 2000 and 2022 were obtained from PubMed, Scopus, and ScienceDirect by following the PRISMA-P 2020 statement. This systematic review included 18 randomized controlled trials (RCTs), one non-randomized clinical trial (non-RCT), and one quasi-experimental (QE) study, and they covered different health conditions, e.g., type-2 diabetes mellitus (T2DM), obesity, hypertension, etc. The studies produced conflicting results, likely due to differences in the study design, dosage, duration, and population. The risk of bias in most of the RCTs and QE studies included in the review was assessed as low or moderate, and only one non-RCT was assessed as having a high risk of bias. Red beetroot may help maintain the blood sugar levels of humans under different health conditions. However, the existing results on beetroot's potential for glycemic management are unclear due to varied outcomes across studies. Further intervention studies with standardized protocols and diverse participant groups are necessary to assess the role of beetroot products in regulating blood sugar levels before making a definitive judgment.
Collapse
Affiliation(s)
- Baidaa Alhalabi
- School of Public Health, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India.
- Department of Nutrition, Faculty of Health Sciences, Al-Baath University, Homs, Syria.
| | - Alex Joseph
- School of Public Health, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India.
| | - Dhasarathi Kumar
- School of Public Health, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| |
Collapse
|
2
|
James TJ, Corbett J, Cummings M, Allard S, Shute JK, Belcher H, Mayes H, Gould AAM, Piccolo DD, Tipton M, Perissiou M, Saynor ZL, Shepherd AI. The effect of repeated hot water immersion on insulin sensitivity, heat shock protein 70, and inflammation in individuals with type 2 diabetes mellitus. Am J Physiol Endocrinol Metab 2023; 325:E755-E763. [PMID: 37938179 DOI: 10.1152/ajpendo.00222.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/09/2023]
Abstract
Repeated hot water immersion (HWI) can improve glycemic control in healthy individuals but data are limited for individuals with type 2 diabetes mellitus (T2DM). The present study investigated whether repeated HWI improves insulin sensitivity and inflammatory status and reduces plasma ([extracellular heat shock protein 70]) [eHSP70] and resting metabolic rate (RMR). Fourteen individuals with T2DM participated in this pre- versus postintervention study, with outcome measures assessed in fasted (≥12 h) and postprandial (2-h post-75 g glucose ingestion) states. HWI consisted of 1 h in 40°C water (target rectal temperature 38.5°C-39°C) repeated 8-10 times within a 14-day period. Outcome measures included insulin sensitivity, plasma [glucose], [insulin], [eHSP70], inflammatory markers, RMR, and substrate utilization. The HWI intervention increased fasted insulin sensitivity (QUICKI; P = 0.03) and lowered fasted plasma [insulin] (P = 0.04), but fasting plasma [glucose] (P = 0.83), [eHSP70] (P = 0.08), [IL-6] (P = 0.55), [IL-10] (P = 0.59), postprandial insulin sensitivity (P = 0.19), plasma [glucose] (P = 0.40), and [insulin] (P = 0.47) were not different. RMR was reduced by 6.63% (P < 0.05), although carbohydrate (P = 0.43) and fat oxidation (P = 0.99) rates were unchanged. This study shows that 8-10 HWIs within a 14-day period improved fasting insulin sensitivity and plasma [insulin] in individuals with T2DM, but not when glucose tolerance is challenged. HWI also improves metabolic efficiency (i.e., reduced RMR). Together these results could be clinically important and have implications for metabolic health outcomes and well-being in individuals with T2DM.NEW & NOTEWORTHY This is the first study to investigate repeated HWI to raise deep body temperature on insulin sensitivity, inflammation, eHSP70, and substrate utilization in individuals with T2DM. The principal novel findings were improvements in fasting insulin sensitivity and fasting plasma [insulin] but no change in fasting plasma [glucose], postprandial insulin sensitivity, plasma [insulin], or [glucose]. There was also no change in eHSP70, inflammatory status, or substrate utilization but there were reductions in RMR and oxygen consumption.
Collapse
Affiliation(s)
- Thomas J James
- Faculty of Science and Health, Physical Activity, Health and Rehabilitation Theme, School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
- Faculty of Science and Health, Extreme Environments Theme, School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Jo Corbett
- Faculty of Science and Health, Extreme Environments Theme, School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Michael Cummings
- Diabetes and Endocrinology Department, Portsmouth Hospitals University NHS Trust, Portsmouth, United Kingdom
| | - Sharon Allard
- Diabetes and Endocrinology Department, Portsmouth Hospitals University NHS Trust, Portsmouth, United Kingdom
| | - Janis K Shute
- Faculty of Science and Health, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Harvey Belcher
- Faculty of Science and Health, Physical Activity, Health and Rehabilitation Theme, School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
- Faculty of Science and Health, Extreme Environments Theme, School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Harry Mayes
- Faculty of Science and Health, Extreme Environments Theme, School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Alex A M Gould
- Faculty of Science and Health, Extreme Environments Theme, School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Daniel D Piccolo
- Faculty of Science and Health, Physical Activity, Health and Rehabilitation Theme, School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
- Faculty of Science and Health, Extreme Environments Theme, School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Michael Tipton
- Faculty of Science and Health, Extreme Environments Theme, School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Maria Perissiou
- Faculty of Science and Health, Physical Activity, Health and Rehabilitation Theme, School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Zoe L Saynor
- Faculty of Science and Health, Physical Activity, Health and Rehabilitation Theme, School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Anthony I Shepherd
- Faculty of Science and Health, Physical Activity, Health and Rehabilitation Theme, School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
- Faculty of Science and Health, Extreme Environments Theme, School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
3
|
Nagendra L, Dutta D, Sharma M, Bg H. Impact of Enhanced External Counter-pulsation Therapy on Glycaemic Control in People With Prediabetes and Type 2 Diabetes Mellitus: A Systematic Review and Meta-analysis. TOUCHREVIEWS IN ENDOCRINOLOGY 2023; 19:9-15. [PMID: 38187074 PMCID: PMC10769479 DOI: 10.17925/ee.2023.19.2.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/02/2023] [Indexed: 01/09/2024]
Abstract
Background: Enhanced external counter-pulsation (EECP) therapy is approved for refractory angina in coronary artery disease (CAD). EECP is being explored as a treatment modality in type 2 diabetes mellitus (T2DM). Methods: The Embase, Web of Science, Cochrane Library, MEDLINE (PubMed), ClinicaltTrials. gov, CNKI database, Clinical Trials Registry-india (CTRI), and Google Scholar databases were searched for randomized controlled trials (RCTs) involving patients receiving EECP therapy in the intervention arm. The primary outcome was the changes in glycated haemoglobin (HbA1c). The secondary outcomes were the changes in blood glucose parameters, inflammatory markers and any adverse events. Results: Data from 3 RCTs involving 71 people with T2DM/prediabetes was analysed to find out the impact of EECP therapy compared with placebo. As compared with placebo, patients receiving EECP had significantly lower HbA1C immediately after completion of therapy (mean difference [MD] -0.70%, 95% confidence interval (CI) -0.95. -0.45;p<0.00001), at 2-4 weeks post completion of therapy (MD -1.04%, 95%CI -1.32. -0.77; p<0.00001) and 7-12 weeks after therapy completion (MD -0.98%, 95% CI -1.22, -0.74; p<0.00001). EECP therapy was well tolerated without any increased side effects (risk ratio 2.36, 95% CI 0.11-52.41; p=0.59. Conclusion: EECP therapy is effective in blood glucose and pressure lowering over at least 7-12 weeks of therapy completion. Blood glucose and pressure should be monitored with suitable modulation of drug doses to prevent hypoglycaemia and hypotension in patients with angina undergoing EECP therapy. The PROSPERO registration number is CRD42023434533.
Collapse
Affiliation(s)
- Lakshmi Nagendra
- Department of Endocrinology, JSS Academy of Higher Education and Research, Mysore, India
| | - Deep Dutta
- Department of Endocrinology, Center for Endocrinology Diabetes Arthritis & Rheumatism (CEDAR) Superspeciality Healthcare, Dwarka, New Delhi, India
| | - Meha Sharma
- Department of Rheumatology, Center for Endocrinology Diabetes Arthritis & Rheumatism (CEDAR) Superspeciality Healthcare, Dwarka, New Delhi, India
| | - Harish Bg
- Department of Anaesthesiology, JSS Academy of Higher Education and Research, Mysore, India
| |
Collapse
|
4
|
Theodorou AA, Chatzinikolaou PN, Margaritelis NV, Christodoulou F, Tsatalas T, Paschalis V. Short-Term L-Citrulline Supplementation Does Not Affect Inspiratory Muscle Oxygenation and Respiratory Performance in Older Adults. Nutrients 2023; 15:nu15081951. [PMID: 37111169 PMCID: PMC10145540 DOI: 10.3390/nu15081951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
In sports nutrition, nitric oxide (NO•) precursors such as L-citrulline are widely used to enhance NO• bioavailability, which is considered an ergogenic aid. Our study aimed to examine the effect of short-term L-citrulline supplementation on respiratory muscles' performance, fatigue, and oxygenation in older adults. Fourteen healthy older males took 6 g of L-citrulline or a placebo for seven days in a double-blind crossover design. Pulmonary function via spirometry (i.e., forced expired volume in 1 s (FEV1), forced vital capacity (FVC), and their ratio)), fractional exhaled nitric oxide (NO•), maximal inspiratory pressure (MIP), rate of perceived exertion, and sternocleidomastoid muscle oxygenation (i.e., oxyhemoglobin (Δ[O2Hb]) and de-oxyhemoglobin (Δ[HHb]), total hemoglobin concentration (Δ[tHb]), and tissue saturation index (TSI%)) were evaluated at baseline, after seven days of L-citrulline supplementation, and after incremental resistive breathing to task failure of the respiratory muscles. The exhaled NO• value was only significantly increased after the supplementation (26% p < 0.001) in the L-citrulline condition. Pulmonary function, MIP, rate of perceived exertion, and sternocleidomastoid muscle oxygenation were not affected by the L-citrulline supplementation. In the present study, although short-term L-citrulline supplementation increased exhaled NO•, no ergogenic aids were found on the examined parameters at rest and after resistive breathing to task failure in older adults.
Collapse
Affiliation(s)
- Anastasios A Theodorou
- Department of Life Sciences, School of Sciences, European University Cyprus, 1516 Nicosia, Cyprus
| | - Panagiotis N Chatzinikolaou
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, 61122 Thessaloniki, Greece
| | - Nikos V Margaritelis
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, 61122 Thessaloniki, Greece
| | - Filippos Christodoulou
- Department of Life Sciences, School of Sciences, European University Cyprus, 1516 Nicosia, Cyprus
| | - Themistoklis Tsatalas
- Department of Life Sciences, School of Sciences, European University Cyprus, 1516 Nicosia, Cyprus
- Department of Physical Education & Sport Science, University of Thessaly, 42100 Trikala, Greece
| | - Vassilis Paschalis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, 17237 Athens, Greece
| |
Collapse
|
5
|
Moreira LDSG, Fanton S, Cardozo L, Borges NA, Combet E, Shiels PG, Stenvinkel P, Mafra D. Pink pressure: beetroot (Beta vulgaris rubra) as a possible novel medical therapy for chronic kidney disease. Nutr Rev 2021; 80:1041-1061. [PMID: 34613396 DOI: 10.1093/nutrit/nuab074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chronic kidney disease (CKD) manifests with systemic inflammation, oxidative stress, and gut dysbiosis, resulting in metabolic disorders and elevated rates of cardiovascular disease-associated death. These all correlate with a high economic cost to healthcare systems. Growing evidence indicates that diet is an indispensable ally in the prevention and management of CKD and its complications. In this context, the root vegetable beetroot (Beta vulgaris rubra) deserves special attention because it is a source of several bioactive compounds, such as nitrate, betaine, and betalain, and has shown beneficial effects in CKD, including reduction of blood pressure, anti-inflammatory effects, and antioxidant actions by scavenging radical oxidative species, as observed in preclinical studies. Beetroot consumption as a possible therapeutic strategy to improve the clinical treatment of patients with CKD and future directions for clinical studies are addressed in this narrative review.
Collapse
Affiliation(s)
- Laís de Souza Gouveia Moreira
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Susane Fanton
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Ludmila Cardozo
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Natalia A Borges
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Emilie Combet
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Paul G Shiels
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Stenvinkel
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Denise Mafra
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
6
|
Masson SWC, Woodhead JST, D'Souza RF, Broome SC, MacRae C, Cho HC, Atiola RD, Futi T, Dent JR, Shepherd PR, Merry TL. β-Catenin is required for optimal exercise- and contraction-stimulated skeletal muscle glucose uptake. J Physiol 2021; 599:3897-3912. [PMID: 34180063 DOI: 10.1113/jp281352] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/22/2021] [Indexed: 01/14/2023] Open
Abstract
KEY POINTS Loss of β-catenin impairs in vivo and isolated muscle exercise/contraction-stimulated glucose uptake. β-Catenin is required for exercise-induced skeletal muscle actin cytoskeleton remodelling. β-Catenin675 phosphorylation during exercise may be intensity dependent. ABSTRACT The conserved structural protein β-catenin is an emerging regulator of vesicle trafficking in multiple tissues and supports insulin-stimulated glucose transporter 4 (GLUT4) translocation in skeletal muscle by facilitating cortical actin remodelling. Actin remodelling may be a convergence point between insulin and exercise/contraction-stimulated glucose uptake. Here we investigated whether β-catenin is involved in regulating exercise/contraction-stimulated glucose uptake. We report that the muscle-specific deletion of β-catenin induced in adult mice (BCAT-mKO) impairs both exercise- and contraction (isolated muscle)-induced glucose uptake without affecting running performance or canonical exercise signalling pathways. Furthermore, high intensity exercise in mice and contraction of myotubes and isolated muscles led to the phosphorylation of β-cateninS675 , and this was impaired by Rac1 inhibition. Moderate intensity exercise in control and Rac1 muscle-specific knockout mice did not induce muscle β-cateninS675 phosphorylation, suggesting exercise intensity-dependent regulation of β-cateninS675 . Introduction of a non-phosphorylatable S675A mutant of β-catenin into myoblasts impaired GLUT4 translocation and actin remodelling stimulated by carbachol, a Rac1 and RhoA activator. Exercise-induced increases in cross-sectional phalloidin staining (F-actin marker) of gastrocnemius muscle was impaired in muscle from BCAT-mKO mice. Collectively our findings suggest that β-catenin is required for optimal glucose transport in muscle during exercise/contraction, potentially via facilitating actin cytoskeleton remodelling.
Collapse
Affiliation(s)
- Stewart W C Masson
- Discipline of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Jonathan S T Woodhead
- Discipline of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Randall F D'Souza
- Discipline of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Sophie C Broome
- Discipline of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Caitlin MacRae
- Discipline of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Hyun C Cho
- Discipline of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Robert D Atiola
- Discipline of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Tumanu Futi
- Discipline of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Jessica R Dent
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Peter R Shepherd
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.,Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Troy L Merry
- Discipline of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
7
|
Aguiar AF, Casonatto J. Effects of Citrulline Malate Supplementation on Muscle Strength in Resistance-Trained Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Diet Suppl 2021; 19:772-790. [PMID: 34176406 DOI: 10.1080/19390211.2021.1939473] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Although the ergogenic mechanisms of supplementation with citrulline malate are well known, unclear findings regarding variables of muscle strength have been recorded. Such misleading findings in the literature illustrate the need for well-conducted meta-analysis research to elucidate the possible ergogenic impact, which could have major practical consequences for athletes and recreational practitioners seeking to optimize gains in muscle strength. The objective of this systematic review was to summarize the existing literature that evaluated the effects of citrulline malate supplementation on muscle strength outcomes from resistance exercise in resistance-trained individuals. A systematic electronic search in Medline and Scientific Electronic Library Online (SciELO) was completed in August 2020 identifying randomized controlled trials investigating the effect of citrulline malate supplementation on muscle strength in resistance-trained adults. A subsequent meta-analysis was performed. The meta-analysis involved four studies and 138 assessments (69 in citrulline-malate and 69 in placebo groups). We did not observe an overall effect favoring citrulline-malate supplementation (SMD95% = 0.13 [-0.21; 0.46]). Considering the lower (SMD95% = 0.06 [-0.47; 0.60]) and upper (SMD95% = 0.17 [-0.26; 0.60]) limbs, a non-significant overall effect was identified. The mean effects were similar for "limbs" (upper vs lower) [p = 0.763]. Accordingly, our findings suggest that citrulline malate supplementation does not improve muscle strength in healthy and resistance-trained individuals (PROSPERO registration number: CRD42020159338).
Collapse
Affiliation(s)
- Andreo F Aguiar
- Research Laboratory in Muscular System and Physical Exercise, University of Northern Paraná, Londrina, Brazil
| | - Juliano Casonatto
- Research Group in Physiology and Physical Activity, University of Northern Paraná, Londrina, Brazil
| |
Collapse
|
8
|
Ostojic SM. Hydrogen Gas as an Exotic Performance-Enhancing Agent: Challenges and Opportunities. Curr Pharm Des 2021; 27:723-730. [PMID: 32962610 DOI: 10.2174/1381612826666200922155242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/14/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Hydrogen gas (H2) has entered the world of experimental therapeutics approximately four and a half decades ago. Over the years, this simple molecule appears to drive more scientific attention, perhaps due to a dualism of H2 affirmative features demonstrated in numerous in vitro, animal and human studies on one side, and still puzzling mechanism(s) of its biological activity on the other. Up to this point, H2 was scrutinized for more than 170 different disease models and pathologies, and many research groups across the world have lately started to dynamically investigate its conceivable performance-enhancing potential. METHODS We outlined here the studies indexed in leading research databases (PubMed, Web of Science, SCOPUS, JSTORE) that explored the effects of hydrogen on exercise performance, and also addressed important restraints, open questions, and windows of opportunities for forthcoming research and possible H2 enactment in exercise physiology. About two dozen trials have been identified in this domain, with most of the trials published during the past 5 years, while drinking hydrogen-rich water recognized as the most convenient method to deliver H2 in both animal and human studies. RESULTS Either administered as an inhalational gas, enteral hydrogen-rich water, or intravenous hydrogen-rich saline, H2 seems to favorably affect various exercise performance outcomes and biomarkers of exercise-associated fatigue, inflammation, and oxidative stress. Not all studies have shown corroborative effects, and it appears that the gold-standard protocol for applying H2 in the field of exercise science does not exist at the moment, with studies markedly differ in the dose of H2 administered, the duration of treatment, and the source of hydrogen. CONCLUSION H2 is a newfangled and rather effective performance-enhancing agent, yet its promising ergogenic potency has to be further validated and characterized in more well-controlled, appropriately sampled and longterm mechanistic trials. Also, appropriate regulation of hydrogen utilization in sport as an exotic medical gas may require distinctive legislative actions of relevant regulatory agencies in the future.
Collapse
Affiliation(s)
- Sergej M Ostojic
- Applied Bioenergetics Lab, Faculty of Sport and PE, University of Novi Sad, Lovcenska 16, Novi Sad 21000, Serbia
| |
Collapse
|
9
|
Alghamdi F, Alshuweishi Y, Salt IP. Regulation of nutrient uptake by AMP-activated protein kinase. Cell Signal 2020; 76:109807. [DOI: 10.1016/j.cellsig.2020.109807] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023]
|
10
|
Blood Profile of Cytokines, Chemokines, Growth Factors, and Redox Biomarkers in Response to Different Protocols of Treadmill Running in Rats. Int J Mol Sci 2020; 21:ijms21218071. [PMID: 33137990 PMCID: PMC7663152 DOI: 10.3390/ijms21218071] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/19/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022] Open
Abstract
Both positive and negative aspects of sport performance are currently considered. The aim of our study was to determine time- and intensity-dependent effects of a single exercise bout on redox and inflammatory status. The experiment was performed on 40 male Wistar rats subjected to treadmill running for 30 min with the speed of 18 m/min (M30) or 28 m/min (F30), or for 2 h with the speed of 18 m/min (M120). Immunoenzymatic and spectrophotometric methods were applied to assess the levels of pro-inflammatory and anti-inflammatory cytokines, chemokines, growth factors, the antioxidant barrier, redox status, oxidative damage products, nitrosative stress, and their relationships with plasma non-esterified fatty acids. Treadmill running caused a reduction in the content of monocyte chemoattractant protein-1 (MCP1) and nitric oxide (M30, M120, F30 groups) as well as macrophage inflammatory protein-1α (MIP-1α) and regulated on activation, normal T-cell expressed and secreted (RANTES) (M30, F30 groups). We also demonstrated an increase in catalase activity as well as higher levels of reduced glutathione, advanced oxidation protein products, lipid hydroperoxides, malondialdehyde (M30, M120, F30 groups), and advanced glycation end products (F30 group). The presented findings showed the activation of antioxidative defense in response to increased reactive oxygen species' production after a single bout of exercise, but it did not prevent oxidative damage of macromolecules.
Collapse
|
11
|
Mukund K, Subramaniam S. Skeletal muscle: A review of molecular structure and function, in health and disease. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2020; 12:e1462. [PMID: 31407867 PMCID: PMC6916202 DOI: 10.1002/wsbm.1462] [Citation(s) in RCA: 233] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 12/11/2022]
Abstract
Decades of research in skeletal muscle physiology have provided multiscale insights into the structural and functional complexity of this important anatomical tissue, designed to accomplish the task of generating contraction, force and movement. Skeletal muscle can be viewed as a biomechanical device with various interacting components including the autonomic nerves for impulse transmission, vasculature for efficient oxygenation, and embedded regulatory and metabolic machinery for maintaining cellular homeostasis. The "omics" revolution has propelled a new era in muscle research, allowing us to discern minute details of molecular cross-talk required for effective coordination between the myriad interacting components for efficient muscle function. The objective of this review is to provide a systems-level, comprehensive mapping the molecular mechanisms underlying skeletal muscle structure and function, in health and disease. We begin this review with a focus on molecular mechanisms underlying muscle tissue development (myogenesis), with an emphasis on satellite cells and muscle regeneration. We next review the molecular structure and mechanisms underlying the many structural components of the muscle: neuromuscular junction, sarcomere, cytoskeleton, extracellular matrix, and vasculature surrounding muscle. We highlight aberrant molecular mechanisms and their possible clinical or pathophysiological relevance. We particularly emphasize the impact of environmental stressors (inflammation and oxidative stress) in contributing to muscle pathophysiology including atrophy, hypertrophy, and fibrosis. This article is categorized under: Physiology > Mammalian Physiology in Health and Disease Developmental Biology > Developmental Processes in Health and Disease Models of Systems Properties and Processes > Cellular Models.
Collapse
Affiliation(s)
- Kavitha Mukund
- Department of BioengineeringUniversity of CaliforniaSan DiegoCalifornia
| | - Shankar Subramaniam
- Department of Bioengineering, Bioinformatics & Systems BiologyUniversity of CaliforniaSan DiegoCalifornia
- Department of Computer Science and EngineeringUniversity of CaliforniaSan DiegoCalifornia
- Department of Cellular and Molecular Medicine and NanoengineeringUniversity of CaliforniaSan DiegoCalifornia
| |
Collapse
|
12
|
López-Sánchez LM, Aranda E, Rodríguez-Ariza A. Nitric oxide and tumor metabolic reprogramming. Biochem Pharmacol 2019; 176:113769. [PMID: 31862448 DOI: 10.1016/j.bcp.2019.113769] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/13/2019] [Indexed: 12/20/2022]
Abstract
Nitric oxide (NO) has been highlighted as an important agent in tumor processes. However, a complete understanding of the mechanisms by which this simple diatomic molecule contributes in tumorigenesis is lacking. Evidence is rapidly accumulating that metabolic reprogramming is a major new aspect of NO biology and this review is aimed to summarize recent research progress on this novel feature that expands the complex and multifaceted role of NO in cancer. Therefore, we discuss how NO may influence glucose and glutamine utilization by tumor cells, and its participation in the regulation of mitochondrial function and dynamics, that is an important mechanism through which cancer cells reprogram their metabolism to meet the biosynthetic needs of rapid proliferation. Finally, we also discuss the NO-related metabolic rewiring involved in the modification of the tumor microenvironment to support cancer invasion and the escape from immune system-mediated recognition. Protein S-nitrosylation appears as a common mechanism by which NO signaling reprograms metabolism. Hence, future research is needed on dysregulated S-nitrosylation/denitrosylation in cancer to comprehend the NO-induced metabolic changes in tumor cells and the role of NO in the metabolic crosstalk within tumor microenvironment.
Collapse
Affiliation(s)
- Laura M López-Sánchez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Av. Menéndez Pidal s/n, E14004 Córdoba, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Av. Monforte de Lemos, 3-5, E 28029 Madrid, Spain
| | - Enrique Aranda
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Av. Menéndez Pidal s/n, E14004 Córdoba, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Av. Monforte de Lemos, 3-5, E 28029 Madrid, Spain; Unidad de Gestión Clínica de Oncología Médica, Hospital Reina Sofía, Universidad de Córdoba, Av. Menéndez Pidal s/n, E14004 Córdoba, Spain
| | - Antonio Rodríguez-Ariza
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Av. Menéndez Pidal s/n, E14004 Córdoba, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Av. Monforte de Lemos, 3-5, E 28029 Madrid, Spain; Unidad de Gestión Clínica de Oncología Médica, Hospital Reina Sofía, Universidad de Córdoba, Av. Menéndez Pidal s/n, E14004 Córdoba, Spain.
| |
Collapse
|
13
|
Kanzaki K, Watanabe D, Aibara C, Kawakami Y, Yamada T, Takahashi Y, Wada M. l-arginine ingestion inhibits eccentric contraction-induced proteolysis and force deficit via S-nitrosylation of calpain. Physiol Rep 2019; 6. [PMID: 29368397 PMCID: PMC5789731 DOI: 10.14814/phy2.13582] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/14/2017] [Accepted: 12/20/2017] [Indexed: 11/24/2022] Open
Abstract
It has been shown that calpains are involved in the proteolysis of muscle proteins that occurs with eccentric contraction (ECC) and that exogenously applied nitric oxide decreases the calpain‐mediated proteolysis. The aim of this study was to examine the effects of ingestion of l‐arginine (ARG), a nitric oxide precursor, on ECC‐related calpain activation. In the first and second experiments, male Wistar rats were given ARG in water for 7 days starting from 3 days before the ECC protocol (average ingestion, ~600 mg kg‐body wt−1 day−1). Tibialis anterior muscles underwent 200 repeated ECCs and, subsequently, were excised 3 days later. Whole muscle analyses (the first experiment) revealed that ARG attenuated ECC‐induced force deficit and autolysis of calpain‐1, and increased the amounts of S‐nitrosylated calpain‐1. Regarding ryanodine receptor (RyR) and dihydropyridine receptor (DHPR), ECC‐induced proteolysis was completely inhibited by ARG, whereas the inhibition was partial for junctophilin‐1 (JP1). Skinned fiber analyses (the second experiment) showed that ARG also inhibited ECC‐elicited reductions in the ratio of depolarization‐induced to maximum Ca2+‐activated force. In the third experiment, homogenates of rested muscles were treated with S‐nitrosylating agent, S‐nitrosoglutathione (GSNO), and/or high Ca2+ concentration ([Ca2+]). Treatment with high [Ca2+] and without GSNO produced proteolysis of RyR, DHPR, and JP1. On the other hand, treatment with high [Ca2+] and GSNO caused complete inhibition of RyR and DHPR proteolysis and partial inhibition of JP1 proteolysis. These results indicate that ARG ingestion can attenuate ECC‐induced proteolysis of Ca2+ regulatory proteins and force deficit by decreasing calpain activation via S‐nitrosylation.
Collapse
Affiliation(s)
- Keita Kanzaki
- Department of Clinical Nutrition, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, Okayama, Japan
| | - Daiki Watanabe
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan
| | - Chihiro Aibara
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuki Kawakami
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, Okayama, Japan
| | - Takashi Yamada
- Graduate School of Health Sciences, Sapporo Medical University, Hokkaido, Japan
| | - Yoshitaka Takahashi
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, Okayama, Japan
| | - Masanobu Wada
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
14
|
Dombernowsky NW, Ölmestig JNE, Witting N, Kruuse C. Role of neuronal nitric oxide synthase (nNOS) in Duchenne and Becker muscular dystrophies - Still a possible treatment modality? Neuromuscul Disord 2018; 28:914-926. [PMID: 30352768 DOI: 10.1016/j.nmd.2018.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 08/07/2018] [Accepted: 09/05/2018] [Indexed: 02/08/2023]
Abstract
Neuronal nitric oxide synthase (nNOS) is involved in nitric oxide (NO) production and suggested to play a crucial role in blood flow regulation of skeletal muscle. During activation of the muscle, NO helps attenuate the sympathetic vasoconstriction to accommodate increased metabolic demands, a phenomenon known as functional sympatholysis. In inherited myopathies such as the dystrophinopathies Duchenne and Becker muscle dystrophies (DMD and BMD), nNOS is lost from the sarcolemma. The loss of nNOS may cause functional ischemia contributing to skeletal and cardiac muscle cell injury. Effects of NO is augmented by inhibiting degradation of the second messenger cyclic guanosine monophosphate (cGMP) using sildenafil and tadalafil, both of which inhibit the enzyme phosphodiesterase 5 (PDE5). In animal models of DMD, PDE5-inhibitors prevent functional ischemia, reduce post-exercise skeletal muscle pathology and fatigue, show amelioration of cardiac muscle cell damage and increase cardiac performance. However, effect on clinical outcomes in DMD and BMD patients have been disappointing with minor effects on upper limb performance and none on ambulation. This review aims to summarize the current knowledge of nNOS function related to functional sympatholysis in skeletal muscle and studies on PDE5-inhibitor treatment in nNOS-deficient animal models and patients.
Collapse
Affiliation(s)
- Nanna W Dombernowsky
- Department of Neurology, Rigshospitalet Glostrup, University of Copenhagen, Denmark
| | - Joakim N E Ölmestig
- Department of Neurology, Neurovascular Research Unit, Herlev Gentofte Hospital, University of Copenhagen, Denmark
| | - Nanna Witting
- Department of Neurology, Rigshospitalet Glostrup, University of Copenhagen, Denmark
| | - Christina Kruuse
- Department of Neurology, Neurovascular Research Unit, Herlev Gentofte Hospital, University of Copenhagen, Denmark; PDE Research Group, Lundbeck Foundation Center for Neurovascular Research (LUCENS), Denmark.
| |
Collapse
|
15
|
Hargreaves M, Spriet LL. Exercise Metabolism: Fuels for the Fire. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a029744. [PMID: 28533314 DOI: 10.1101/cshperspect.a029744] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During exercise, the supply of adenosine triphosphate (ATP) is essential for the energy-dependent processes that underpin ongoing contractile activity. These pathways involve both substrate-level phosphorylation, without any need for oxygen, and oxidative phosphorylation that is critically dependent on oxygen delivery to contracting skeletal muscle by the respiratory and cardiovascular systems and on the supply of reducing equivalents from the degradation of carbohydrate, fat, and, to a limited extent, protein fuel stores. The relative contribution of these pathways is primarily determined by exercise intensity, but also modulated by training status, preceding diet, age, gender, and environmental conditions. Optimal substrate availability and utilization before, during, and after exercise is critical for maintaining exercise performance. This review provides a brief overview of exercise metabolism, with expanded discussion of the regulation of muscle glucose uptake and fatty acid uptake and oxidation.
Collapse
Affiliation(s)
- Mark Hargreaves
- Department of Physiology, The University of Melbourne, Victoria 3010, Australia
| | - Lawrence L Spriet
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
16
|
Kanzaki K, Watanabe D, Aibara C, Kawakami Y, Yamada T, Takahashi Y, Wada M. Ingestion of soy protein isolate attenuates eccentric contraction-induced force depression and muscle proteolysis via inhibition of calpain-1 activation in rat fast-twitch skeletal muscle. Nutrition 2018; 58:23-29. [PMID: 30273822 DOI: 10.1016/j.nut.2018.06.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/13/2018] [Accepted: 06/24/2018] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Eccentric contraction (ECC) is a contraction in which skeletal muscles are stretched while contracting. The aim of this study was to determine how ingestion of soy protein isolate (SPI) or animal-based proteins affect force deficit, calpain activation, and proteolysis of calcium ion (Ca2+)-regulatory proteins in rat fast-twitch muscles subjected to ECC. METHODS In the first experiment, male Wistar rats were randomly assigned to a control and an SPI group, which were fed a 20% casein and a 20% SPI diet, respectively, for 28 d before the ECC protocol. Anterior crural muscles underwent 200 repeated ECCs and were excised 3 d later. In the second experiment, half of the SPI rats were given water containing NG-nitro-l-arginine-methyl ester (L-NAME), an inhibitor of nitric oxide synthase, for 3 d of recovery after ECC. RESULTS SPI ingestion attenuated ECC-induced force deficit, proteolysis of Ca2+-regulatory proteins, and autolysis of calpain-1. Co-ingestion of L-NAME inhibited SPI-associated increases in nitrite and nitrate levels and negated the force recovery effects of SPI. CONCLUSION These results suggest that SPI ingestion inhibits ECC-elicited force deficit and proteolysis of Ca2+ regulatory proteins, which is caused by inhibited activation of calpain-1 via increased nitric oxide production.
Collapse
Affiliation(s)
- Keita Kanzaki
- Department of Clinical Nutrition, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, Okayama, Japan
| | - Daiki Watanabe
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan; Japan Society for the Promotion of Science, Tokyo, Japan
| | - Chihiro Aibara
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuki Kawakami
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, Okayama, Japan
| | - Takashi Yamada
- Graduate School of Health Sciences, Sapporo Medical University, Hokkaido, Japan
| | - Yoshitaka Takahashi
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, Okayama, Japan
| | - Masanobu Wada
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
17
|
Effects of long-term nitrate supplementation on carbohydrate metabolism, lipid profiles, oxidative stress, and inflammation in male obese type 2 diabetic rats. Nitric Oxide 2018; 75:27-41. [PMID: 29432804 DOI: 10.1016/j.niox.2018.02.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 12/18/2017] [Accepted: 02/08/2018] [Indexed: 12/31/2022]
Abstract
PURPOSE Supplementation with inorganic nitrate to boost the nitrate-nitrite-nitric oxide (NO) pathway, may act as a potential therapeutic agent in diabetes. The aim of this study was to determine the effects of nitrate on carbohydrate metabolism, lipid profiles, oxidative stress, and inflammation in obese type 2 diabetic rats. METHODS Male Wistar rats were divided into 4 groups: Control, control + nitrate, diabetes, and diabetes + nitrate. Diabetes was induced using a high-fat diet and low-dose of streptozotocin. Sodium nitrate (100 mg/L in drinking water) was administered simultaneously for two months. Serum levels of fasting glucose, insulin, and lipid profiles were measured every 2-weeks. Glycated hemoglobin (HbA1c) was measured monthly. Serum thiobarbituric reactive substances (TBARS) level and catalase activity were measured before and after treatment. At the end of the study, glucose, pyruvate, and insulin tolerance tests were done. Glucose-stimulated insulin secretion (GSIS) and insulin content from isolated pancreatic islets were also assessed; mRNA expression of iNOS as well as mRNA expression and protein levels of GLUT4 in insulin-sensitive tissues, and serum IL-1β were determined. RESULTS Nitrate supplementation in diabetic rats significantly improved glucose tolerance, lipid profiles, and catalase activity as well as decreased gluconeogenesis, fasting glucose, insulin, and IL-1β; although it had no significant effect on GSIS, islet insulin content, HbA1c, and serum TBARS. Compared to the controls, in diabetic rats, mRNA expression and protein levels of GLUT4 were significantly lower in the soleus muscle (54% and 34%, respectively) and epididymal adipose tissue (67% and 41%, respectively). In diabetic rats, nitrate administration increased GLUT4 mRNA expression and protein levels in both soleus muscle (215% and 17%, respectively) and epididymal adipose tissue (344% and 22%, respectively). In diabetic rats, nitrate significantly decreased elevated iNOS mRNA expression in both the soleus muscle and epididymal adipose tissue. CONCLUSION Chronic nitrate supplementation in obese type 2 diabetic rats improved glucose tolerance, insulin resistance, and dyslipidemia; these favorable effects were associated with increased mRNA and protein expression of GLUT4 and decreased mRNA expression of iNOS in insulin-sensitive tissues, and with decreased gluconeogenesis, inflammation, and oxidative stress.
Collapse
|
18
|
Kellogg DL, McCammon KM, Hinchee-Rodriguez KS, Adamo ML, Roman LJ. Neuronal nitric oxide synthase mediates insulin- and oxidative stress-induced glucose uptake in skeletal muscle myotubes. Free Radic Biol Med 2017; 110:261-269. [PMID: 28666850 PMCID: PMC5554434 DOI: 10.1016/j.freeradbiomed.2017.06.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 06/13/2017] [Accepted: 06/26/2017] [Indexed: 10/19/2022]
Abstract
Previously published studies strongly suggested that insulin- and exercise-induced skeletal muscle glucose uptake require nitric oxide (NO) production. However, the signal transduction mechanisms by which insulin and contraction regulated NO production and subsequent glucose transport are not known. In the present study, we utilized the myotube cell lines treated with insulin or hydrogen peroxide, the latter to mimic contraction-induced oxidative stress, to characterize these mechanisms. We found that insulin stimulation of neuronal nitric oxide synthase (nNOS) phosphorylation, NO production, and GLUT4 translocation were all significantly reduced by inhibition of either nNOS or Akt2. Hydrogen peroxide (H2O2) induced phosphorylation of nNOS at the same residue as did insulin, and also stimulated NO production and GLUT4 translocation. nNOS inhibition prevented H2O2-induced GLUT4 translocation. AMP activated protein kinase (AMPK) inhibition prevented H2O2 activation and phosphorylation of nNOS, leading to reduced NO production and significantly attenuated GLUT4 translocation. We conclude that nNOS phosphorylation and subsequently increased NO production are required for both insulin- and H2O2-stimulated glucose transport. Although the two stimuli result in phosphorylation of the same residue on nNOS, they do so through distinct protein kinases. Thus, insulin and H2O2-activated signaling pathways converge on nNOS, which is a common mediator of glucose uptake in both pathways. However, the fact that different kinases are utilized provides a basis for the use of exercise to activate glucose transport in the face of insulin resistance.
Collapse
Affiliation(s)
- Dean L Kellogg
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78229, United States
| | - Karen M McCammon
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78229, United States
| | - Kathryn S Hinchee-Rodriguez
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78229, United States
| | - Martin L Adamo
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78229, United States
| | - Linda J Roman
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78229, United States.
| |
Collapse
|
19
|
Sardina PD, Martin JS, Avery JC, Braith RW. Enhanced external counterpulsation (EECP) improves biomarkers of glycemic control in patients with non-insulin-dependent type II diabetes mellitus for up to 3 months following treatment. Acta Diabetol 2016; 53:745-52. [PMID: 27179825 DOI: 10.1007/s00592-016-0866-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/07/2016] [Indexed: 01/18/2023]
Abstract
AIMS The purpose of the present study was to evaluate the potential clinical benefits of EECP on glycemic parameters [fasting plasma glucose (FPG), postprandial glucose (PPG120), glycosylated hemoglobin (HbA1c)] in patients with a clinical diagnosis of type II diabetes mellitus (T2DM). METHODS Thirty subjects (60.7 ± 1.9 years) with T2DM were randomly assigned (2:1 ratio) to receive either 35 1-h sessions of EECP (n = 20) or time-matched control of standard care (n = 10). FPG, PPG120, and HbA1c were evaluated before and at 48 h, 2 weeks, 3 and 6 months following EECP treatment or time-matched control. RESULTS EECP significantly decreased FPG (-14.6 and -12.0 %), PPG120 (-14.6 and -13.5 %), and HbA1c (-11.5 and -19.6 %) 48 h following EECP and 2 weeks following EECP, respectively. HbA1c remained significantly reduced at 3 months following EECP (-14.3 %). The homeostasis model assessment of insulin resistance (-31.1 %) and whole-body composite insulin sensitivity index (+54.2 %) were significantly improved 48 h following EECP. Nitrite/nitrate (NO x ) was significantly increased 48 h following EECP (+48.4 %) and 2 weeks (+51.9 %) following EECP treatment. CONCLUSIONS Our findings provide novel evidence that EECP improves glycemic control in patients with T2DM that persist for up to 3 months following treatment.
Collapse
Affiliation(s)
- Paloma D Sardina
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, 32611, USA.
| | - Jeffrey S Martin
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Auburn Campus, Auburn, AL, 36832, USA
- School of Kinesiology, Auburn University, Auburn, AL, 36849, USA
| | - Joseph C Avery
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, 32611, USA
| | - Randy W Braith
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
20
|
Dolgacheva LP, Turovskaya MV, Dynnik VV, Zinchenko VP, Goncharov NV, Davletov B, Turovsky EA. Angiotensin II activates different calcium signaling pathways in adipocytes. Arch Biochem Biophys 2016; 593:38-49. [PMID: 26850364 DOI: 10.1016/j.abb.2016.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 01/11/2016] [Accepted: 02/01/2016] [Indexed: 12/15/2022]
Abstract
Angiotensin II (Ang II) is an important mammalian neurohormone involved in reninangiotensin system. Ang II is produced both constitutively and locally by RAS systems, including white fat adipocytes. The influence of Ang II on adipocytes is complex, affecting different systems of signal transduction from early Са(2+) responses to cell proliferation and differentiation, triglyceride accumulation, expression of adipokine-encoding genes and adipokine secretion. It is known that white fat adipocytes express all RAS components and Ang II receptors (АТ1 and АТ2). The current work was carried out with the primary white adipocytes culture, and Са(2+) signaling pathways activated by Ang II were investigated using fluorescent microscopy. Са(2+)-oscillations and transient responses of differentiated adipocytes to Ang II were registered in cells with both small and multiple lipid inclusions. Using inhibitory analysis and selective antagonists, we now show that Ang II initiates periodic Са(2+)-oscillations and transient responses by activating АТ1 and АТ2 receptors and involving branched signaling cascades: 1) Ang II → Gq → PLC → IP3 → IP3Rs → Ca(2+) 2) Gβγ → PI3Kγ → PKB 3) PKB → eNOS → NO → PKG 4) CD38 → cADPR → RyRs → Ca(2+) In these cascades, AT1 receptors play the leading role. The results of the present work open a perspective of using Ang II for correction of signal resistance of adipocytes often observed during obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Lyudmila P Dolgacheva
- Laboratory of Intracellular Signalling, Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Maria V Turovskaya
- Laboratory of Intracellular Signalling, Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Vladimir V Dynnik
- Laboratory of Intracellular Signalling, Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia; Laboratory of System Biochemistry, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Valery P Zinchenko
- Laboratory of Intracellular Signalling, Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Nikolay V Goncharov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Bazbek Davletov
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, England, UK
| | - Egor A Turovsky
- Laboratory of Intracellular Signalling, Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia.
| |
Collapse
|