1
|
Opie GM, Hughes JM, Puri R. Age-related differences in how the shape of alpha and beta oscillations change during reaction time tasks. Neurobiol Aging 2024; 142:52-64. [PMID: 39153461 DOI: 10.1016/j.neurobiolaging.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 07/25/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
While the shape of cortical oscillations is increasingly recognised to be physiologically and functionally informative, its relevance to the aging motor system has not been established. We therefore examined the shape of alpha and beta band oscillations recorded at rest, as well as during performance of simple and go/no-go reaction time tasks, in 33 young (23.3 ± 2.9 years, 27 females) and 27 older (60.0 ± 5.2 years, 23 females) adults. The shape of individual oscillatory cycles was characterised using a recently developed pipeline involving empirical mode decomposition, before being decomposed into waveform motifs using principal component analysis. This revealed four principal components that were uniquely influenced by task and/or age. These described specific dimensions of shape and tended to be modulated during the reaction phase of each task. Our results suggest that although oscillation shape is task-dependent, the nature of this effect is altered by advancing age, possibly reflecting alterations in cortical activity. These outcomes demonstrate the utility of this approach for understanding the neurophysiological effects of ageing.
Collapse
Affiliation(s)
- George M Opie
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, Australia.
| | - James M Hughes
- School of Mechanical Engineering, The University of Adelaide, Adelaide, Australia
| | - Rohan Puri
- School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Hobart, Australia
| |
Collapse
|
2
|
Liao WY, Opie GM, Ziemann U, Semmler JG. Modulation of dorsal premotor cortex differentially influences visuomotor adaptation in young and older adults. Neurobiol Aging 2024; 141:34-45. [PMID: 38815412 DOI: 10.1016/j.neurobiolaging.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024]
Abstract
The communication between dorsal premotor cortex (PMd) and primary motor cortex (M1) is important for visuomotor adaptation, but it is unclear how this relationship changes with advancing age. The present study recruited 21 young and 23 older participants for two experimental sessions during which intermittent theta burst stimulation (iTBS) or sham was applied over PMd. We assessed the effects of PMd iTBS on M1 excitability using motor evoked potentials (MEP) recorded from right first dorsal interosseous when single-pulse transcranial magnetic stimulation (TMS) was applied with posterior-anterior (PA) or anterior-posterior (AP) currents; and adaptation by quantifying error recorded during a visuomotor adaptation task (VAT). PMd iTBS potentiated PA (P < 0.0001) and AP (P < 0.0001) MEP amplitude in both young and older adults. PMd iTBS increased error in young adults during adaptation (P = 0.026), but had no effect in older adults (P = 0.388). Although PMd iTBS potentiated M1 excitability in both young and older adults, the intervention attenuated visuomotor adaptation specifically in young adults.
Collapse
Affiliation(s)
- Wei-Yeh Liao
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, Australia.
| | - George M Opie
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, Australia
| | - Ulf Ziemann
- Department of Neurology & Stroke, Eberhard Karls University of Tübingen, Tübingen, Germany; Hertie-Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - John G Semmler
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
3
|
Clayton HA, Abbas S, `t Hart BM, Henriques DYP. Visuomotor adaptation across the lifespan. PLoS One 2024; 19:e0306276. [PMID: 38990816 PMCID: PMC11238954 DOI: 10.1371/journal.pone.0306276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 06/13/2024] [Indexed: 07/13/2024] Open
Abstract
Being able to adapt our movements to changing circumstances allows people to maintain performance across a wide range of tasks throughout life, but it is unclear whether visuomotor learning abilities are fully developed in young children and, if so, whether they remain stable in the elderly. There is limited evidence of changes in motor adaptation ability throughout life, and the findings are inconsistent. Therefore, our goal was to compare visuomotor learning abilities throughout the lifespan. We used a shorter, gamified experimental task and collected data from participants in 5 age groups. Young children (M = 7 years), older children (M = 11 years), young adults (M = 20 years), adults (M = 40 years) and older adults (M = 67 years) adapted to a 45° visuomotor rotation in a centre-out reaching task. Across measures of rate of adaptation, extent of learning, rate of unlearning, generalization, and savings, we found that all groups performed similarly. That is, at least for short bouts of gamified learning, children and older adults perform just as well as young adults.
Collapse
Affiliation(s)
- Holly A. Clayton
- Department of Psychology, York University, Toronto, Ontario, Canada
- Centre for Vision Research, York University, Toronto, Ontario, Canada
| | - Sahir Abbas
- Department of Psychology, York University, Toronto, Ontario, Canada
| | | | - Denise Y. P. Henriques
- Department of Psychology, York University, Toronto, Ontario, Canada
- Centre for Vision Research, York University, Toronto, Ontario, Canada
- School of Kinesiology and Health Sciences, York University, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Pantovic M, Lidstone DE, de Albuquerque LL, Wilkins EW, Munoz IA, Aynlender DG, Morris D, Dufek JS, Poston B. Cerebellar Transcranial Direct Current Stimulation Applied over Multiple Days Does Not Enhance Motor Learning of a Complex Overhand Throwing Task in Young Adults. Bioengineering (Basel) 2023; 10:1265. [PMID: 38002389 PMCID: PMC10669324 DOI: 10.3390/bioengineering10111265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/08/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Cerebellar transcranial direct current stimulation (tDCS) enhances motor skill and learning in relatively simple motor tasks, but it is unclear if c-tDCS can improve motor performance in complex motor tasks. The purpose of this study was to determine the influence of c-tDCS applied over multiple days on motor learning in a complex overhand throwing task. In a double-blind, randomized, between-subjects, SHAM-controlled, experimental design, 30 young adults were assigned to either a c-tDCS or a SHAM group. Participants completed three identical experiments on consecutive days that involved overhand throwing in a pre-test block, five practice blocks with concurrent c-tDCS, and a post-test block. Overhand throwing endpoint accuracy was quantified as the endpoint error. The first dorsal interosseous muscle motor evoked potential (MEP) amplitude elicited by transcranial magnetic stimulation was used to quantify primary motor cortex (M1) excitability modulations via c-tDCS. Endpoint error significantly decreased over the 3 days of practice, but the magnitude of decrease was not significantly different between the c-tDCS and SHAM group. Similarly, MEP amplitude slightly increased from the pre-tests to the post-tests, but these increases did not differ between groups. These results indicate that multi-day c-tDCS does not improve motor learning in an overhand throwing task or increase M1 excitability.
Collapse
Affiliation(s)
- Milan Pantovic
- Health and Human Performance Department, Utah Tech University, St. George, UT 84770, USA;
| | - Daniel E. Lidstone
- Center for Neurodevelopment and Imaging Research, Kennedy Krieger Institute, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Lidio Lima de Albuquerque
- School of Health and Applied Human Sciences, University of North Carolina Wilmington, Wilmington, NC 28403, USA;
| | - Erik W. Wilkins
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (E.W.W.); (J.S.D.)
| | - Irwin A. Munoz
- School of Medicine, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (I.A.M.); (D.G.A.); (D.M.)
| | - Daniel G. Aynlender
- School of Medicine, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (I.A.M.); (D.G.A.); (D.M.)
| | - Desiree Morris
- School of Medicine, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (I.A.M.); (D.G.A.); (D.M.)
| | - Janet S. Dufek
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (E.W.W.); (J.S.D.)
| | - Brach Poston
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (E.W.W.); (J.S.D.)
| |
Collapse
|
5
|
Takano K, Katagiri N, Sato T, Jin M, Koseki T, Kudo D, Yoshida K, Tanabe S, Tsujikawa M, Kondo K, Yamaguchi T. Changes in Corticospinal Excitability and Motor Control During Cerebellar Transcranial Direct Current Stimulation in Healthy Individuals. CEREBELLUM (LONDON, ENGLAND) 2023; 22:905-914. [PMID: 36053392 DOI: 10.1007/s12311-022-01469-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Cerebellar transcranial direct current stimulation (ctDCS) modulates the primary motor cortex (M1) via cerebellar brain inhibition (CBI), which affects motor control in humans. However, the effects of ctDCS on motor control are inconsistent because of an incomplete understanding of the real-time changes in the M1 excitability that occur during ctDCS, which determines motor output under regulation by the cerebellum. This study investigated changes in corticospinal excitability and motor control during ctDCS in healthy individuals. In total, 37 healthy individuals participated in three separate experiments. ctDCS (2 mA) was applied to the cerebellar hemisphere during the rest condition or a pinch force-tracking task. Motor-evoked potential (MEP) amplitude and the F-wave were assessed before, during, and after ctDCS, and pinch force control was assessed before and during ctDCS. The MEP amplitudes were significantly decreased during anodal ctDCS from 13 min after the onset of stimulation, whereas the F-wave was not changed. No significant changes in MEP amplitudes were observed during cathodal and sham ctDCS conditions. The MEP amplitudes were decreased during anodal ctDCS when combined with the pinch force-tracking task, and pinch force control was impaired during anodal ctDCS relative to sham ctDCS. The MEP amplitudes were not significantly changed before and after all ctDCS conditions. Motor cortical excitability was suppressed during anodal ctDCS, and motor control was unskilled during anodal ctDCS when combined with a motor task in healthy individuals. Our findings provided a basic understanding of the clinical application of ctDCS to neurorehabilitation.
Collapse
Affiliation(s)
- Keita Takano
- Department of Physical Therapy, Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, 260 Kamiyanagi, Yamagata-shi, Yamagata, 990-2212, Japan
- Department of Rehabilitation Medicine, Tokyo Bay Rehabilitation Hospital, 4-1-1 Yatsu, Narashino-shi, Chiba, 275-0026, Japan
| | - Natsuki Katagiri
- Department of Rehabilitation Medicine, Tokyo Bay Rehabilitation Hospital, 4-1-1 Yatsu, Narashino-shi, Chiba, 275-0026, Japan
| | - Takatsugu Sato
- Department of Rehabilitation Medicine, Tokyo Bay Rehabilitation Hospital, 4-1-1 Yatsu, Narashino-shi, Chiba, 275-0026, Japan
| | - Masafumi Jin
- Department of Physical Therapy, Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, 260 Kamiyanagi, Yamagata-shi, Yamagata, 990-2212, Japan
| | - Tadaki Koseki
- Department of Physical Therapy, Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, 260 Kamiyanagi, Yamagata-shi, Yamagata, 990-2212, Japan
| | - Daisuke Kudo
- Department of Physical Therapy, Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, 260 Kamiyanagi, Yamagata-shi, Yamagata, 990-2212, Japan
| | - Kaito Yoshida
- Department of Occupational Therapy, Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, 260 Kamiyanagi, Yamagata-shi, Yamagata, 990-2212, Japan
| | - Shigeo Tanabe
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake-shi, Aichi, 470-1192, Japan
| | - Masahiro Tsujikawa
- Department of Rehabilitation Medicine, Tokyo Bay Rehabilitation Hospital, 4-1-1 Yatsu, Narashino-shi, Chiba, 275-0026, Japan
| | - Kunitsugu Kondo
- Department of Rehabilitation Medicine, Tokyo Bay Rehabilitation Hospital, 4-1-1 Yatsu, Narashino-shi, Chiba, 275-0026, Japan
| | - Tomofumi Yamaguchi
- Department of Physical Therapy, Faculty of Health Science, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
6
|
Manto M, Serrao M, Filippo Castiglia S, Timmann D, Tzvi-Minker E, Pan MK, Kuo SH, Ugawa Y. Neurophysiology of cerebellar ataxias and gait disorders. Clin Neurophysiol Pract 2023; 8:143-160. [PMID: 37593693 PMCID: PMC10429746 DOI: 10.1016/j.cnp.2023.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/19/2023] [Accepted: 07/11/2023] [Indexed: 08/19/2023] Open
Abstract
There are numerous forms of cerebellar disorders from sporadic to genetic diseases. The aim of this chapter is to provide an overview of the advances and emerging techniques during these last 2 decades in the neurophysiological tests useful in cerebellar patients for clinical and research purposes. Clinically, patients exhibit various combinations of a vestibulocerebellar syndrome, a cerebellar cognitive affective syndrome and a cerebellar motor syndrome which will be discussed throughout this chapter. Cerebellar patients show abnormal Bereitschaftpotentials (BPs) and mismatch negativity. Cerebellar EEG is now being applied in cerebellar disorders to unravel impaired electrophysiological patterns associated within disorders of the cerebellar cortex. Eyeblink conditioning is significantly impaired in cerebellar disorders: the ability to acquire conditioned eyeblink responses is reduced in hereditary ataxias, in cerebellar stroke and after tumor surgery of the cerebellum. Furthermore, impaired eyeblink conditioning is an early marker of cerebellar degenerative disease. General rules of motor control suggest that optimal strategies are needed to execute voluntary movements in the complex environment of daily life. A high degree of adaptability is required for learning procedures underlying motor control as sensorimotor adaptation is essential to perform accurate goal-directed movements. Cerebellar patients show impairments during online visuomotor adaptation tasks. Cerebellum-motor cortex inhibition (CBI) is a neurophysiological biomarker showing an inverse association between cerebellothalamocortical tract integrity and ataxia severity. Ataxic gait is characterized by increased step width, reduced ankle joint range of motion, increased gait variability, lack of intra-limb inter-joint and inter-segmental coordination, impaired foot ground placement and loss of trunk control. Taken together, these techniques provide a neurophysiological framework for a better appraisal of cerebellar disorders.
Collapse
Affiliation(s)
- Mario Manto
- Service des Neurosciences, Université de Mons, Mons, Belgium
- Service de Neurologie, CHU-Charleroi, Charleroi, Belgium
| | - Mariano Serrao
- Department of Medical and Surgical Sciences and Biotechnologies, University of Rome Sapienza, Polo Pontino, Corso della Repubblica 79 04100, Latina, Italy
- Gait Analysis LAB Policlinico Italia, Via Del Campidano 6 00162, Rome, Italy
| | - Stefano Filippo Castiglia
- Department of Medical and Surgical Sciences and Biotechnologies, University of Rome Sapienza, Polo Pontino, Corso della Repubblica 79 04100, Latina, Italy
- Gait Analysis LAB Policlinico Italia, Via Del Campidano 6 00162, Rome, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, via Bassi, 21, 27100 Pavia, Italy
| | - Dagmar Timmann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Elinor Tzvi-Minker
- Department of Neurology, University of Leipzig, Liebigstraße 20, 04103 Leipzig, Germany
- Syte Institute, Hamburg, Germany
| | - Ming-Kai Pan
- Cerebellar Research Center, National Taiwan University Hospital, Yun-Lin Branch, Yun-Lin 64041, Taiwan
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei 10051, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Taipei 10002, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei City 11529, Taiwan
- Initiative for Columbia Ataxia and Tremor, Columbia University Irving Medical Center, New York, NY, USA
| | - Sheng-Han Kuo
- Institute of Biomedical Sciences, Academia Sinica, Taipei City 11529, Taiwan
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
7
|
Nettekoven CR, Jurdon R, Nandi T, Jenkinson N, Stagg CJ. Cerebellar anodal tDCS does not facilitate visuomotor adaptation or retention. Brain Stimul 2022; 15:1435-1438. [PMID: 36341957 PMCID: PMC7613922 DOI: 10.1016/j.brs.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 12/30/2022] Open
Affiliation(s)
| | - Rebecca Jurdon
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, UK
| | - Tulika Nandi
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, UK,Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, OX3 7JX, UK,Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, OX1 3TH, UK,Johannes Gutenberg University Medical Centre, Germany
| | - Ned Jenkinson
- Johannes Gutenberg University Medical Centre, Germany School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, B15 2TT, UK
| | - Charlotte J. Stagg
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, UK,Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, OX3 7JX, UK Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, OX1 3TH, UK
| |
Collapse
|
8
|
Siew-Pin Leuk J, Yow KE, Zi-Xin Tan C, Hendy AM, Kar-Wing Tan M, Hock-Beng Ng T, Teo WP. A meta-analytical review of transcranial direct current stimulation parameters on upper limb motor learning in healthy older adults and people with Parkinson's disease. Rev Neurosci 2022; 34:325-348. [PMID: 36138560 DOI: 10.1515/revneuro-2022-0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/22/2022] [Indexed: 11/15/2022]
Abstract
Current literature lacks consolidated evidence for the impact of stimulation parameters on the effects of transcranial direct current stimulation (tDCS) in enhancing upper limb motor learning. Hence, we aim to synthesise available methodologies and results to guide future research on the usage of tDCS on upper limb motor learning, specifically in older adults and Parkinson's disease (PD). Thirty-two studies (Healthy older adults, N = 526, M = 67.25, SD = 4.30 years; PD, N = 216, M = 66.62, SD = 6.25 years) were included in the meta-analysis. All included studies consisted of active and sham protocols. Random effect meta-analyses were conducted for (i) subjects (healthy older adults and PD); (ii) intensity (1.0, 1.5, 2 mA); (iii) electrode montage (unilateral anodal, bilateral anodal, unilateral cathodal); (iv) stimulation site (cerebellum, frontal, motor, premotor, SMA, somatosensory); (v) protocol (online, offline). Significant tDCS effect on motor learning was reported for both populations, intensity 1.0 and 2.0 mA, unilateral anodal and cathodal stimulation, stimulation site of the motor and premotor cortex, and both online and offline protocols. Regression showed no significant relationship between tDCS effects and density. The efficacy of tDCS is also not affected by the number of sessions. However, studies that reported only single session tDCS found significant negative association between duration with motor learning outcomes. Our findings suggest that different stimulation parameters enhanced upper limb motor learning in older adults and PD. Future research should combine tDCS with neuroimaging techniques to help with optimisation of the stimulation parameters, considering the type of task and population.
Collapse
Affiliation(s)
- Jessie Siew-Pin Leuk
- Physical Education and Sports Science (PESS) Academic Group, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
| | - Kai-En Yow
- Physical Education and Sports Science (PESS) Academic Group, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
| | - Clenyce Zi-Xin Tan
- Physical Education and Sports Science (PESS) Academic Group, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
| | - Ashlee M Hendy
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences (SENS), Deakin University, 221 Burwood Highway, Burwood, VIC 3125, Australia
| | - Mika Kar-Wing Tan
- Physical Education and Sports Science (PESS) Academic Group, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
| | - Tommy Hock-Beng Ng
- Physical Education and Sports Science (PESS) Academic Group, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
| | - Wei-Peng Teo
- Physical Education and Sports Science (PESS) Academic Group, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
| |
Collapse
|
9
|
Métais C, Nicolas J, Diarra M, Cheviet A, Koun E, Pélisson D. Neural substrates of saccadic adaptation: Plastic changes versus error processing and forward versus backward learning. Neuroimage 2022; 262:119556. [PMID: 35964865 DOI: 10.1016/j.neuroimage.2022.119556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/28/2022] Open
Abstract
Previous behavioral, clinical, and neuroimaging studies suggest that the neural substrates of adaptation of saccadic eye movements involve, beyond the central role of the cerebellum, several, still incompletely determined, cortical areas. Furthermore, no neuroimaging study has yet tackled the differences between saccade lengthening ("forward adaptation") and shortening ("backward adaptation") and neither between their two main components, i.e. error processing and oculomotor changes. The present fMRI study was designed to fill these gaps. Blood-oxygen-level-dependent (BOLD) signal and eye movements of 24 healthy volunteers were acquired while performing reactive saccades under 4 conditions repeated in short blocks of 16 trials: systematic target jump during the saccade and in the saccade direction (forward: FW) or in the opposite direction (backward: BW), randomly directed FW or BW target jump during the saccade (random: RND) and no intra-saccadic target jump (stationary: STA). BOLD signals were analyzed both through general linear model (GLM) approaches applied at the whole-brain level and through sensitive Multi-Variate Pattern Analyses (MVPA) applied to 34 regions of interest (ROIs) identified from independent 'Saccade Localizer' functional data. Oculomotor data were consistent with successful induction of forward and backward adaptation in FW and BW blocks, respectively. The different analyses of voxel activation patterns (MVPAs) disclosed the involvement of 1) a set of ROIs specifically related to adaptation in the right occipital cortex, right and left MT/MST, right FEF and right pallidum; 2) several ROIs specifically involved in error signal processing in the left occipital cortex, left PEF, left precuneus, Medial Cingulate cortex (MCC), left inferior and right superior cerebellum; 3) ROIs specific to the direction of adaptation in the occipital cortex and MT/MST (left and right hemispheres for FW and BW, respectively) and in the pallidum of the right hemisphere (FW). The involvement of the left PEF and of the (left and right) occipital cortex were further supported and qualified by the whole brain GLM analysis: clusters of increased activity were found in PEF for the RND versus STA contrast (related to error processing) and in the left (right) occipital cortex for the FW (BW) versus STA contrasts [related to the FW (BW) direction of error and/or adaptation]. The present study both adds complementary data to the growing literature supporting a role of the cerebral cortex in saccadic adaptation through feedback and feedforward relationships with the cerebellum and provides the basis for improving conceptual frameworks of oculomotor plasticity and of its link with spatial cognition.
Collapse
Affiliation(s)
- Camille Métais
- IMPACT Team, Lyon Neuroscience Research Center, INSERM U1028; CNRS UMR5292; University Claude Bernard Lyon 1; 16, av. du Doyen Lépine, 69676, Bron cedex, France
| | - Judith Nicolas
- IMPACT Team, Lyon Neuroscience Research Center, INSERM U1028; CNRS UMR5292; University Claude Bernard Lyon 1; 16, av. du Doyen Lépine, 69676, Bron cedex, France; Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, 3001, Leuven, Belgium
| | - Moussa Diarra
- IMPACT Team, Lyon Neuroscience Research Center, INSERM U1028; CNRS UMR5292; University Claude Bernard Lyon 1; 16, av. du Doyen Lépine, 69676, Bron cedex, France; Université Bourgogne Franche-Comté, LEAD - CNRS UMR5022, Université de Bourgogne, Pôle AAFE, 11 Esplanade Erasme, 21000, Dijon, France
| | - Alexis Cheviet
- IMPACT Team, Lyon Neuroscience Research Center, INSERM U1028; CNRS UMR5292; University Claude Bernard Lyon 1; 16, av. du Doyen Lépine, 69676, Bron cedex, France
| | - Eric Koun
- IMPACT Team, Lyon Neuroscience Research Center, INSERM U1028; CNRS UMR5292; University Claude Bernard Lyon 1; 16, av. du Doyen Lépine, 69676, Bron cedex, France
| | - Denis Pélisson
- IMPACT Team, Lyon Neuroscience Research Center, INSERM U1028; CNRS UMR5292; University Claude Bernard Lyon 1; 16, av. du Doyen Lépine, 69676, Bron cedex, France.
| |
Collapse
|
10
|
Timing is everything: Event-related transcranial direct current stimulation improves motor adaptation. Brain Stimul 2022; 15:750-757. [PMID: 35533836 DOI: 10.1016/j.brs.2022.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND There is a current discord between the foundational theories underpinning motor learning and how we currently apply transcranial direct current stimulation (TDCS): the former is dependent on tight coupling of events while the latter is conducted with very low temporal resolution. OBJECTIVE Here we aimed to investigate the temporal specificity of stimulation by applying TDCS in short epochs, and coincidentally with movement, during a motor adaptation task. METHODS Participants simultaneously adapted a reaching movement to two opposing velocity-dependent force-fields (clockwise and counter-clockwise), distinguished by a contextual leftward or rightward shift in the task display and cursor location respectively. Brief bouts (<3 s) of event-related TDCS (er-TDCS) were applied over M1 or the cerebellum during movements for only one of these learning contexts. RESULTS We show that when short duration stimulation is applied to the cerebellum and yoked to movement, only those reaching movements performed simultaneously with stimulation are selectively enhanced, whilst similar and interleaved movements are left unaffected. We found no evidence of improved adaptation following M1 er-TDCS, as participants displayed equivalent levels of error during both stimulated and unstimulated movements. Similarly, participants in the sham stimulation group adapted comparably during left and right-shift trials. CONCLUSIONS It is proposed that the coupling of cerebellar stimulation and movement influences timing-dependent (i.e. Hebbian-like) mechanisms of plasticity to facilitate enhanced learning in the stimulated context.
Collapse
|
11
|
Cornelis C, De Picker LJ, Coppens V, Morsel A, Timmers M, Dumont G, Sabbe BGC, Morrens M, Hulstijn W. Impaired Sensorimotor Adaption in Schizophrenia in Comparison to Age-Matched and Elderly Controls. Neuropsychobiology 2022; 81:127-140. [PMID: 34731860 DOI: 10.1159/000518867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 08/02/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND The "cognitive dysmetria hypothesis" of schizophrenia proposes a disrupted communication between the cerebellum and cerebral cortex, resulting in sensorimotor and cognitive symptoms. Sensorimotor adaptation relies strongly on the function of the cerebellum. OBJECTIVES This study investigated whether sensorimotor adaptation is reduced in schizophrenia compared with age-matched and elderly healthy controls. METHODS Twenty-nine stably treated patients with schizophrenia, 30 age-matched, and 30 elderly controls were tested in three motor adaptation tasks in which visual movement feedback was unexpectedly altered. In the "rotation adaptation task" the perturbation consisted of a rotation (30° clockwise), in the "gain adaptation task" the extent of the movement feedback was reduced (by a factor of 0.7) and in the "vertical reversal task," up- and downward pen movements were reversed by 180°. RESULTS Patients with schizophrenia adapted to the perturbations, but their movement times and errors were substantially larger than controls. Unexpectedly, the magnitude of adaptation was significantly smaller in schizophrenia than elderly participants. The impairment already occurred during the first adaptation trials, pointing to a decline in explicit strategy use. Additionally, post-adaptation aftereffects provided strong evidence for impaired implicit adaptation learning. Both negative and positive schizophrenia symptom severities were correlated with indices of the amount of adaptation and its aftereffects. CONCLUSIONS Both explicit and implicit components of sensorimotor adaptation learning were reduced in patients with schizophrenia, adding to the evidence for a role of the cerebellum in the pathophysiology of schizophrenia. Elderly individuals outperformed schizophrenia patients in the adaptation learning tasks.
Collapse
Affiliation(s)
- Claudia Cornelis
- Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Antwerp, Belgium.,Psychiatric Center Multiversum, Mortsel, Belgium
| | - Livia J De Picker
- Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Antwerp, Belgium.,University Psychiatric Center Duffel, Duffel, Belgium
| | - Violette Coppens
- Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Antwerp, Belgium
| | - Anne Morsel
- Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Antwerp, Belgium
| | - Maarten Timmers
- Janssen Pharmaceutica N.V, Janssen Research and Development, Beerse, Belgium
| | - Glenn Dumont
- AMC, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Bernard G C Sabbe
- Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Antwerp, Belgium.,University Psychiatric Center Duffel, Duffel, Belgium
| | - Manuel Morrens
- Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Antwerp, Belgium.,University Psychiatric Center Duffel, Duffel, Belgium
| | - Wouter Hulstijn
- Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Antwerp, Belgium.,Psychiatric Center Multiversum, Mortsel, Belgium.,Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
12
|
Cheviet A, Masselink J, Koun E, Salemme R, Lappe M, Froment-Tilikete C, Pélisson D. Cerebellar Signals Drive Motor Adjustments and Visual Perceptual Changes during Forward and Backward Adaptation of Reactive Saccades. Cereb Cortex 2022; 32:3896-3916. [PMID: 34979550 DOI: 10.1093/cercor/bhab455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 11/12/2022] Open
Abstract
Saccadic adaptation ($SA$) is a cerebellar-dependent learning of motor commands ($MC$), which aims at preserving saccade accuracy. Since $SA$ alters visual localization during fixation and even more so across saccades, it could also involve changes of target and/or saccade visuospatial representations, the latter ($CDv$) resulting from a motor-to-visual transformation (forward dynamics model) of the corollary discharge of the $MC$. In the present study, we investigated if, in addition to its established role in adaptive adjustment of $MC$, the cerebellum could contribute to the adaptation-associated perceptual changes. Transfer of backward and forward adaptation to spatial perceptual performance (during ocular fixation and trans-saccadically) was assessed in eight cerebellar patients and eight healthy volunteers. In healthy participants, both types of $SA$ altered $MC$ as well as internal representations of the saccade target and of the saccadic eye displacement. In patients, adaptation-related adjustments of $MC$ and adaptation transfer to localization were strongly reduced relative to healthy participants, unraveling abnormal adaptation-related changes of target and $CDv$. Importantly, the estimated changes of $CDv$ were totally abolished following forward session but mainly preserved in backward session, suggesting that an internal model ensuring trans-saccadic localization could be located in the adaptation-related cerebellar networks or in downstream networks, respectively.
Collapse
Affiliation(s)
- Alexis Cheviet
- IMPACT Team, Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, University Claude Bernard Lyon 1, Bron cedex 69676, France
| | - Jana Masselink
- Institute for Psychology and Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Münster 48149, Germany
| | - Eric Koun
- IMPACT Team, Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, University Claude Bernard Lyon 1, Bron cedex 69676, France
| | - Roméo Salemme
- IMPACT Team, Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, University Claude Bernard Lyon 1, Bron cedex 69676, France
| | - Markus Lappe
- Institute for Psychology and Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Münster 48149, Germany
| | - Caroline Froment-Tilikete
- IMPACT Team, Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, University Claude Bernard Lyon 1, Bron cedex 69676, France.,Hospices Civils de Lyon - Pierre-Wertheimer Hospital, Neuro-Ophtalmology unit, Bron cedex 69500, France
| | - Denis Pélisson
- IMPACT Team, Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, University Claude Bernard Lyon 1, Bron cedex 69676, France
| |
Collapse
|
13
|
Fleury L, Panico F, Foncelle A, Revol P, Delporte L, Jacquin-Courtois S, Collet C, Rossetti Y. Does anodal cerebellar tDCS boost transfer of after-effects from throwing to pointing during prism adaptation? Front Psychol 2022; 13:909565. [PMID: 36237677 PMCID: PMC9552335 DOI: 10.3389/fpsyg.2022.909565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Prism Adaptation (PA) is a useful method to study the mechanisms of sensorimotor adaptation. After-effects following adaptation to the prismatic deviation constitute the probe that adaptive mechanisms occurred, and current evidence suggests an involvement of the cerebellum at this level. Whether after-effects are transferable to another task is of great interest both for understanding the nature of sensorimotor transformations and for clinical purposes. However, the processes of transfer and their underlying neural substrates remain poorly understood. Transfer from throwing to pointing is known to occur only in individuals who had previously reached a good level of expertise in throwing (e.g., dart players), not in novices. The aim of this study was to ascertain whether anodal stimulation of the cerebellum could boost after-effects transfer from throwing to pointing in novice participants. Healthy participants received anodal or sham transcranial direction current stimulation (tDCS) of the right cerebellum during a PA procedure involving a throwing task and were tested for transfer on a pointing task. Terminal errors and kinematic parameters were in the dependent variables for statistical analyses. Results showed that active stimulation had no significant beneficial effects on error reduction or throwing after-effects. Moreover, the overall magnitude of transfer to pointing did not change. Interestingly, we found a significant effect of the stimulation on the longitudinal evolution of pointing errors and on pointing kinematic parameters during transfer assessment. These results provide new insights on the implication of the cerebellum in transfer and on the possibility to use anodal tDCS to enhance cerebellar contribution during PA in further investigations. From a network approach, we suggest that cerebellum is part of a more complex circuitry responsible for the development of transfer which is likely embracing the primary motor cortex due to its role in motor memories consolidation. This paves the way for further work entailing multiple-sites stimulation to explore the role of M1-cerebellum dynamic interplay in transfer.
Collapse
Affiliation(s)
- Lisa Fleury
- INSERM UMR-S, CNRS UMS, Trajectoires Lyon Neuroscience Research Center (CRNL), Bron, France
- Defitech Chair for Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École polytechnique fédérale de Lausanne (EPFL) Valais, Sion, Switzerland
- *Correspondence: Lisa Fleury,
| | - Francesco Panico
- Department of Psychology, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Alexandre Foncelle
- INSERM UMR-S, CNRS UMS, Trajectoires Lyon Neuroscience Research Center (CRNL), Bron, France
- “Mouvement et Handicap” Platform, Neurological Hospital, Hospices Civils de Lyon, Bron, France
| | - Patrice Revol
- INSERM UMR-S, CNRS UMS, Trajectoires Lyon Neuroscience Research Center (CRNL), Bron, France
- “Mouvement et Handicap” Platform, Neurological Hospital, Hospices Civils de Lyon, Bron, France
| | - Ludovic Delporte
- INSERM UMR-S, CNRS UMS, Trajectoires Lyon Neuroscience Research Center (CRNL), Bron, France
- “Mouvement et Handicap” Platform, Neurological Hospital, Hospices Civils de Lyon, Bron, France
| | - Sophie Jacquin-Courtois
- INSERM UMR-S, CNRS UMS, Trajectoires Lyon Neuroscience Research Center (CRNL), Bron, France
- “Mouvement et Handicap” Platform, Neurological Hospital, Hospices Civils de Lyon, Bron, France
| | - Christian Collet
- Inter-University Laboratory of Human Movement Biology, Villeurbanne, France
| | - Yves Rossetti
- INSERM UMR-S, CNRS UMS, Trajectoires Lyon Neuroscience Research Center (CRNL), Bron, France
- “Mouvement et Handicap” Platform, Neurological Hospital, Hospices Civils de Lyon, Bron, France
| |
Collapse
|
14
|
Petitet P, Spitz G, Emir UE, Johansen-Berg H, O'Shea J. Age-related decline in cortical inhibitory tone strengthens motor memory. Neuroimage 2021; 245:118681. [PMID: 34728243 PMCID: PMC8752967 DOI: 10.1016/j.neuroimage.2021.118681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/21/2021] [Accepted: 10/24/2021] [Indexed: 11/02/2022] Open
Abstract
Ageing disrupts the finely tuned excitation/inhibition balance (E:I) across cortex via a natural decline in inhibitory tone (γ-amino butyric acid, GABA), causing functional decrements. However, in young adults, experimentally lowering GABA in sensorimotor cortex enhances a specific domain of sensorimotor function: adaptation memory. Here, we tested the hypothesis that as sensorimotor cortical GABA declines naturally with age, adaptation memory would increase, and the former would explain the latter. Results confirmed this prediction. To probe causality, we used brain stimulation to further lower sensorimotor cortical GABA during adaptation. Across individuals, how stimulation changed memory depended on sensorimotor cortical E:I. In those with low E:I, stimulation increased memory; in those with high E:I stimulation reduced memory. Thus, we identified a form of motor memory that is naturally strengthened by age, depends causally on sensorimotor cortex neurochemistry, and may be a potent target for motor skill preservation strategies in healthy ageing and neurorehabilitation.
Collapse
Affiliation(s)
- Pierre Petitet
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences (NDCN), John Radcliffe Hospital, Headington, Oxford, United Kingdom; Centre de Recherche en Neurosciences de Lyon, Equipe Trajectoires, Inserm UMR-S 1028, CNRS UMR 5292, Université Lyon 1, Bron, France.
| | - Gershon Spitz
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences (NDCN), John Radcliffe Hospital, Headington, Oxford, United Kingdom; Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia.
| | - Uzay E Emir
- School of Health Sciences, Purdue University, West Lafayette, Indiana, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA.
| | - Heidi Johansen-Berg
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences (NDCN), John Radcliffe Hospital, Headington, Oxford, United Kingdom.
| | - Jacinta O'Shea
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences (NDCN), John Radcliffe Hospital, Headington, Oxford, United Kingdom; Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Human Brain Activity (OHBA), University of Oxford Department of Psychiatry, Warneford Hospital, Warneford Lane, Oxford, United Kingdom.
| |
Collapse
|
15
|
Age-related changes in motor cortex plasticity assessed with non-invasive brain stimulation: an update and new perspectives. Exp Brain Res 2021; 239:2661-2678. [PMID: 34269850 DOI: 10.1007/s00221-021-06163-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/22/2021] [Indexed: 12/24/2022]
Abstract
It is commonly accepted that the brains capacity to change, known as plasticity, declines into old age. Recent studies have used a variety of non-invasive brain stimulation (NIBS) techniques to examine this age-related decline in plasticity in the primary motor cortex (M1), but the effects seem inconsistent and difficult to unravel. The purpose of this review is to provide an update on studies that have used different NIBS techniques to assess M1 plasticity with advancing age and offer some new perspective on NIBS strategies to boost plasticity in the ageing brain. We find that early studies show clear differences in M1 plasticity between young and older adults, but many recent studies with motor training show no decline in use-dependent M1 plasticity with age. For NIBS-induced plasticity in M1, some protocols show more convincing differences with advancing age than others. Therefore, our view from the NIBS literature is that it should not be automatically assumed that M1 plasticity declines with age. Instead, the effects of age are likely to depend on how M1 plasticity is measured, and the characteristics of the elderly population tested. We also suggest that NIBS performed concurrently with motor training is likely to be most effective at producing improvements in M1 plasticity and motor skill learning in older adults. Proposed NIBS techniques for future studies include combining multiple NIBS protocols in a co-stimulation approach, or NIBS strategies to modulate intracortical inhibitory mechanisms, in an effort to more effectively boost M1 plasticity and improve motor skill learning in older adults.
Collapse
|
16
|
Weightman M, Brittain JS, Miall RC, Jenkinson N. Direct and indirect effects of cathodal cerebellar TDCS on visuomotor adaptation of hand and arm movements. Sci Rep 2021; 11:4464. [PMID: 33627717 PMCID: PMC7904798 DOI: 10.1038/s41598-021-83656-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/05/2021] [Indexed: 11/30/2022] Open
Abstract
Adaptation of movements involving the proximal and distal upper-limb can be differentially facilitated by anodal transcranial direct current stimulation (TDCS) over the cerebellum and primary motor cortex (M1). Here, we build on this evidence by demonstrating that cathodal TDCS impairs motor adaptation with a differentiation of the proximal and distal upper-limbs, relative to the site of stimulation. Healthy young adults received M1 or cerebellar cathodal TDCS while making fast 'shooting' movements towards targets under 60° rotated visual feedback conditions, using either whole-arm reaching or fine hand and finger movements. As predicted, we found that cathodal cerebellar TDCS resulted in impairment of adaptation of movements with the whole arm compared to M1 and sham groups, which proved significantly different during late adaptation. However, cathodal cerebellar TDCS also significantly enhanced adaptation of hand movements, which may reflect changes in the excitability of the pathway between the cerebellum and M1. We found no evidence for change of adaptation rates using arm or finger movements following cathodal TDCS directly over M1. These results are further evidence to support movement specific effects of TDCS, and highlight how the connectivity and functional organisation of the cerebellum and M1 must be considered when designing TDCS-based therapies.
Collapse
Affiliation(s)
- Matthew Weightman
- grid.6572.60000 0004 1936 7486School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK ,grid.6572.60000 0004 1936 7486MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK ,grid.6572.60000 0004 1936 7486Centre for Human Brain Health, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - John-Stuart Brittain
- grid.6572.60000 0004 1936 7486School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK ,grid.6572.60000 0004 1936 7486Centre for Human Brain Health, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - R. Chris Miall
- grid.6572.60000 0004 1936 7486School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK ,grid.6572.60000 0004 1936 7486MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK ,grid.6572.60000 0004 1936 7486Centre for Human Brain Health, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - Ned Jenkinson
- grid.6572.60000 0004 1936 7486School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK ,grid.6572.60000 0004 1936 7486MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK ,grid.6572.60000 0004 1936 7486Centre for Human Brain Health, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| |
Collapse
|
17
|
Nguemeni C, Stiehl A, Hiew S, Zeller D. No Impact of Cerebellar Anodal Transcranial Direct Current Stimulation at Three Different Timings on Motor Learning in a Sequential Finger-Tapping Task. Front Hum Neurosci 2021; 15:631517. [PMID: 33613217 PMCID: PMC7892471 DOI: 10.3389/fnhum.2021.631517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/13/2021] [Indexed: 11/21/2022] Open
Abstract
Background: Recently, attention has grown toward cerebellar neuromodulation in motor learning using transcranial direct current stimulation (tDCS). An important point of discussion regarding this modulation is the optimal timing of tDCS, as this parameter could significantly influence the outcome. Hence, this study aimed to investigate the effects of the timing of cerebellar anodal tDCS (ca-tDCS) on motor learning using a sequential finger-tapping task (FTT). Methods: One hundred and twenty two healthy young, right-handed subjects (96 females) were randomized into four groups (Duringsham, Before, Duringreal, After). They performed 2 days of FTT with their non-dominant hand on a custom keyboard. The task consisted of 40 s of typing followed by 20 s rest. Each participant received ca-tDCS (2 mA, sponge electrodes of 25 cm2, 20 min) at the appropriate timing and performed 20 trials on the first day (T1, 20 min). On the following day, only 10 trials of FTT were performed without tDCS (T2, 10 min). Motor skill performance and retention were assessed. Results: All participants showed a time-dependent increase in learning. Motor performance was not different between groups at the end of T1 (p = 0.59). ca-tDCS did not facilitate the retention of the motor skill in the FTT at T2 (p = 0.27). Thus, our findings indicate an absence of the effect of ca-tDCS on motor performance or retention of the FTT independently from the timing of stimulation. Conclusion: The present results suggest that the outcome of ca-tDCS is highly dependent on the task and stimulation parameters. Future studies need to establish a clear basis for the successful and reproducible clinical application of ca-tDCS.
Collapse
Affiliation(s)
- Carine Nguemeni
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Annika Stiehl
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Shawn Hiew
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Daniel Zeller
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|
18
|
Task Feedback Processing Differs Between Young and Older Adults in Visuomotor Rotation Learning Despite Similar Initial Adaptation and Savings. Neuroscience 2020; 451:79-98. [PMID: 33002556 DOI: 10.1016/j.neuroscience.2020.09.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 11/21/2022]
Abstract
Ageing has been suggested to affect sensorimotor adaptation by impairing explicit strategy use. Here we recorded electrophysiological (EEG) responses during visuomotor rotation in both young (n = 24) and older adults (n = 25), to investigate the neural processes that underpin putative age-related effects on adaptation. We measured the feedback related negativity (FRN) and the P3 in response to task-feedback, as electrophysiological markers of task error processing and outcome evaluation. The two age groups adapted similarly and showed comparable after effects and savings when re-exposed to the same perturbation several days after the initial session. Older adults, however, had less distinct EEG responses (i.e., reduced FRN amplitudes) to negative and positive task feedback. The P3 did not differ between age groups. Both young and older adults also showed a sustained late positivity following task feedback. Measured at the frontal electrode Fz, this sustained activity was negatively associated with both the amount of voluntary disengagement of explicit strategy and savings. In conclusion, despite preserved task performance, we find clear differences in neural responses to errors in older people, which suggests that there is a fundamental decline in this aspect of sensorimotor brain function with age.
Collapse
|
19
|
Matsuhashi T, Segalowitz SJ, Murphy TI, Nagano Y, Hirao T, Masaki H. Medial frontal negativities predict performance improvements during motor sequence but not motor adaptation learning. Psychophysiology 2020; 58:e13708. [PMID: 33111987 PMCID: PMC7816271 DOI: 10.1111/psyp.13708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 08/25/2020] [Accepted: 09/18/2020] [Indexed: 12/20/2022]
Abstract
Alterations in our environment require us to learn or alter motor skills to remain efficient. Also, damage or injury may require the relearning of motor skills. Two types have been identified: movement adaptation and motor sequence learning. Doyonet al. (2003, Distinct contribution of the cortico-striatal and cortico-cerebellar systems to motor skill learning. Neuropsychologia, 41(3), 252-262) proposed a model to explain the neural mechanisms related to adaptation (cortico-cerebellar) and motor sequence learning (cortico-striatum) tasks. We hypothesized that medial frontal negativities (MFNs), event-related electrocortical responses including the error-related negativity (ERN) and correct-response-related negativity (CRN), would be trait biomarkers for skill in motor sequence learning due to their relationship with striatal neural generators in a network involving the anterior cingulate and possibly the supplementary motor area. We examined 36 participants' improvement in a motor adaptation and a motor sequence learning task and measured MFNs elicited in a separate Spatial Stroop (conflict) task. We found both ERN and CRN strongly predicted performance improvement in the sequential motor task but not in the adaptation task, supporting this aspect of the Doyon model. Interestingly, the CRN accounted for additional unique variance over the variance shared with the ERN suggesting an expansion of the model.
Collapse
Affiliation(s)
- Takuto Matsuhashi
- Graduate School of Sport Sciences, Waseda University, Tokorozawa, Japan
| | | | - Timothy I Murphy
- Department of Psychology, Brock University, St. Catharines, ON, Canada
| | - Yuichiro Nagano
- Faculty of Human Studies, Bunkyo Gakuin University, Fujimino, Japan
| | - Takahiro Hirao
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
| | - Hiroaki Masaki
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
| |
Collapse
|
20
|
Beneficial effects of cerebellar tDCS on motor learning are associated with altered putamen-cerebellar connectivity: A simultaneous tDCS-fMRI study. Neuroimage 2020; 223:117363. [PMID: 32919057 DOI: 10.1016/j.neuroimage.2020.117363] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/17/2022] Open
Abstract
Non-invasive transcranial stimulation of cerebellum and primary motor cortex (M1) has been shown to enhance motor learning. However, the mechanisms by which stimulation improves learning remain largely unknown. Here, we sought to shed light on the neural correlates of transcranial direct current stimulation (tDCS) during motor learning by simultaneously recording functional magnetic resonance imaging (fMRI). We found that right cerebellar tDCS, but not left M1 tDCS, led to enhanced sequence learning in the serial reaction time task. Performance was also improved following cerebellar tDCS compared to sham in a sequence production task, reflecting superior training effects persisting into the post-training period. These behavioral effects were accompanied by increased learning-specific activity in right M1, left cerebellum lobule VI, left inferior frontal gyrus and right inferior parietal lobule during cerebellar tDCS compared to sham. Despite the lack of group-level changes comparing left M1 tDCS to sham, activity increase in right M1, supplementary motor area, and bilateral middle frontal cortex, under M1 tDCS, was associated with better sequence performance. This suggests that lack of group effects in M1 tDCS relate to inter-individual variability in learning-related activation patterns. We further investigated how tDCS modulates effective connectivity in the cortico-striato-cerebellar learning network. Using dynamic causal modelling, we found altered connectivity patterns during both M1 and cerebellar tDCS when compared to sham. Specifically, during cerebellar tDCS, negative modulation of a connection from putamen to cerebellum was decreased for sequence learning only, effectively leading to decreased inhibition of the cerebellum. These results show specific effects of cerebellar tDCS on functional activity and connectivity in the motor learning network and may facilitate the optimization of motor rehabilitation involving cerebellar non-invasive stimulation.
Collapse
|
21
|
King BR, Rumpf JJ, Heise KF, Veldman MP, Peeters R, Doyon J, Classen J, Albouy G, Swinnen SP. Lateralized effects of post-learning transcranial direct current stimulation on motor memory consolidation in older adults: An fMRI investigation. Neuroimage 2020; 223:117323. [PMID: 32882377 DOI: 10.1016/j.neuroimage.2020.117323] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/23/2020] [Accepted: 08/26/2020] [Indexed: 01/09/2023] Open
Abstract
Previous research has consistently demonstrated that older adults have difficulties transforming recently learned movements into robust, long-lasting memories (i.e., motor memory consolidation). One potential avenue to enhance consolidation in older individuals is the administration of transcranial direct current stimulation (tDCS) to task-relevant brain regions after initial learning. Although this approach has shown promise, the underlying cerebral correlates have yet to be revealed. Moreover, it is unknown whether the effects of tDCS are lateralized, an open question with implications for rehabilitative approaches following predominantly unilateral neurological injuries. In this research, healthy older adults completed a sequential motor task before and 6 h after receiving anodal or sham stimulation to right or left primary motor cortex (M1) while functional magnetic resonance images were acquired. Unexpectedly, anodal stimulation to right M1 following left-hand sequence learning significantly hindered consolidation as compared to a sham control, whereas no differences were observed with left M1 stimulation following right-hand learning. Impaired performance following right M1 stimulation was paralleled by sustained engagement of regions known to be critical for early learning stages, including the caudate nucleus and the premotor and parietal cortices. Thus, post-learning tDCS in older adults not only exerts heterogenous effects across the two hemispheres but can also disrupt ongoing memory processing.
Collapse
Affiliation(s)
- Bradley R King
- Department of Movement Sciences, KU Leuven, Leuven, Belgium; LBI - KU Leuven Brain Institute, Leuven, Belgium.
| | | | - Kirstin-Friederike Heise
- Department of Movement Sciences, KU Leuven, Leuven, Belgium; LBI - KU Leuven Brain Institute, Leuven, Belgium
| | - Menno P Veldman
- Department of Movement Sciences, KU Leuven, Leuven, Belgium; LBI - KU Leuven Brain Institute, Leuven, Belgium
| | - Ronald Peeters
- Department of Radiology, University Hospitals Leuven, Leuven, Belgium; Department of Imaging and Pathology, Biomedical Sciences Group, Leuven, Belgium
| | - Julien Doyon
- McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Joseph Classen
- Department of Neurology, University of Leipzig, Leipzig, Germany
| | - Genevieve Albouy
- Department of Movement Sciences, KU Leuven, Leuven, Belgium; LBI - KU Leuven Brain Institute, Leuven, Belgium
| | - Stephan P Swinnen
- Department of Movement Sciences, KU Leuven, Leuven, Belgium; LBI - KU Leuven Brain Institute, Leuven, Belgium
| |
Collapse
|
22
|
Wiltshire CEE, Watkins KE. Failure of tDCS to modulate motor excitability and speech motor learning. Neuropsychologia 2020; 146:107568. [PMID: 32687836 PMCID: PMC7534039 DOI: 10.1016/j.neuropsychologia.2020.107568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/25/2020] [Accepted: 07/15/2020] [Indexed: 12/25/2022]
Abstract
Transcranial direct current stimulation (tDCS) modulates cortical excitability in a polarity-specific way and, when used in combination with a behavioural task, it can alter performance. TDCS has the potential, therefore, for use as an adjunct to therapies designed to treat disorders affecting speech, including, but not limited to acquired aphasias and developmental stuttering. For this reason, it is important to conduct studies evaluating its effectiveness and the parameters optimal for stimulation. Here, we aimed to evaluate the effects of bi-hemispheric tDCS over speech motor cortex on performance of a complex speech motor learning task, namely the repetition of tongue twisters. A previous study in older participants showed that tDCS could modulate performance on a similar task. To further understand the effects of tDCS, we also measured the excitability of the speech motor cortex before and after stimulation. Three groups of 20 healthy young controls received: (i) anodal tDCS to the left IFG/LipM1 and cathodal tDCS to the right hemisphere homologue; or (ii) cathodal tDCS over the left and anodal over the right; or (iii) sham stimulation. Participants heard and repeated novel tongue twisters and matched simple sentences before, during and 10 min after the stimulation. One mA tDCS was delivered concurrent with task performance for 13 min. Motor excitability was measured using transcranial magnetic stimulation to elicit motor-evoked potentials in the lip before and immediately after tDCS. The study was double-blind, randomized, and sham-controlled; the design and analysis were pre-registered. Performance on the task improved from baseline to after stimulation but was not significantly modulated by tDCS. Similarly, a small decrease in motor excitability was seen in all three stimulation groups but did not differ among them and was unrelated to task performance. Bayesian analyses provide substantial evidence in support of the null hypotheses in both cases, namely that tongue twister performance and motor excitability were not affected by tDCS. We discuss our findings in the context of the previous positive results for a similar task. We conclude that tDCS may be most effective when brain function is sub-optimal due to age-related declines or pathology. Further study is required to determine why tDCS failed to modulate excitability in the speech motor cortex in the expected ways.
Collapse
Affiliation(s)
- Charlotte E E Wiltshire
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, Radcliffe Observatory Quarter, University of Oxford, OX2 6GG, UK.
| | - Kate E Watkins
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, Radcliffe Observatory Quarter, University of Oxford, OX2 6GG, UK.
| |
Collapse
|
23
|
Kumari N, Taylor D, Rashid U, Vandal AC, Smith PF, Signal N. Cerebellar transcranial direct current stimulation for learning a novel split-belt treadmill task: a randomised controlled trial. Sci Rep 2020; 10:11853. [PMID: 32678285 PMCID: PMC7366632 DOI: 10.1038/s41598-020-68825-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 06/30/2020] [Indexed: 11/09/2022] Open
Abstract
This study aimed to examine the effect of repeated anodal cerebellar transcranial direct current stimulation (ctDCS) on learning a split-belt treadmill task. Thirty healthy individuals randomly received three consecutive sessions of active or sham anodal ctDCS during split-belt treadmill training. Motor performance and strides to steady-state performance were evaluated before (baseline), during (adaptation), and after (de-adaptation) the intervention. The outcomes were measured one week later to assess absolute learning and during the intervention to evaluate cumulative, consecutive, and session-specific effects. Data were analysed using linear mixed-effects regression models. During adaptation, there was no significant difference in absolute learning between the groups (p > 0.05). During de-adaptation, a significant difference in absolute learning between the groups (p = 0.03) indicated slower de-adaptation with anodal ctDCS. Pre-planned secondary analysis revealed that anodal ctDCS significantly reduced the cumulative (p = 0.01) and consecutive-session effect (p = 0.01) on immediate adaptation. There were significant cumulative (p = 0.02) and session-specific effects (p = 0.003) on immediate de-adaptation. Repeated anodal ctDCS does not enhance motor learning measured during adaptation to a split-belt treadmill task. However, it influences the maintenance of learnt walking patterns, suggesting that it may be beneficial in maintaining therapeutic effects.
Collapse
Affiliation(s)
- Nitika Kumari
- Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand.
| | - Denise Taylor
- Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand.,Brain Research New Zealand, Auckland, New Zealand
| | - Usman Rashid
- Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand
| | - Alain C Vandal
- Department of Statistics, University of Auckland, Auckland, New Zealand
| | - Paul F Smith
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,Brain Research New Zealand, Auckland, New Zealand
| | - Nada Signal
- Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
24
|
Weightman M, Brittain JS, Punt D, Miall RC, Jenkinson N. Targeted tDCS selectively improves motor adaptation with the proximal and distal upper limb. Brain Stimul 2020; 13:707-716. [PMID: 32289702 DOI: 10.1016/j.brs.2020.02.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The cerebellum and primary motor cortex (M1) are crucial to coordinated and accurate movements of the upper limbs. There is also appreciable evidence that these two structures exert somewhat divergent influences upon proximal versus distal upper limb control. Here, we aimed to differentially regulate the contribution of the cerebellum and M1 to proximal and distal effectors during motor adaptation, with transcranial direct current stimulation (tDCS). For this, we employed tasks that promote similar motor demands, but isolate whole arm from hand/finger movements, in order to functionally segregate the hierarchy of upper limb control. METHODS Both young and older adults took part in a visuomotor rotation task; where they adapted to a 60° visuomotor rotation using either a hand-held joystick (requiring finger/hand movements) or a 2D robotic manipulandum (requiring whole-arm reaching movements), while M1, cerebellar or sham tDCS was applied. RESULTS We found that cerebellar stimulation improved adaptation performance when arm movements were required to complete the task, while in contrast stimulation of M1 enhanced adaptation during hand and finger movements only. This double-dissociation was replicated in an independent group of older adults, demonstrating that the behaviour remains intact in ageing. CONCLUSIONS These results suggest that stimulation of distinct motor areas can selectively improve motor adaptation in the proximal and distal upper limb. This also highlights new ways in which tDCS might be best applied to achieve reliable rehabilitation of upper limb motor deficits.
Collapse
Affiliation(s)
- Matthew Weightman
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK; MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK; Centre for Human Brain Health, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - John-Stuart Brittain
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK; Centre for Human Brain Health, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - David Punt
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - R Chris Miall
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK; MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK; Centre for Human Brain Health, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Ned Jenkinson
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK; MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK; Centre for Human Brain Health, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
25
|
The perils of learning to move while speaking: One-sided interference between speech and visuomotor adaptation. Psychon Bull Rev 2020; 27:544-552. [PMID: 32212105 DOI: 10.3758/s13423-020-01725-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Our understanding of the adaptive processes that shape sensorimotor behavior is largely derived from studying isolated movements. Studies of visuomotor adaptation, in which participants adapt cursor movements to rotations of the cursor's screen position, have led to prominent theories of motor control. In response to changes in visual feedback of movements, explicit (cognitive) and implicit (automatic) learning processes adapt movements to counter errors. However, movements rarely occur in isolation. The extent to which explicit and implicit processes drive sensorimotor adaptation when multiple movements occur simultaneously, as in the real world, remains unclear. Here we address this problem in the context of speech and hand movements. Participants spoke in-time with rapid, hand-driven cursor movements. Using real-time alterations of vowel sound feedback, and visual rotations of the cursor's screen position, we induced sensorimotor adaptation in one or both movements simultaneously. Across three experiments (n = 60, n = 48 and n = 76, respectively), we demonstrate that visuomotor adaptation is markedly impaired by simultaneous speech adaptation, and the impairment is specific to the explicit learning process in visuomotor adaptation. In contrast, visuomotor adaptation had no impact on speech adaptation. The results demonstrate that the explicit learning process in visuomotor adaptation is sensitive to movements in other motor domains. They suggest that some forms of speech adaptation may lack an explicit learning process altogether.
Collapse
|
26
|
Silva LVDCD, Porto F, Fregni F, Gurgel JL. TRANSCRANIAL DIRECT-CURRENT STIMULATION IN COMBINATION WITH EXERCISE: A SYSTEMATIC REVIEW. REV BRAS MED ESPORTE 2019. [DOI: 10.1590/1517-869220192506215836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT Introduction Transcranial direct-current stimulation (tDCS) is a noninvasive technique that allows the modulation of cortical excitability and can produce changes in neuronal plasticity. The application of tDCS has recently been associated with physical activity. Objectives To verify the effect of Transcranial Direct-Current Stimulation (tDCS) in combination with physical exercise, characterizing methodological aspects of the technique. Methods In the database search, studies with animals, other neuromodulation techniques and opinion and review articles were excluded. Publications up to 2016 were selected and the methodological quality of the articles was verified through the PEDro scale. Results The majority of studies (86%) used tDCS on the motor cortex area, with anodal current and the allocation of monocephalic electrodes (46.5%). The prevalent current intensity was 2mA (72%), with duration of 20min (55.8%). The profile of the research participants was predominantly of subjects aged up to 60 years (72.1%). The outcomes were favorable for the use of anodal tDCS in combination with physical exercise. Conclusion Transcranial Direct-Current Stimulation is a promising technique when used in combination with aerobic and anaerobic exercises; however, it is necessary to investigate concurrent exercise. Level of Evidence II; Therapeutic Studies Investigating the Results of Treatment (systematic review of Level II studies or Level I studies with inconsistent results).
Collapse
Affiliation(s)
| | - Flávia Porto
- Universidade do Estado do Rio de Janeiro, Brazil
| | - Felipe Fregni
- Spaulding Neuromodulation Center, United States of America
| | - Jonas Lírio Gurgel
- Universidade Federal Fluminense, Brazil; Universidade Federal Fluminense, Brazil
| |
Collapse
|
27
|
Patel R, Ashcroft J, Patel A, Ashrafian H, Woods AJ, Singh H, Darzi A, Leff DR. The Impact of Transcranial Direct Current Stimulation on Upper-Limb Motor Performance in Healthy Adults: A Systematic Review and Meta-Analysis. Front Neurosci 2019; 13:1213. [PMID: 31803003 PMCID: PMC6873898 DOI: 10.3389/fnins.2019.01213] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/28/2019] [Indexed: 11/25/2022] Open
Abstract
Background: Transcranial direct current stimulation (tDCS) has previously been reported to improve facets of upper limb motor performance such as accuracy and strength. However, the magnitude of motor performance improvement has not been reviewed by contemporaneous systematic review or meta-analysis of sham vs. active tDCS. Objective: To systematically review and meta-analyse the existing evidence regarding the benefits of tDCS on upper limb motor performance in healthy adults. Methods: A systematic search was conducted to obtain relevant articles from three databases (MEDLINE, EMBASE, and PsycINFO) yielding 3,200 abstracts. Following independent assessment by two reviewers, a total of 86 articles were included for review, of which 37 were deemed suitable for meta-analysis. Results: Meta-analyses were performed for four outcome measures, namely: reaction time (RT), execution time (ET), time to task failure (TTF), and force. Further qualitative review was performed for accuracy and error. Statistically significant improvements in RT (effect size −0.01; 95% CI −0.02 to 0.001, p = 0.03) and ET (effect size −0.03; 95% CI −0.05 to −0.01, p = 0.017) were demonstrated compared to sham. In exercise tasks, increased force (effect size 0.10; 95% CI 0.08 to 0.13, p < 0.001) and a trend towards improved TTF was also observed. Conclusions: This meta-analysis provides evidence attesting to the impact of tDCS on upper limb motor performance in healthy adults. Improved performance is demonstrable in reaction time, task completion time, elbow flexion tasks and accuracy. Considerable heterogeneity exists amongst the literature, further confirming the need for a standardised approach to reporting tDCS studies.
Collapse
Affiliation(s)
- Ronak Patel
- Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| | - James Ashcroft
- Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| | - Ashish Patel
- Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| | - Hutan Ashrafian
- Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| | - Adam J Woods
- Department of Clinical and Health Psychology, Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Harsimrat Singh
- Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| | - Ara Darzi
- Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| | - Daniel Richard Leff
- Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| |
Collapse
|
28
|
Kumari N, Taylor D, Signal N. The Effect of Cerebellar Transcranial Direct Current Stimulation on Motor Learning: A Systematic Review of Randomized Controlled Trials. Front Hum Neurosci 2019; 13:328. [PMID: 31636552 PMCID: PMC6788395 DOI: 10.3389/fnhum.2019.00328] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/06/2019] [Indexed: 11/16/2022] Open
Abstract
Background: Cerebellar transcranial direct current stimulation (ctDCS) appears to modulate motor performance in both adaptation and motor skill tasks; however, whether the gains are long-lasting is unclear. Objectives: This systematic review aims to evaluate the effect of ctDCS with respect to different time scales of motor learning. Methods: Ten electronic databases (CINAHL, MEDLINE, SPORT Discus, Scopus, Web of Science, Cochrane via OVID, Evidence-Based Reviews (EBM) via OVID, AMED: Allied and Complementary Medicine, PsycINFO, and PEDro) were systematically searched. Studies evaluating the effect of ctDCS compared to sham ctDCS on motor learning in healthy individuals were selected and reviewed. Two authors independently reviewed the quality of the included studies using the revised Cochrane's risk-of-bias tool. The results were extracted with respect to the time scale in which changes in motor performance were evaluated. Results: Seventeen randomized controlled trials met the eligibility criteria of which 65% of the studies had a “high” risk-of-bias, and 35% had “some concerns.” These studies included data from 629 healthy participants. Of the studies that evaluated the effect of anodal ctDCS during and immediately after the stimulation, four found enhanced, three found impaired, and ten found no effect on gains in motor performance. Of the studies that evaluated the effect of anodal ctDCS after a break of 24 h or more, seven found enhanced, two found impaired, and one found no effect on gains in motor performance. Of the studies that evaluated the effect of cathodal ctDCS across a range of time scales, five found impaired, one found enhanced, and five found no effect on gains in motor performance. Conclusions: In healthy individuals, anodal ctDCS appears to improve short to longer-term motor skill learning, whereas it appears to have no effect on gains in motor performance during and immediate after the stimulation. ctDCS may have potential to improve motor performance beyond the training period. The challenge of the motor task and its characteristics, and the stimulation parameters are likely to influence the effect of ctDCS on motor learning.
Collapse
Affiliation(s)
- Nitika Kumari
- Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand
| | - Denise Taylor
- Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand
| | - Nada Signal
- Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
29
|
Dumel G, Bourassa ME, Charlebois-Plante C, Desjardins M, Doyon J, Saint-Amour D, De Beaumont L. Motor Learning Improvement Remains 3 Months After a Multisession Anodal tDCS Intervention in an Aging Population. Front Aging Neurosci 2018; 10:335. [PMID: 30405402 PMCID: PMC6207687 DOI: 10.3389/fnagi.2018.00335] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/04/2018] [Indexed: 01/04/2023] Open
Abstract
Healthy aging is associated with decline of motor function that can generate serious consequences on the quality of life and safety. Our studies aim to explore the 3-month effects of a 5-day multisession anodal transcranial direct current stimulation (a-tDCS) protocol applied over the primary motor cortex (M1) during motor sequence learning in elderly. The present sham-controlled aging study investigated whether tDCS-induced motor improvements previously observed 1 day after the intervention persist beyond 3 months. A total of 37 cognitively-intact aging participants performed five consecutive daily 20-min sessions of the serial-reaction time task (SRTT) concomitant with either anodal (n = 18) or sham (n = 19) tDCS over M1. All participants performed the Purdue Pegboard Test and transcranial magnetic stimulation (TMS) measures of cortical excitability were collected before, 1 day after and 3 months after the intervention. The last follow-up session also included the execution of the trained SRTT. The main findings are the demonstration of durable effects of a 5-day anodal tDCS intervention at the trained skill, while the active intervention did not differ from the sham intervention at both the untrained task and on measures of M1-disinhibition. Thus, the current article revealed for the first time the durability of functional effects of a-tDCS combined with motor training after only 5 days of intervention in an aging population. This finding provides evidence that the latter treatment alternative is effective in achieving our primary motor rehabilitation goal, that is to allow durable motor training effects in an aging population.
Collapse
Affiliation(s)
- Gaëlle Dumel
- Centre de Recherche de l'Hôpital du Sacré-Coeur de Montréal, Montréal, QC, Canada.,Département de Psychologie, Université du Québec à Montréal, Montréal, QC, Canada
| | - Marie-Eve Bourassa
- Centre de Recherche de l'Hôpital du Sacré-Coeur de Montréal, Montréal, QC, Canada.,Département de Psychologie, Université du Québec à Montréal, Montréal, QC, Canada
| | | | - Martine Desjardins
- Centre de Recherche de l'Hôpital du Sacré-Coeur de Montréal, Montréal, QC, Canada.,Département de Psychologie, Université du Québec à Montréal, Montréal, QC, Canada
| | - Julien Doyon
- Unité de Neuroimagerie Fonctionnelle, Centre de Recherche de l'Institut de Gériatrie de Montréal, Montréal, QC, Canada
| | - Dave Saint-Amour
- Département de Psychologie, Université du Québec à Montréal, Montréal, QC, Canada
| | - Louis De Beaumont
- Centre de Recherche de l'Hôpital du Sacré-Coeur de Montréal, Montréal, QC, Canada.,Département de Chirurgie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
30
|
Lametti DR, Smith HJ, Freidin PF, Watkins KE. Cortico-cerebellar Networks Drive Sensorimotor Learning in Speech. J Cogn Neurosci 2018; 30:540-551. [DOI: 10.1162/jocn_a_01216] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The motor cortex and cerebellum are thought to be critical for learning and maintaining motor behaviors. Here we use transcranial direct current stimulation (tDCS) to test the role of the motor cortex and cerebellum in sensorimotor learning in speech. During productions of “head,” “bed,” and “dead,” the first formant of the vowel sound was altered in real time toward the first formant of the vowel sound in “had,” “bad,” and “dad.” Compensatory changes in first and second formant production were used as a measure of motor adaptation. tDCS to either the motor cortex or the cerebellum improved sensorimotor learning in speech compared with sham stimulation ( n = 20 in each group). However, in the case of cerebellar tDCS, production changes were restricted to the source of the acoustical error (i.e., the first formant). Motor cortex tDCS drove production changes that offset errors in the first formant, but unlike cerebellar tDCS, adaptive changes in the second formant also occurred. The results suggest that motor cortex and cerebellar tDCS have both shared and dissociable effects on motor adaptation. The study provides initial causal evidence in speech production that the motor cortex and the cerebellum support different aspects of sensorimotor learning. We propose that motor cortex tDCS drives sensorimotor learning toward previously learned patterns of movement, whereas cerebellar tDCS focuses sensorimotor learning on error correction.
Collapse
|
31
|
Abstract
Transcranial magnetic and electric stimulation of the brain are novel and highly promising techniques currently employed in both research and clinical practice. Improving or rehabilitating brain functions by modulating excitability with these noninvasive tools is an exciting new area in neuroscience. Since the cerebellum is closely connected with the cerebral regions subserving motor, associative, and affective functions, the cerebello-thalamo-cortical pathways are an interesting target for these new techniques. Targeting the cerebellum represents a novel way to modulate the excitability of remote cortical regions and their functions. This review brings together the studies that have applied cerebellar stimulation, magnetic and electric, and presents an overview of the current knowledge and unsolved issues. Some recommendations for future research are implemented as well.
Collapse
|
32
|
Dumel G, Bourassa MÈ, Charlebois-Plante C, Desjardins M, Doyon J, Saint-Amour D, De Beaumont L. Multisession anodal transcranial direct current stimulation induces motor cortex plasticity enhancement and motor learning generalization in an aging population. Clin Neurophysiol 2017; 129:494-502. [PMID: 29223355 DOI: 10.1016/j.clinph.2017.10.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 10/17/2017] [Accepted: 10/31/2017] [Indexed: 12/20/2022]
Abstract
OBJECTIVES The present aging study investigated the impact of a multisession anodal-tDCS protocol applied over the primary motor cortex (M1) during motor sequence learning on generalization of motor learning and plasticity-dependent measures of cortical excitability. METHODS A total of 32 cognitively-intact aging participants performed five consecutive daily 20-min sessions of the serial-reaction time task (SRTT) concomitant with either anodal (n = 16) or sham (n = 16) tDCS over M1. Before and after the intervention, all participants performed the Purdue Pegboard Test (PPT) and Transcranial Magnetic Stimulation (TMS) measures of cortical excitability were collected. RESULTS Relative to sham, participants assigned to the anodal-tDCS intervention revealed significantly greater performance gains on both the trained SRTT and the untrained PPT as well as a greater disinhibition of long-interval cortical inhibition (LICI). Generalization effects of anodal-tDCS significantly correlated with LICI disinhibition. CONCLUSION Anodal-tDCS facilitates motor learning generalisation in an aging population through intracortical disinhibition effects. SIGNIFICANCE The current findings demonstrate the potential clinical utility of a multisession anodal-tDCS over M1 protocol as an adjuvant to motor training in alleviating age-associated motor function decline. This study also reveals the pertinence of implementing brain stimulation techniques to modulate age-associated intracortical inhibition changes in order to facilitate motor function gains.
Collapse
Affiliation(s)
- Gaëlle Dumel
- Centre de recherche de l'hôpital du Sacré-Cœur de Montréal, 5400, boulevard Gouin Ouest, Montréal, Québec H4J1C5, Canada; Département de Psychologie, Université du Québec à Montréal, 100, rue Sherbrooke Ouest, Montréal, Québec H2X3P2, Canada.
| | - Marie-Ève Bourassa
- Centre de recherche de l'hôpital du Sacré-Cœur de Montréal, 5400, boulevard Gouin Ouest, Montréal, Québec H4J1C5, Canada; Département de Psychologie, Université du Québec à Montréal, 100, rue Sherbrooke Ouest, Montréal, Québec H2X3P2, Canada
| | - Camille Charlebois-Plante
- Centre de recherche de l'hôpital du Sacré-Cœur de Montréal, 5400, boulevard Gouin Ouest, Montréal, Québec H4J1C5, Canada
| | - Martine Desjardins
- Centre de recherche de l'hôpital du Sacré-Cœur de Montréal, 5400, boulevard Gouin Ouest, Montréal, Québec H4J1C5, Canada; Département de Psychologie, Université du Québec à Montréal, 100, rue Sherbrooke Ouest, Montréal, Québec H2X3P2, Canada
| | - Julien Doyon
- Unité de neuroimagerie fonctionnelle, Centre de recherche de l'institut de gériatrie de Montréal, 4545, chemin Queen-Mary, Montréal, Québec H3W1W4, Canada
| | - Dave Saint-Amour
- Département de Psychologie, Université du Québec à Montréal, 100, rue Sherbrooke Ouest, Montréal, Québec H2X3P2, Canada
| | - Louis De Beaumont
- Centre de recherche de l'hôpital du Sacré-Cœur de Montréal, 5400, boulevard Gouin Ouest, Montréal, Québec H4J1C5, Canada; Département de Chirurgie, Université de Montréal, 2900, boulevard Édouard-Montpetit, Montréal, Québec H3T1J4, Canada
| |
Collapse
|
33
|
Cerebellar transcranial direct current stimulation improves adaptive postural control. Clin Neurophysiol 2017; 129:33-41. [PMID: 29136550 DOI: 10.1016/j.clinph.2017.09.118] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 09/11/2017] [Accepted: 09/28/2017] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Rehabilitation interventions contribute to recovery of impaired postural control, but it remains a priority to optimize their effectiveness. A promising strategy may involve transcranial direct current stimulation (tDCS) of brain areas involved in fine-tuning of motor adaptation. This study explored the effects of cerebellar tDCS (ctDCS) on postural recovery from disturbance by Achilles tendon vibration. METHODS Twenty-eight healthy volunteers participated in this sham-ctDCS controlled study. Standing blindfolded on a force platform, four trials were completed: 60 s quiet standing followed by 20 min active (anodal-tDCS, 1 mA, 20 min, N = 14) or sham-ctDCS (40 s, N = 14) tDCS; three quiet standing trials with 15 s of Achilles tendon vibration and 25 s of postural recovery. Postural steadiness was quantified as displacement, standard deviation and path derived from the center of pressure (COP). RESULTS Baseline demographics and quiet standing postural steadiness, and backwards displacement during vibration were comparable between groups. However, active-tDCS significantly improved postural steadiness during vibration and reduced forward displacement and variability in COP derivatives during recovery. CONCLUSIONS We demonstrate that ctDCS results in short-term improvement of postural adaptation in healthy individuals. SIGNIFICANCE Future studies need to investigate if multisession ctDCS combined with training or rehabilitation interventions can induce prolonged improvement of postural balance.
Collapse
|
34
|
Antal A, Alekseichuk I, Bikson M, Brockmöller J, Brunoni AR, Chen R, Cohen LG, Dowthwaite G, Ellrich J, Flöel A, Fregni F, George MS, Hamilton R, Haueisen J, Herrmann CS, Hummel FC, Lefaucheur JP, Liebetanz D, Loo CK, McCaig CD, Miniussi C, Miranda PC, Moliadze V, Nitsche MA, Nowak R, Padberg F, Pascual-Leone A, Poppendieck W, Priori A, Rossi S, Rossini PM, Rothwell J, Rueger MA, Ruffini G, Schellhorn K, Siebner HR, Ugawa Y, Wexler A, Ziemann U, Hallett M, Paulus W. Low intensity transcranial electric stimulation: Safety, ethical, legal regulatory and application guidelines. Clin Neurophysiol 2017; 128:1774-1809. [PMID: 28709880 PMCID: PMC5985830 DOI: 10.1016/j.clinph.2017.06.001] [Citation(s) in RCA: 714] [Impact Index Per Article: 89.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/29/2017] [Accepted: 06/06/2017] [Indexed: 12/11/2022]
Abstract
Low intensity transcranial electrical stimulation (TES) in humans, encompassing transcranial direct current (tDCS), transcutaneous spinal Direct Current Stimulation (tsDCS), transcranial alternating current (tACS), and transcranial random noise (tRNS) stimulation or their combinations, appears to be safe. No serious adverse events (SAEs) have been reported so far in over 18,000 sessions administered to healthy subjects, neurological and psychiatric patients, as summarized here. Moderate adverse events (AEs), as defined by the necessity to intervene, are rare, and include skin burns with tDCS due to suboptimal electrode-skin contact. Very rarely mania or hypomania was induced in patients with depression (11 documented cases), yet a causal relationship is difficult to prove because of the low incidence rate and limited numbers of subjects in controlled trials. Mild AEs (MAEs) include headache and fatigue following stimulation as well as prickling and burning sensations occurring during tDCS at peak-to-baseline intensities of 1-2mA and during tACS at higher peak-to-peak intensities above 2mA. The prevalence of published AEs is different in studies specifically assessing AEs vs. those not assessing them, being higher in the former. AEs are frequently reported by individuals receiving placebo stimulation. The profile of AEs in terms of frequency, magnitude and type is comparable in healthy and clinical populations, and this is also the case for more vulnerable populations, such as children, elderly persons, or pregnant women. Combined interventions (e.g., co-application of drugs, electrophysiological measurements, neuroimaging) were not associated with further safety issues. Safety is established for low-intensity 'conventional' TES defined as <4mA, up to 60min duration per day. Animal studies and modeling evidence indicate that brain injury could occur at predicted current densities in the brain of 6.3-13A/m2 that are over an order of magnitude above those produced by tDCS in humans. Using AC stimulation fewer AEs were reported compared to DC. In specific paradigms with amplitudes of up to 10mA, frequencies in the kHz range appear to be safe. In this paper we provide structured interviews and recommend their use in future controlled studies, in particular when trying to extend the parameters applied. We also discuss recent regulatory issues, reporting practices and ethical issues. These recommendations achieved consensus in a meeting, which took place in Göttingen, Germany, on September 6-7, 2016 and were refined thereafter by email correspondence.
Collapse
Affiliation(s)
- A Antal
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Georg August University, Göttingen, Germany.
| | - I Alekseichuk
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - M Bikson
- Department of Biomedical Engineering, The City College of New York, New York, USA
| | - J Brockmöller
- Department of Clinical Pharmacology, University Medical Center Goettingen, Germany
| | - A R Brunoni
- Service of Interdisciplinary Neuromodulation, Department and Institute of Psychiatry, Laboratory of Neurosciences (LIM-27) and Interdisciplinary Center for Applied Neuromodulation University Hospital, University of São Paulo, São Paulo, Brazil
| | - R Chen
- Division of Neurology, Department of Medicine, University of Toronto and Krembil Research Institute, Toronto, Ontario, Canada
| | - L G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke NIH, Bethesda, USA
| | | | - J Ellrich
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark; Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, Erlangen, Germany; EBS Technologies GmbH, Europarc Dreilinden, Germany
| | - A Flöel
- Universitätsmedizin Greifswald, Klinik und Poliklinik für Neurologie, Greifswald, Germany
| | - F Fregni
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | - M S George
- Brain Stimulation Division, Medical University of South Carolina, and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA
| | - R Hamilton
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - J Haueisen
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Germany
| | - C S Herrmann
- Experimental Psychology Lab, Department of Psychology, European Medical School, Carl von Ossietzky Universität, Oldenburg, Germany
| | - F C Hummel
- Defitech Chair of Clinical Neuroengineering, Centre of Neuroprosthetics (CNP) and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland; Defitech Chair of Clinical Neuroengineering, Clinique Romande de Réadaptation, Swiss Federal Institute of Technology (EPFL Valais), Sion, Switzerland
| | - J P Lefaucheur
- Department of Physiology, Henri Mondor Hospital, Assistance Publique - Hôpitaux de Paris, and EA 4391, Nerve Excitability and Therapeutic Team (ENT), Faculty of Medicine, Paris Est Créteil University, Créteil, France
| | - D Liebetanz
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - C K Loo
- School of Psychiatry & Black Dog Institute, University of New South Wales, Sydney, Australia
| | - C D McCaig
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - C Miniussi
- Center for Mind/Brain Sciences CIMeC, University of Trento, Rovereto, Italy; Cognitive Neuroscience Section, IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - P C Miranda
- Institute of Biophysics and Biomedical Engineering, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - V Moliadze
- Institute of Medical Psychology and Medical Sociology, University Hospital of Schleswig-Holstein (UKSH), Campus Kiel, Christian-Albrechts-University, Kiel, Germany
| | - M A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; Department of Neurology, University Hospital Bergmannsheil, Bochum, Germany
| | - R Nowak
- Neuroelectrics, Barcelona, Spain
| | - F Padberg
- Department of Psychiatry and Psychotherapy, Munich Center for Brain Stimulation, Ludwig-Maximilian University Munich, Germany
| | - A Pascual-Leone
- Division of Cognitive Neurology, Harvard Medical Center and Berenson-Allen Center for Noninvasive Brain Stimulation at Beth Israel Deaconess Medical Center, Boston, USA
| | - W Poppendieck
- Department of Information Technology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - A Priori
- Center for Neurotechnology and Experimental Brain Therapeutich, Department of Health Sciences, University of Milan Italy; Deparment of Clinical Neurology, University Hospital Asst Santi Paolo E Carlo, Milan, Italy
| | - S Rossi
- Department of Medicine, Surgery and Neuroscience, Human Physiology Section and Neurology and Clinical Neurophysiology Section, Brain Investigation & Neuromodulation Lab, University of Siena, Italy
| | - P M Rossini
- Area of Neuroscience, Institute of Neurology, University Clinic A. Gemelli, Catholic University, Rome, Italy
| | | | - M A Rueger
- Department of Neurology, University Hospital of Cologne, Germany
| | | | | | - H R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Y Ugawa
- Department of Neurology, Fukushima Medical University, Fukushima, Japan; Fukushima Global Medical Science Center, Advanced Clinical Research Center, Fukushima Medical University, Japan
| | - A Wexler
- Department of Science, Technology & Society, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - U Ziemann
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - M Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - W Paulus
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| |
Collapse
|
35
|
Martin AK, Meinzer M, Lindenberg R, Sieg MM, Nachtigall L, Flöel A. Effects of Transcranial Direct Current Stimulation on Neural Networks in Young and Older Adults. J Cogn Neurosci 2017; 29:1817-1828. [PMID: 28707568 DOI: 10.1162/jocn_a_01166] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transcranial direct current stimulation (tDCS) may be a viable tool to improve motor and cognitive function in advanced age. However, although a number of studies have demonstrated improved cognitive performance in older adults, other studies have failed to show restorative effects. The neural effects of beneficial stimulation response in both age groups is lacking. In the current study, tDCS was administered during simultaneous fMRI in 42 healthy young and older participants. Semantic word generation and motor speech baseline tasks were used to investigate behavioral and neural effects of uni- and bihemispheric motor cortex tDCS in a three-way, crossover, sham tDCS controlled design. Independent components analysis assessed differences in task-related activity between the two age groups and tDCS effects at the network level. We also explored whether laterality of language network organization was effected by tDCS. Behaviorally, both active tDCS conditions significantly improved semantic word retrieval performance in young and older adults and were comparable between groups and stimulation conditions. Network-level tDCS effects were identified in the ventral and dorsal anterior cingulate networks in the combined sample during semantic fluency and motor speech tasks. In addition, a shift toward enhanced left laterality was identified in the older adults for both active stimulation conditions. Thus, tDCS results in common network-level modulations and behavioral improvements for both age groups, with an additional effect of increasing left laterality in older adults.
Collapse
Affiliation(s)
| | | | | | - Mira M Sieg
- Charité University Medicine, Berlin, Germany
| | | | - Agnes Flöel
- Charité University Medicine, Berlin, Germany.,University of Greifswald
| |
Collapse
|
36
|
Leow LA, Marinovic W, Riek S, Carroll TJ. Cerebellar anodal tDCS increases implicit learning when strategic re-aiming is suppressed in sensorimotor adaptation. PLoS One 2017; 12:e0179977. [PMID: 28686607 PMCID: PMC5501480 DOI: 10.1371/journal.pone.0179977] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 06/07/2017] [Indexed: 12/15/2022] Open
Abstract
Neurophysiological and neuroimaging work suggests that the cerebellum is critically involved in sensorimotor adaptation. Changes in cerebellar function alter behaviour when compensating for sensorimotor perturbations, as shown by non-invasive stimulation of the cerebellum and studies involving patients with cerebellar degeneration. It is known, however, that behavioural responses to sensorimotor perturbations reflect both explicit processes (such as volitional aiming to one side of a target to counteract a rotation of visual feedback) and implicit, error-driven updating of sensorimotor maps. The contribution of the cerebellum to these explicit and implicit processes remains unclear. Here, we examined the role of the cerebellum in sensorimotor adaptation to a 30° rotation of visual feedback of hand position during target-reaching, when the capacity to use explicit processes was manipulated by controlling movement preparation times. Explicit re-aiming was suppressed in one condition by requiring subjects to initiate their movements within 300ms of target presentation, and permitted in another condition by requiring subjects to wait approximately 1050ms after target presentation before movement initiation. Similar to previous work, applying anodal transcranial direct current stimulation (tDCS; 1.5mA) to the right cerebellum during adaptation resulted in faster compensation for errors imposed by the rotation. After exposure to the rotation, we evaluated implicit remapping in no-feedback trials after providing participants with explicit knowledge that the rotation had been removed. Crucially, movements were more adapted in these no-feedback trials following cerebellar anodal tDCS than after sham stimulation in both long and short preparation groups. Thus, cerebellar anodal tDCS increased implicit remapping during sensorimotor adaptation, irrespective of preparation time constraints. The results are consistent with the possibility that the cerebellum contributes to the formation of new visuomotor maps that correct perturbations in sensory feedback, even when explicit processes are suppressed during sensorimotor adaptation.
Collapse
Affiliation(s)
- Li-Ann Leow
- Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, Building 26B, The University of Queensland, Brisbane, Australia
- * E-mail:
| | - Welber Marinovic
- Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, Building 26B, The University of Queensland, Brisbane, Australia
- School of Psychology and Speech Pathology, Building 401, Curtin University, Bentley, Perth, WA, Australia
| | - Stephan Riek
- Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, Building 26B, The University of Queensland, Brisbane, Australia
| | - Timothy J. Carroll
- Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, Building 26B, The University of Queensland, Brisbane, Australia
| |
Collapse
|
37
|
Hulst T, John L, Küper M, van der Geest JN, Göricke SL, Donchin O, Timmann D. Cerebellar patients do not benefit from cerebellar or M1 transcranial direct current stimulation during force-field reaching adaptation. J Neurophysiol 2017; 118:732-748. [PMID: 28469001 DOI: 10.1152/jn.00808.2016] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 05/02/2017] [Accepted: 05/02/2017] [Indexed: 11/22/2022] Open
Abstract
Several studies have identified transcranial direct current stimulation (tDCS) as a potential tool in the rehabilitation of cerebellar disease. Here, we tested whether tDCS could alleviate motor impairments of subjects with cerebellar degeneration. Three groups took part in this study: 20 individuals with cerebellar degeneration, 20 age-matched controls, and 30 young controls. A standard reaching task with force-field perturbations was used to compare motor adaptation among groups and to measure the effect of stimulation of the cerebellum or primary motor cortex (M1). Cerebellar subjects and age-matched controls were tested during each stimulation type (cerebellum, M1, and sham) with a break of 1 wk among each of the three sessions. Young controls were tested during one session under one of three stimulation types (anodal cerebellum, cathodal cerebellum, or sham). As expected, individuals with cerebellar degeneration had a reduced ability to adapt to motor perturbations. Importantly, cerebellar patients did not benefit from anodal stimulation of the cerebellum or M1. Furthermore, no stimulation effects could be detected in aging and young controls. The present null results cannot exclude more subtle tDCS effects in larger subject populations and between-subject designs. Moreover, it is still possible that tDCS affects motor adaptation in cerebellar subjects and control subjects under a different task or with alternative stimulation parameters. However, for tDCS to become a valuable tool in the neurorehabilitation of cerebellar disease, stimulation effects should be present in group sizes commonly used in this rare patient population and be more consistent and predictable across subjects and tasks.NEW & NOTEWORTHY Transcranial direct current stimulation (tDCS) has been identified as a potential tool in the rehabilitation of cerebellar disease. We investigated whether tDCS of the cerebellum and primary motor cortex could alleviate motor impairments of subjects with cerebellar degeneration. The present study did not find stimulation effects of tDCS in young controls, aging controls, and individuals with cerebellar degeneration during reach adaptation. Our results require a re-evaluation of the clinical potential of tDCS in cerebellar patients.
Collapse
Affiliation(s)
- Thomas Hulst
- Department of Neurology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany; .,Erasmus University College, Rotterdam, The Netherlands
| | - Liane John
- Department of Neurology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Michael Küper
- Department of Neurology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Jos N van der Geest
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sophia L Göricke
- Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany; and
| | - Opher Donchin
- Department of Biomedical Engineering, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Dagmar Timmann
- Department of Neurology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
38
|
Perceval G, Flöel A, Meinzer M. Can transcranial direct current stimulation counteract age-associated functional impairment? Neurosci Biobehav Rev 2016; 65:157-72. [DOI: 10.1016/j.neubiorev.2016.03.028] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 02/05/2016] [Accepted: 03/14/2016] [Indexed: 12/21/2022]
|
39
|
van Dun K, Bodranghien FCAA, Mariën P, Manto MU. tDCS of the Cerebellum: Where Do We Stand in 2016? Technical Issues and Critical Review of the Literature. Front Hum Neurosci 2016; 10:199. [PMID: 27242469 PMCID: PMC4862979 DOI: 10.3389/fnhum.2016.00199] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/19/2016] [Indexed: 01/23/2023] Open
Abstract
Transcranial Direct Current Stimulation (tDCS) is an up-and-coming electrical neurostimulation technique increasingly used both in healthy subjects and in selected groups of patients. Due to the high density of neurons in the cerebellum, its peculiar anatomical organization with the cortex lying superficially below the skull and its diffuse connections with motor and associative areas of the cerebrum, the cerebellum is becoming a major target for neuromodulation of the cerebellocerebral networks. We discuss the recent studies based on cerebellar tDCS with a focus on the numerous technical and open issues which remain to be solved. Our current knowledge of the physiological impacts of tDCS on cerebellar circuitry is criticized. We provide a comparison with transcranial Alternating Current Stimulation (tACS), another promising transcranial electrical neurostimulation technique. Although both tDCS and tACS are becoming established techniques to modulate the cerebellocerebral networks, it is surprising that their impacts on cerebellar disorders remains unclear. A major reason is that the literature lacks large trials with a double-blind, sham-controlled, and cross-over experimental design in cerebellar patients.
Collapse
Affiliation(s)
- Kim van Dun
- Clinical and Experimental Neurolinguistics, Vrije Universiteit Brussel Brussels, Belgium
| | - Florian C A A Bodranghien
- Unité d'Etude du Mouvement, Laboratoire de Neurologie Expérimentale, Université libre de Bruxelles (ULB) Brussels, Belgium
| | - Peter Mariën
- Clinical and Experimental Neurolinguistics, Vrije Universiteit BrusselBrussels, Belgium; Department of Neurology and Memory Clinic, ZNA Middelheim General HospitalAntwerp, Belgium
| | - Mario U Manto
- Unité d'Etude du Mouvement, Laboratoire de Neurologie Expérimentale, Université libre de Bruxelles (ULB)Brussels, Belgium; Service des Neurosciences, Université de MonsMons, Belgium
| |
Collapse
|
40
|
Taubert M, Stein T, Kreutzberg T, Stockinger C, Hecker L, Focke A, Ragert P, Villringer A, Pleger B. Remote Effects of Non-Invasive Cerebellar Stimulation on Error Processing in Motor Re-Learning. Brain Stimul 2016; 9:692-699. [PMID: 27157059 DOI: 10.1016/j.brs.2016.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 03/21/2016] [Accepted: 04/10/2016] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND While concurrent transcranial direct current stimulation (tDCS) affects motor memory acquisition and long-term retention, it is unclear how behavioral interference modulates long-term tDCS effects. Behavioral interference can be introduced through a secondary task learned in-between motor memory acquisition and later recall of the original task. OBJECTIVE/HYPOTHESIS The cerebellum is important for the processing of errors if movements should be adapted to external perturbations (motor memory acquisition). We hypothesized that concurrent cerebellar tDCS during adaptation influences both memory acquisition and re-acquisition if motor errors are enlarged due to behavioral interference. METHODS In a sham-controlled and double-blinded study, we applied anodal and cathodal tDCS to the ipsilateral cerebellum while subjects adapted reaching movements to an external, clockwise force field perturbation (acquisition task A) with their dominant right arm. Behavioral interference by an oppositely oriented, counter-clockwise perturbation (secondary task B) was introduced in between the acquisition and re-acquisition (24 h later) sessions. RESULTS Learning task B disrupted memory retention of A and re-increased motor errors in the re-acquisition session. Anodal but not sham or cathodal tDCS impaired motor memory acquisition and, additionally, increased motor errors during re-acquisition of the original motor memory. CONCLUSION(S) Behavioral interference disrupted motor memory retention but tDCS delivered online during memory acquisition induced lasting and robust effects on re-acquisition performance one day later. Our data also suggest different error-processing mechanisms at work during motor memory acquisition and re-acquisition.
Collapse
Affiliation(s)
- Marco Taubert
- Department of Neurology, Max-Planck-Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany.
| | - Thorsten Stein
- YIG "Computational Motor Control and Learning", BioMotion Center, Institute of Sports and Sports Science, Karlsruhe Institute of Technology Karlsruhe, 76131 Karlsruhe, Germany
| | - Tommy Kreutzberg
- Department of Neurology, Max-Planck-Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| | - Christian Stockinger
- YIG "Computational Motor Control and Learning", BioMotion Center, Institute of Sports and Sports Science, Karlsruhe Institute of Technology Karlsruhe, 76131 Karlsruhe, Germany
| | - Lukas Hecker
- Department of Neurology, Max-Planck-Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| | - Anne Focke
- YIG "Computational Motor Control and Learning", BioMotion Center, Institute of Sports and Sports Science, Karlsruhe Institute of Technology Karlsruhe, 76131 Karlsruhe, Germany
| | - Patrick Ragert
- Institute of General Kinesiology and Athletics Training, University of Leipzig, 04109 Leipzig, Germany
| | - Arno Villringer
- Department of Neurology, Max-Planck-Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany; Clinic for Cognitive Neurology, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Burkhard Pleger
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| |
Collapse
|
41
|
Panouillères MTN, Tofaris GK, Brown P, Jenkinson N. Intact Acquisition and Short-Term Retention of Non-Motor Procedural Learning in Parkinson's Disease. PLoS One 2016; 11:e0149224. [PMID: 26906905 PMCID: PMC4764369 DOI: 10.1371/journal.pone.0149224] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/28/2016] [Indexed: 11/18/2022] Open
Abstract
Procedural learning is a form of memory where people implicitly acquire a skill through repeated practice. People with Parkinson’s disease (PD) have been found to acquire motor adaptation, a form of motor procedural learning, similarly to healthy older adults but they have deficits in long-term retention. A similar pattern of normal learning on initial exposure with a deficit in retention seen on subsequent days has also been seen in mirror-reading, a form of non-motor procedural learning. It is a well-studied fact that disrupting sleep will impair the consolidation of procedural memories. Given the prevalence of sleep disturbances in PD, the lack of retention on following days seen in these studies could simply be a side effect of this well-known symptom of PD. Because of this, we wondered whether people with PD would present with deficits in the short-term retention of a non-motor procedural learning task, when the test of retention was done the same day as the initial exposure. The aim of the present study was then to investigate acquisition and retention in the immediate short term of cognitive procedural learning using the mirror-reading task in people with PD. This task involved two conditions: one where triads of mirror-inverted words were always new that allowed assessing the learning of mirror-reading skill and another one where some of the triads were presented repeatedly during the experiment that allowed assessing the word-specific learning. People with PD both ON and OFF their normal medication were compared to healthy older adults and young adults. Participants were re-tested 50 minutes break after initial exposure to probe for short-term retention. The results of this study show that all groups of participants acquired and retained the two skills (mirror-reading and word-specific) similarly. These results suggest that neither healthy ageing nor the degeneration within the basal ganglia that occurs in PD does affect the mechanisms that underpin the acquisition of these new non-motor procedural learning skills and their short-term memories.
Collapse
Affiliation(s)
- Muriel T. N. Panouillères
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- * E-mail:
| | - George K. Tofaris
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Peter Brown
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Ned Jenkinson
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
42
|
Multisession Anodal tDCS Protocol Improves Motor System Function in an Aging Population. Neural Plast 2016; 2016:5961362. [PMID: 26881118 PMCID: PMC4736991 DOI: 10.1155/2016/5961362] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/17/2015] [Accepted: 11/22/2015] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES The primary objective of this study was to investigate the effects of five consecutive, daily 20-minute sessions of M1 a-tDCS on motor learning in healthy, cognitively intact, aging adults. DESIGN A total of 23 participants (51 to 69 years old) performed five consecutive, daily 20-minute sessions of a serial reaction time task (SRT task) concomitant with either anodal (n = 12) or sham (n = 11) M1 a-tDCS. RESULTS We found a significant group × training sessions interaction, indicating that whereas aging adults in the sham group exhibited little-to-no sequence-specific learning improvements beyond the first day of training, reproducible improvements in the ability to learn new motor sequences over 5 consecutive sessions were the net result in age-equivalent participants from the M1 a-tDCS group. A significant main effect of group on sequence-specific learning revealed greater motor learning for the M1 a-tDCS group when the five learning sessions were averaged. CONCLUSION These findings raise into prominence the utility of multisession anodal TDCS protocols in combination with motor training to help prevent/alleviate age-associated motor function decline.
Collapse
|
43
|
Summers JJ, Kang N, Cauraugh JH. Does transcranial direct current stimulation enhance cognitive and motor functions in the ageing brain? A systematic review and meta- analysis. Ageing Res Rev 2016; 25:42-54. [PMID: 26607412 DOI: 10.1016/j.arr.2015.11.004] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 11/09/2015] [Accepted: 11/16/2015] [Indexed: 02/03/2023]
Abstract
The use of transcranial direct current stimulation (tDCS) to enhance cognitive and motor functions has enjoyed a massive increase in popularity. Modifying neuroplasticity via non-invasive cortical stimulation has enormous potential to slow or even reverse declines in functions associated with ageing. The current meta-analysis evaluated the effects of tDCS on cognitive and motor performance in healthy older adults. Of the 81 studies identified, 25 qualified for inclusion. A random effects model meta-analysis revealed a significant overall standardized mean difference equal to 0.53 (SE=0.09; medium heterogeneity: I(2)=57.08%; and high fail-safe: N=448). Five analyses on moderator variables indicated significant tDCS beneficial effects: (a) on both cognitive and motor task performances, (b) across a wide-range of cognitive tasks, (c) on specific brain areas, (d) stimulation offline (before) or online (during) the cognitive and motor tasks. Although the meta-analysis revealed robust support for enhancing both cognitive and motor performance, we outline a number of caveats on the use of tDCS.
Collapse
|