1
|
Lundstrom EA, Williams NI, Allaway HCM, Salamunes ACC, Souza MJD. Pre-Season Energy Deficiency Predicts Poorer Performance During a Competitive Season in Collegiate Female Long-Distance Runners. Eur J Sport Sci 2025; 25:e12261. [PMID: 39910810 PMCID: PMC11799059 DOI: 10.1002/ejsc.12261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/23/2024] [Accepted: 01/17/2025] [Indexed: 02/07/2025]
Abstract
Female distance runners are at a high risk for chronic energy deficiency (ED). ED during predominantly high-volume and/or high-intensity training phases may compromise performance. The relationship between pre-season energy status and running performance in female runners across a season is unclear. To test if energy status as defined by resting metabolic rate ratio (RMRratio) is associated with running performance, female collegiate distance runners (18-25 yr; n = 38) were assessed across 10-12 wks. Energy status, body composition, and 5 km time trial (measure of performance) were assessed pre- and post-competitive season. Runners were categorized at baseline based on pre-season measured-to-Cunningham1991-predicted RMRratio: metabolically suppressed (SUP: RMRratio < 0.92, n = 12) and energy replete (NSUP: RMRratio ≥ 0.92, n = 26). Repeated measures ANOVA tested effects of pre-season RMRratio groups, time, and group*time on performance. Linear regression analysis tested whether factors (body composition or total triiodothyronine, TT3) predicted performance across the season. Twenty-one runners (19.6 ± 0.2 yr, 20.2 ± 0.4 kg/m2) completed pre- and post-season performance runs. Groups had similar body mass, body mass index, percent body fat, and lean body mass. ANOVA revealed a significant group effect of RMRratio on running performance, but no effect of time or group*time. SUP had slower 5 km time trial performance compared to NSUP (22.4 vs. 20.4 min, p = 0.04). Controlling for post-season VO2max, pre-season TT3 predicted post-season 5 km times (R2 = 0.614, p = 0.001). Pre-season energy deficient female runners exhibited poorer running performance during a collegiate competitive season compared to pre-season energy replete runners. Early detection of metabolic compensation in runners may be necessary for optimal performance across a competitive season.
Collapse
Affiliation(s)
- Emily Ann Lundstrom
- Women's Health and Exercise LaboratoryDepartment of KinesiologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Nancy I. Williams
- Women's Health and Exercise LaboratoryDepartment of KinesiologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Heather C. M. Allaway
- Women's Health and Exercise LaboratoryDepartment of KinesiologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
- Women's Physiology Research LaboratorySchool of KinesiologyThe Louisiana State UniversityBaton RougeLouisianaUSA
| | - Ana Carla Chierighini Salamunes
- Women's Health and Exercise LaboratoryDepartment of KinesiologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Mary Jane De Souza
- Women's Health and Exercise LaboratoryDepartment of KinesiologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| |
Collapse
|
2
|
Burke LM, Whitfield J, Hawley JA. The race within a race: Together on the marathon starting line but miles apart in the experience. Free Radic Biol Med 2025; 227:367-378. [PMID: 39395564 DOI: 10.1016/j.freeradbiomed.2024.10.277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/23/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
Every four years the world's best athletes come together to compete in the Olympic games, electrifying audiences with incredible feats of speed, strength, endurance and skill as personal best performances and new records are set. However, the exceptional talent that underpin such performances is incomprehensible to most casual observers who often cannot appreciate how unique these athletes are. In this regard, endurance running, specifically the marathon, a 42.195 km foot race, provides one of the few occasions in sport outside of Olympic, world and national competitions, that permits sport scientists and fans alike to directly compare differences in the physiology between recreational and elite competitors. While these individuals may all cover the same distance, on the same course, on the same day - their experience and the physiological and psychological demands placed upon them are vastly different. There is, in effect, a "race within a race". In the current review we highlight the superior physiology of the elite endurance athlete, emphasizing the gap between elite competitors and well-trained, but less genetically endowed athletes. We draw attention to a range of inconsistencies in how current sports science practices are understood, implemented, and communicated in terms of the elite and not-so-elite endurance athlete.
Collapse
Affiliation(s)
- Louise M Burke
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, 3000, Australia
| | - Jamie Whitfield
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, 3000, Australia
| | - John A Hawley
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, 3000, Australia; Department of Sport and Exercise Sciences, Manchester Metropolitan University Institute of Sport, Manchester, United Kingdom.
| |
Collapse
|
3
|
Liu Y, Zhou R, Guo Y, Hu B, Xie L, An Y, Wen J, Liu Z, Zhou M, Kuang W, Xiao Y, Wang M, Xie G, Zhou H, Lu R, Peng H, Huang Y. Muscle-derived small extracellular vesicles induce liver fibrosis during overtraining. Cell Metab 2025:S1550-4131(24)00488-1. [PMID: 39879982 DOI: 10.1016/j.cmet.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/24/2024] [Accepted: 12/16/2024] [Indexed: 01/31/2025]
Abstract
The benefits of exercise for metabolic health occur in a dose-dependent manner. However, the adverse effects of overtraining and their underlying mechanisms remain unclear. Here, we show that overtraining induces hepatic fibrosis. Mechanistically, we find that excessive lactate accumulation in skeletal muscle leads to the lactylation of SH3 domain-containing 3 (SORBS3), triggering its liquid-liquid phase separation (LLPS). LLPS of SORBS3 enhances its interaction with flotillin 1 and selectively facilitates the sorting of F-box protein 2 (FBXO2) into small extracellular vesicles, referred to as "lactate bodies." Lactate bodies induce hepatocyte apoptosis followed by hepatic stellate cell activation via myeloid cell leukemia sequence 1 (MCL1)-BAX/BAK signaling. Inhibition of SORBS3 lactylation or FBXO2 disrupts lactate bodies formation and alleviates overtraining-triggered liver fibrosis. Likewise, reduction of muscle lactate bodies formation by salidroside attenuates overtraining-induced liver fibrosis. Collectively, we identify a process by which overtraining induces hepatic fibrosis, highlighting a potential therapeutic target for liver health.
Collapse
Affiliation(s)
- Ya Liu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008 Changsha, Hunan, China
| | - Rui Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008 Changsha, Hunan, China
| | - Yifan Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008 Changsha, Hunan, China
| | - Biao Hu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008 Changsha, Hunan, China
| | - Lingqi Xie
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008 Changsha, Hunan, China
| | - Yuze An
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008 Changsha, Hunan, China
| | - Jie Wen
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008 Changsha, Hunan, China
| | - Zheyu Liu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008 Changsha, Hunan, China
| | - Min Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008 Changsha, Hunan, China
| | - Weihong Kuang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008 Changsha, Hunan, China
| | - Yao Xiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008 Changsha, Hunan, China
| | - Min Wang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008 Changsha, Hunan, China
| | - Genqing Xie
- Department of Endocrinology, The First People's Hospital of Xiangtan City, 411100 Xiangtan, Hunan, China
| | - Haiyan Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008 Changsha, Hunan, China
| | - Renbin Lu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008 Changsha, Hunan, China.
| | - Hui Peng
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008 Changsha, Hunan, China.
| | - Yan Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008 Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 410008 Changsha, Hunan, China; FuRong Laboratory, 410078 Changsha, Hunan, China.
| |
Collapse
|
4
|
Stratton MT, Holden SL, Davis R, Massengale AT. The Impact of Breakfast Consumption or Omission on Exercise Performance and Adaptations: A Narrative Review. Nutrients 2025; 17:300. [PMID: 39861430 PMCID: PMC11767684 DOI: 10.3390/nu17020300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Breakfast is often termed the most important meal of the day. However, its importance to acute and chronic adaptations to exercise is currently not well summarized throughout the literature. METHODS A narrative review of the experimental literature regarding breakfast consumption's impact on acute and chronic exercise performance and alterations in body composition prior to November 2024 was conducted. To be included in this review, the selected investigations needed to include some aspect of either endurance or resistance training performance and be conducted in humans. RESULTS These findings suggest that breakfast consumption may benefit acute long-duration (>60 min) but not short-duration (<60 min) morning endurance exercise. Evening time trial performance was consistently inhibited following breakfast omission despite the resumption of eating midday. No or minimal impact of breakfast consumption was found when examining acute morning or afternoon resistance training or the longitudinal adaptations to either resistance or endurance training. Favorable changes in body composition were often noted following the omission of breakfast. However, this was primarily driven by the concomitant reduced kilocalorie intake. CONCLUSIONS Consuming breakfast may aid endurance athletes regularly performing exercise lasting >60 min in length. However, the morning meal's impact on resistance training and changes in body composition appears to be minimal. Although, as the body of literature is limited, future investigations are needed to truly ascertain the dietary practice's impact.
Collapse
Affiliation(s)
- Matthew T. Stratton
- Basic and Applied Laboratory for Dietary Interventions in Exercise and Sport, Department of Health, Kinesiology, and Sport, University of South Alabama, Mobile, AL 36688, USA; (S.L.H.); (R.D.); (A.T.M.)
| | | | | | | |
Collapse
|
5
|
Soegaard C, Riis S, Mortensen JF, Hansen M. Carbohydrate Restriction During Recovery from High-Intensity-Interval Training Enhances Fat Oxidation During Subsequent Exercise and Does Not Compromise Performance When Combined With Caffeine. Curr Dev Nutr 2025; 9:104520. [PMID: 39834686 PMCID: PMC11743123 DOI: 10.1016/j.cdnut.2024.104520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 01/22/2025] Open
Abstract
Background Carbohydrate restriction can alter substrate utilization and potentially impair endurance performance in female athletes. Caffeine intake may mitigate this performance decrements. Objectives The aim of this study was to test the hypothesis that maximal fat oxidation (MFO) rate would be enhanced in the carbohydrate (CHO) restricted state in trained females. Additionally, the impact of caffeine intake before exercise under conditions of low CHO availability was examined on time-trial performance. Methods By using a randomized, double-blinded, placebo-controlled, crossover design, 17 female endurance athletes completed 3 experimental blocks. Each block consisted of high-intensity-interval-training (HIT) in the evening, followed by a fat oxidation test to measure MFO rate and a 20-min time trial (20TT) performance the next morning. The females received standardized, isoenergetic diets with different timing of CHO intake: No CHO between exercise sessions without (FASTED) or with 300 mg caffeine (4.1-4.9 mg/kg body mass) (FASTED+CAFF) before morning exercise tests or CHO ingestion after HIT (FED). Results MFO rate was higher in FASTED+CAFF (0.57 ± 0.04 g/min) than that in FED (0.50 ± 0.04 g/min, P = 0.039) but not different from FASTED condition. Power output performed during the 20TT was higher after FASTED+CAFF (189 ± 9 W) than that after FASTED (+6.9%, P = 0.022) and FED (+4.2%, P = 0.054). Conclusions CHO restriction during recovery from HIT enhances MFO rate during subsequent exercise compared with the condition where CHOs were consumed during the recovery period, but the effect was only significant when CHO restriction was combined with caffeine supplementation before the MFO test. In addition, caffeine ingestion before exercise in the CHO-restricted state compensates for the decreased work capacity associated with the CHO-restricted state.
Collapse
Affiliation(s)
- Camilla Soegaard
- Department for Public Health, Aarhus University, Aarhus, Denmark
| | - Simon Riis
- Department for Public Health, Aarhus University, Aarhus, Denmark
| | | | - Mette Hansen
- Department for Public Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
6
|
Xia W, Li X, Han R, Liu X. Microbial Champions: The Influence of Gut Microbiota on Athletic Performance via the Gut-Brain Axis. Open Access J Sports Med 2024; 15:209-228. [PMID: 39691802 PMCID: PMC11651067 DOI: 10.2147/oajsm.s485703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/06/2024] [Indexed: 12/19/2024] Open
Abstract
In recent years, exercise has shown a powerful ability to regulate the gut microbiota received with concern. For instance, compared with the sedentary group, high-level athletes showed a different gut microbiota composition and remarkable capability of physiological metabolism. In addition, different diet patterns (eg, high-fat diet, high carbohydrate diet et.al) have different effects on gut microbiota, which can also affect exercise performance. Furthermore, adaptations to exercise also might be influenced by the gut microbiota, due to its important role in the transformation and expenditure of energy obtained from the diet. Therefore, appropriate dietary supplementation is important during exercise. And exploring the mechanisms by which dietary supplements affect exercise performance by modulating gut microbiota is of considerable interest to athletes wishing to achieve health and athletic performance. In this narrative review, the relationship between gut microbiota, dietary supplements, training adaptations and performance is discussed as follows. (i) The effects of the three main nutritional supplements on gut microbiota and athlete fitness. (ii) Strategies for dietary supplements and how they exerted function through gut microbiota alteration based on the gut-brain axis. (iii) Why dietary supplement interventions on gut microbiota should be tailored to different types of exercise. Our work integrates these factors to elucidate how specific nutritional supplements can modulate gut microbiota composition and, consequently, influence training adaptations and performance outcomes, unlike previous literature that often focuses solely on the effects of exercise or diet independently. And provides a comprehensive framework for athletes seeking to optimize their health and performance through a microbiota-centric approach.
Collapse
Affiliation(s)
- Wenrui Xia
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
- Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Xiaoang Li
- Department of Gastroenterology, Peking University Third Hospital, Beijing, People’s Republic of China
| | - Ruixuan Han
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, People’s Republic of China
| | - Xiaoke Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| |
Collapse
|
7
|
Leaf A, Rothschild JA, Sharpe TM, Sims ST, Macias CJ, Futch GG, Roberts MD, Stout JR, Ormsbee MJ, Aragon AA, Campbell BI, Arent SM, D’Agostino DP, Barrack MT, Kerksick CM, Kreider RB, Kalman DS, Antonio J. International society of sports nutrition position stand: ketogenic diets. J Int Soc Sports Nutr 2024; 21:2368167. [PMID: 38934469 PMCID: PMC11212571 DOI: 10.1080/15502783.2024.2368167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
POSITION STATEMENT The International Society of Sports Nutrition (ISSN) provides an objective and critical review of the use of a ketogenic diet in healthy exercising adults, with a focus on exercise performance and body composition. However, this review does not address the use of exogenous ketone supplements. The following points summarize the position of the ISSN. 1. A ketogenic diet induces a state of nutritional ketosis, which is generally defined as serum ketone levels above 0.5 mM. While many factors can impact what amount of daily carbohydrate intake will result in these levels, a broad guideline is a daily dietary carbohydrate intake of less than 50 grams per day. 2. Nutritional ketosis achieved through carbohydrate restriction and a high dietary fat intake is not intrinsically harmful and should not be confused with ketoacidosis, a life-threatening condition most commonly seen in clinical populations and metabolic dysregulation. 3. A ketogenic diet has largely neutral or detrimental effects on athletic performance compared to a diet higher in carbohydrates and lower in fat, despite achieving significantly elevated levels of fat oxidation during exercise (~1.5 g/min). 4. The endurance effects of a ketogenic diet may be influenced by both training status and duration of the dietary intervention, but further research is necessary to elucidate these possibilities. All studies involving elite athletes showed a performance decrement from a ketogenic diet, all lasting six weeks or less. Of the two studies lasting more than six weeks, only one reported a statistically significant benefit of a ketogenic diet. 5. A ketogenic diet tends to have similar effects on maximal strength or strength gains from a resistance training program compared to a diet higher in carbohydrates. However, a minority of studies show superior effects of non-ketogenic comparators. 6. When compared to a diet higher in carbohydrates and lower in fat, a ketogenic diet may cause greater losses in body weight, fat mass, and fat-free mass, but may also heighten losses of lean tissue. However, this is likely due to differences in calorie and protein intake, as well as shifts in fluid balance. 7. There is insufficient evidence to determine if a ketogenic diet affects males and females differently. However, there is a strong mechanistic basis for sex differences to exist in response to a ketogenic diet.
Collapse
Affiliation(s)
- Alex Leaf
- Alex Leaf LLC, Scientific Affairs, Scottsdale, AZ, USA
| | - Jeffrey A. Rothschild
- Auckland University of Technology, Sports Performance Research Institute New Zealand, Auckland, New Zealand
- High Performance Sport New Zealand, Performance Nutrition, Auckland, New Zealand
| | - Tim M. Sharpe
- University of Western States, Human Nutrition and Functional Medicine, Portland, OR, USA
| | - Stacy T. Sims
- Auckland University of Technology, Sports Performance Research Institute New Zealand, Auckland, New Zealand
- Stanford University, Stanford Lifestyle Medicine, Palo Alto, CA, USA
| | - Chad J. Macias
- University of Western States, Human Nutrition and Functional Medicine, Portland, OR, USA
| | - Geoff G. Futch
- Springfield College, Department of Exercise Science and Athletic Training, Springfield, MA, USA
- FitPro Analytics, Scientific Affairs, Springfield, MA, USA
| | | | - Jeffrey R. Stout
- University of Central Florida, School of Kinesiology and Rehabilitation Sciences, Orlando, FL, USA
| | - Michael J. Ormsbee
- Florida State University, Institute of Sports Sciences & Medicine, Tallahassee, FL, USA
- University of KwaZulu Natal, Discipline of Biokinetics, Exercise and Leisure Sciences, Durban, South Africa
| | | | - Bill I. Campbell
- University of South Florida, Performance and Physique Enhancement Laboratory, Exercise Science Program, Tampa, FL, USA
| | - Shawn M. Arent
- University of South Carolina, Department of Exercise Science, Arnold School of Public Health, Columbia, SC, USA
| | - Dominic P. D’Agostino
- Institute for Human and Machine Cognition, Human Healthspan, Resilience, and Performance, Pensacola, FL, USA
- University of South Florida, Department of Molecular Pharmacology and Physiology, Tampa, FL, USA
| | - Michelle T. Barrack
- California State University, Department of Family and Consumer Sciences, Long Beach, CA, USA
| | - Chad M. Kerksick
- Lindenwood University, Exercise and Performance Nutrition Laboratory, College of Science, Technology, and Health, St. Charles, MO, USA
| | - Richard B. Kreider
- Texas A&M University, Exercise and Sport Nutrition Lab, Department of Kinesiology and Sports Management, College Station, TX, USA
| | - Douglas S. Kalman
- Nova Southeastern University, Department of Nutrition. Dr. Kiran C. Patel College of Osteopathic Medicine. Davie, FL, USA
| | - Jose Antonio
- Department of Health and Human Performance, Nova Southeastern University, Davie, FL, USA
| |
Collapse
|
8
|
Caldwell HG, Jeppesen JS, Lossius LO, Atti JP, Durrer CG, Oxfeldt M, Melin AK, Hansen M, Bangsbo J, Gliemann L, Hellsten Y. The whole-body and skeletal muscle metabolic response to 14 days of highly controlled low energy availability in endurance-trained females. FASEB J 2024; 38:e70157. [PMID: 39530548 DOI: 10.1096/fj.202401780r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/30/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
This study investigated the effects of 14 days low energy availability (LEA) versus optimal energy availability (OEA) in endurance-trained females on substrate utilization, insulin sensitivity, and skeletal muscle mitochondrial oxidative capacity; and the impact of metabolic changes on exercise performance. Twelve endurance-trained females (V̇O2max 55.2 ± 5.1 mL × min-1 × kg-1) completed two 14-day randomized, blinded, cross-over, controlled dietary interventions: (1) OEA (51.9 ± 2.0 kcal × kg fat-free mass (FFM)-1 × day-1) and (2) LEA (22.3 ± 1.5 kcal × kg FFM-1 × day-1), followed by 3 days OEA. Participants maintained their exercise training volume during both interventions (approx. 8 h × week-1 at 79% heart rate max). Skeletal muscle mitochondrial respiratory capacity, glycogen, and maximal activity of CS, HAD, and PFK were unaltered with LEA. 20-min time trial endurance performance was impaired by 7.8% (Δ -16.8 W, 95% CI: -23.3 to -10.4, p < .001) which persisted following 3 days refueling post-LEA (p < .001). Fat utilization was increased post-LEA as evidenced by: (1) 99.4% (p < .001) increase in resting plasma free fatty acids (FFA); (2) 270% (p = .007) larger reduction in FFA in response to acute exercise; and (3) 28.2% (p = .015) increase in resting fat oxidation which persisted during submaximal exercise (p < .001). These responses were reversed with 3 days refueling. Daily glucose control (via CGM), HOMA-IR, HOMA-β, were unaffected by LEA. Skeletal muscle O2 utilization and carbohydrate availability were not limiting factors for aerobic exercise capacity and performance; therefore, whether LEA per se affects aspects of training quality/recovery requires investigation.
Collapse
Affiliation(s)
- Hannah G Caldwell
- The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jan S Jeppesen
- The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Lone O Lossius
- The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
- Department of Sport Science, Linnæus University, Växjö/Kalmar, Sweden
| | - Jesper P Atti
- The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Cody G Durrer
- Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark
| | - Mikkel Oxfeldt
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Anna K Melin
- Department of Sport Science, Linnæus University, Växjö/Kalmar, Sweden
| | - Mette Hansen
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Jens Bangsbo
- The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Lasse Gliemann
- The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Ylva Hellsten
- The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Mitchell L, Ratcliff J, Burke LM, Forsyth A. Engaging athletes as research participants. A document analysis of published sport science literature. Eur J Sport Sci 2024; 24:1442-1451. [PMID: 39287056 PMCID: PMC11451557 DOI: 10.1002/ejsc.12198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 09/08/2024] [Indexed: 09/19/2024]
Abstract
Sport science practitioners utilise findings from peer reviewed research to inform practice. Fewer studies are conducted with high performance athletes, however, than those involving recreationally active participants. Noting that research findings from recreational athletes may not be generalisable to the elite, there is a need to engage the latter cohort in research with better potential to influence health and performance. This study identified methods used to engage and recruit highly trained, elite and world class athletes as research participants. A document analysis was conducted using a purposive sample of peer-reviewed sport science literature. All articles published in 2022 from 18 highly ranked sport science journals were screened for inclusion. Studies investigating athletes ranked as highly trained/national level or above were included. All details related to participant recruitment were extracted from included articles, with the content being coded and thematically analysed using an interpretivist approach. A total of 439 studies from the 2356 screened were included in the analysis. Five primary themes of recruitment strategies were identified, beneath an overarching strategy of purposeful, convenience sampling. Recruitment themes related to the use of a gatekeeper, the research environment providing convenient access to athletes, promoting the study electronically, utilising professional networks and recruiting at training or competition. Engaging athletes through a gatekeeper is a prominent strategy to involve elite athletes in research. It is suggested that researchers work collaboratively with team or organisation personnel to promote recruitment, creating co-designed approaches that address issues most relevant to athletes and staff.
Collapse
Affiliation(s)
- Lachlan Mitchell
- School of Behavioural and Health SciencesAustralian Catholic UniversityNorth SydneyNew South WalesAustralia
| | - Josie Ratcliff
- School of Behavioural and Health SciencesAustralian Catholic UniversityNorth SydneyNew South WalesAustralia
| | - Louise M. Burke
- Mary MacKillop Institute for Health ResearchAustralian Catholic UniversityMelbourneVictoriaAustralia
| | - Adrienne Forsyth
- School of Behavioural and Health SciencesAustralian Catholic UniversityMelbourneVictoriaAustralia
| |
Collapse
|
10
|
Amawi A, Khataybeh B, Al Aqaili R, Ababneh N, Alnimer L, Qoqazeh A, Oukal F, Jahrami H, Mousa Ay K, Al Saoud H, Ghazzawi H. Junior athletes' nutritional demands: a narrative review of consumption and prevalence of eating disorders. Front Nutr 2024; 11:1390204. [PMID: 39381351 PMCID: PMC11458482 DOI: 10.3389/fnut.2024.1390204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/23/2024] [Indexed: 10/10/2024] Open
Abstract
Information regarding the dietary requirements and consumption of young athletes is limited. Hence, the aim of this narrative review is to provide a comprehensive combination of research and review papers on the nutritional status of young athletes aged 5-18 years old, as well as quantitative, qualitative, wholesome foods, food choices, and eating disordered data concerning the dietary requirements for growing young athletes. This study involved systematic searches of electronic databases, including Google Scholar, PubMed, Science Direct, Scopus, and Web of Science. The specific criteria for identifying research papers published in English from July 1980 until May 2024 were included. Only 48 studies out of 1,262 were included in this narrative review. The findings of this study suggest that, compared with adults, junior athletes need a unique approach to meet their dietary needs. Growth, development, and general athletic performance depend on macronutrients, as they are vital nutrients for young active athletes. However, research on enhancing junior athletes' performance is still in progress, and studies on hydration status, and eating disorders are limited.
Collapse
Affiliation(s)
- Adam Amawi
- Department of Exercise Science and Kinesiology, School of Sport Sciences, The University of Jordan, Amman, Jordan
| | - Batool Khataybeh
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Raghad Al Aqaili
- Department of Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman, Jordan
| | - Nour Ababneh
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Lana Alnimer
- Department of Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman, Jordan
| | - Ali Qoqazeh
- Department of Nutrition and Food Processing, School of Agriculture, Al-Balqa Applied University, Al-Salt, Jordan
| | - Farah Oukal
- Department of Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman, Jordan
| | - Haitham Jahrami
- Government Hospitals, Manama, Bahrain
- Department of Psychiatry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Khitam Mousa Ay
- Department of Exercise Science and Kinesiology, School of Sport Sciences, The University of Jordan, Amman, Jordan
| | - Hassan Al Saoud
- Department of Exercise Science and Kinesiology, School of Sport Sciences, The University of Jordan, Amman, Jordan
| | - Hadeel Ghazzawi
- Department of Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman, Jordan
| |
Collapse
|
11
|
Sun K, Choi YT, Yu CCW, Nelson EAS, Goh J, Dai S, Hui LL. The Effects of Ketogenic Diets and Ketone Supplements on the Aerobic Performance of Endurance Runners: A Systematic Review. Sports Health 2024:19417381241271547. [PMID: 39233399 PMCID: PMC11569574 DOI: 10.1177/19417381241271547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
CONTEXT Ketogenic diets and ketone supplements have gained popularity among endurance runners given their purported effects: potentially delaying the onset of fatigue by enabling the increased utilization of the body's fat reserve or external ketone bodies during prolonged running. OBJECTIVE This systematic review was conducted to evaluate the effects of ketogenic diets (>60% fat and <10% carbohydrates/<50 g carbohydrates per day) or ketone supplements (ketone esters or ketone salts, medium-chain triglycerides or 1,3-butadiol) on the aerobic performance of endurance runners. DATA SOURCES A systematic search was conducted in PubMed, Web of Science, Pro Quest, and Science Direct for publications up to October 2023. STUDY SELECTION Human studies on the effects of ketogenic diets or ketone supplements on the aerobic performance of adult endurance runners were included after independent screening by 2 reviewers. STUDY DESIGN Systematic review. LEVEL OF EVIDENCE Level 3. DATA EXTRACTION Primary outcomes were markers of aerobic performance (maximal oxygen uptake [VO2max], race time, time to exhaustion and rate of perceived exertion). RESULTS VO2max was assessed by incremental test to exhaustion. Endurance performance was assessed by time trials, 180-minute running trials, or run-to-exhaustion trials; 5 studies on ketogenic diets and 7 studies on ketone supplements involving a total of 132 endurance runners were included. Despite the heterogeneity in study design and protocol, none reported benefits of ketogenic diets or ketone supplements on selected markers of aerobic performance compared with controls. Reduction in bodyweight and fat while preserving lean mass and improved glycemic control were reported in some included studies on ketogenic diets. CONCLUSION This review did not identify any significant advantages or disadvantages of ketogenic diets or ketone supplements for the aerobic performance of endurance runners. Further trials with larger sample sizes, more gender-balanced participants, longer ketogenic diet interventions, and follow-up on metabolic health are warranted.
Collapse
Affiliation(s)
- Kexin Sun
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yee Tung Choi
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Clare Chung Wah Yu
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Edmund Anthony Severn Nelson
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong SAR, China
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen, China
| | - Jorming Goh
- Exercise Physiology & Biomarkers (EPB) Laboratory, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, NUS, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, NUS, Singapore
| | - Siyu Dai
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong SAR, China
- School of Clinical Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Lai Ling Hui
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
12
|
Mora-Fernandez A, Argüello-Arbe A, Tojeiro-Iglesias A, Latorre JA, Conde-Pipó J, Mariscal-Arcas M. Nutritional Assessment, Body Composition, and Low Energy Availability in Sport Climbing Athletes of Different Genders and Categories: A Cross-Sectional Study. Nutrients 2024; 16:2974. [PMID: 39275289 PMCID: PMC11397518 DOI: 10.3390/nu16172974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
Climbing is an Olympic discipline in full development and multidisciplinary in nature, where the influences of body composition and nutritional status on performance have not yet been clarified despite the quest for a low weight in anti-gravity disciplines such as climbing. The present cross-sectional study aimed to conduct nutritional (3-day dietary diaries) and body composition (ISAK profile) assessments on sport climbing athletes by gender and climbing level during the months of February and March 2024. The t-test for independent samples and the Mann-Whitney U-test, as well as an ANOVA and the Kruskal-Wallis H-test, were used to compare the distributions of two or more groups, respectively, and Pearson's and Spearman's correlation coefficients were used to estimate the correlations between the different variables. The mean age of the 46 Spanish climbers (22 men and 24 women) was 30 years (SD: 9) with 7.66 years of experience (SD: 6.63). The mean somatotype of the athletes was classified as balanced mesomorph. Negative correlations were observed between fat mass variables and climbing level (p < 0.010), and positive correlations were observed with forearm circumference (p < 0.050). The mean energy availability (EA) was 33.01 kcal-kg FFM-1d-1 (SD: 9.02), with 55.6% of athletes having a suboptimal EA status and 35.6% having low energy availability (LEA). The carbohydrate and protein intakes were below the recommendations in 57.8% and 31.1% of athletes, respectively. There were deficient intakes of all micronutrients except phosphorus in males. These findings suggest that climbing athletes are at a high risk of developing low energy availability states and concomitant problems. Optimal nutritional monitoring may be advisable in this type of athlete to try to reduce the risk of LEA.
Collapse
Affiliation(s)
- Agustin Mora-Fernandez
- Health Science and Nutrition Research (HSNR-CTS1118), Department of Nutrition and Food Science, School of Pharmacy, University of Granada, 18071 Granada, Spain
| | - Andrea Argüello-Arbe
- Health Science and Nutrition Research (HSNR-CTS1118), Department of Nutrition and Food Science, School of Pharmacy, University of Granada, 18071 Granada, Spain
| | - Andrea Tojeiro-Iglesias
- Health Science and Nutrition Research (HSNR-CTS1118), Department of Nutrition and Food Science, School of Pharmacy, University of Granada, 18071 Granada, Spain
| | - Jose Antonio Latorre
- Department of Food Technology, Nutrition and Food Science, Campus of Lorca, University of Murcia, 30800 Murcia, Spain
| | - Javier Conde-Pipó
- Health Science and Nutrition Research (HSNR-CTS1118), Department of Nutrition and Food Science, School of Pharmacy, University of Granada, 18071 Granada, Spain
| | - Miguel Mariscal-Arcas
- Health Science and Nutrition Research (HSNR-CTS1118), Department of Nutrition and Food Science, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| |
Collapse
|
13
|
Raleigh C, Madigan S, Sinnott‐O’Connor C, Sale C, Norton C, Carson BP. Prevalence of reducing carbohydrate intake and fasted training in elite endurance athletes and association with bone injury. Eur J Sport Sci 2024; 24:1341-1349. [PMID: 39030803 PMCID: PMC11369321 DOI: 10.1002/ejsc.12170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 03/05/2024] [Accepted: 06/14/2024] [Indexed: 07/22/2024]
Abstract
There are conflicting reports both within the lay media and scientific literature regarding the use and benefit of dietary practices that aim to reduce CHO intake in endurance athletes. This study aimed to determine the prevalence of intentional reduction of CHO intake and fasted training in elite endurance-based athletes using a semi-quantitative questionnaire. Bone is a nutritionally modulated tissue; therefore, this study also aimed to explore if these dietary practices are potentially associated with bone injury incidence. The reported reduction of CHO intake was prevalent (28%) with the primary motivation being maintenance or manipulation of body composition. However, discrepancies in athletes' awareness of CHO intake were identified providing a potential avenue of intervention especially within applied practice. The use of fasted training was more prevalent (38%) with athletes using this practice for both body composition manipulation and promoting a desired adaptive response. Forty-four per cent of participants had suffered a radiographically confirmed bone injury at some point in their career. There was no association between reduction in CHO intake and bone injury incidence; however, the incidence of bone injury was 1.61 times higher in those who currently use fasted training compared to those who have never used it or who have used it in the past. Although a direct causal link between these dietary practices and the incidence of bone injury cannot be drawn, it provides robust justification for future investigations of the potential mechanisms that could explain this finding.
Collapse
Affiliation(s)
- Conor Raleigh
- Department of Physical Education & Sport SciencesFaculty of Education and Health SciencesUniversity of LimerickLimerickIreland
- Sport Ireland InstituteSport Ireland CampusAbbottstownDublin
| | - Sharon Madigan
- Department of Physical Education & Sport SciencesFaculty of Education and Health SciencesUniversity of LimerickLimerickIreland
- Sport Ireland InstituteSport Ireland CampusAbbottstownDublin
| | | | - Craig Sale
- Institute of SportManchester Metropolitan UniversityManchesterUK
| | - Catherine Norton
- Department of Physical Education & Sport SciencesFaculty of Education and Health SciencesUniversity of LimerickLimerickIreland
- Health Research InstituteUniversity of LimerickLimerickIreland
| | - Brian P. Carson
- Department of Physical Education & Sport SciencesFaculty of Education and Health SciencesUniversity of LimerickLimerickIreland
- Health Research InstituteUniversity of LimerickLimerickIreland
| |
Collapse
|
14
|
Barber TM, Kabisch S, Pfeiffer AFH, Weickert MO. Dietary and Lifestyle Strategies for Obesity. Nutrients 2024; 16:2714. [PMID: 39203850 PMCID: PMC11356871 DOI: 10.3390/nu16162714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
The prevalence of obesity globally has tripled over the last half century, and currently affects around 650 million adults and 340 million children and adolescents (ages 5-19 years). Obesity contributes towards >50 co-morbidities and premature mortality. Obesity is a highly stigmatised condition that is associated with much mental and emotional distress and dysfunction. Thus, obesity is a major contributor to healthcare expenditure globally. Traditionally, the management of obesity stratifies into three major groups that include metabolic (bariatric) surgery, pharmacotherapies, and lifestyle (primarily dietary) strategies. Although listed as a separate category, dietary strategies for obesity remain a central component of any management plan, and often complement other surgical and pharmacotherapeutic options. Indeed, the effectiveness of any management approach for obesity relies upon successful behavioural changes, particularly relating to eating behaviours. In this concise review, we explore the foundational pillars of dietary strategies for obesity: sleep, listening, routine, de-stressing and optimisation of social conditions. We then discuss the importance of balancing dietary macronutrients (including dietary fibre, carbohydrates, protein and ultra-processed foods [UPFs]) as a key dietary strategy for obesity. Although we focus on general principles, we should provide bespoke dietary strategies for our patients, tailored to their individual needs. Rather than judging the utility of a diet based simply on its associated magnitude of weight loss, we should adopt a more holistic perspective in which a dietary strategy is valued for its overall health benefits, including the nurturing of our gut microbiota, to enable them to nurture and protect us.
Collapse
Affiliation(s)
- Thomas M. Barber
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK;
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV1 5FB, UK
- NIHR CRF Human Metabolism Research Unit, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK
| | - Stefan Kabisch
- Deutsches Zentrum für Diabetesforschung e.V., Geschäftsstelle am Helmholtz-Zentrum München, Ingolstädter Landstraße, 85764 Neuherberg, Germany; (S.K.); (A.F.H.P.)
- Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Andreas F. H. Pfeiffer
- Deutsches Zentrum für Diabetesforschung e.V., Geschäftsstelle am Helmholtz-Zentrum München, Ingolstädter Landstraße, 85764 Neuherberg, Germany; (S.K.); (A.F.H.P.)
- Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Martin O. Weickert
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK;
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV1 5FB, UK
- Centre for Sport, Exercise and Life Sciences, Faculty of Health & Life Sciences, Coventry University, Coventry CV1 5FB, UK
| |
Collapse
|
15
|
Alshammari MA, Alshehri AO, Alqahtani F, Khan MR, Bakhrebah MA, Alasmari F, Alshammari TK, Alsharari SD. Increased Permeability of the Blood-Brain Barrier in a Diabetic Mouse Model ( Leprdb/db Mice). Int J Mol Sci 2024; 25:7768. [PMID: 39063010 PMCID: PMC11276738 DOI: 10.3390/ijms25147768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Type 2 Diabetes Mellitus (T2DM) is linked to multiple complications, including cognitive impairment, and the prevalence of memory-related neurodegenerative diseases is higher in T2DM patients. One possible theory is the alteration of the microvascular and macrovascular environment of the blood-brain barrier (BBB). In this study, we employed different approaches, including RT-PCR, functional pharmacokinetic studies using sodium fluorescein (NaFL), and confocal microscopy, to characterize the functional and molecular integrity of the BBB in a T2DM animal model, leptin receptor-deficient mutant mice (Leprdb/db mice). As a result, VCAM-1, ICAM-1, MMP-9, and S100b (BBB-related markers) dysregulation was observed in the Leprdb/db animal model compared to littermate wild-type mice. The brain concentration of sodium fluorescein (NaFL) increased significantly in Leprdb/db untreated mice compared to insulin-treated mice. Therefore, the permeability of NaFL was higher in Leprdb/db control mice than in all remaining groups. Identifying the factors that increase the BBB in Leprdb/db mice will provide a better understanding of the BBB microvasculature and present previously undescribed findings of T2DM-related brain illnesses, filling knowledge gaps in this emerging field of research.
Collapse
Affiliation(s)
- Musaad A. Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia; (F.A.); (M.R.K.); (F.A.); (T.K.A.); (S.D.A.)
| | - Abdulaziz O. Alshehri
- Department of Pharmacology and Toxicology (Graduate Student), Pharmacy College, King Saud University, Riyadh 11495, Saudi Arabia;
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia; (F.A.); (M.R.K.); (F.A.); (T.K.A.); (S.D.A.)
| | - Mohammad R. Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia; (F.A.); (M.R.K.); (F.A.); (T.K.A.); (S.D.A.)
| | - Muhammed A. Bakhrebah
- Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia;
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia; (F.A.); (M.R.K.); (F.A.); (T.K.A.); (S.D.A.)
| | - Tahani K. Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia; (F.A.); (M.R.K.); (F.A.); (T.K.A.); (S.D.A.)
| | - Shakir D. Alsharari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia; (F.A.); (M.R.K.); (F.A.); (T.K.A.); (S.D.A.)
| |
Collapse
|
16
|
Ørtenblad N, Zachariassen M, Nielsen J, Gejl KD. Substrate utilization and durability during prolonged intermittent exercise in elite road cyclists. Eur J Appl Physiol 2024; 124:2193-2205. [PMID: 38441690 PMCID: PMC11199313 DOI: 10.1007/s00421-024-05437-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/05/2024] [Indexed: 05/05/2024]
Abstract
PURPOSE This study investigated the effects of prolonged intermittent cycling exercise on peak power output (PPO) and 6-min time-trial (6 min-TT) performance in elite and professional road cyclists. Moreover, the study aimed to determine whether changes in performance in the fatigued state could be predicted from substrate utilization during exercise and laboratory measures obtained in a fresh state. METHODS Twelve cyclists (age: 23 years [21;25]; body mass: 71.5 kg [66.7;76.8]; height: 181 cm [178;185]; V ˙ O2peak: 73.6 ml kg-1 min-1 [71.2;76.0]) completed a graded submaximal cycling test to determine lactate threshold (LT1), gross efficiency (GE), and maximal fat oxidation (MFO) as well as power output during a maximal 6 min-TT (MPO6 min) in a fresh condition. On a separate day, the cyclists completed a 4-h intermittent cycling protocol with a high CHO intake (100 g h-1). Substrate utilization and PPO was measured hourly during the protocol, which was followed by another 6 min-TT. RESULTS MPO6 min and PPO was reduced by 10% [4;15] and 6% [0;6], respectively, after the cycling protocol. These reductions were accompanied by reductions in the anaerobic energy contribution and V ˙ O2peak, whereas the average V ˙ O2 during the 6 min-TT was unchanged. Correlation analyses showed no strong associations between reductions in MPO6 min and PPO and laboratory measures (i.e., LT1, GE, MFO, V ˙ O2peak) obtained in the fresh condition. Additionally, fat oxidation rates during the cycling protocol were not related to changes in neither PPO nor MPO6 min. CONCLUSION PPO and MPO6 min were reduced following prolonged intermittent cycling, but the magnitude of these reductions could not be predicted from laboratory measures obtained in the fresh condition.
Collapse
Affiliation(s)
- Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Magnus Zachariassen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Joachim Nielsen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Kasper Degn Gejl
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.
| |
Collapse
|
17
|
Staśkiewicz-Bartecka W, Kardas M, Zydek G, Zając A, Chycki J. Changes in Body Composition and Nutritional Periodization during the Training Macrocycle in Football-A Narrative Review. Nutrients 2024; 16:1332. [PMID: 38732581 PMCID: PMC11085159 DOI: 10.3390/nu16091332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
Nutrition periodization in football training is an important determinant of adaptation to cyclic training loads. Personalizing an athlete's diet is crucial to ensure optimal performance and body composition, depending on the phase of training. The purpose of this review is to answer the question of how the body composition of football players changes over the training macrocycle and how dietary recommendations should be tailored to specific training periods. The review of scientific evidence was conducted based on the available literature, typing in phrases related to training and nutrition periodization using the PubMed and Google Scholar database methodology tools. A literature search resulted in the selection of 346 sources directly related to the topic of the study, and then those with the highest scientific value were selected. There is a need to adjust energy and nutrient intake according to the different training phases in a football player's preparation cycle. During the preparatory phase, it is recommended to increase protein and energy intake to support anabolic processes and muscle mass development. During the competitive period, due to the intensity of matches and training, the importance of carbohydrates for glycogen replenishment and recovery is emphasized. The transition phase requires the regulation of caloric intake to prevent adverse changes in body composition. Hydration has been identified as a key element in each phase of training. Cooperation between coaches, nutritionists, and players is essential to optimize sports performance and rapid recovery, and the authors recommend continuous adaptation and nutritional optimization as an integral part of football training.
Collapse
Affiliation(s)
- Wiktoria Staśkiewicz-Bartecka
- Department of Food Technology and Quality Evaluation, Department of Dietetics, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, ul. Jordana 19, 41-808 Zabrze, Poland;
| | - Marek Kardas
- Department of Food Technology and Quality Evaluation, Department of Dietetics, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, ul. Jordana 19, 41-808 Zabrze, Poland;
| | - Grzegorz Zydek
- Department of Sport Nutrition, Jerzy Kukuczka Academy of Physical Education in Katowice, ul. Mikołowska 72A, 40-065 Katowice, Poland;
| | - Adam Zając
- Department of Sports Training, Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, ul. Mikołowska 72A, 40-065 Katowice, Poland; (A.Z.); (J.C.)
| | - Jakub Chycki
- Department of Sports Training, Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, ul. Mikołowska 72A, 40-065 Katowice, Poland; (A.Z.); (J.C.)
| |
Collapse
|
18
|
Moitzi AM, Krššák M, Klepochova R, Triska C, Csapo R, König D. Effects of a 10-Week Exercise and Nutritional Intervention with Variable Dietary Carbohydrates and Glycaemic Indices on Substrate Metabolism, Glycogen Storage, and Endurance Performance in Men: A Randomized Controlled Trial. SPORTS MEDICINE - OPEN 2024; 10:36. [PMID: 38600291 PMCID: PMC11006643 DOI: 10.1186/s40798-024-00705-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/24/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Daily nutrition plays an important role in supporting training adaptions and endurance performance. The objective of this 10-week study was to investigate the consequences of varying carbohydrate consumption and the glycaemic index (GI) together with an endurance training regimen on substrate oxidation, muscle energy storage and endurance performance under free-living conditions. Sixty-five moderately trained healthy men (29 ± 4 years; VO2 peak 55 ± 8 mL min-1 kg-1) were randomized to one of three different nutritional regimes (LOW-GI: 50-60% CHO with ≥ 65% of these CHO with GI < 50 per day, n = 24; HIGH-GI: 50-60% CHO with ≥ 65% CHO with GI > 70 per day, n = 20; LCHF: ≤ 50 g CHO daily, n = 21). Metabolic alterations and performance were assessed at baseline (T0) and after 10 weeks (T10) during a graded exercise treadmill test. Additionally, a 5 km time trial on a 400-m outdoor track was performed and muscle glycogen was measured by magnet resonance spectroscopy. RESULTS Total fat oxidation expressed as area under the curve (AUC) during the graded exercise test increased in LCHF (1.3 ± 2.4 g min-1 × km h-1, p < 0.001), remained unchanged in LOW-GI (p > 0.05) and decreased in HIGH-GI (- 1.7 ± 1.5 g min-1 × km h-1, p < 0.001). After the intervention, LOW-GI (- 0.4 ± 0.5 mmol L-1 × km h-1, p < 0.001) and LCHF (- 0.8 ± 0.7 mmol L-1 × km h-1, p < 0.001) showed significantly lower AUC of blood lactate concentrations. Peak running speed increased in LOW-GI (T0: 4.3 ± 0.4 vs. T10: 4.5 ± 0.3 m s-1, p < 0.001) and HIGH-GI (T0: 4.4 ± 0.5 vs. T10: 4.6 ± 0.4 m s-1), while no improvement was observed in LCHF. Yet, time trial performance improved significantly in all groups. Muscle glycogen content increased for participants in HIGH-GI (T0: 97.3 ± 18.5 vs. T10: 144.5 ± 39.8 mmol L wet-tissue-1, p = 0.027) and remained unchanged in the LOW-GI and the LCHF group. At the last examination, muscle glycogen concentration was significantly higher in LOW-GI compared to LCHF (p = 0.014). CONCLUSION Changes in fat oxidation were only present in LCHF, however, lower lactate concentrations in LOW-GI resulted in changes indicating an improved substrate metabolism. Compared to a LCHF diet, changes in peak running speed, and muscle glycogen stores were superior in LOW- and HIGH-GI diets. The low GI diet seems to have an influence on substrate metabolism without compromising performance at higher intensities, suggesting that a high-carbohydrate diet with a low GI is a viable alternative to a LCHF or a high GI diet. TRIAL REGISTRATION Clinical Trials, NCT05241730. https://clinicaltrials.gov/study/NCT05241730 . Registered 25 January 2021.
Collapse
Affiliation(s)
- Anna Maria Moitzi
- Division of Nutrition, Exercise and Health, Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria.
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, Vienna, Austria.
- Division of Nurtition, Exercise and Health, Department of Sport and Human Movement Science, University of Vienna, Vienna, Austria.
| | - Martin Krššák
- Department of Biomedical Imaging and Image Guided Therapy, High Field MR Centre of Excellence, Medical University of Vienna, Vienna, Austria
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Radka Klepochova
- Department of Biomedical Imaging and Image Guided Therapy, High Field MR Centre of Excellence, Medical University of Vienna, Vienna, Austria
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Christoph Triska
- Leistungssport Austria, High Performance Centre, Brunn am Gebirge, Lower Austria, Austria
- Division of Training Science, Department of Sport and Human Movement Science, University of Vienna, Vienna, Austria
| | - Robert Csapo
- Division of Training Science, Department of Sport and Human Movement Science, University of Vienna, Vienna, Austria
| | - Daniel König
- Division of Nutrition, Exercise and Health, Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Division of Nurtition, Exercise and Health, Department of Sport and Human Movement Science, University of Vienna, Vienna, Austria
| |
Collapse
|
19
|
Noakes TD. Ketogenic Diets Are Beneficial for Athletic Performance: Response to Burke and Whitfield. Med Sci Sports Exerc 2024; 56:760-762. [PMID: 38079304 DOI: 10.1249/mss.0000000000003345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2024]
|
20
|
Burke LM, Whitfield J. Ketogenic Diets Are Not Beneficial for Athletic Performance. Med Sci Sports Exerc 2024; 56:756-759. [PMID: 38079311 DOI: 10.1249/mss.0000000000003344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2024]
Affiliation(s)
- Louise M Burke
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, AUSTRALIA
| | | |
Collapse
|
21
|
Burke LM, Whitfield J. Ketogenic Diets Are Not Beneficial for Athletic Performance: Response to Noakes. Med Sci Sports Exerc 2024; 56:763-765. [PMID: 38485731 DOI: 10.1249/mss.0000000000003346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Affiliation(s)
- Louise M Burke
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, AUSTRALIA
| | | |
Collapse
|
22
|
Prieto-Bellver G, Diaz-Lara J, Bishop DJ, Fernández-Sáez J, Abián-Vicén J, San-Millan I, Santos-Concejero J. A Five-Week Periodized Carbohydrate Diet Does Not Improve Maximal Lactate Steady-State Exercise Capacity and Substrate Oxidation in Well-Trained Cyclists compared to a High-Carbohydrate Diet. Nutrients 2024; 16:318. [PMID: 38276556 PMCID: PMC10820927 DOI: 10.3390/nu16020318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
There is a growing interest in studies involving carbohydrate (CHO) manipulation and subsequent adaptations to endurance training. This study aimed to analyze whether a periodized carbohydrate feeding strategy based on a daily training session has any advantages compared to a high-carbohydrate diet in well-trained cyclists. Seventeen trained cyclists (VO2peak = 70.8 ± 6.5 mL·kg-1·min-1) were divided into two groups, a periodized (PCHO) group and a high-carbohydrate (HCHO) group. Both groups performed the same training sessions for five weeks. In the PCHO group, 13 training sessions were performed with low carbohydrate availability. In the HCHO group, all sessions were completed following previous carbohydrate intake to ensure high pre-exercise glycogen levels. In both groups, there was an increase in the maximal lactate steady state (MLSS) (PCHO: 244.1 ± 29.9 W to 253.2 ± 28.4 W; p = 0.008; HCHO: 235.8 ± 21.4 W to 246.9 ± 16.7 W; p = 0.012) but not in the time to exhaustion at MLSS intensity. Both groups increased the percentage of muscle mass (PCHO: p = 0.021; HCHO: p = 0.042) and decreased the percent body fat (PCHO: p = 0.021; HCHO: p = 0.012). We found no differences in carbohydrate or lipid oxidation, heart rate, and post-exercise lactate concentration. Periodizing the CHO intake in well-trained cyclists during a 5-week intervention did not elicit superior results to an energy intake-matched high-carbohydrate diet in any of the measured outcomes.
Collapse
Affiliation(s)
- Gorka Prieto-Bellver
- Performance and Sport Rehabilitation Laboratory, Faculty of Sport Sciences, University of Castilla-La Mancha, 45071 Toledo, Spain; (G.P.-B.); (J.A.-V.)
| | - Javier Diaz-Lara
- Performance and Sport Rehabilitation Laboratory, Faculty of Sport Sciences, University of Castilla-La Mancha, 45071 Toledo, Spain; (G.P.-B.); (J.A.-V.)
| | - David J. Bishop
- Institute for Health and Sport (IHeS), Victoria University, Footscray VIC 3011, Australia;
| | - José Fernández-Sáez
- Unitat de Suport a la Recerca Terres de l’Ebre, Fundació Institut Universitari per a la Recerca a l’Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), 43500 Tortosa, Spain;
| | - Javier Abián-Vicén
- Performance and Sport Rehabilitation Laboratory, Faculty of Sport Sciences, University of Castilla-La Mancha, 45071 Toledo, Spain; (G.P.-B.); (J.A.-V.)
| | - Iñigo San-Millan
- Department of Human Physiology and Nutrition, University of Colorado, Colorado Springs, CO 80918, USA;
| | - Jordan Santos-Concejero
- Department of Physical Education and Sport, University of the Basque Country UPV/EHU, 48940 Leioa, Spain;
| |
Collapse
|
23
|
Graybeal AJ, Kreutzer A, Moss K, Shah M. Changes in the chronic and postprandial blood lipid profiles of trained competitive cyclists and triathletes following a ketogenic diet: a randomized crossover trial. BMC Sports Sci Med Rehabil 2024; 16:19. [PMID: 38229197 PMCID: PMC10790427 DOI: 10.1186/s13102-023-00801-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/25/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND The ketogenic diet (KD) is the most popular carbohydrate restriction strategy for endurance athletes. However, because the primary goal of employing the KD is to gain a competitive advantage in competition, endurance athletes may be less concerned with the influence of the KD on their cardiometabolic health; particularly their blood lipid profiles. Thus, the purpose of this study was to examine the chronic and postprandial blood lipid alterations following a two-week ad libitum KD compared to an ad libitum high-carbohydrate diet (HCD) and the athletes' habitual diet (HD) in a group of trained competitive cyclists and triathletes. METHODS Six trained competitive cyclists and triathletes (female: 4, male: 2; age: 37.2 ± 12.2) completed this randomized crossover trial, which required them to follow a two-week ad libitum KD and HCD in a randomized order after their HD. Fasting blood lipids were collected following their HD and after two-weeks of the KD and HCD conditions. Postprandial blood lipid responses to a test meal reflective of the assigned diet were collected at the end of each diet condition. RESULTS Fasting total cholesterol (TC) was significantly higher following the KD compared to the HD (p < 0.001) and HCD (p = 0.006). Postprandial incremental area under the curve for triglycerides (TRG), TRG:HDL ratio, and VLDL-C were significantly higher following the KD test meal compared to the HD (all p < 0.001) and HCD (all p = 0.001) test meals but LDL-C and LDL:HDL ratio were significantly lower following the KD compared to the HD and HCD test meals (all p < 0.001). CONCLUSIONS Trained competitive cyclists and triathletes demonstrate increased TC in response to a two-week KD compared to a HCD or HD. Endurance athletes contemplating a KD should consider the potential for these blood lipid alterations, and future research should focus on postprandial blood lipid responses to determine if these changes manifest in chronic blood lipid shifts. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT04097171 (11 October 2019).
Collapse
Affiliation(s)
- Austin J Graybeal
- School of Kinesiology & Nutrition, College of Education and Human Sciences, University of Southern Mississippi, 39406, Hattiesburg, MS, USA.
| | - Andreas Kreutzer
- Department of Research Data Science & Analytics, Cook Children's Health Care System, 76104, Fort Worth, TX, USA
| | - Kamiah Moss
- Physical Medicine and Rehabilitation, Baylor Institute for Rehabilitation, 75246, Dallas, TX, USA
| | - Meena Shah
- Department of Kinesiology, Harris College of Nursing and Health Sciences, Texas Christian University, 76129, Fort Worth, TX, USA.
| |
Collapse
|
24
|
Brady AJ, Egan B. Acute Ingestion of a Ketone Monoester without Co-ingestion of Carbohydrate Improves Running Economy in Male Endurance Runners. Med Sci Sports Exerc 2024; 56:134-142. [PMID: 37565450 DOI: 10.1249/mss.0000000000003278] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
PURPOSE Acute ingestion of a ketone monoester, with and without co-ingestion of carbohydrate, was investigated for effects on running economy (RE), time to exhaustion (TTE), and other related indices of endurance running performance. METHODS Using a three condition, placebo-controlled, randomized crossover design, 11 male middle- and long-distance runners ran at five submaximal speeds (10-14 km·h -1 ) on a motorized treadmill for 8 min each, immediately followed by a ramp test to volitional exhaustion. Participants consumed either a 10% carbohydrate solution (CHO), a 10% carbohydrate solution with 750 mg·kg -1 body mass of an ( R )-3-hydroxybutyl ( R )-3-hydroxybutyrate ketone monoester (CHO + KE), or 750 mg·kg -1 body mass of the ketone monoester in flavored water (KE) before (two-thirds of the dose) and during (one-third of the dose) exercise. RESULTS β-hydroxybutyrate concentration averaged 1.8 ± 0.3 and 2.1 ± 0.3 mM during exercise in CHO + KE and KE, respectively. RE was lower at each submaximal running speed (effect size = 0.48-0.98) by an average of 4.1% in KE compared with CHO, but not between CHO + KE and CHO. TTE did not differ between CHO (369 ± 116 s), CHO + KE (342 ± 99 s), or KE (333 ± 106 s) ( P = 0.093). CONCLUSIONS Acute ingestion of a ketone monoester without carbohydrate, but not when coingested with carbohydrate, improved RE in middle- and long-distance runners at a range of submaximal running speeds and did not alter TTE in a short-duration ramp test to volitional exhaustion. Further investigation is required to examine if these differences translate into positive performance outcomes over longer durations of exercise.
Collapse
|
25
|
Robberechts R, Poffé C. Defining ketone supplementation: the evolving evidence for postexercise ketone supplementation to improve recovery and adaptation to exercise. Am J Physiol Cell Physiol 2024; 326:C143-C160. [PMID: 37982172 DOI: 10.1152/ajpcell.00485.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
Over the last decade, there has been a growing interest in the use of ketone supplements to improve athletic performance. These ketone supplements transiently elevate the concentrations of the ketone bodies acetoacetate (AcAc) and d-β-hydroxybutyrate (βHB) in the circulation. Early studies showed that ketone bodies can improve energetic efficiency in striated muscle compared with glucose oxidation and induce a glycogen-sparing effect during exercise. As such, most research has focused on the potential of ketone supplementation to improve athletic performance via ingestion of ketones immediately before or during exercise. However, subsequent studies generally observed no performance improvement, and particularly not under conditions that are relevant for most athletes. However, more and more studies are reporting beneficial effects when ketones are ingested after exercise. As such, the real potential of ketone supplementation may rather be in their ability to enhance postexercise recovery and training adaptations. For instance, recent studies observed that postexercise ketone supplementation (PEKS) blunts the development of overtraining symptoms, and improves sleep, muscle anabolic signaling, circulating erythropoietin levels, and skeletal muscle angiogenesis. In this review, we provide an overview of the current state-of-the-art about the impact of PEKS on aspects of exercise recovery and training adaptation, which is not only relevant for athletes but also in multiple clinical conditions. In addition, we highlight the underlying mechanisms by which PEKS may improve exercise recovery and training adaptation. This includes epigenetic effects, signaling via receptors, modulation of neurotransmitters, energy metabolism, and oxidative and anti-inflammatory pathways.
Collapse
Affiliation(s)
- Ruben Robberechts
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Chiel Poffé
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
26
|
McKay AKA, Anderson B, Peeling P, Whitfield J, Tee N, Zeder C, Zimmermann MB, Burke LM, Moretti D. Iron Absorption in Highly Trained Male Runners: Does it Matter When and Where You Eat Your Iron? Med Sci Sports Exerc 2024; 56:118-127. [PMID: 38098150 DOI: 10.1249/mss.0000000000003272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
PURPOSE We examined iron absorption and its regulation during two common scenarios experienced by endurance athletes. Our aims were to: (i) compare the effects of preexercise versus postexercise iron intake on iron absorption; and (ii) compare the impact of training at altitude (1800 m) on iron absorption preexercise. METHODS Male runners (n = 18) completed three exercise trials over a 5-wk period, each preceded by 24 h of standardized low-iron diets. First, athletes completed two 60-min treadmill running trials at 65% V̇O2max at near sea-level (580 m). In a randomized order, preexercise and postexercise test meals labeled with 4 mg of 57Fe or 58Fe were consumed 30 min before or 30 min after exercise. Then, the same exercise trial was performed after living and training at altitude (~1800 m) for 7 d, with the labeled test meal consumed 30 min preexercise. We collected venous blood samples preexercise and postexercise for markers of iron status and regulation, and 14 d later to measure erythrocyte isotope incorporation. RESULTS No differences in fractional iron absorption were evident when test meals were consumed preexercise (7.3% [4.4, 12.1]) or postexercise (6.2% [3.1, 12.5]) (n = 18; P = 0.058). Iron absorption preexercise was greater at altitude (18.4% [10.6, 32.0]) than at near sea-level (n = 17; P < 0.001) and hepcidin concentrations at altitude were lower at rest and 3 h postexercise compared with near sea level (P < 0.001). CONCLUSIONS In an acute setting, preexercise and postexercise iron absorption is comparable if consumed within 30 min of exercise. Preexercise iron absorption increases 2.6-fold at altitude compared with near sea-level, likely due to the homeostatic response to provide iron for enhanced erythropoiesis and maintain iron stores.
Collapse
Affiliation(s)
- Alannah K A McKay
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Vic, AUSTRALIA
| | | | | | - Jamie Whitfield
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Vic, AUSTRALIA
| | - Nicolin Tee
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Vic, AUSTRALIA
| | - Christophe Zeder
- Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, ETH Zürich, Zurich, SWITZERLAND
| | - Michael B Zimmermann
- Medical Research Council Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UNITED KINGDOM
| | - Louise M Burke
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Vic, AUSTRALIA
| | - Diego Moretti
- Nutrition Group, Health Department, Swiss Distance University of Applied Sciences (FFHS), Zürich, SWITZERLAND
| |
Collapse
|
27
|
Berger NJA, Best R, Best AW, Lane AM, Millet GY, Barwood M, Marcora S, Wilson P, Bearden S. Limits of Ultra: Towards an Interdisciplinary Understanding of Ultra-Endurance Running Performance. Sports Med 2024; 54:73-93. [PMID: 37751076 DOI: 10.1007/s40279-023-01936-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2023] [Indexed: 09/27/2023]
Abstract
Ultra-endurance running (UER) poses extreme mental and physical challenges that present many barriers to completion, let alone performance. Despite these challenges, participation in UER events continues to increase. With the relative paucity of research into UER training and racing compared with traditional endurance running distance (e.g., marathon), it follows that there are sizable improvements still to be made in UER if the limitations of the sport are sufficiently understood. The purpose of this review is to summarise our current understanding of the major limitations in UER. We begin with an evolutionary perspective that provides the critical background for understanding how our capacities, abilities and limitations have come to be. Although we show that humans display evolutionary adaptations that may bestow an advantage for covering large distances on a daily basis, these often far exceed the levels of our ancestors, which exposes relative limitations. From that framework, we explore the physiological and psychological systems required for running UER events. In each system, the factors that limit performance are highlighted and some guidance for practitioners and future research are shared. Examined systems include thermoregulation, oxygen delivery and utilisation, running economy and biomechanics, fatigue, the digestive system, nutritional and psychological strategies. We show that minimising the cost of running, damage to lower limb tissue and muscle fatigability may become crucial in UER events. Maintaining a sustainable core body temperature is critical to performance, and an even pacing strategy, strategic heat acclimation and individually calculated hydration all contribute to sustained performance. Gastrointestinal issues affect almost every UER participant and can be due to a variety of factors. We present nutritional strategies for different event lengths and types, such as personalised and evidence-based approaches for varying types of carbohydrate, protein and fat intake in fluid or solid form, and how to avoid flavour fatigue. Psychology plays a vital role in UER performance, and we highlight the need to be able to cope with complex situations, and that specific long and short-term goal setting improves performance. Fatigue in UER is multi-factorial, both physical and mental, and the perceived effort or level of fatigue have a major impact on the ability to continue at a given pace. Understanding the complex interplay of these limitations will help prepare UER competitors for the different scenarios they are likely to face. Therefore, this review takes an interdisciplinary approach to synthesising and illuminating limitations in UER performance to assist practitioners and scientists in making informed decisions in practice and applicable research.
Collapse
Affiliation(s)
- Nicolas J A Berger
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK.
| | - Russ Best
- Centre for Sport Science and Human Performance, Wintec, Hamilton, New Zealand
| | - Andrew W Best
- Department of Biology, Massachusetts College of Liberal Arts, North Adams, MA, USA
| | - Andrew M Lane
- Faculty of Education Health and Wellbeing, University of Wolverhampton, Walsall, UK
| | - Guillaume Y Millet
- Univ Lyon, UJM Saint-Etienne, Inter-University Laboratory of Human Movement Biology, Saint Etienne, France
- Institut Universitaire de France (IUF), Paris, France
| | - Martin Barwood
- Department of Sport, Health and Nutrition, Leeds Trinity University Horsforth, Leeds, UK
| | - Samuele Marcora
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Patrick Wilson
- Department of Human Movement Sciences, Old Dominion University, Norfolk, VA, USA
| | - Shawn Bearden
- Department of Biological Sciences, Idaho State University, Pocatello, ID, USA
| |
Collapse
|
28
|
Van Hooren B, Souren T, Bongers BC. Accuracy of respiratory gas variables, substrate, and energy use from 15 CPET systems during simulated and human exercise. Scand J Med Sci Sports 2024; 34:e14490. [PMID: 37697640 DOI: 10.1111/sms.14490] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/07/2023] [Accepted: 08/25/2023] [Indexed: 09/13/2023]
Abstract
PURPOSE Various systems are available for cardiopulmonary exercise testing (CPET), but their accuracy remains largely unexplored. We evaluate the accuracy of 15 popular CPET systems to assess respiratory variables, substrate use, and energy expenditure during simulated exercise. Cross-comparisons were also performed during human cycling experiments (i.e., verification of simulation findings), and between-session reliability was assessed for a subset of systems. METHODS A metabolic simulator was used to simulate breath-by-breath gas exchange, and the values measured by each system (minute ventilation [V̇E], breathing frequency [BF], oxygen uptake [V̇O2 ], carbon dioxide production [V̇CO2 ], respiratory exchange ratio [RER], energy from carbs and fats, and total energy expenditure) were compared to the simulated values to assess the accuracy. The following manufacturers (system) were assessed: COSMED (Quark CPET, K5), Cortex (MetaLyzer 3B, MetaMax 3B), Vyaire (Vyntus CPX, Oxycon Pro), Maastricht Instruments (Omnical), MGC Diagnostics (Ergocard Clinical, Ergocard Pro, Ultima), Ganshorn/Schiller (PowerCube Ergo), Geratherm (Ergostik), VO2master (VO2masterPro), PNOĒ (PNOĒ), and Calibre Biometrics (Calibre). RESULTS Absolute percentage errors during the simulations ranged from 1.15%-44.3% for V̇E, 1.05-3.79% for BF, 1.10%-13.3% for V̇O2 , 1.07%-18.3% for V̇CO2 , 0.62%-14.8% for RER, 5.52%-99.0% for Kcal from carbs, 5.13%-133% for Kcal from fats, and 0.59%-12.1% for total energy expenditure. Between-session variation ranged from 0.86%-21.0% for V̇O2 and 1.14%-20.2% for V̇CO2 , respectively. CONCLUSION The error of respiratory gas variables, substrate, and energy use differed substantially between systems, with only a few systems demonstrating a consistent acceptable error. We extensively discuss the implications of our findings for clinicians, researchers and other CPET users.
Collapse
Affiliation(s)
- Bas Van Hooren
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Tjeu Souren
- Independent Consultant, Utrecht, The Netherlands
| | - Bart C Bongers
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
29
|
Cato LE, McKay AKA, L’Heureux JE, Vanhatalo A, Jones AM, Askew CD, Slater GJ, Burke LM. Low Carbohydrate, High Fat Diet Alters the Oral Microbiome without Negating the Nitrite Response to Beetroot Juice Supplementation. Nutrients 2023; 15:5123. [PMID: 38140382 PMCID: PMC10745889 DOI: 10.3390/nu15245123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/01/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
A low carbohydrate, high fat (LCHF) diet in athletes increases fat oxidation but impairs sports performance, potentially due to impaired exercise economy. Dietary nitrate supplementation can improve exercise economy via an increase in nitric oxide production, which is initiated by the reduction of nitrate to nitrite within the oral cavity. This reaction is dependent on the presence of nitrate-reducing oral bacteria, which can potentially be altered by dietary changes, including a LCHF diet. This study explored the effect of a LCHF diet on the oral microbiome and subsequent changes to plasma nitrite concentration following nitrate supplementation. Following five days of LCHF or high carbohydrate (HCHO) control dietary intervention, highly trained male race walkers consumed 140 mL beetroot juice containing 8.4 mmol nitrate; they then provided (a) blood samples for plasma nitrate and nitrite analysis and (b) saliva samples for 16S rRNA sequencing of the oral microbiome. The LCHF diet (n = 13) reduced oral bacterial diversity and changed the relative abundance of the genera Neisseria (+10%), Fusobacteria (+3%), Prevotella (-9%), and Veillonella (-4%), with no significant changes observed following the HCHO diet (n = 11). Following beetroot juice ingestion, plasma nitrite concentrations were higher for the LCHF diet compared to the HCHO diet (p = 0.04). However, the absence of an interaction with the trial (pre-post) (p = 0.71) suggests that this difference was not due to the dietary intervention. In summary, we found an increase in plasma nitrate and nitrite concentrations in response to nitrate supplementation independent of diet. This suggests the oral microbiome is adaptive to dietary changes and can maintain a nitrate reduction capacity despite a decrease in bacterial diversity following the LCHF diet.
Collapse
Affiliation(s)
- Louise E. Cato
- School of Health, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia; (C.D.A.); (G.J.S.)
| | - Alannah K. A. McKay
- Mary MacKillop Institute of Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia; (A.K.A.M.); (L.M.B.)
| | - Joanna E. L’Heureux
- University of Exeter Medical School, University of Exeter, Exeter EX1 2LU, UK; (J.E.L.); (A.V.); (A.M.J.)
| | - Anni Vanhatalo
- University of Exeter Medical School, University of Exeter, Exeter EX1 2LU, UK; (J.E.L.); (A.V.); (A.M.J.)
| | - Andrew M. Jones
- University of Exeter Medical School, University of Exeter, Exeter EX1 2LU, UK; (J.E.L.); (A.V.); (A.M.J.)
| | - Christopher D. Askew
- School of Health, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia; (C.D.A.); (G.J.S.)
| | - Gary J. Slater
- School of Health, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia; (C.D.A.); (G.J.S.)
| | - Louise M. Burke
- Mary MacKillop Institute of Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia; (A.K.A.M.); (L.M.B.)
| |
Collapse
|
30
|
Cho W, Jung H, Hong S, Yang HI, Park DH, Suh SH, Lee DH, Choe YS, Kim JY, Lee W, Jeon JY. The effect of a short-term ketogenic diet on exercise efficiency during graded exercise in healthy adults. J Int Soc Sports Nutr 2023; 20:2264278. [PMID: 37791478 PMCID: PMC10552596 DOI: 10.1080/15502783.2023.2264278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 09/22/2023] [Indexed: 10/05/2023] Open
Abstract
OBJECTIVE We examined the effects of short-term KD on exercise efficiency and hormonal response during and after the graded exercise testing. METHODS Fourteen untrained healthy adults (8 males, 6 females, age 26.4 ± 3.1 [SD] years; BMI 24.8 ± 4.6 kg/m2; peak VO2max 54.0 ± 5.8 ml/kg FFM/min) completed 3-days of a mixed diet (MD) followed by another 3-days of KD after 3-days of washout period. Upon completion of each diet arm, participants underwent graded exercise testing with low- (LIE; 40% of VO2max), moderate- (MIE; 55%), and high-intensity exercise (HIE; 70%). Exercise efficiency was calculated as work done (kcal/min)/energy expenditure (kcal/min). RESULTS Fat oxidation during the recovery period was higher in KD vs. MD. Despite identical workload during HIE, participants after having KD vs. MD showed higher energy expenditure and lower exercise efficiency (10.1 ± 0.7 vs. 12.5 ± 0.3%, p < .01). After KD, free fatty acid (FFA) concentrations were higher during MIE and recovery vs. resting, and beta-hydroxybutylate (BOHB) was lower at HIE vs. resting. Cortisol concentrations after KD was higher during recovery vs. resting, with no significant changes during graded exercise testing after MD. CONCLUSIONS Our data suggest that short-term KD is favorable to fat metabolism leading increased circulating FFA and BOHB during LIE to MIE. However, it is notable that KD may cause 1) exercise inefficiency manifested by increased energy expenditure and 2) elevated exercise stress during HIE and recovery. Trial registration: KCT0005172, International Clinical Trials Registry Platform.
Collapse
Affiliation(s)
- Wonhee Cho
- Syracuse University, Department of Exercise Science, David B. Falk College of Sport and Human Dynamics, Syracuse, NY, USA
- Yonsei University, Department of Sport Industries, Seoul, South Korea
| | - Hwaebong Jung
- Yonsei University, Department of Materials Science and Engineering, Seoul, South Korea
| | - Sunghyun Hong
- Yonsei University, Department of Sport Industries, Seoul, South Korea
| | - Hyuk In Yang
- Yonsei University, Department of Sport Industries, Seoul, South Korea
| | - Dong-Hyuk Park
- Yonsei University, Department of Sport Industries, Seoul, South Korea
| | - Sang-Hoon Suh
- Yonsei University, Department of Physical Education, Seoul, South Korea
| | - Dong Hoon Lee
- Yonsei University, Department of Sport Industries, Seoul, South Korea
- Harvard T.H. Chan School of Public Health, Department of Nutrition, Boston, MA, USA
- Nanyang Technological University, Lee Kong Chian School of Medicine, Nanyang, Singapore
| | | | - Joon Young Kim
- Syracuse University, Department of Exercise Science, David B. Falk College of Sport and Human Dynamics, Syracuse, NY, USA
| | - Wooyoung Lee
- Yonsei University, Department of Materials Science and Engineering, Seoul, South Korea
| | - Justin Y. Jeon
- Yonsei University, Department of Sport Industries, Seoul, South Korea
- Yonsei University College of Medicine, Cancer Prevention Center, Yonsei Cancer Center, Seoul, South Korea
- Yonsei University, Exercise Medicine Center for Diabetes and Cancer Patients, ICONS, Seoul, South Korea
| |
Collapse
|
31
|
Chung N. Impact of the ketogenic diet on body fat, muscle mass, and exercise performance: a review. Phys Act Nutr 2023; 27:1-7. [PMID: 38297470 PMCID: PMC10844723 DOI: 10.20463/pan.2023.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/12/2023] [Accepted: 11/17/2023] [Indexed: 02/02/2024] Open
Abstract
PURPOSE The purpose of this review was to investigate the effects of the ketogenic diet (KD), on body fat, muscle mass, and exercise performance. As the KD is a subject of ongoing debate, we also present the existing evidence regarding its potential benefits in the aforementioned areas of body fat, muscle mass, and exercise performance. METHODS A literature search was conducted using the keywords "ketogenic diet, low-carbohydrate diet, high-fat diet, body fat, muscle mass, and exercise performance" in PubMed, Web of Science, and Google Scholar. RESULTS The KD effectively reduced body fat in the short term and, preserved muscle mass during weight loss, however, its impact on exercise performance remains inconclusive owing to various factors. CONCLUSION While controversial, it is undeniable that the KD has the potential to affect body fat, muscle mass, and exercise performance. Consequently, additional research is required to elucidate the underlying mechanisms across various populations, optimize their implementation, and understand their long-term effects.
Collapse
Affiliation(s)
- Nana Chung
- Department of Physical Education, Sangji University, Wonju, Republic of Korea
| |
Collapse
|
32
|
Best R, Williams JM, Pearce J. The Physiological Requirements of and Nutritional Recommendations for Equestrian Riders. Nutrients 2023; 15:4977. [PMID: 38068833 PMCID: PMC10708571 DOI: 10.3390/nu15234977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Equestrian sport is under-researched within the sport science literature, creating a possible knowledge vacuum for athletes and support personnel wishing to train and perform in an evidence-based manner. This review aims to synthesise available evidence from equitation, sport, and veterinary sciences to describe the pertinent rider physiology of equestrian disciplines. Estimates of energy expenditure and the contribution of underpinning energy systems to equestrian performance are used to provide nutrition and hydration recommendations for competition and training in equestrian disciplines. Relative energy deficiency and disordered eating are also considered. The practical challenges of the equestrian environment, including competitive, personal, and professional factors, injury and concussion, and female participation, are discussed to better highlight novelty within equestrian disciplines compared to more commonly studied sports. The evidence and recommendations are supported by example scenarios, and future research directions are outlined.
Collapse
Affiliation(s)
- Russ Best
- Centre for Sport Science & Human Performance, Waikato Institute of Technology, Te Pūkenga, Hamilton 3200, New Zealand
| | - Jane M. Williams
- Department of Animal Science, Hartpury University, Hartpury Gl19 3BE, UK;
| | - Jeni Pearce
- High Performance Sport New Zealand, Auckland 0632, New Zealand;
| |
Collapse
|
33
|
la Torre ME, Monda A, Messina A, de Stefano MI, Monda V, Moscatelli F, Tafuri F, Saraiello E, Latino F, Monda M, Messina G, Polito R, Tafuri D. The Potential Role of Nutrition in Overtraining Syndrome: A Narrative Review. Nutrients 2023; 15:4916. [PMID: 38068774 PMCID: PMC10708264 DOI: 10.3390/nu15234916] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/13/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Competition between athletes and an increase in sporting knowledge have greatly influenced training methods while increasing the number of them more and more. As a result, the number of athletes who have increased the number and intensity of their workouts while decreasing recovery times is rising. Positive overtraining could be considered a natural and fundamental process when the result is adaptation and improved performance; however, in the absence of adequate recovery, negative overtraining could occur, causing fatigue, maladaptation, and inertia. One of the earliest forms of fatigue is overreaching. It is considered to be an accumulation of training that leads to reduced sports performance, requiring days or weeks to recover. Overreaching, if followed by adequate recovery, can lead to an increase in athletic performance. Nonetheless, if overreaching becomes extreme, combined with additional stressors, it could lead to overtraining syndrome (OTS). OTS, caused by systemic inflammation, leads to central nervous system (CNS) effects, including depressed mood, further inflammation, central fatigue, and ultimately neurohormonal changes. There are therefore not only physiological, biochemical, and immunological but also psychological symptoms or markers that must be considered, independently or together, being intrinsically linked with overtraining, to fully understand OTS. However, to date, there are very few published studies that have analyzed how nutrition in its specific food aspects, if compromised during OTS, can be both etiology and consequence of the syndrome. To date, OTS has not yet been fully studied, and the topic needs further research. The purpose of this narrative review is therefore to study how a correct diet and nutrition can influence OTS in all its aspects, from prevention to treatment.
Collapse
Affiliation(s)
- Maria Ester la Torre
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (M.E.l.T.); (M.I.d.S.); (G.M.)
| | - Antonietta Monda
- Department of Experimental Medicine, Section of Human Physiology, Unit of Dietetics and Sports Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.M.); (M.M.)
| | - Antonietta Messina
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Maria Ida de Stefano
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (M.E.l.T.); (M.I.d.S.); (G.M.)
| | - Vincenzo Monda
- Department of Economics, Law, Cybersecurity, and Sports Sciences, University of Naples “Parthenope”, 80131 Naples, Italy; (V.M.); (E.S.); (D.T.)
| | - Fiorenzo Moscatelli
- Department of Human Sciences, Telematic University Pegaso, 80100 Naples, Italy; (F.M.); (F.L.)
| | - Francesco Tafuri
- Heracle Lab Research in Educational Neuroscience, Niccolò Cusano University, 00166 Roma, Italy;
| | - Emma Saraiello
- Department of Economics, Law, Cybersecurity, and Sports Sciences, University of Naples “Parthenope”, 80131 Naples, Italy; (V.M.); (E.S.); (D.T.)
| | - Francesca Latino
- Department of Human Sciences, Telematic University Pegaso, 80100 Naples, Italy; (F.M.); (F.L.)
| | - Marcellino Monda
- Department of Experimental Medicine, Section of Human Physiology, Unit of Dietetics and Sports Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.M.); (M.M.)
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (M.E.l.T.); (M.I.d.S.); (G.M.)
| | - Rita Polito
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (M.E.l.T.); (M.I.d.S.); (G.M.)
| | - Domenico Tafuri
- Department of Economics, Law, Cybersecurity, and Sports Sciences, University of Naples “Parthenope”, 80131 Naples, Italy; (V.M.); (E.S.); (D.T.)
| |
Collapse
|
34
|
Schroeder AE, Rosenkranz RR, Yarrow LK, Haub MD, Rosenkranz SK. Recovery Phase Nutrition and Insulin Strategies for a Collegiate Distance Runner with Type 1 Diabetes Mellitus: A Case Study. Sports (Basel) 2023; 11:214. [PMID: 37999431 PMCID: PMC10674803 DOI: 10.3390/sports11110214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/12/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023] Open
Abstract
PURPOSE There is scant published research regarding nutrition and insulin strategies for athletic performance in collegiate distance runners with type 1 diabetes mellitus (CDRT1). Acute carbohydrate supplementation (CHOsup) and insulin reduction used to minimize hypoglycemia during exercise may result in deteriorated glycemic control post exercise in CDRT1. The present case study of a CDRT1 investigated outcomes associated with a moderate-carbohydrate (ModCHO) diet and 24 h insulin adjustment during recovery phases for improved glycemic control and reduced use of acute strategies. METHODS During an 8-day period, a female CDRT1 followed a ModCHO (~4 g/kg/day) nutrition program. Recovery phase adjustments to insulin doses were made using an equation developed to estimate reduced insulin needs post exercise, as a function of exercise intensity and duration. Daily training was performed in the fasted state at 6:00 a.m. and included additional exercise strategies to reduce glycemic variability when needed. Daily blood glucose time-in-range (TIR) and use of CHOsup were assessed. Athlete well-being was determined using the Student-Athlete Well-Being Scale (SAWS)TM at baseline, and days 1, 3, and 7. RESULTS Throughout the 8-day period, mean TIR increased (77% versus < 50%) and the magnitude of glycemic excursions decreased (~3.8-15 versus ~3.0-26 mmol/L) relative to a prior comparison period. Minimal pre-exercise CHOsup was employed and CHOsup during exercise was not required. Additionally, the athlete achieved a new lifetime best in the 5000 m run and maintained positive well-being. CONCLUSION The present case study provides examples of recovery phase strategies (i.e., ModCHO diet and 24 h insulin adjustments) that may support glycemic control and athletic performance in CDRT1 and provides potential considerations for nutrition and insulin strategies for use by athletes and coaches.
Collapse
Affiliation(s)
- Amie E. Schroeder
- Department of Food, Nutrition, Dietetics and Health, College of Health and Human Sciences, Kansas State University, Manhattan, KS 66506, USA; (R.R.R.); (L.K.Y.); (M.D.H.); (S.K.R.)
| | - Richard R. Rosenkranz
- Department of Food, Nutrition, Dietetics and Health, College of Health and Human Sciences, Kansas State University, Manhattan, KS 66506, USA; (R.R.R.); (L.K.Y.); (M.D.H.); (S.K.R.)
- Department of Kinesiology and Nutrition Sciences, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Linda K. Yarrow
- Department of Food, Nutrition, Dietetics and Health, College of Health and Human Sciences, Kansas State University, Manhattan, KS 66506, USA; (R.R.R.); (L.K.Y.); (M.D.H.); (S.K.R.)
| | - Mark D. Haub
- Department of Food, Nutrition, Dietetics and Health, College of Health and Human Sciences, Kansas State University, Manhattan, KS 66506, USA; (R.R.R.); (L.K.Y.); (M.D.H.); (S.K.R.)
| | - Sara K. Rosenkranz
- Department of Food, Nutrition, Dietetics and Health, College of Health and Human Sciences, Kansas State University, Manhattan, KS 66506, USA; (R.R.R.); (L.K.Y.); (M.D.H.); (S.K.R.)
- Department of Kinesiology and Nutrition Sciences, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| |
Collapse
|
35
|
Tirla A, Timar AV, Becze A, Memete AR, Vicas SI, Popoviciu MS, Cavalu S. Designing New Sport Supplements Based on Aronia melanocarpa and Bee Pollen to Enhance Antioxidant Capacity and Nutritional Value. Molecules 2023; 28:6944. [PMID: 37836785 PMCID: PMC10574696 DOI: 10.3390/molecules28196944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
With a high number of athletes using sport supplements targeting different results, the need for complex, natural and effective formulations represents an actual reality, while nutrition dosing regimens aiming to sustain the health and performance of athletes are always challenging. In this context, the main goal of this study was to elaborate a novel and complex nutraceutical supplement based on multiple bioactive compounds extracted from Aronia melanocarpa and bee pollen, aiming to support physiological adaptations and to minimize the stress generated by intense physical activity in the case of professional or amateur athletes. Our proposed formulations are based on different combinations of Aronia and bee pollen (A1:P1, A1:P2 and A2:P1), offering personalized supplements designed to fulfill the individual requirements of different categories of athletes. The approximate composition, fatty acid profile, identification and quantification of individual polyphenols, along with the antioxidant capacity of raw biological materials and different formulations, was performed using spectrophotometric methods, GS-MS and HPLC-DAD-MS-ESI+. In terms of antioxidant capacity, our formulations based on different ratios of bee pollen and Aronia were able to act as complex and powerful antioxidant products, highlighted by the synergic or additional effect of the combinations. Overall, the most powerful synergism was obtained for the A1:P2 formulation.
Collapse
Affiliation(s)
- Adrian Tirla
- Doctoral School of Biomedical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania;
| | - Adrian Vasile Timar
- Faculty of Environmental Protection, University of Oradea, 26 Gen. Magheru Street, 410048 Oradea, Romania; (A.V.T.); (A.R.M.)
| | - Anca Becze
- INCDO-INOE 2000 Subsidiary Research Institute for Analytical Instrumentation ICIA, 67 Donath Street, 400293 Cluj-Napoca, Romania;
| | - Adriana Ramona Memete
- Faculty of Environmental Protection, University of Oradea, 26 Gen. Magheru Street, 410048 Oradea, Romania; (A.V.T.); (A.R.M.)
| | - Simona Ioana Vicas
- Doctoral School of Biomedical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania;
- Faculty of Environmental Protection, University of Oradea, 26 Gen. Magheru Street, 410048 Oradea, Romania; (A.V.T.); (A.R.M.)
| | - Mihaela Simona Popoviciu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania;
| | - Simona Cavalu
- Doctoral School of Biomedical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania;
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania;
| |
Collapse
|
36
|
Karasawa T, Koike A, Terada S. A very high-carbohydrate diet differentially affects whole-body glucose tolerance and hepatic insulin resistance in rats. Nutrition 2023; 114:112113. [PMID: 37441826 DOI: 10.1016/j.nut.2023.112113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/20/2023] [Accepted: 05/30/2023] [Indexed: 07/15/2023]
Abstract
OBJECTIVES This study was performed to assess the effects of long-term intake of a very high carbohydrate (VHCHO) diet (76% of total energy from carbohydrate [CHO]) on whole-body glucose tolerance and hepatic insulin resistance. METHODS AND MATERIALS Male Sprague Dawley rats were fed either a control high-CHO diet (59% total energy from CHO; n = 8) or a VHCHO diet (76% total energy from CHO; n = 8) for 17 wk. At 4, 8, 12, and 16 wk of the dietary intervention, oral glucose tolerance test and homeostasis model assessment of insulin resistance (HOMA-IR) measurements were taken to assess whole-body glucose tolerance and hepatic insulin resistance, respectively. The triacylglycerol concentration in the liver was measured at the end of the 17-wk intervention period. RESULTS The VHCHO diet group showed significantly higher muscle glucose transporter 4 content and a smaller area under the curve for plasma glucose, but not insulin, in the oral glucose tolerance test compared with the control group. On the other hand, the VHCHO diet group had a significantly higher hepatic triacylglycerol concentration and HOMA-IR measurement compared with the control group. The hepatic triacylglycerol concentration was significantly and positively correlated with HOMA-IR. CONCLUSIONS The results of the present study suggest that long-term intake of a VHCHO diet exerts differential effects on whole-body glucose tolerance and hepatic insulin resistance.
Collapse
Affiliation(s)
- Takuya Karasawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan; Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan.
| | - Atsuko Koike
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Shin Terada
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
37
|
Margolis LM, Pasiakos SM, Howard EE. High-fat ketogenic diets and ketone monoester supplements differentially affect substrate metabolism during aerobic exercise. Am J Physiol Cell Physiol 2023; 325:C1144-C1153. [PMID: 37721006 PMCID: PMC10635661 DOI: 10.1152/ajpcell.00359.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/19/2023]
Abstract
Chronically adhering to high-fat ketogenic diets or consuming ketone monoester supplements elicits ketosis. Resulting changes in substrate metabolism appear to be drastically different between ketogenic diets and ketone supplements. Consuming a ketogenic diet increases fatty acid oxidation with concomitant decreases in endogenous carbohydrate oxidation. Increased fat oxidation eventually results in an accumulation of circulating ketone bodies, which are metabolites of fatty acids that serve as an alternative source of fuel. Conversely, consuming ketone monoester supplements rapidly increases circulating ketone body concentrations that typically exceed those achieved by adhering to ketogenic diets. Rapid increases in ketone body concentrations with ketone monoester supplementation elicit a negative feedback inhibition that reduces fatty acid mobilization during aerobic exercise. Supplement-derived ketosis appears to have minimal impact on sparing of muscle glycogen or minimizing of carbohydrate oxidation during aerobic exercise. This review will discuss the substrate metabolic and associated aerobic performance responses to ketogenic diets and ketone supplements.
Collapse
Affiliation(s)
- Lee M Margolis
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
| | - Stefan M Pasiakos
- Office of Dietary Supplements, U.S. Department of Health and Human Services, National Institutes of Health, Bethesda, Maryland, United States
| | - Emily E Howard
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
| |
Collapse
|
38
|
Fensham NC, Govus AD, Peeling P, Burke LM, McKay AKA. Factors Influencing the Hepcidin Response to Exercise: An Individual Participant Data Meta-analysis. Sports Med 2023; 53:1931-1949. [PMID: 37347443 DOI: 10.1007/s40279-023-01874-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND Hepcidin, the master iron regulatory hormone, has been shown to peak 3-6 h postexercise, and is likely a major contributor to the prevalence of iron deficiency in athletes. Although multiple studies have investigated the hepcidin response to exercise, small sample sizes preclude the generalizability of current research findings. OBJECTIVE The aim of this individual participant data meta-analysis was to identify key factors influencing the hepcidin-exercise response. METHODS Following a systematic review of the literature, a one-stage meta-analysis with mixed-effects linear regression, using a stepwise approach to select the best-fit model, was employed. RESULTS We show that exercise is associated with a 1.5-2.5-fold increase in hepcidin concentrations, with pre-exercise hepcidin concentration accounting for ~ 44% of the variance in 3 h postexercise hepcidin concentration. Although collectively accounting for only a further ~ 3% of the variance, absolute 3 h postexercise hepcidin concentrations appear higher in males with lower cardiorespiratory fitness and higher pre-exercise ferritin levels. On the other hand, a greater magnitude of change between the pre- and 3 h postexercise hepcidin concentration was largely attributable to exercise duration (~ 44% variance) with a much smaller contribution from VO2max, pre-exercise ferritin, sex, and postexercise interleukin-6 (~ 6% combined). Although females tended to have a lower absolute 3 h postexercise hepcidin concentration [1.4 nmol·L-1, (95% CI [- 2.6, - 0.3]), p = 0.02] and 30% less change (95% CI [-54.4, - 5.1]), p = 0.02) than males, with different explanatory variables being significant between sexes, sample size discrepancies and individual study design biases preclude definitive conclusions. CONCLUSION Our analysis reveals the complex interplay of characteristics of both athlete and exercise session in the hepcidin response to exercise and highlights the need for further investigation into unaccounted-for mediating factors.
Collapse
Affiliation(s)
- Nikita C Fensham
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia.
| | - Andrew D Govus
- Discipline of Sport and Exercise Science, La Trobe University, Melbourne, VIC, Australia
| | - Peter Peeling
- University of Western Australia, Crawley, WA, Australia
- Western Australia Institute of Sport, Mt Claremont, WA, Australia
| | - Louise M Burke
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Alannah K A McKay
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| |
Collapse
|
39
|
Baranauskas M, Kupčiūnaitė I, Stukas R. Dietary Intake of Protein and Essential Amino Acids for Sustainable Muscle Development in Elite Male Athletes. Nutrients 2023; 15:4003. [PMID: 37764784 PMCID: PMC10535035 DOI: 10.3390/nu15184003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Athletes need to develop a relatively high muscle mass and low body adipose tissue for the sake of better athletic performance. A full range of nine essential amino acids and eleven non-essential amino acids have to attend in appropriate amounts for protein biosynthesis. The aim of the observational comparative cross-sectional study was to assess the association between the diet quality profile and training-induced muscle mass estimated by bioelectrical impedance among elite male athletes. The research sample comprised 18.1 ± 3.1 year-old Lithuanian professional male athletes (n = 234). The study participants were enrolled to complete 24-h dietary recalls of three non-consecutive days. The body composition was assessed using the bioelectrical impedance analysis (BIA) method. The present study showed a significant insufficiency of the mean carbohydrate intake of 5.7 g/kg/day in a group of aerobic male athletes. The lower muscle mass of aerobic male athletes was related to the lower-carbohydrate diet (adjusted odd ratio (ORadj) 0.3; 95% confidence interval (CI): 0.1-0.7). The mean protein intake of 1.8 g/kg/day was optimal for anabolism in the samples of both anaerobic and aerobic male athletes. The protein intake in appropriate doses was potentially associated with an increase in muscle mass only in anaerobic male athletes (ORadj 2.2; 95% CI: 1.3-3.7). The positive relationship was revealed between the possible muscle mass gain and the increased intakes of amino acids such as isoleucine and histidine among anaerobic athletes (ORadj 2.9; 95% CI: 1.1-4.7 and ORadj 2.9; 95% CI: 1.0-4.3, respectively). An inverse feasible association was indicated between a higher intake of valine and lower muscle mass quantities among anaerobic male athletes (ORadj 0.1; 95% CI: 0.1-0.5). The recommendations for sports nutritionists should emphasize the necessity of advising professional athletes on dietary strategies on how to manipulate dietary amino acid composition with respect to achieving long-term body composition goals.
Collapse
Affiliation(s)
- Marius Baranauskas
- Faculty of Biomedical Sciences, Panevėžys University of Applied Sciences, 35200 Panevėžys, Lithuania;
| | - Ingrida Kupčiūnaitė
- Faculty of Biomedical Sciences, Panevėžys University of Applied Sciences, 35200 Panevėžys, Lithuania;
| | - Rimantas Stukas
- Institute of Health Sciences, Faculty of Medicine, Department of Public Health, Vilnius University, 01513 Vilnius, Lithuania;
| |
Collapse
|
40
|
Norton KM, Davies RS, LeCheminant JD, Fullmer S. Educational Preparation and Course Approach of Undergraduate Sports Nutrition instructors in Large U.S. Institutions. Sports (Basel) 2023; 11:176. [PMID: 37755853 PMCID: PMC10536551 DOI: 10.3390/sports11090176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/28/2023] Open
Abstract
College courses are often offered from various disciplines, and depending on which department offers the class, the course could be taught by faculty with different educational preparation or training. This could result in significant differences in the approach and content of the course (i.e., theoretical or applied) or a difference in the instructors' perceived importance and, therefore, the depth and time spent on various topics. We evaluated potential differences in the sports nutrition curriculum because it is a course that is usually taught by either nutritionists or exercise physiologists. A cross-sectional survey was sent to sports nutrition instructors at accredited large U.S. institutions. Descriptive statistics were analyzed via an ANOVA and Χ2 using Crosstabs in Qualtrics. Alpha was set at p < 0.001. Additionally, short interviews with some participants were recorded and transcribed verbatim. The findings of this study indicated that regardless of the instructor's educational preparation and discipline, the majority of sports nutrition topics received similar time and depth and were rated as similarly important (p > 0.001). Out of 10 current textbooks, the majority of instructors preferred only 1 of 4 of them. From the short interviews, instructors reported that their courses were more applied than theoretical or balanced between the two. Most instructors designed their courses with a focus on achieving applied outcomes.
Collapse
Affiliation(s)
- Kayla Marie Norton
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA
| | - Randall Spencer Davies
- Department of Instructional Psychology and Technology, Brigham Young University, Provo, UT 84602, USA
| | - James Derek LeCheminant
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA
| | - Susan Fullmer
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
41
|
BURKE LOUISEM, WHITFIELD JAMIE, ROSS MEGANLR, TEE NICOLIN, SHARMA AVISHP, KING ANDYJ, HEIKURA IDAA, MORABITO AIMEE, MCKAY ALANNAHKA. Short Severe Energy Restriction with Refueling Reduces Body Mass without Altering Training-Associated Performance Improvement. Med Sci Sports Exerc 2023; 55:1487-1498. [PMID: 36940222 PMCID: PMC10348613 DOI: 10.1249/mss.0000000000003169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
PURPOSE We investigated short-term (9 d) exposure to low energy availability (LEA) in elite endurance athletes during a block of intensified training on self-reported well-being, body composition, and performance. METHODS Twenty-three highly trained race walkers undertook an ~3-wk research-embedded training camp during which they undertook baseline testing and 6 d of high energy/carbohydrate (HCHO) availability (40 kcal·kg FFM -1 ·d -1 ) before being allocated to 9 d continuation of this diet ( n = 10 M, 2 F) or a significant decrease in energy availability to 15 kcal·kg FFM -1 ·d -1 (LEA: n = 10 M, 1 F). A real-world 10,000-m race walking event was undertaken before (baseline) and after (adaptation) these phases, with races being preceded by standardized carbohydrate fueling (8 g·kg body mass [BM] -1 for 24 h and 2 g·kg BM -1 prerace meal). RESULTS Dual-energy x-ray absorptiometry-assessed body composition showed BM loss (2.0 kg, P < 0.001), primarily due to a 1.6-kg fat mass reduction ( P < 0.001) in LEA, with smaller losses (BM = 0.9 kg, P = 0.008; fat mass = 0.9 kg, P < 0.001) in HCHO. The 76-item Recovery-Stress Questionnaire for Athletes, undertaken at the end of each dietary phase, showed significant diet-trial effects for overall stress ( P = 0.021), overall recovery ( P = 0.024), sport-specific stress ( P = 0.003), and sport-specific recovery ( P = 0.012). However, improvements in race performance were similar: 4.5% ± 4.1% and 3.5% ± 1.8% for HCHO and LEA, respectively ( P < 0.001). The relationship between changes in performance and prerace BM was not significant ( r = -0.08 [-0.49 to 0.35], P = 0.717). CONCLUSIONS A series of strategically timed but brief phases of substantially restricted energy availability might achieve ideal race weight as part of a long-term periodization of physique by high-performance athletes, but the relationship between BM, training quality, and performance in weight-dependent endurance sports is complicated.
Collapse
Affiliation(s)
- LOUISE M. BURKE
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, AUSTRALIA
| | - JAMIE WHITFIELD
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, AUSTRALIA
| | - MEGAN L. R. ROSS
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, AUSTRALIA
| | - NICOLIN TEE
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, AUSTRALIA
| | | | - ANDY J. KING
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, AUSTRALIA
| | - IDA A. HEIKURA
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, AUSTRALIA
- Canadian Sport Institute–Pacific, Victoria, British Columbia, CANADA
- Exercise Science, Physical and Health Education, University of Victoria, Victoria, British Columbia, CANADA
| | - AIMEE MORABITO
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, AUSTRALIA
| | - ALANNAH K. A. MCKAY
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, AUSTRALIA
| |
Collapse
|
42
|
Moitzi AM, König D. Longer-Term Effects of the Glycaemic Index on Substrate Metabolism and Performance in Endurance Athletes. Nutrients 2023; 15:3028. [PMID: 37447354 DOI: 10.3390/nu15133028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/29/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023] Open
Abstract
Nutrition has a decisive influence on athletic performance. However, it is not only the nutrient intake during exercise that is important, but the daily diet must also be adapted to the requirements of physical activity in order to optimally promote training adaptations. The goal of prolonged endurance training is to enhance fat oxidation, to maintain aerobic performance at a higher intensity while sparing limited carbohydrate stores. The targeted modification of macronutrient intake is a common method of influencing substrate metabolism, fuel selection, and performance. However, it is not well established whether the glycaemic index of carbohydrates in our daily diet can improve endurance performance by influencing carbohydrate or fat oxidation during training. Therefore, the aim of the following review is to elucidate the possible influence of the glycaemic index on substrate utilization during exercise and to clarify whether the consumption of a long-term high-carbohydrate diet with different glycaemic indices may have an influence on substrate metabolism and endurance performance.
Collapse
Affiliation(s)
- Anna Maria Moitzi
- Division for Nutrition, Exercise and Health, Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, 1090 Vienna, Austria
| | - Daniel König
- Division for Nutrition, Exercise and Health, Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
- Division for Nutrition, Exercise and Health, Department of Sport Science, Centre for Sports Science and University Sports, University of Vienna, 1150 Vienna, Austria
| |
Collapse
|
43
|
Wei RJ, Orbeta L, Hatamiya NS, Chang CJ. Nutritional Strategies for Endurance Cyclists - Periodized Nutrition, Ketogenic Diets, and Other Considerations. Curr Sports Med Rep 2023; 22:248-254. [PMID: 37417661 DOI: 10.1249/jsr.0000000000001085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
ABSTRACT Cycling is a growing sport worldwide since the COVID-19 pandemic. With the growing availability and interest in long distance events, professional and amateur cyclists are pushing themselves further and harder than ever before. Training and nutrition should be understood by the sports medicine professional in order to guide counseling toward proper fueling to avoid health consequences. This article reviews macronutrients and micronutrients, periodized training and nutrition, and the relevance of the ketogenic diet for endurance cyclists riding greater than 90 min.
Collapse
Affiliation(s)
| | - Lindsay Orbeta
- Human Performance Center, University of California, San Francisco, San Francisco, CA
| | | | | |
Collapse
|
44
|
McKay AKA, Ross MLR, Tee N, Sharma AP, Leckey JJ, Burke LM. Adherence to a Ketogenic Low-Carbohydrate, High-Fat Diet Is Associated With Diminished Training Quality in Elite Racewalkers. Int J Sports Physiol Perform 2023:1-9. [PMID: 37263595 DOI: 10.1123/ijspp.2022-0351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/10/2023] [Accepted: 02/10/2023] [Indexed: 06/03/2023]
Abstract
PURPOSE To examine the effects of a high-carbohydrate diet (HCHO), periodized-carbohydrate (CHO) diet (PCHO), and ketogenic low-CHO high-fat diet (LCHF) on training capacity. METHODS Elite male racewalkers completed 3 weeks of periodic training while adhering to their dietary intervention. Twenty-nine data sets were collected from 21 athletes. Each week, 6 mandatory training sessions were completed, with additional sessions performed at the athlete's discretion. Mandatory sessions included an interval session (10 × 1-km efforts on a 6-min cycle), tempo session (14 km with a 450-m elevation gain), 2 long walks (25-40 km), and 2 easy walks (8-12 km) where "sleep-low" and "train-low" dietary strategies were employed for PCHO. Racewalking speed, heart rate, rating of perceived exhaustion, and blood metabolites were collected around key sessions. RESULTS LCHF covered less total distance than HCHO and PCHO (P < .001); however, no differences in training load between groups were evident (P = .285). During the interval sessions, walking speed was slower in LCHF (P = .001), equating to a 2.8% and 5.6% faster speed in HCHO and PCHO, respectively. LCHF was also 3.2% slower in completing the tempo session than HCHO and PCHO (P = .001). Heart rate was higher (P = .002) and lactate concentrations were lower (P < .001) in LCHF compared to other groups, despite slower walking speeds during the interval session. No between-groups differences in rating of perceived exhaustion were evident (P = .077). CONCLUSION Athletes adhering to an LCHF diet showed impaired training capacity relative to their high-CHO-supported counterparts, completing lower training volumes at slower speeds, with higher heart rates.
Collapse
Affiliation(s)
- Alannah K A McKay
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC,Australia
| | - Megan L R Ross
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC,Australia
| | - Nicolin Tee
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC,Australia
| | | | | | - Louise M Burke
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC,Australia
| |
Collapse
|
45
|
Baroni L, Pelosi E, Giampieri F, Battino M. The VegPlate for Sports: A Plant-Based Food Guide for Athletes. Nutrients 2023; 15:nu15071746. [PMID: 37049586 PMCID: PMC10097385 DOI: 10.3390/nu15071746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/24/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Background: Nutrition strategies improve physiological and biochemical adaptation to training, facilitate more intense workouts, promote faster recoveries after a workout in anticipation of the next, and help to prepare for a race and maintain the body’s hydration status. Although vegetarianism (i.e., lacto-ovo and veganism) has become increasingly popular in recent years, the number of vegetarian athletes is not known, and no specific recommendations have been made for vegetarian dietary planning in sports. Well-planned diets are mandatory to obtain the best performance, and the available literature reports that those excluding all types of flesh foods (meat, poultry, game, and seafood) neither find advantages nor suffer from disadvantages, compared to omnivorous diets, for strength, anaerobic, or aerobic exercise performance; additionally, some benefits can be derived for general health. Methods: We conceived the VegPlate for Sports, a vegetarian food guide (VFG) based on the already-validated VegPlate facilitating method, designed according to the Italian dietary reference intakes (DRIs). Results: The VegPlate for Sports is suitable for men and women who are active in sports and adhere to a vegetarian (i.e., lacto-ovo and vegan) diet, and provides weight-based, adequate dietary planning. Conclusions: The VegPlate for Sports represents a practical tool for nutrition professionals and gives the possibility to plan diets based on energy, carbohydrate (CHO), and protein (PRO) necessities, from 50 to 90 Kg body weight (BW).
Collapse
Affiliation(s)
- Luciana Baroni
- Scientific Society for Vegetarian Nutrition, 30171 Venice, Italy
| | - Ettore Pelosi
- Sport Nutrition Department, Multispecialistic Medical Center, CDC-Affidea, 10128 Turin, Italy
- PET/CT Nuclear Medicine Department, Irmet Affidea Center, 10135 Turin, Italy
| | - Francesca Giampieri
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain
| | - Maurizio Battino
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Department of Clinical Specialistic and Odontostomatological Sciences, University Politecnica delle Marche, 60121 Ancona, Italy
| |
Collapse
|
46
|
Ritson AJ, Hearris MA, Bannock LG. Bridging the gap: Evidence-based practice guidelines for sports nutritionists. Front Nutr 2023; 10:1118547. [PMID: 37063331 PMCID: PMC10090397 DOI: 10.3389/fnut.2023.1118547] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
Evidence-based practice is a systematic approach to decision-making developed in the 1990s to help healthcare professionals identify and use the best available evidence to guide clinical practice and patient outcomes amid a plethora of information in often challenging, time-constrained circumstances. Today’s sports nutrition practitioners face similar challenges, as they must assess and judge the quality of evidence and its appropriateness to their athlete, in the often chaotic, time-pressed environment of professional sport. To this end, we present an adapted version of the evidence-based framework to support practitioners in navigating their way through the deluge of available information and guide their recommendations to athletes whilst also reflecting on their practice experience and skills as evidence-based practitioners, thus, helping to bridge the gap between science and practice in sport and exercise nutrition.
Collapse
Affiliation(s)
- Alex J. Ritson
- The Institute of Performance Nutrition, Edinburgh, United Kingdom
| | - Mark A. Hearris
- The Institute of Performance Nutrition, Edinburgh, United Kingdom
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Laurent G. Bannock
- The Institute of Performance Nutrition, Edinburgh, United Kingdom
- *Correspondence: Laurent G. Bannock,
| |
Collapse
|
47
|
Noakes TD, Prins PJ, Volek JS, D’Agostino DP, Koutnik AP. Low carbohydrate high fat ketogenic diets on the exercise crossover point and glucose homeostasis. Front Physiol 2023; 14:1150265. [PMID: 37057184 PMCID: PMC10086139 DOI: 10.3389/fphys.2023.1150265] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
In exercise science, the crossover effect denotes that fat oxidation is the primary fuel at rest and during low-intensity exercise with a shift towards an increased reliance on carbohydrate oxidation at moderate to high exercise intensities. This model makes four predictions: First, >50% of energy comes from carbohydrate oxidation at ≥60% of maximum oxygen consumption (VO2max), termed the crossover point. Second, each individual has a maximum fat oxidation capacity (FATMAX) at an exercise intensity lower than the crossover point. FATMAX values are typically 0.3-0.6 g/min. Third, fat oxidation is minimized during exercise ≥85%VO2max, making carbohydrates the predominant energetic substrate during high-intensity exercise, especially at >85%VO2max. Fourth, high-carbohydrate low-fat (HCLF) diets will produce superior exercise performances via maximizing pre-exercise storage of this predominant exercise substrate. In a series of recent publications evaluating the metabolic and performance effects of low-carbohydrate high-fat (LCHF/ketogenic) diet adaptations during exercise of different intensities, we provide findings that challenge this model and these four predictions. First, we show that adaptation to the LCHF diet shifts the crossover point to a higher %VO2max (>80%VO2max) than previously reported. Second, substantially higher FATMAX values (>1.5 g/min) can be measured in athletes adapted to the LCHF diet. Third, endurance athletes exercising at >85%VO2max, whilst performing 6 × 800 m running intervals, measured the highest rates of fat oxidation yet reported in humans. Peak fat oxidation rates measured at 86.4 ± 6.2%VO2max were 1.58 ± 0.33 g/min with 30% of subjects achieving >1.85 g/min. These studies challenge the prevailing doctrine that carbohydrates are the predominant oxidized fuel during high-intensity exercise. We recently found that 30% of middle-aged competitive athletes presented with pre-diabetic glycemic values while on an HCLF diet, which was reversed on LCHF. We speculate that these rapid changes between diet, insulin, glucose homeostasis, and fat oxidation might be linked by diet-induced changes in mitochondrial function and insulin action. Together, we demonstrate evidence that challenges the current crossover concept and demonstrate evidence that a LCHF diet may also reverse features of pre-diabetes and future metabolic disease risk, demonstrating the impact of dietary choice has extended beyond physical performance even in athletic populations.
Collapse
Affiliation(s)
- T. D. Noakes
- Department of Medical and Wellness Science, Cape Peninsula University of Technology, Cape Town, South Africa
| | - P. J. Prins
- Department of Exercise Science, Grove City College, Grove City, PA, United States
| | - J. S. Volek
- Department of Human Sciences, The Ohio State University, Columbus, OH, United States
| | - D. P. D’Agostino
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, United States
- Human Healthspan, Resilience and Performance, Institute of Human and Machine Cognition, Pensacola, FL, United States
| | - A. P. Koutnik
- Human Healthspan, Resilience and Performance, Institute of Human and Machine Cognition, Pensacola, FL, United States
| |
Collapse
|
48
|
Chiarello N, Leger B, De Riedmatten M, Rossier MF, Vuistiner P, Duc M, Rapillard A, Allet L. Effect of a four-week isocaloric ketogenic diet on physical performance at very high-altitude: a pilot study. BMC Sports Sci Med Rehabil 2023; 15:37. [PMID: 36941621 PMCID: PMC10029223 DOI: 10.1186/s13102-023-00649-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 03/13/2023] [Indexed: 03/23/2023]
Abstract
BACKGROUND A ketogenic diet (KD) reduces daily carbohydrates (CHOs) ingestion by replacing most calories with fat. KD is of increasing interest among athletes because it may increase their maximal oxygen uptake (VO2max), the principal performance limitation at high-altitudes (1500-3500 m). We examined the tolerance of a 4-week isocaloric KD (ICKD) under simulated hypoxia and the possibility of evaluating ICKD performance benefits with a maximal graded exercise bike test under hypoxia and collected data on the effect of the diet on performance markers and arterial blood gases. METHODS In a randomised single-blind cross-over model, 6 recreational mountaineers (age 24-44 years) completed a 4-week ICKD followed or preceded by a 4-week usual mixed Western-style diet (UD). Performance parameters (VO2max, lactate threshold [LT], peak power [Ppeak]) and arterial blood gases (PaO2, PaCO2, pH, HCO3-) were measured at baseline under two conditions (normoxia and hypoxia) as well as after a 4-week UD and 4-week ICKD under the hypoxic condition. RESULTS We analysed data for all 6 participants (BMI 19.9-24.6 kg m-2). Mean VO2max in the normoxic condition was 44.6 ml kg-1 min-1. Hypoxia led to decreased performance in all participants. With the ICKD diet, median values for PaO2 decreased by - 14.5% and VO2max by + 7.3% and Ppeak by + 4.7%. CONCLUSION All participants except one could complete the ICKD. VO2max improved with the ICKD under the hypoxia condition. Therefore, an ICKD is an interesting alternative to CHOs dependency for endurance performance at high-altitudes, including high-altitude training and high-altitude races. Nevertheless, decreased PaO2 with ICKD remains a significant limitation in very-high to extreme altitudes (> 3500 m). Trial registration Clinical trial registration Nr. NCT05603689 (Clinicaltrials.gov). Ethics approval CER-VD, trial Nr. 2020-00427, registered 18.08.2020-prospectively registered.
Collapse
Affiliation(s)
- Nicolas Chiarello
- Department of Medicine, University Hospitals of Geneva, University of Geneva, Geneva, Switzerland
| | | | | | - Michel F. Rossier
- Service of Clinical Chemistry and Toxicology, Central Institute of the Hospitals – HVS, Sion, Switzerland
- Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Philippe Vuistiner
- Institute for Research in Rehabilitation, Clinique romande de réadaptation, Sion, Switzerland
| | - Michael Duc
- Swiss Olympic Medical Center, Clinique romande de réadaptation, Sion, Switzerland
| | - Arnaud Rapillard
- Swiss Olympic Medical Center, Clinique romande de réadaptation, Sion, Switzerland
| | - Lara Allet
- Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Valais-Wallis School of Health Sciences, HES-SO, University of Applied Sciences and Arts Western Switzerland, Valais, Switzerland
| |
Collapse
|
49
|
Ramonas A, Laursen PB, Williden M, Chang WL, Kilding AE. Carbohydrate intake before and during high intensity exercise with reduced muscle glycogen availability affects the speed of muscle reoxygenation and performance. Eur J Appl Physiol 2023:10.1007/s00421-023-05162-y. [PMID: 36897400 DOI: 10.1007/s00421-023-05162-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 02/16/2023] [Indexed: 03/11/2023]
Abstract
Muscle glycogen state and carbohydrate (CHO) supplementation before and during exercise may impact responses to high-intensity interval training (HIIT). This study determined cardiorespiratory, substrate metabolism, muscle oxygenation, and performance when completing HIIT with or without CHO supplementation in a muscle glycogen depleted state. On two occasions, in a cross-over design, eight male cyclists performed a glycogen depletion protocol prior to HIIT during which either a 6% CHO drink (60 g.hr-1) or placebo (%CHO, PLA) was consumed. HIIT consisted of 5 × 2 min at 80% peak power output (PPO), 3 × 10-min bouts of steady-state (SS) cycling (50, 55, 60% PPO), and a time-to-exhaustion (TTE) test. There was no difference in SS [Formula: see text], HR, substrate oxidation and gross efficiency (GE %) between CHO and PLA conditions. A faster rate of muscle reoxygenation (%. s-1) existed in PLA after the 1st (Δ - 0.23 ± 0.22, d = 0.58, P < 0.05) and 3rd HIIT intervals (Δ - 0.34 ± 0.25, d = 1.02, P < 0.05). TTE was greater in CHO (7.1 ± 5.4 min) than PLA (2.5 ± 2.3 min, d = 0.98, P < 0.05). CHO consumption before and during exercise under reduced muscle glycogen conditions did not suppress fat oxidation, suggesting a strong regulatory role of muscle glycogen on substrate metabolism. However, CHO ingestion provided a performance benefit under intense exercise conditions commenced with reduced muscle glycogen. More research is needed to understand the significance of altered muscle oxygenation patterns during exercise.
Collapse
Affiliation(s)
- Andrius Ramonas
- School of Sports and Recreation, Auckland University of Technology, Sports Performance Research Institute New Zealand (SPRINZ), AUT University, PO Box 92006, Auckland, 1142, New Zealand.
| | - Paul B Laursen
- School of Sports and Recreation, Auckland University of Technology, Sports Performance Research Institute New Zealand (SPRINZ), AUT University, PO Box 92006, Auckland, 1142, New Zealand
| | - Micalla Williden
- School of Sports and Recreation, Auckland University of Technology, Sports Performance Research Institute New Zealand (SPRINZ), AUT University, PO Box 92006, Auckland, 1142, New Zealand
| | | | - Andrew E Kilding
- School of Sports and Recreation, Auckland University of Technology, Sports Performance Research Institute New Zealand (SPRINZ), AUT University, PO Box 92006, Auckland, 1142, New Zealand
| |
Collapse
|
50
|
Effects of Wild Blueberries on Fat Oxidation Rates in Aerobically Trained Males. Nutrients 2023; 15:nu15061339. [PMID: 36986069 PMCID: PMC10058338 DOI: 10.3390/nu15061339] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/20/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Wild blueberries (WBs) have been documented to decrease oxidative stress in active and sedentary populations as well as influence lipolytic enzymes and increase the rate of fat oxidation (FAT-ox) during rest. To examine the effect of WBs on the rate of FAT-ox and lipid peroxidation during submaximal exercise, 11 healthy, aerobically trained males (26 ± 7.5 years, 74.9 ± 7.54 kg, 10.5 ± 3.2% BF) completed a 2-week washout avoiding foods high in anthocyanins, then completed a control exercise protocol cycling at 65% of VO2peak for 40 min. Participants then consumed 375 g/d of anthocyanins for two weeks before repeating the exercise protocol. WBs increased FAT-ox when cycling at 65% of VO2peak by 19.7% at 20, 43.2% at 30, and 31.1% at 40 min, and carbohydrate oxidation (CHO-ox) decreased by 10.1% at 20, 19.2% at 30, and 14.8% at 40 min of cycling at 65% of VO2peak. Lactate was lower with WBs at 20 (WB: 2.6 ± 1.0, C: 3.0 ± 1.1), 30 (WB: 2.2 ± 0.9, C: 2.9 ± 1.0), and 40 min (WB: 1.9 ± 0.8, C: 2.5 ± 0.9). Results indicate that WBs may increase the rate of FAT-ox during moderate-intensity activity in healthy, active males.
Collapse
|