1
|
Mitsui R, Yamori M, Nakamori H, Hashitani H. Stress-induced impairment of parasympathetic NO-mediated inhibition of sympathetic vasoconstriction in submucosal arteriole of rat rectum. Pflugers Arch 2024; 476:1555-1570. [PMID: 39023562 DOI: 10.1007/s00424-024-02990-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/20/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
In the gastrointestinal tract, nitrergic inhibition of the arteriolar contractility has not been demonstrated. Here, we explored whether neurally-released nitric oxide (NO) inhibits sympathetic vasoconstrictions in the rat rectal arterioles. Changes in sympathetic vasoconstrictions and their nitrergic modulation in rats exposed to water avoidance stress (WAS, 10 days, 1 h per day) were also examined. In rectal submucosal preparations, changes in arteriolar diameter were monitored using video microscopy. In control or sham-treated rats, electrical field stimulation (EFS)-induced sympathetic vasoconstrictions were increased by the neuronal nitric oxide synthase (nNOS) inhibitor L-NPA (1 μM) and diminished by the cyclic guanosine monophosphate-specific phosphodiesterase 5 (PDE5) inhibitor tadalafil (10 nM). In phenylephrine-constricted, guanethidine-treated arterioles, EFS-induced vasodilatations were inhibited by the calcitonin gene-related peptide (CGRP) receptor antagonist BIBN-4096 (1 μM) but not L-NPA. Perivascular nNOS-immunoreactive nitrergic fibres co-expressing the parasympathetic marker vesicular acetylcholine transporter (VAChT) were intermingled with tyrosine hydroxylase (TH)-immunoreactive sympathetic fibres expressing soluble guanylate cyclase (sGC), a receptor for NO. In WAS rats in which augmented sympathetic vasoconstrictions were developed, L-NPA failed to further increase the vasoconstrictions, while tadalafil-induced inhibition of the vasoconstrictions was attenuated. Phenylephrine- or α,β-methylene ATP-induced vasoconstrictions and acetylcholine-induced vasodilatations were unaltered by WAS. Thus, in arterioles of the rat rectal submucosa, NO released from parasympathetic nerves appears to inhibit sympathetic vasoconstrictions presumably by reducing sympathetic transmitter release. In WAS rats, sympathetic vasoconstrictions are augmented at least partly due to the diminished pre-junctional nitrergic inhibition of transmitter release without changing α-adrenoceptor or P2X-purinoctor mediated vasoconstriction and endothelium-dependent vasodilatation.
Collapse
Affiliation(s)
- Retsu Mitsui
- Department of Cell Physiology, Nagoya City University Graduate School of Medical Sciences, 1, Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan.
| | - Mizuki Yamori
- Department of Cell Physiology, Nagoya City University Graduate School of Medical Sciences, 1, Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Hiroyuki Nakamori
- Department of Cell Physiology, Nagoya City University Graduate School of Medical Sciences, 1, Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Hikaru Hashitani
- Department of Cell Physiology, Nagoya City University Graduate School of Medical Sciences, 1, Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan
| |
Collapse
|
2
|
Darling AM, Young BE, Skow RJ, Dominguez CM, Saunders EFH, Fadel PJ, Greaney JL. Sympathetic and blood pressure reactivity in young adults with major depressive disorder. J Affect Disord 2024; 361:322-332. [PMID: 38897296 DOI: 10.1016/j.jad.2024.06.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Sympathetic and blood pressure (BP) hyper-reactivity to stress may contribute to increased cardiovascular disease (CVD) risk in adults with major depressive disorder (MDD); however, whether this is evident in young adults with MDD without comorbid disease remains unclear. We hypothesized that acute stress-induced increases in muscle sympathetic nerve activity (MSNA) and BP would be exaggerated in young adults with MDD compared to healthy non-depressed young adults (HA) and that, in adults with MDD, greater symptom severity would be positively related to MSNA and BP reactivity. METHODS In 28 HA (17 female) and 39 young adults with MDD of mild-to-moderate severity (unmedicated; 31 female), MSNA (microneurography) and beat-to-beat BP (finger photoplethysmography) were measured at rest and during the cold pressor test (CPT) and Stroop color word test (SCWT). RESULTS There were no group differences in resting MSNA (p = 0.24). Neither MSNA nor BP reactivity to either the CPT [MSNA: ∆24 ± 10 HA vs. ∆21 ± 11 bursts/min MDD, p = 0.67; mean arterial pressure (MAP): ∆22 ± 7 HA vs. ∆21 ± 10 mmHg MDD, p = 0.46)] or the SCWT (MSNA: ∆-4 ± 6 HA vs. ∆-5 ± 8 bursts/min MDD, p = 0.99; MAP: ∆7 ± 8 HA vs ∆9 ± 5 mmHg MDD; p = 0.82) were different between groups. In adults with MDD, symptom severity predicted MAP reactivity to the CPT (β = 0.78, SE = 0.26, p = 0.006), but not MSNA (p = 0.42). LIMITATIONS The mild-to-moderate symptom severity reflects only part of the MDD spectrum. CONCLUSIONS Neither sympathetic nor BP stress reactivity are exaggerated in young adults with MDD; however, greater symptom severity may amplify BP reactivity to stress, thereby increasing CVD risk.
Collapse
Affiliation(s)
- Ashley M Darling
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States of America
| | - Benjamin E Young
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States of America; Department of Applied Clinical Research, The University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Rachel J Skow
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States of America
| | - Cynthia M Dominguez
- Department of Bioengineering, The University of Texas at Arlington, United States of America
| | - Erika F H Saunders
- Department of Psychiatry and Behavioral Health, Penn State College of Medicine, Hershey, PA, United States of America
| | - Paul J Fadel
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States of America
| | - Jody L Greaney
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States of America; Department of Health Behavior and Nutrition Sciences, University of Delaware, Newark, DE, United States of America.
| |
Collapse
|
3
|
Jenkins NDM. Cardiovascular Consequences of Posttraumatic Stress Disorder: Exaggerated Vasoconstrictor Responsiveness to Personalized Trauma Recall. Biol Psychiatry 2024; 96:244-246. [PMID: 39048247 PMCID: PMC11419568 DOI: 10.1016/j.biopsych.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 07/27/2024]
Affiliation(s)
- Nathaniel D M Jenkins
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa; Abboud Cardiovascular Research Center, University of Iowa, Iowa City, Iowa; Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa; Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa.
| |
Collapse
|
4
|
Martin ZT, Shah AJ, Ko YA, Sheikh SAA, Daaboul O, Haddad G, Goldberg J, Smith NL, Lewis TT, Quyyumi AA, Bremner JD, Vaccarino V. Exaggerated Peripheral and Systemic Vasoconstriction During Trauma Recall in Posttraumatic Stress Disorder: A Co-Twin Control Study. Biol Psychiatry 2024; 96:278-286. [PMID: 38142719 PMCID: PMC11192861 DOI: 10.1016/j.biopsych.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/23/2023] [Accepted: 12/14/2023] [Indexed: 12/26/2023]
Abstract
BACKGROUND Individuals with posttraumatic stress disorder (PTSD) face an increased risk of cardiovascular disease, but the mechanisms linking PTSD to cardiovascular disease remain incompletely understood. We used a co-twin control study design to test the hypothesis that individuals with PTSD exhibit augmented peripheral and systemic vasoconstriction during a personalized trauma recall task. METHODS In 179 older male twins from the Vietnam Era Twin Registry, lifetime history of PTSD and current (last month) PTSD symptoms were assessed. Participants listened to neutral and personalized trauma scripts while peripheral vascular tone (Peripheral Arterial Tone ratio) and systemic vascular tone (e.g., total vascular conductance) were measured. Linear mixed-effect models were used to assess the within-pair relationship between PTSD and vascular tone indices. RESULTS The mean age of participants was 68 years, and 19% had a history of PTSD. For the Peripheral Arterial Tone ratio analysis, 32 twins were discordant for a history of PTSD, and 46 were discordant for current PTSD symptoms. Compared with their brothers without PTSD, during trauma recall, participants with a history of PTSD had greater increases in peripheral (β = -1.01, 95% CI [-1.72, -0.30]) and systemic (total vascular conductance: β = -1.12, 95% CI [-1.97, -0.27]) vasoconstriction after adjusting for cardiovascular risk factors. Associations persisted after adjusting for antidepressant medication use and heart rate and blood pressure during the tasks. Analysis of current PTSD symptom severity showed consistent results. CONCLUSIONS PTSD is associated with exaggerated peripheral and systemic vasoconstrictor responses to traumatic stress reminders, which may contribute to elevated risk of cardiovascular disease.
Collapse
Affiliation(s)
- Zachary T Martin
- Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Amit J Shah
- Rollins School of Public Health, Emory University, Atlanta, Georgia; Emory University School of Medicine, Emory University, Atlanta, Georgia; Joseph Maxwell Cleland Atlanta VA Medical Center, Decatur, Georgia
| | - Yi-An Ko
- Rollins School of Public Health, Emory University, Atlanta, Georgia
| | | | - Obada Daaboul
- Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - George Haddad
- Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Jack Goldberg
- Seattle Epidemiologic Research and Information Center, U.S. Department of Veterans Affairs Office of Research and Development, Seattle, Washington
| | - Nicholas L Smith
- Seattle Epidemiologic Research and Information Center, U.S. Department of Veterans Affairs Office of Research and Development, Seattle, Washington
| | - Tené T Lewis
- Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Arshed A Quyyumi
- Emory University School of Medicine, Emory University, Atlanta, Georgia
| | - J Douglas Bremner
- Emory University School of Medicine, Emory University, Atlanta, Georgia; Joseph Maxwell Cleland Atlanta VA Medical Center, Decatur, Georgia
| | - Viola Vaccarino
- Rollins School of Public Health, Emory University, Atlanta, Georgia; Emory University School of Medicine, Emory University, Atlanta, Georgia.
| |
Collapse
|
5
|
Shetty S, Duesman SJ, Patel S, Huynh P, Toh P, Shroff S, Das A, Chowhan D, Keller B, Alvarez J, Fisher-Foye R, Sebra R, Beaumont K, McAlpine CS, Rajbhandari P, Rajbhandari AK. Sex-specific role of high-fat diet and stress on behavior, energy metabolism, and the ventromedial hypothalamus. Biol Sex Differ 2024; 15:55. [PMID: 39010139 PMCID: PMC11247790 DOI: 10.1186/s13293-024-00628-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/11/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Scientific evidence highlights the influence of biological sex on the relationship between stress and metabolic dysfunctions. However, there is limited understanding of how diet and stress concurrently contribute to metabolic dysregulation in both males and females. Our study aimed to investigate the combined effects of high-fat diet (HFD) induced obesity and repeated stress on fear-related behaviors, metabolic, immune, and hypothalamic outcomes in male and female mice. METHODS To investigate this, we used a highly reliable rodent behavioral model that faithfully recapitulates key aspects of post-traumatic stress disorder (PTSD)-like fear. We subjected mice to footshock stressor followed by a weekly singular footshock stressor or no stressor for 14 weeks while on either an HFD or chow diet. At weeks 10 and 14 we conducted glucose tolerance and insulin sensitivity measurements. Additionally, we placed the mice in metabolic chambers to perform indirect calorimetric measurements. Finally, we collected brain and peripheral tissues for cellular analysis. RESULTS We observed that HFD-induced obesity disrupted fear memory extinction, increased glucose intolerance, and affected energy expenditure specifically in male mice. Conversely, female mice on HFD exhibited reduced respiratory exchange ratio (RER), and a significant defect in glucose tolerance only when subjected to repeated stress. Furthermore, the combination of repeated stress and HFD led to sex-specific alterations in proinflammatory markers and hematopoietic stem cells across various peripheral metabolic tissues. Single-nuclei RNA sequencing (snRNAseq) analysis of the ventromedial hypothalamus (VMH) revealed microglial activation in female mice on HFD, while male mice on HFD exhibited astrocytic activation under repeated stress. CONCLUSIONS Overall, our findings provide insights into complex interplay between repeated stress, high-fat diet regimen, and their cumulative effects on health, including their potential contribution to the development of PTSD-like stress and metabolic dysfunctions, emphasizing the need for further research to fully understand these interconnected pathways and their implications for health.
Collapse
Affiliation(s)
- Sanutha Shetty
- Department of Neuroscience and Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Samuel J Duesman
- Department of Neuroscience and Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sanil Patel
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Pacific Huynh
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Pamela Toh
- Department of Neuroscience and Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sanjana Shroff
- Center for Advanced Genomic Technology, Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anika Das
- Department of Neuroscience and Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Excellence in Youth Education, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Disha Chowhan
- Center for Advanced Genomic Technology, Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin Keller
- Department of Neuroscience and Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Johana Alvarez
- Department of Neuroscience and Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Rachel Fisher-Foye
- Department of Neuroscience and Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Robert Sebra
- Center for Advanced Genomic Technology, Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristin Beaumont
- Center for Advanced Genomic Technology, Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cameron S McAlpine
- Department of Neuroscience and Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Prashant Rajbhandari
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Disease Mechanism and Therapeutics Program, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Abha K Rajbhandari
- Department of Neuroscience and Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
6
|
Weggen JB, Darling AM, Autler AS, Hogwood AC, Decker KP, Richardson J, Tuzzolo G, Garten RS. Lower vascular conductance responses to handgrip exercise are improved following acute antioxidant supplementation in young individuals with post-traumatic stress disorder. Exp Physiol 2024; 109:992-1003. [PMID: 38711207 PMCID: PMC11140166 DOI: 10.1113/ep091762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/22/2024] [Indexed: 05/08/2024]
Abstract
Young individuals with post-traumatic stress disorder (PTSD) display peripheral vascular and autonomic nervous system dysfunction, two factors potentially stemming from a redox imbalance. It is currently unclear if these aforementioned factors, observed at rest, alter peripheral haemodynamic responses to exercise in this population. This study examined haemodynamic responses to handgrip exercise in young individuals with PTSD following acute antioxidant (AO) supplementation. Thirteen young individuals with PTSD (age 23 ± 3 years), and 13 age- and sex-matched controls (CTRL) participated in the study. Exercise-induced changes to arm blood flow (BF), mean arterial pressure (MAP) and vascular conductance (VC) were evaluated across two workloads of rhythmic handgrip exercise (3 and 6 kg). The PTSD group participated in two visits, consuming either a placebo (PL) or AO prior to their visits. The PTSD group demonstrated significantly lower VC (P = 0.04) across all exercise workloads (vs. CTRL), which was significantly improved following AO supplementation. In the PTSD group, AO supplementation improved VC in participants possessing the lowest VC responses to handgrip exercise, with AO supplementation significantly improving VC responses (3 and 6 kg: P < 0.01) by blunting elevated exercise-induced MAP responses (3 kg: P = 0.01; 6 kg: P < 0.01). Lower VC responses during handgrip exercise were improved following AO supplementation in young individuals with PTSD. AO supplementation was associated with a blunting of exercise-induced MAP responses in individuals with PTSD displaying elevated MAP responses. This study revealed that young individuals with PTSD exhibit abnormal, peripherally mediated exercise responses that may be linked to a redox imbalance.
Collapse
Affiliation(s)
- Jennifer B. Weggen
- Department of Kinesiology and Health SciencesVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Ashley M. Darling
- Department of KinesiologyUniversity of Texas at ArlingtonArlingtonTexasUSA
| | - Aaron S. Autler
- Department of Kinesiology and Applied PhysiologyUniversity of DelawareNewarkDelawareUSA
| | - Austin C. Hogwood
- Department of KinesiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Kevin P. Decker
- Department of Kinesiology and Applied PhysiologyUniversity of DelawareNewarkDelawareUSA
| | - Jacob Richardson
- Department of Kinesiology and Health SciencesVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Gina Tuzzolo
- Department of Kinesiology and Health SciencesVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Ryan S. Garten
- Department of Kinesiology and Health SciencesVirginia Commonwealth UniversityRichmondVirginiaUSA
| |
Collapse
|
7
|
Botterill JJ, Khlaifia A, Appings R, Wilkin J, Violi F, Premachandran H, Cruz-Sanchez A, Canella AE, Patel A, Zaidi SD, Arruda-Carvalho M. Dorsal peduncular cortex activity modulates affective behavior and fear extinction in mice. Neuropsychopharmacology 2024; 49:993-1006. [PMID: 38233571 PMCID: PMC11039686 DOI: 10.1038/s41386-024-01795-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/19/2024]
Abstract
The medial prefrontal cortex (mPFC) is critical to cognitive and emotional function and underlies many neuropsychiatric disorders, including mood, fear and anxiety disorders. In rodents, disruption of mPFC activity affects anxiety- and depression-like behavior, with specialized contributions from its subdivisions. The rodent mPFC is divided into the dorsomedial prefrontal cortex (dmPFC), spanning the anterior cingulate cortex (ACC) and dorsal prelimbic cortex (PL), and the ventromedial prefrontal cortex (vmPFC), which includes the ventral PL, infralimbic cortex (IL), and in some studies the dorsal peduncular cortex (DP) and dorsal tenia tecta (DTT). The DP/DTT have recently been implicated in the regulation of stress-induced sympathetic responses via projections to the hypothalamus. While many studies implicate the PL and IL in anxiety-, depression-like and fear behavior, the contribution of the DP/DTT to affective and emotional behavior remains unknown. Here, we used chemogenetics and optogenetics to bidirectionally modulate DP/DTT activity and examine its effects on affective behaviors, fear and stress responses in C57BL/6J mice. Acute chemogenetic activation of DP/DTT significantly increased anxiety-like behavior in the open field and elevated plus maze tests, as well as passive coping in the tail suspension test. DP/DTT activation also led to an increase in serum corticosterone levels and facilitated auditory fear extinction learning and retrieval. Activation of DP/DTT projections to the dorsomedial hypothalamus (DMH) acutely decreased freezing at baseline and during extinction learning, but did not alter affective behavior. These findings point to the DP/DTT as a new regulator of affective behavior and fear extinction in mice.
Collapse
Affiliation(s)
- Justin J Botterill
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Abdessattar Khlaifia
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Ryan Appings
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Jennifer Wilkin
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Francesca Violi
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Hanista Premachandran
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Arely Cruz-Sanchez
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S3G5, Canada
| | - Anna Elisabete Canella
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Ashutosh Patel
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - S Danyal Zaidi
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Maithe Arruda-Carvalho
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada.
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S3G5, Canada.
| |
Collapse
|
8
|
Jeong J, Hu Y, Zanuzzi M, DaCosta D, Li S, Park J. Autonomic Modulation with Mindfulness-Based Stress Reduction in Chronic Kidney Disease: A Randomized Controlled Trial. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.17.24306000. [PMID: 38699306 PMCID: PMC11065017 DOI: 10.1101/2024.04.17.24306000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Background Chronic kidney disease (CKD) is characterized by overactivation of the sympathetic nervous system (SNS) that leads to increased cardiovascular disease risk. Despite the deleterious consequences of SNS overactivity, there are very few therapeutic options available to combat sympathetic overactivity. Aim To evaluate the effects of Mindfulness-Based Stress Reduction (MBSR) on SNS activity in CKD patients. Method Participants with CKD stages III-IV were randomized to an 8-week MBSR program or Health Education Program (HEP; a structurally parallel, active control group). Primary outcomes were direct intraneural measures of SNS activity directed to muscle (MSNA) via microneurography at rest and during stress maneuvers. Results 28 participants (63 ±9 years; 86% males) completed the intervention with 16 in MBSR and 12 in HEP. There was a significant Group (MBSR vs. HEP) by Time (baseline vs. post-intervention) interaction in the change in MSNA reactivity to mental stress (p=0.026), with a significant reduction in the mean change in MSNA over 3 minutes of mental arithmetic at post-intervention (10.6 ± 7.1 to 5.0 ± 5.7 bursts/min, p<0.001), while no change was observed within the HEP group (p=0.773). Conclusions In this randomized controlled trial, patients with CKD had an amelioration of sympathetic reactivity during mental stress following 8-weeks of MBSR but not after HEP. Our findings demonstrate that mindfulness training is feasible and may have clinically beneficial effects on autonomic function in CKD.
Collapse
Affiliation(s)
- Jinhee Jeong
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
- Department of Veterans Affairs Health Care System, Decatur, Georgia
| | - Yingtian Hu
- Department of Biostatistics and Bioinformatics, Emory University Rollins School of Public Health, Atlanta, Georgia
| | - Matias Zanuzzi
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
- Department of Veterans Affairs Health Care System, Decatur, Georgia
| | - Dana DaCosta
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
- Department of Veterans Affairs Health Care System, Decatur, Georgia
| | - Sabrina Li
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
- Department of Veterans Affairs Health Care System, Decatur, Georgia
| | - Jeanie Park
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
- Department of Veterans Affairs Health Care System, Decatur, Georgia
- Center for Visual and Neurocognitive Rehabilitation, Department of Veterans Affairs Health Care System, Decatur, Georgia, USA
| |
Collapse
|
9
|
Ressler A, Hinchey LM, Mast J, Zucconi BE, Bratchuk A, Parfenukt N, Roth D, Javanbakht A. Alone on the frontline: The first report of PTSD prevalence and risk in de-occupied Ukrainian villages. Int J Soc Psychiatry 2024:207640241242030. [PMID: 38605592 DOI: 10.1177/00207640241242030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
IMPORTANCE The ongoing Russian invasion of Ukraine marks a critical juncture in a series of events posing severe threat to the health of Ukrainian citizens. While recent reports reveal higher rates of PTSD in Ukrainian refugees following Russia's invasion - data for Ukrainians remaining at the warfront is inherently difficult to access. A primarily elderly demographic, Ukrainians in previously Russian-occupied areas near the front (UPROANF) are at particular risk. DESIGN Data was sourced from screening questionnaires administered between March 2022 and July 2023 by mobile health clinics providing services to UPROANF. SETTING Previously occupied villages in Eastern and Southern Ukraine. PARTICIPANTS UPROANF attending clinics completed voluntary self-report surveys reporting demographics, prior health diagnoses, and PTSD symptom severity (n = 450; Meanage = 53.66; 72.0% female). EXPOSURE Participants were exposed to Russian occupation of Ukrainian villages. MAIN OUTCOME AND MEASURES The PTSD Checklist for the DSM-V (PCL-5) with recommended diagnostic threshold (i.e. 31) was utilized to assess PTSD prevalence and symptom severity. ANCOVA was used to examine hypothesized positive associations between (1) HTN and (2) loneliness and PTSD symptoms (cumulative and by symptom cluster). RESULTS Between 47.8% and 51.33% screened positive for PTSD. Though cumulative PTSD symptoms did not differ based on HTN diagnostic status, those with HTN reported significantly higher PTSD re-experiencing symptoms (b = 1.25, SE = 0.60, p = .046). Loneliness was significantly associated with more severe cumulative PTSD symptoms (b = 1.29, SE = 0.31, p < .001), re-experiencing (b = 0.47, SE = 0.12, p < .001), avoidance (b = .18, SE = 0.08, p = .038), and hypervigilance (b = 0.29, SE = 0.13, p = .036). CONCLUSIONS AND RELEVANCE PTSD prevalence was higher than other war-exposed populations. Findings highlight the urgent mental health burden among UPROANF, emphasizing the need for integrated care models addressing both trauma and physical health. Given the significance of loneliness as a risk factor, findings suggest the potential for group-based, mind-body interventions to holistically address the physical, mental, and social needs of this highly traumatized, underserved population.
Collapse
Affiliation(s)
- Austin Ressler
- Department of Human Biology, Sattler College, Boston, MA, USA
| | - Liza M Hinchey
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jonathan Mast
- Department of Human Biology, Sattler College, Boston, MA, USA
| | - Beth E Zucconi
- Department of Human Biology, Sattler College, Boston, MA, USA
| | - Anatoliy Bratchuk
- Department of General Medicine, National Pirogov Memorial Medical University, Vinnytsia, Vinnytsia Oblast, Ukraine
| | - Nadia Parfenukt
- Department of Nursing, The First Kyiv Medical College, Ukraine
| | - Dianne Roth
- College Of Nurses of Ontario, Toronto, Canada
| | - Arash Javanbakht
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
10
|
Ahmed Z, Tahmin CI, Tahsin CT, Michopoulos V, Mohamed A, Wattero R, Albott S, Cullen KR, Lowe DA, Osborn J, Fonkoue IT. Higher arterial stiffness and blunted vagal control of the heart in young women with compared to without a clinical diagnosis of PTSD. Clin Auton Res 2024; 34:165-175. [PMID: 38324188 PMCID: PMC10947824 DOI: 10.1007/s10286-024-01014-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024]
Abstract
PURPOSE Young women are typically thought to be protected from cardiovascular disease (CVD) before menopause. However, posttraumatic stress disorder (PTSD) increases CVD risk in women by up to threefold. Data in predominantly male cohorts point to physiological mechanisms such as vascular and autonomic derangements as contributing to increased CVD risk. The purpose of the study reported here was to determine whether young women diagnosed with PTSD, compared to those without, present with arterial stiffness and impaired autonomic control of the heart. METHODS A total of 73 healthy young women, ranging in age from 18 to 40 years, with a history of trauma exposure were included in this study, 32 with and 41 without a clinical PTSD diagnosis. We measured resting pulse wave velocity (PWV), central hemodynamics, augmentation pressure and augmentation index (AI) via pulse wave analysis using applanation tonometry. Heart rate variability was also assessed via peripheral arterial tone. RESULTS In comparison to controls, women with PTSD showed higher central arterial pressure (mean ± standard deviation: systolic blood pressure 104 ± 8 vs. 97 ± 8 mmHg, p < 0.001; diastolic blood pressure 72 ± 7 vs. 67 ± 7 mmHg, p = 0.003), PWV (6 ± 0.3 vs. 5 ± 0.6 m/s, p < 0.001) and AI (22 ± 13 vs. 15 ± 12%, p = 0.007) but lower standard deviation of normal-to-normal intervals (SDNN; 44 ± 17 vs. 54 ± 18 ms, p = 0.005) and root mean square of successive differences between normal heartbeats (RMSSD; 37 ± 17 vs. 51 ± 22 ms, p = 0.002). CONCLUSION PTSD in young women is associated with higher brachial and central pressures, increased arterial stiffness and blunted parasympathetic control of the heart. These findings illustrate potential mechanisms underlying high risk for CVD in young women with PTSD, suggesting possible treatment targets for this at-risk group.
Collapse
Affiliation(s)
- Zynab Ahmed
- Divisions of Physical Therapy and Rehabilitation Science, Department of Rehabilitation Medicine, University of Minnesota Medical School, 420 Delaware St. SE (MMC 388), Minneapolis, MN, USA
- Division of Health Policy and Management, School of Public Health, Minneapolis, MN, USA
| | - Chowdhury Ibtida Tahmin
- Divisions of Physical Therapy and Rehabilitation Science, Department of Rehabilitation Medicine, University of Minnesota Medical School, 420 Delaware St. SE (MMC 388), Minneapolis, MN, USA
| | - Chowdhury Tasnova Tahsin
- Divisions of Physical Therapy and Rehabilitation Science, Department of Rehabilitation Medicine, University of Minnesota Medical School, 420 Delaware St. SE (MMC 388), Minneapolis, MN, USA
| | - Vasiliki Michopoulos
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Azhaar Mohamed
- Divisions of Physical Therapy and Rehabilitation Science, Department of Rehabilitation Medicine, University of Minnesota Medical School, 420 Delaware St. SE (MMC 388), Minneapolis, MN, USA
| | - Redeat Wattero
- Divisions of Physical Therapy and Rehabilitation Science, Department of Rehabilitation Medicine, University of Minnesota Medical School, 420 Delaware St. SE (MMC 388), Minneapolis, MN, USA
| | - Sophia Albott
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA
- Mental Health Service Line, Minneapolis VA Health Care System, Minneapolis, MN, USA
| | - Kathryn R Cullen
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Dawn A Lowe
- Divisions of Physical Therapy and Rehabilitation Science, Department of Rehabilitation Medicine, University of Minnesota Medical School, 420 Delaware St. SE (MMC 388), Minneapolis, MN, USA
| | - John Osborn
- Department of Surgery, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Ida T Fonkoue
- Divisions of Physical Therapy and Rehabilitation Science, Department of Rehabilitation Medicine, University of Minnesota Medical School, 420 Delaware St. SE (MMC 388), Minneapolis, MN, USA.
| |
Collapse
|
11
|
Landvater J, Kim S, Caswell K, Kwon C, Odafe E, Roe G, Tripathi A, Vukovics C, Wang J, Ryan K, Cocozza V, Brock M, Tchopev Z, Tonkin B, Capaldi V, Collen J, Creamer J, Irfan M, Wickwire EM, Williams S, Werner JK. Traumatic brain injury and sleep in military and veteran populations: A literature review. NeuroRehabilitation 2024; 55:245-270. [PMID: 39121144 DOI: 10.3233/nre-230380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
BACKGROUND Traumatic brain injury (TBI) is a hallmark of wartime injury and is related to numerous sleep wake disorders (SWD), which persist long term in veterans. Current knowledge gaps in pathophysiology have hindered advances in diagnosis and treatment. OBJECTIVE We reviewed TBI SWD pathophysiology, comorbidities, diagnosis and treatment that have emerged over the past two decades. METHODS We conducted a literature review of English language publications evaluating sleep disorders (obstructive sleep apnea, insomnia, hypersomnia, parasomnias, restless legs syndrome and periodic limb movement disorder) and TBI published since 2000. We excluded studies that were not specifically evaluating TBI populations. RESULTS Highlighted areas of interest and knowledge gaps were identified in TBI pathophysiology and mechanisms of sleep disruption, a comparison of TBI SWD and post-traumatic stress disorder SWD. The role of TBI and glymphatic biomarkers and management strategies for TBI SWD will also be discussed. CONCLUSION Our understanding of the pathophysiologic underpinnings of TBI and sleep health, particularly at the basic science level, is limited. Developing an understanding of biomarkers, neuroimaging, and mixed-methods research in comorbid TBI SWD holds the greatest promise to advance our ability to diagnose and monitor response to therapy in this vulnerable population.
Collapse
Affiliation(s)
- Jeremy Landvater
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Sharon Kim
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Keenan Caswell
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Caroline Kwon
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Emamoke Odafe
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Grace Roe
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Ananya Tripathi
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | - Jonathan Wang
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Keith Ryan
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | - Matthew Brock
- Wilford Hall Ambulatory Surgical Center, San Antonio, TX, USA
| | - Zahari Tchopev
- Wilford Hall Ambulatory Surgical Center, San Antonio, TX, USA
| | - Brionn Tonkin
- University of Minnesota, Minneapolis, MN, USA
- Minneapolis Veterans Administration Medical Center, Minneapolis, MN, USA
| | - Vincent Capaldi
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Jacob Collen
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | - Muna Irfan
- University of Minnesota, Minneapolis, MN, USA
- Minneapolis Veterans Administration Medical Center, Minneapolis, MN, USA
| | - Emerson M Wickwire
- Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Scott Williams
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Defense Health Headquarters, Falls Church, VA, USA
| | - J Kent Werner
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Walter Reed National Military Medical Center, Bethesda, MD, USA
| |
Collapse
|
12
|
D'Souza AW, Yoo JK, Bhai S, Sarma S, Anderson EH, Levine BD, Fu Q. Attenuated peripheral oxygen extraction and greater cardiac output in women with posttraumatic stress disorder during exercise. J Appl Physiol (1985) 2024; 136:141-150. [PMID: 38031720 PMCID: PMC11219012 DOI: 10.1152/japplphysiol.00161.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023] Open
Abstract
Posttraumatic stress disorder (PTSD) is associated with an increased risk of developing cardiovascular disease, especially in women. Evidence indicates that men with PTSD exhibit lower maximal oxygen uptake (V̇o2max) relative to controls; however, whether V̇o2max is blunted in women with PTSD remains unknown. Furthermore, it is unclear what determinants (i.e., central and/or peripheral) of V̇o2max are impacted by PTSD. Therefore, we evaluated the central (i.e., cardiac output; Q̇c) and peripheral (i.e., arteriovenous oxygen difference) determinants of V̇o2max in women with PTSD; hypothesizing that V̇o2max would be lower in women with PTSD compared with women without PTSD (controls), primarily due to smaller increases in stroke volume (SV), and therefore Q̇c. Oxygen uptake (V̇o2), heart rate (HR), Q̇c, SV, and arteriovenous oxygen difference were measured in women with PTSD (n = 14; mean [SD]: 43 [11] yr,) and controls (n = 17; 45 [11] yr) at rest, and during an incremental maximal treadmill exercise test, and the Q̇c/V̇o2 slope was calculated. V̇o2max was not different between women with and without PTSD (24.3 [5.6] vs. 26.4 [5.0] mL/kg/min; P = 0.265). However, women with PTSD had higher Q̇c [P = 0.002; primarily due to greater SV (P = 0.069), not HR (P = 0.285)], and lower arteriovenous oxygen difference (P = 0.002) throughout exercise compared with controls. Furthermore, the Q̇c/V̇o2 slope was steeper in women with PTSD relative to controls (6.6 [1.4] vs. 5.7 [1.0] AU; P = 0.033). Following maximal exercise, women with PTSD exhibited slower HR recovery than controls (P = 0.046). Thus, despite attenuated peripheral oxygen extraction, V̇o2max is not reduced in women with PTSD, likely due to larger increases in Q̇c.NEW & NOTEWORTHY The current study indicates that V̇o2max is not different between women with and without PTSD; however, women with PTSD exhibit blunted peripheral extraction of oxygen, thus requiring an increase in Q̇c to meet metabolic demand during exercise. Furthermore, following exercise, women with PTSD demonstrate impaired autonomic cardiovascular control relative to sedentary controls. We interpret these data to indicate that women with PTSD demonstrate aberrant cardiovascular responses during and immediately following fatiguing exercise.
Collapse
Affiliation(s)
- Andrew W D'Souza
- Neurovascular Research Laboratory, School of Kinesiology, Western University, London, Ontario, Canada
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Jeung-Ki Yoo
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Salman Bhai
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Satyam Sarma
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Elizabeth H Anderson
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
- Veterans Affairs North Texas Health Care System, Dallas, Texas, United States
| | - Benjamin D Levine
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Qi Fu
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
13
|
Fonkoue IT, Tahsin CT, Jones TN, King KN, Tahmin CI, Jeong J, Dixon D, DaCosta DR, Park J. Sex differences in Black Veterans with PTSD: women versus men have higher sympathetic activity, inflammation, and blunted cardiovagal baroreflex sensitivity. Clin Auton Res 2023; 33:757-766. [PMID: 37898568 PMCID: PMC11256876 DOI: 10.1007/s10286-023-00995-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/14/2023] [Indexed: 10/30/2023]
Abstract
PURPOSE Post-traumatic stress disorder (PTSD) is associated with greater risk of incident hypertension and cardiovascular disease (CVD). Inflammation and autonomic derangements are suggested as contributing mechanisms. Women and Black adults have higher CVD risk associated with stress; however, whether there is a sex difference in autonomic and inflammatory mechanisms among Black individuals with PTSD is not known. We hypothesized that Black women with PTSD have higher inflammation, sympathetic nervous system (SNS) activity and impaired baroreflex sensitivity (BRS). METHODS In 42 Black Veterans with PTSD (Women, N = 18 and Men, N = 24), we measured inflammatory biomarkers, continuous blood pressure (BP), heart rate (HR) and muscle sympathetic nerve activity (MSNA) at rest and during arterial BRS testing via the modified Oxford technique. RESULTS Groups were matched for age and body mass index (BMI). Resting BP was similar between groups, but HR was higher (76 ± 12 vs. 68 ± 9 beats/min, p = 0.021) in women compared to men. Although women had lower PTSD symptoms severity (57 ± 17 vs. 68 ± 12 a.u.), resting MSNA (27 ± 13 vs. 16 ± 5 bursts/min, p = 0.003) was higher in women compared to men, respectively. Likewise, cardiovagal BRS was blunted (p = 0.002) in women (7.6 ± 4.3 ms/mmHg) compared to men (15.5 ± 8.4 ms/mmHg) while sympathetic BRS was not different between groups (p = 0.381). Black women also had higher (p = 0.020) plasma levels of interleukin-2 (IL-2). CONCLUSION Black women with PTSD have higher resting HR and MSNA, greater impairment of cardiovagal BRS and possibly higher inflammation. These findings suggest a higher burden of autonomic and inflammatory derangements in Black women compared to Black men with PTSD.
Collapse
Affiliation(s)
- Ida T Fonkoue
- Physical Therapy Division, Department of Rehabilitation Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
- Rehabilitation Science Division, Department of Rehabilitation Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Chowdhury Tasnova Tahsin
- Rehabilitation Science Division, Department of Rehabilitation Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Toure N Jones
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, 101 Woodruff Circle, WMB 3300, Atlanta, GA, 30322, USA
- Research Service Line, Atlanta VA Healthcare System, Decatur, GA, USA
| | - Keyona N King
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, 101 Woodruff Circle, WMB 3300, Atlanta, GA, 30322, USA
- Research Service Line, Atlanta VA Healthcare System, Decatur, GA, USA
| | - Chowdhury Ibtida Tahmin
- Rehabilitation Science Division, Department of Rehabilitation Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Jinhee Jeong
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, 101 Woodruff Circle, WMB 3300, Atlanta, GA, 30322, USA
- Research Service Line, Atlanta VA Healthcare System, Decatur, GA, USA
| | - Deirdre Dixon
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, 101 Woodruff Circle, WMB 3300, Atlanta, GA, 30322, USA
- Research Service Line, Atlanta VA Healthcare System, Decatur, GA, USA
| | - Dana R DaCosta
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, 101 Woodruff Circle, WMB 3300, Atlanta, GA, 30322, USA
- Research Service Line, Atlanta VA Healthcare System, Decatur, GA, USA
| | - Jeanie Park
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, 101 Woodruff Circle, WMB 3300, Atlanta, GA, 30322, USA.
- Research Service Line, Atlanta VA Healthcare System, Decatur, GA, USA.
| |
Collapse
|
14
|
Shetty S, Duesman SJ, Patel S, Huyhn P, Shroff S, Das A, Chowhan D, Sebra R, Beaumont K, McAlpine CS, Rajbhandari P, Rajbhandari AK. Sexually dimorphic role of diet and stress on behavior, energy metabolism, and the ventromedial hypothalamus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.17.567534. [PMID: 38014350 PMCID: PMC10680837 DOI: 10.1101/2023.11.17.567534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Scientific evidence underscores the influence of biological sex on the interplay between stress and metabolic dysfunctions. However, there is limited understanding of how diet and stress jointly contribute to metabolic dysregulation in both males and females. To address this gap, our study aimed to investigate the combined effects of a high-fat diet (HFD) and repeated footshock stress on fear-related behaviors and metabolic outcomes in male and female mice. Using a robust rodent model that recapitulates key aspects of post-traumatic stress disorder (PTSD), we subjected mice to footshock stressor followed by weekly reminder footshock stressor or no stressor for 14 weeks while on either an HFD or chow diet. Our findings revealed that HFD impaired fear memory extinction in male mice that received initial stressor but not in female mice. Blood glucose levels were influenced by both diet and sex, with HFD-fed female mice displaying elevated levels that returned to baseline in the absence of stress, a pattern not observed in male mice. Male mice on HFD exhibited higher energy expenditure, while HFD-fed female mice showed a decreased respiratory exchange ratio (RER). Sex-specific alterations in pro-inflammatory markers and abundance of hematopoietic stem cells were observed in chronically stressed mice on an HFD in different peripheral tissues, indicating the manifestation of distinct comorbid disorders. Single-nuclei RNA sequencing of the ventromedial hypothalamus from stressed mice on an HFD provided insights into sex-specific glial cell activation and cell-type-specific transcriptomic changes. In conclusion, our study offers a comprehensive understanding of the intricate interactions between stress, diet, sex, and various physiological and behavioral outcomes, shedding light on a potential brain region coordinating these interactions.
Collapse
Affiliation(s)
- Sanutha Shetty
- Department of Neuroscience and Psychiatry, Icahn School of Medicine at Mount Sinai, NY, New York 10029
| | - Samuel J. Duesman
- Department of Neuroscience and Psychiatry, Icahn School of Medicine at Mount Sinai, NY, New York 10029
| | - Sanil Patel
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, NY, New York 10029
| | - Pacific Huyhn
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, NY, New York 10029
| | - Sanjana Shroff
- Center for Advanced Genomic Technology, Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anika Das
- Department of Neuroscience and Psychiatry, Icahn School of Medicine at Mount Sinai, NY, New York 10029
- Center for Excellence in Youth Education, Icahn School of Medicine at Mount Sinai, NY, New York 10029
| | - Disha Chowhan
- Center for Advanced Genomic Technology, Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert Sebra
- Center for Advanced Genomic Technology, Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristin Beaumont
- Center for Advanced Genomic Technology, Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cameron S. McAlpine
- Department of Neuroscience and Psychiatry, Icahn School of Medicine at Mount Sinai, NY, New York 10029
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, NY, New York 10029
| | - Prashant Rajbhandari
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, NY, New York 10029
- Disease Mechanism and Therapeutics Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Senior authors
| | - Abha K. Rajbhandari
- Department of Neuroscience and Psychiatry, Icahn School of Medicine at Mount Sinai, NY, New York 10029
- Senior authors
| |
Collapse
|
15
|
Tahsin CT, Michopoulos V, Powers A, Park J, Ahmed Z, Cullen K, Jenkins NDM, Keller-Ross M, Fonkoue IT. Sleep efficiency and PTSD symptom severity predict microvascular endothelial function and arterial stiffness in young, trauma-exposed women. Am J Physiol Heart Circ Physiol 2023; 325:H739-H750. [PMID: 37505472 PMCID: PMC10642999 DOI: 10.1152/ajpheart.00169.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/13/2023] [Accepted: 07/28/2023] [Indexed: 07/29/2023]
Abstract
Posttraumatic stress disorder (PTSD) is linked to sleep disturbances and significantly higher risk of developing cardiovascular disease (CVD). Furthermore, vascular dysfunction and sleep are independently associated with CVD. Uncovering the link between PTSD symptom severity, sleep disturbances, and vascular function could shine a light on mechanisms of CVD risk in trauma-exposed young women. The purpose of the present study was to investigate the individual and combined effects of sleep efficiency and PTSD symptom severity on vascular function. We recruited 60 otherwise healthy women [age, 26 ± 7 yr and body mass index (BMI), 27.7 ± 6.5 kg/m2] who had been exposed to trauma. We objectively quantified sleep efficiency (SE) using actigraphy, microvascular endothelial function via Framingham reactive hyperemia index (fRHI), and arterial stiffness via pulse-wave velocity (PWV). PTSD symptom severity was assessed using the PTSD checklist for fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) (PCL5). PWV was correlated with age (r = 0.490, P < 0.001) and BMI (r = 0.484, P < 0.001). In addition, fRHI was positively correlated with SE (r = 0.409, P = 0.001) and negatively correlated with PTSD symptoms (r = -0.382, P = 0.002). To explore the predictive value of SE and PTSD symptoms on PWV and fRHI, we conducted two multivariate linear regression models. The model predicting PWV was significant (R2 = 0.584, P < 0.001) with age, BMI, blood pressure, and SE emerging as predictors. Likewise, the model predicting fRHI was significant (R2 = 0.360, P < 0.001) with both PTSD symptoms and SE as significant predictors. Our results suggest that although PTSD symptoms mainly impact microvascular endothelial function, sleep efficiency is additionally associated with arterial stiffness in young trauma-exposed women, after controlling for age and BMI.NEW & NOTEWORTHY This is the first study to investigate the individual and combined impacts of objective sleep and PTSD symptoms severity on arterial stiffness and microvascular endothelial function in young premenopausal women. We report that in young trauma-exposed women, although low sleep efficiency is associated with overall vascular function (i.e., microvascular endothelial function and arterial stiffness), the severity of PTSD symptoms is specifically associated with microvascular endothelial function, after accounting for age and body mass index.
Collapse
Affiliation(s)
- Chowdhury Tasnova Tahsin
- Division of Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States
- Division of Rehabilitation Science, Department of Rehabilitation Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States
| | - Vasiliki Michopoulos
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Abigail Powers
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Jeanie Park
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
- Department of Veterans Affairs, Research Service Line, Atlanta Veterans Affairs Healthcare Systems, Decatur, Georgia, United States
| | - Zynab Ahmed
- Division of Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States
- Division of Rehabilitation Science, Department of Rehabilitation Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States
| | - Kathryn Cullen
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, Minnesota, United States
| | - Nathaniel D M Jenkins
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa, United States
- Abboud Cardiovascular Research Center, University of Iowa, Iowa City, Iowa, United States
| | - Manda Keller-Ross
- Division of Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States
- Division of Rehabilitation Science, Department of Rehabilitation Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States
| | - Ida T Fonkoue
- Division of Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States
- Division of Rehabilitation Science, Department of Rehabilitation Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States
| |
Collapse
|
16
|
Wu YY, Zeng CH, Cai KY, Zheng C, Wang MY, Zhang HH. A glutamatergic pathway between the medial habenula and the rostral ventrolateral medulla may regulate cardiovascular function in a rat model of post-traumatic stress disorder. CHINESE J PHYSIOL 2023; 66:326-334. [PMID: 37929343 DOI: 10.4103/cjop.cjop-d-23-00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is a serious psychiatric disorder, and there is an association between it and the development of cardiovascular disease. The aim of this study was to explore whether there is a glutamatergic pathway connecting the medial habenula (MHb) with the rostral ventrolateral medulla (RVLM) that is involved in the regulation of cardiovascular function in a rat model of PTSD. Vesicular glutamate transporter 2 (VGLUT2)-positive neurons in the MHb region were retrogradely labeled with FluoroGold (FG) by the double-labeling technique of VGLUT2 immunofluorescence and FG retrograde tracing. Rats belonging to the PTSD model group were microinjected with artificial cerebrospinal fluid (ACSF) or kynurenic acid (KYN; a nonselective glutamate receptor blocker) into their RVLM. Subsequently, with electrical stimulation of MHb, the discharge frequency of the RVLM neurons, heart rate, and blood pressure were found to be significantly increased after microinjection of ACSF using an in vivo multichannel synchronous recording technology; however, this effect was inhibited by injection of KYN. The expression of N-methyl-D-aspartic acid (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits was significantly increased in RVLM of PTSD model rats analyzed by the Western blotting technique. These findings suggest that there may be a glutamatergic pathway connection between MHb and RVLM and that this pathway may be involved in the regulation of cardiovascular function in the PTSD model rats, by acting on NMDA and AMPA receptors in the RVLM.
Collapse
Affiliation(s)
- Ya-Yang Wu
- Psychophysiology Laboratory, Wannan Medical College; Cell Electrophysiology Laboratory, Wannan Medical College, Wuhu, Anhui, China
| | - Cheng-Hong Zeng
- Psychophysiology Laboratory, Wannan Medical College; Cell Electrophysiology Laboratory, Wannan Medical College, Wuhu, Anhui, China
| | - Kun-Yi Cai
- Psychophysiology Laboratory, Wannan Medical College; Cell Electrophysiology Laboratory, Wannan Medical College, Wuhu, Anhui, China
| | - Chao Zheng
- Neurobiology Laboratory, Wannan Medical College, Wuhu, Anhui, China
| | - Meng-Ya Wang
- Cell Electrophysiology Laboratory, Wannan Medical College, Wuhu, Anhui, China
| | - Huan-Huan Zhang
- Psychophysiology Laboratory, Wannan Medical College, Wuhu, Anhui, China
| |
Collapse
|
17
|
Sun N, Wang H, Wang XY, Yu Q, Han JY, Huang Y, Zhou WX. Deletion of AhR attenuates fear memory leaving other types of memory intact. Behav Brain Res 2023; 451:114505. [PMID: 37217138 DOI: 10.1016/j.bbr.2023.114505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
The aryl hydrocarbon receptor (AhR), a classic "environmental sensor", has been found to play an important role in cognitive and emotional function. Recent studies showed AhR deletion led to an attenuated fear memory, providing a potential target against fear memory, whether it is the consequence of attenuated sense of fear or memory ability deficit or both is unclear. Here this study aims to work this out. The freezing time in contextual fear conditioning (CFC) reduced significantly in AhR knockout mice, indicating an attenuated fear memory. Hot plate test and acoustic startle reflex showed that AhR knockout did not change the pain threshold and hearing, excluded the possibility of sensory impairments. Results from NORT, MWM and SBT showed that deletion of AhR had little effects on other types of memory. But the anxiety-like behaviors reduced both in naïve or suffered (tested after CFC) AhR knockout mice, showing that AhR-deficient mice have a reduced basal and stressful emotional response. The basal low-frequency to high-frequency (LF/HF) ratio of the AhR knockout mice was significantly lower than that of the control group, indicating lower sympathetic excitability in the basal state, suggesting a low level of basal stress in the knockout mice. Before and after CFC, the LF/HF ratio of AhR-KO mice tended to be significantly lower than that of WT mice, and their heart rate was significantly lower; and the AhR-KO mice also has a decreased serum corticosterone level after CFC, suggesting a reduced stress response in AhR knockout mice. Altogether, the basal stress level and stress response were significant reduced in AhR knockout mice, which might contribute to the attenuated fear memory with little impairment on other types of memory, suggesting AhR as a "psychologic sensor" additional to "environmental sensor".
Collapse
Affiliation(s)
- Na Sun
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Hao Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xin-Yue Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Qi Yu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Jin-Yuan Han
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yan Huang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China.
| | - Wen-Xia Zhou
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China.
| |
Collapse
|
18
|
Bigalke JA, Durocher JJ, Greenlund IM, Keller-Ross M, Carter JR. Blood pressure and muscle sympathetic nerve activity are associated with trait anxiety in humans. Am J Physiol Heart Circ Physiol 2023; 324:H494-H503. [PMID: 36800506 PMCID: PMC10259854 DOI: 10.1152/ajpheart.00026.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Chronic anxiety is prevalent and associated with an increased risk of cardiovascular disease. Prior studies that have reported a relationship between muscle sympathetic nerve activity (MSNA) and anxiety have focused on participants with anxiety disorders and/or metabolic syndrome. The present study leverages a large cohort of healthy adults devoid of cardiometabolic disorders to examine the hypothesis that trait anxiety severity is positively associated with resting MSNA and blood pressure. Resting blood pressure (BP) (sphygmomanometer and finger plethysmography), MSNA (microneurography), and heart rate (HR; electrocardiogram) were collected in 88 healthy participants (52 males, 36 females, 25 ± 1 yr, 25 ± 1 kg/m2). Multiple linear regression was performed to assess the independent relationship between trait anxiety, MSNA, resting BP, and HR while controlling for age and sex. Trait anxiety was significantly correlated with systolic arterial pressure (SAP; r = 0.251, P = 0.018), diastolic arterial pressure (DAP; r = 0.291, P = 0.006), mean arterial pressure (MAP; r = 0.328, P = 0.002), MSNA burst frequency (BF; r = 0.237, P = 0.026), and MSNA burst incidence (BI; r = 0.225, P = 0.035). When controlling for the effects of age and sex, trait anxiety was independently associated with SAP (β = 0.206, P = 0.028), DAP (β = 0.317, P = 0.002), MAP (β = 0.325, P = 0.001), MSNA BF (β = 0.227, P = 0.030), and MSNA BI (β = 0.214, P = 0.038). Trait anxiety is associated with increased blood pressure and MSNA, demonstrating an important relationship between anxiety and autonomic blood pressure regulation.NEW & NOTEWORTHY Anxiety is associated with development of cardiovascular disease. Although the sympathetic nervous system is a likely mediator of this relationship, populations with chronic anxiety have shown little, if any, alteration in resting levels of directly recorded muscle sympathetic nerve activity (MSNA). The present study is the first to reveal an independent relationship between trait anxiety, resting blood pressure, and MSNA in a large cohort of healthy males and females devoid of cardiometabolic comorbidities.
Collapse
Affiliation(s)
- Jeremy A Bigalke
- Department of Health and Human Development, Montana State University, Bozeman, Montana, United States
- Department of Psychology, Montana State University, Bozeman, Montana, United States
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan, United States
| | - John J Durocher
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan, United States
- Department of Biological Sciences and Integrative Physiology and Health Sciences Center, Purdue University Northwest, Hammond, Indiana, United States
| | - Ian M Greenlund
- Department of Psychology, Montana State University, Bozeman, Montana, United States
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan, United States
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Manda Keller-Ross
- Division of Physical Therapy and Rehabilitation Science, University of Minnesota, Minneapolis, Minnesota, United States
| | - Jason R Carter
- Department of Health and Human Development, Montana State University, Bozeman, Montana, United States
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan, United States
- Robbins College of Health and Human Sciences, Baylor University, Waco, Texas, United States
| |
Collapse
|
19
|
Baroreflex sensitivity is associated with markers of hippocampal gliosis and dysmyelination in patients with psychosis. Clin Auton Res 2023; 33:101-110. [PMID: 36877302 DOI: 10.1007/s10286-023-00929-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/20/2023] [Indexed: 03/07/2023]
Abstract
PURPOSE Hippocampal dysfunction plays a key role in the pathology of psychosis. Given hippocampal sensitivity to changes in cerebral perfusion, decreased baroreflex function could contribute to psychosis pathogenesis. This study had two aims: (1) To compare baroreflex sensitivity in participants with psychosis to two control groups: participants with a nonpsychotic affective disorder and participants with no history of psychiatric disease; (2) to examine the relationship between hippocampal neurometabolites and baroreflex sensitivities in these three groups. We hypothesized that baroreflex sensitivity would be reduced and correlated with hippocampal neurometabolite levels in participants with psychosis, but not in the control groups. METHODS We assessed baroreflex sensitivity during the Valsalva maneuver separated into vagal and adrenergic components. Metabolite concentrations for cellular processes were quantitated in the entire multivoxel hippocampus using H1-MR spectroscopic (MRS) imaging and were compared with baroreflex sensitivities in the three groups. RESULTS Vagal baroreflex sensitivity (BRS-V) was reduced in a significantly larger proportion of participants with psychosis compared with patients with nonpsychotic affective disorders, whereas participants with psychosis had increased adrenergic baroreflex sensitivity (BRS-A) compared with participants with no history of psychiatric disease. Only in psychotic cases were baroreflex sensitivities associated with hippocampal metabolite concentrations. Specifically, BRS-V was inversely correlated with myo-inositol, a marker of gliosis, and BRS-A was positively correlated with energy dependent dysmyelination (choline, creatine) and excitatory activity (GLX). CONCLUSIONS Abnormal baroreflex sensitivity is common in participants with psychosis and is associated with MRS markers of hippocampal pathology. Future longitudinal studies are needed to examine causality.
Collapse
|
20
|
Dempster KS, Wade TJ, MacNeil AJ, O'Leary DD. Adverse childhood experiences are associated with altered cardiovascular reactivity to head-up tilt in young adults. Am J Physiol Regul Integr Comp Physiol 2023; 324:R425-R434. [PMID: 36693169 DOI: 10.1152/ajpregu.00148.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Adverse childhood experiences (ACEs) are associated with greater prevalence of cardiovascular disease and altered acute stress reactivity. The current study investigated the effect of ACEs on hemodynamic and autonomic responses to orthostatic stress imposed by 60° head-up tilt (HUT) in young adults. Two-hundred twenty-six healthy young adults (age = 22.6 ± 1.5 yr; n = 116 females) without cardiovascular disease participated and had complete data. Participants underwent supine blood pressure (BP), R-R interval (RRI), cardiac output (CO), total peripheral resistance (TPR), and cardiovagal baroreflex sensitivity (cvBRS) testing followed by a transition to 60° HUT where measures were reassessed. Childhood adversity exposures were assessed based on categorical exposure and nonexposure to childhood household dysfunction and maltreatment, and <4 and ≥4 types of ACEs. Significantly greater increases in SBP (P < 0.05), DBP, MAP, and TPR (P < 0.01; all) following 60° HUT were observed in individuals with ≥4 compared with those with <4 types of ACEs. Attenuated decreases in RRI and cvBRS were observed in those with ≥4 types of ACEs (P < 0.05). Experiencing ≥4 types of ACEs was associated with augmented BP and TPR reactivity and a blunted decrease in cvBRS in response to 60° HUT in young adults. Results suggest that a reduced vagal response to orthostatic stress is present in those who have experienced ≥4 types of ACEs that may promote autonomic dysfunction. Future research examining the sympathetic and vagal baroreflex branches is warranted.
Collapse
Affiliation(s)
- Kylie S Dempster
- Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, Canada.,Brock-Niagara Centre for Health and Well-Being, St. Catharines, Ontario, Canada
| | - Terrane J Wade
- Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, Canada.,Brock-Niagara Centre for Health and Well-Being, St. Catharines, Ontario, Canada
| | - Adam J MacNeil
- Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Deborah D O'Leary
- Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, Canada.,Brock-Niagara Centre for Health and Well-Being, St. Catharines, Ontario, Canada
| |
Collapse
|
21
|
Dell’Oste V, Fantasia S, Gravina D, Palego L, Betti L, Dell’Osso L, Giannaccini G, Carmassi C. Metabolic and Inflammatory Response in Post-Traumatic Stress Disorder (PTSD): A Systematic Review on Peripheral Neuroimmune Biomarkers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2937. [PMID: 36833633 PMCID: PMC9957545 DOI: 10.3390/ijerph20042937] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 06/01/2023]
Abstract
Several heterogeneous pathophysiology pathways have been hypothesized for being involved in the onset and course of Post-Traumatic Stress Disorder (PTSD). This systematic review aims to summarize the current evidence on the role of inflammation and immunological dysregulations in PTSD, investigating possible peripheral biomarkers linked to the neuroimmune response to stress. A total of 44 studies on the dysregulated inflammatory and metabolic response in subjects with PTSD with respect to controls were included. Eligibility criteria included full-text publications in the English language, human adult samples, studies involving both subjects with a clinical diagnosis of PTSD and a healthy control group. The research was focused on specific blood neuroimmune biomarkers, namely IL-1β, TNF-α, IL-6 and INF-γ, as well as on the potential harmful role of reduced antioxidant activity (involving catalase, superoxide dismutase and glutathione peroxidase). The possible role of the inflammatory-altered tryptophan metabolism was also explored. The results showed conflicting data on the role of pro-inflammatory cytokines in individuals with PTSD, and a lack of study regarding the other mediators investigated. The present research suggests the need for further studies in human samples to clarify the role of inflammation in the pathogenesis of PTSD, to define potential peripheral biomarkers.
Collapse
Affiliation(s)
- Valerio Dell’Oste
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Sara Fantasia
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Davide Gravina
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Lionella Palego
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Laura Betti
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Liliana Dell’Osso
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | | | - Claudia Carmassi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
22
|
Goldschen L, Ellrodt J, Amonoo HL, Feldman CH, Case SM, Koenen KC, Kubzansky LD, Costenbader KH. The link between post-traumatic stress disorder and systemic lupus erythematosus. Brain Behav Immun 2023; 108:292-301. [PMID: 36535611 PMCID: PMC10018810 DOI: 10.1016/j.bbi.2022.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 12/03/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a heterogeneous, multisystem autoimmune disorder characterized by unpredictable disease flares. Although the pathogenesis of SLE is complex, an epidemiologic link between posttraumatic stress disorder (PTSD) and the development of SLE has been identified, suggesting that stress-related disorders alter the susceptibility to SLE. Despite the strong epidemiologic evidence connecting PTSD and SLE, gaps remain in our understanding of how the two may be connected. Perturbations in the autonomic nervous system, neuroendocrine system, and at the genomic level may cause and sustain immune dysregulation that could lower the threshold for the development and propagation of SLE. We first describe shared risk factors for SLE and PTSD. We then describe potential biological pathways which may facilitate excessive inflammation in the context of PTSD. Among those genetically predisposed to SLE, systemic inflammation that accompanies chronic stress may fan the flames of smoldering SLE by priming immune pathways. Further studies on the connection between trauma and inflammation will provide important data on pathogenesis, risk factors, and novel treatments for SLE.
Collapse
Affiliation(s)
- Lauren Goldschen
- Department of Psychiatry, Brigham and Women's Hospital, 60 Fenwood Road, MA 02115, USA.
| | - Jack Ellrodt
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA
| | - Hermioni L Amonoo
- Department of Psychiatry, Brigham and Women's Hospital, 60 Fenwood Road, MA 02115, USA; Department of Psychosocial Oncology and Palliative Care, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Candace H Feldman
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA
| | - Siobhan M Case
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA
| | - Karestan C Koenen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA
| | - Laura D Kubzansky
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA
| | - Karen H Costenbader
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA
| |
Collapse
|
23
|
Alday EAP, Poian GD, Levantsevych O, Murrah N, Shallenberger L, Alkhalaf M, Haffar A, Kaseer B, Yi-An K, Goldberg J, Smith N, Lampert R, Bremner JD, Clifford GD, Vaccarino V, Shah AJ. Association of Autonomic Activation with traumatic reminder challenges in posttraumatic stress disorder: A co-twin control study. Psychophysiology 2023; 60:e14167. [PMID: 35959570 PMCID: PMC10157622 DOI: 10.1111/psyp.14167] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/04/2022] [Accepted: 07/31/2022] [Indexed: 01/04/2023]
Abstract
Post-traumatic stress disorder (PTSD) has been associated with cardiovascular disease (CVD), but the mechanisms remain unclear. Autonomic dysfunction, associated with higher CVD risk, may be triggered by acute PTSD symptoms. We hypothesized that a laboratory-based trauma reminder challenge, which induces acute PTSD symptoms, provokes autonomic dysfunction in a cohort of veteran twins. We investigated PTSD-associated real-time physiologic changes with a simulation of traumatic experiences in which the twins listened to audio recordings of a one-minute neutral script followed by a one-minute trauma script. We examined two heart rate variability metrics: deceleration capacity (DC) and logarithmic low frequency (log-LF) power from beat-to-beat intervals extracted from ambulatory electrocardiograms. We assessed longitudinal PTSD status with a structured clinical interview and the severity with the PTSD Symptoms Scale. We used linear mixed-effects models to examine twin dyads and account for cardiovascular and behavioral risk factors. We examined 238 male Veteran twins (age 68 ± 3 years old, 4% black). PTSD status and acute PTSD symptom severity were not associated with DC or log-LF measured during the neutral session, but were significantly associated with lower DC and log-LF during the traumatic script listening session. Long-standing PTSD was associated with a 0.38 (95% confidence interval, -0.83,-0.08) and 0.79 (-1.30,-0.29) standardized unit lower DC and log-LF, respectively, compared to no history of PTSD. Traumatic reminders in patients with PTSD lead to real-time autonomic dysregulation and suggest a potential causal mechanism for increased CVD risk, based on the well-known relationships between autonomic dysfunction and CVD mortality.
Collapse
Affiliation(s)
- Erick A. Perez Alday
- Department of Biomedical Informatics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Giulia Da Poian
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Oleksiy Levantsevych
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Nancy Murrah
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Lucy Shallenberger
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Mhmtjamil Alkhalaf
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Ammer Haffar
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Belal Kaseer
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Ko Yi-An
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Jack Goldberg
- Seattle Epidemiologic Research and Information Center, United States Department of Veterans Affairs Office of Research and Development, Seattle, Washington, USA
| | - Nicholas Smith
- Seattle Epidemiologic Research and Information Center, United States Department of Veterans Affairs Office of Research and Development, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Rachel Lampert
- Yale University School of Medicine, New Haven, Connecticut, USA
| | - J. Douglas Bremner
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
- Atlanta Veterans Affairs Health Care System, Decatur, Georgia, USA
| | - Gari D. Clifford
- Department of Biomedical Informatics, School of Medicine, Emory University, Atlanta, Georgia, USA
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Viola Vaccarino
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Amit J. Shah
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
- Atlanta Veterans Affairs Health Care System, Decatur, Georgia, USA
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
24
|
Volovik M, Belova A, Kuznetsov A, Polevaia A, Vorobyova O, Khalak M. Use of Virtual Reality Techniques to Rehabilitate Military Veterans with Post-Traumatic Stress Disorder (Review). Sovrem Tekhnologii Med 2023; 15:74-85. [PMID: 37388756 PMCID: PMC10306958 DOI: 10.17691/stm2023.15.1.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 09/22/2024] Open
Abstract
Post-traumatic stress disorder (PTSD) is a mental and behavioral disorder developing after a traumatic event like participation in combat activities. Objective diagnosis of combat PTSD and effective rehabilitation of war veterans is a current multifaceted problem with particularly high social costs. This review aims to evaluate the potential of virtual reality technique used as exposure therapy tool (VRET) to rehabilitate combat veterans and service members with PTSD. The review was written following the guidelines of Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). The final analysis includes 75 articles published in 2017-2022. VRET therapeutic effect mechanisms were examined along with protocols and scenarios of VRET combined with other interventions influencing PTSD treatment like pharmacotherapy, motion-assisted multi-modular memory desensitization and reconsolidation (3MDR), transcranial magnetic stimulation. The necessity is substantiated of psychophysiological measurements for objectification of PTSD clinical criteria and its dynamics during treatment. It was shown that inclusion of VRET to the package of PTSD rehabilitation interventions positively affects the results due to the enhanced effect of presence and greater experience personalization. Thus, VRET may be an effective, controlled, and cost-effective alternative for PTSD treatment in combatants, including those not responding to conventional therapy.
Collapse
Affiliation(s)
- M.G. Volovik
- Leading Researcher, University Clinic; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - A.N. Belova
- Professor, Head of the Medical Rehabilitation Department; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - A.N. Kuznetsov
- Head of the Laboratory of Immersive and Remote Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - A.V. Polevaia
- Junior Researcher, University Clinic; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - O.V. Vorobyova
- Junior Researcher, University Clinic; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - M.E. Khalak
- Associate Professor, Department of General and Clinical Psychology Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| |
Collapse
|
25
|
Berthail B, Trousselard M, Lecouvey G, Fraisse F, Peschanski D, Eustache F, Gagnepain P, Dayan J. Peritraumatic physical symptoms and the clinical trajectory of PTSD after a terrorist attack: a network model approach. Eur J Psychotraumatol 2023; 14:2225154. [PMID: 37458735 DOI: 10.1080/20008066.2023.2225154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/28/2023] [Accepted: 05/28/2023] [Indexed: 07/20/2023] Open
Abstract
Introduction: Following a mass casualty event, such as the Paris terrorist attacks of 13 November 2015, first responders need to identify individuals at risk of PTSD. Physical peritraumatic symptoms involving the autonomic nervous system may be useful in this task.Objective: We sought to determine the trajectory of physical response intensity in individuals exposed to the Paris terrorist attacks using repeated measures, and to examine its associations with PTSD. Using network modelling, we examined whether peritraumatic physical symptom associations differed by PTSD status.Methods: Physical reactions were assessed using the Subjective Physical Reactions Scale at three time points: peritraumatic by retrospective recall, then current at one year (8-18 months) and three years (30-42 months) after the attacks. Interaction networks between peritraumatic physical reactions were compared according to PTSD status.Results: On the one hand, the reported intensity of physical reactions was significantly higher in the PTSD group at all time points. On the other hand, using the dynamic approach, more robust positive interactions between peritraumatic physical reactions were found in the PTSD group one and three years after the attacks. Negative interactions were found in the no-PTSD group at one year. Peritraumatic physical numbness was found to be the most central network symptom in the PTSD group, whereas it was least central in the no-PTSD group.Discussion: Network analysis of the interaction between peritraumatic physical subjective responses, particularly physical numbness, may provide insight into the clinical course of PTSD. Our knowledge of the brain regions involved in dissociation supports the hypothesis that the periaqueductal grey may contribute to the process leading to physical numbing.Conclusions: Our findings highlight the role of peritraumatic somatic symptoms in the course of PTSD. Peritraumatic physical numbness appears to be a key marker of PTSD and its identification may help to improve early triage.
Collapse
Affiliation(s)
- Benoit Berthail
- French Military Health Service Academy, Paris, France
- Normandie Université, UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| | - Marion Trousselard
- French Armed Forces Biomedical Research Institute, Brétigny-sur-Orge, France
- APEMAC, Université de Lorraine, Metz, France
| | - Gregory Lecouvey
- Normandie Université, UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| | - Florence Fraisse
- Normandie Université, UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| | - Denis Peschanski
- EHESS, CNRS, UMR8209, Université Paris I Panthéon Sorbonne, HESAM Université, Paris, France
| | - Francis Eustache
- Normandie Université, UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| | - Pierre Gagnepain
- Normandie Université, UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| | - Jacques Dayan
- Normandie Université, UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
- Centre Hospitalier Guillaume Régnier, Pôle Hospitalo-Universitaire de Psychiatrie de l'Enfant et de l'Adolescent, Université Rennes 1, Rennes, France
| |
Collapse
|
26
|
Repova K, Baka T, Krajcirovicova K, Stanko P, Aziriova S, Reiter RJ, Simko F. Melatonin as a Potential Approach to Anxiety Treatment. Int J Mol Sci 2022; 23:ijms232416187. [PMID: 36555831 PMCID: PMC9788115 DOI: 10.3390/ijms232416187] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/02/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Anxiety disorders are the most common mental diseases. Anxiety and the associated physical symptoms may disturb social and occupational life and increase the risk of somatic diseases. The pathophysiology of anxiety development is complex and involves alterations in stress hormone production, neurosignaling pathways or free radical production. The various manifestations of anxiety, its complex pathophysiological background and the side effects of available treatments underlie the quest for constantly seeking therapies for these conditions. Melatonin, an indolamine produced in the pineal gland and released into the blood on a nightly basis, has been demonstrated to exert anxiolytic action in animal experiments and different clinical conditions. This hormone influences a number of physiological actions either via specific melatonin receptors or by receptor-independent pleiotropic effects. The underlying pathomechanism of melatonin's benefit in anxiety may reside in its sympatholytic action, interaction with the renin-angiotensin and glucocorticoid systems, modulation of interneuronal signaling and its extraordinary antioxidant and radical scavenging nature. Of importance, the concentration of this indolamine is significantly higher in cerebrospinal fluid than in the blood. Thus, ensuring sufficient melatonin production by reducing light pollution, which suppresses melatonin levels, may represent an endogenous neuroprotective and anxiolytic treatment. Since melatonin is freely available, economically undemanding and has limited side effects, it may be considered an additional or alternative treatment for various conditions associated with anxiety.
Collapse
Affiliation(s)
- Kristina Repova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia
| | - Tomas Baka
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia
| | - Kristina Krajcirovicova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia
| | - Peter Stanko
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia
| | - Silvia Aziriova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX 78229, USA
| | - Fedor Simko
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia
- 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University, 83305 Bratislava, Slovakia
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
- Correspondence: ; Tel.: +421-(0)2-59357276
| |
Collapse
|
27
|
Seligowski AV, Fonkoue IT, Noble NC, Dixon D, Gluck R, Kim YJ, Powers A, Pace TW, Jovanovic T, Umpierrez G, Ressler KJ, Quyyumi AA, Michopoulos V, Gillespie CF. Vagal control moderates the association between endothelial function and PTSD symptoms in women with T2DM. Brain Behav Immun Health 2022; 26:100527. [PMID: 36247837 PMCID: PMC9557816 DOI: 10.1016/j.bbih.2022.100527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022] Open
Abstract
Background Individuals with posttraumatic stress disorder (PTSD) are more likely to present with metabolic diseases such as type-2 diabetes mellitus (T2DM), and cardiovascular dysfunction has been implicated in this link. These diseases disproportionately affect women and individuals exposed to chronic environmental stressors (e.g., community violence, poverty). We examined associations among PTSD, cardiovascular indices, and metabolic function in highly trauma-exposed Black women with T2DM. Methods Participants (N = 80) were recruited for a follow-up study of stress and T2DM as part of the Grady Trauma Project. PTSD symptoms were assessed with the Clinician Administered PTSD Scale (CAPS-IV). Cardiovascular indices included heart rate (HR), blood pressure (BP), respiratory sinus arrhythmia (RSA), and endothelial function (assessed via flow-mediated dilation; FMD). An oral glucose tolerance test was used as an indicator of metabolic function. Results Of the cardiovascular indices, only FMD was significantly associated with PTSD symptoms (CAPS Avoidance symptoms; β = -0.37, p = .042), and glucose tolerance (β = -0.44, p = .019), controlling for age and body mass index. The association between FMD and PTSD Avoidance was moderated by RSA such that the effect of FMD was only significant at low levels of RSA (simple slopes β = -0.87, p = .004). Conclusions Our results indicate that endothelial function is significantly related to PTSD and glucose tolerance, over and above other cardiovascular measures (HR, BP, RSA). Further, our results suggest that low RSA may be a risk factor for the link between poor endothelial function and PTSD in women with T2DM.
Collapse
Affiliation(s)
- Antonia V. Seligowski
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Ida T. Fonkoue
- Department of Rehabilitation Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | | | - Drew Dixon
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Rachel Gluck
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Ye Ji Kim
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Abigail Powers
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Thaddeus W.W. Pace
- College of Nursing and College of Medicine (Psychiatry), University of Arizona, Tucson, AZ, USA
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA
| | - Guillermo Umpierrez
- Division of Endocrinology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Kerry J. Ressler
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Arshed A. Quyyumi
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Vasiliki Michopoulos
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Charles F. Gillespie
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
28
|
Wiebe A, Kannen K, Selaskowski B, Mehren A, Thöne AK, Pramme L, Blumenthal N, Li M, Asché L, Jonas S, Bey K, Schulze M, Steffens M, Pensel MC, Guth M, Rohlfsen F, Ekhlas M, Lügering H, Fileccia H, Pakos J, Lux S, Philipsen A, Braun N. Virtual reality in the diagnostic and therapy for mental disorders: A systematic review. Clin Psychol Rev 2022; 98:102213. [PMID: 36356351 DOI: 10.1016/j.cpr.2022.102213] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 08/21/2022] [Accepted: 10/11/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Virtual reality (VR) technologies are playing an increasingly important role in the diagnostics and treatment of mental disorders. OBJECTIVE To systematically review the current evidence regarding the use of VR in the diagnostics and treatment of mental disorders. DATA SOURCE Systematic literature searches via PubMed (last literature update: 9th of May 2022) were conducted for the following areas of psychopathology: Specific phobias, panic disorder and agoraphobia, social anxiety disorder, generalized anxiety disorder, posttraumatic stress disorder (PTSD), obsessive-compulsive disorder, eating disorders, dementia disorders, attention-deficit/hyperactivity disorder, depression, autism spectrum disorder, schizophrenia spectrum disorders, and addiction disorders. ELIGIBILITY CRITERIA To be eligible, studies had to be published in English, to be peer-reviewed, to report original research data, to be VR-related, and to deal with one of the above-mentioned areas of psychopathology. STUDY EVALUATION For each study included, various study characteristics (including interventions and conditions, comparators, major outcomes and study designs) were retrieved and a risk of bias score was calculated based on predefined study quality criteria. RESULTS Across all areas of psychopathology, k = 9315 studies were inspected, of which k = 721 studies met the eligibility criteria. From these studies, 43.97% were considered assessment-related, 55.48% therapy-related, and 0.55% were mixed. The highest research activity was found for VR exposure therapy in anxiety disorders, PTSD and addiction disorders, where the most convincing evidence was found, as well as for cognitive trainings in dementia and social skill trainings in autism spectrum disorder. CONCLUSION While VR exposure therapy will likely find its way successively into regular patient care, there are also many other promising approaches, but most are not yet mature enough for clinical application. REVIEW REGISTRATION PROSPERO register CRD42020188436. FUNDING The review was funded by budgets from the University of Bonn. No third party funding was involved.
Collapse
Affiliation(s)
- Annika Wiebe
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Kyra Kannen
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Benjamin Selaskowski
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Aylin Mehren
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Ann-Kathrin Thöne
- School of Child and Adolescent Cognitive Behavior Therapy (AKiP), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lisa Pramme
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Nike Blumenthal
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Mengtong Li
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Laura Asché
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Stephan Jonas
- Institute for Digital Medicine, University Hospital Bonn, Bonn, Germany
| | - Katharina Bey
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Marcel Schulze
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Maria Steffens
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Max Christian Pensel
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Matthias Guth
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Felicia Rohlfsen
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Mogda Ekhlas
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Helena Lügering
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Helena Fileccia
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Julian Pakos
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Silke Lux
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Alexandra Philipsen
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Niclas Braun
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
29
|
Elkhatib SK, Moshfegh CM, Watson GF, Case AJ. T-lymphocyte tyrosine hydroxylase regulates T H17 T-lymphocytes during repeated social defeat stress. Brain Behav Immun 2022; 104:18-28. [PMID: 35580792 PMCID: PMC9659669 DOI: 10.1016/j.bbi.2022.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) is a debilitating psychiatric disorder which results in deleterious changes to psychological and physical health. Patients with PTSD are especially susceptible to life-threatening co-morbid inflammation-driven pathologies, such as autoimmunity, while also demonstrating increased T-helper 17 (TH17) lymphocyte-driven inflammation. While the exact mechanism of this increased inflammation is unknown, overactivity of the sympathetic nervous system is a hallmark of PTSD. Neurotransmitters of the sympathetic nervous system (i.e., catecholamines) can alter T-lymphocyte function, which we have previously demonstrated to be partially mitochondrial redox-mediated. Furthermore, we have previously elucidated that T-lymphocytes generate their own catecholamines, and strong associations exist between tyrosine hydroxylase (TH; the rate-limiting enzyme in the synthesis of catecholamines) and pro-inflammatory interleukin 17A (IL-17A) expression within purified T-lymphocytes in a rodent model of psychological trauma. Therefore, we hypothesized that T-lymphocyte-generated catecholamines drive TH17 T-lymphocyte polarization through a mitochondrial superoxide-dependent mechanism during psychological trauma. To test this, T-lymphocyte-specific TH knockout mice (THT-KO) were subjected to psychological trauma utilizing repeated social defeat stress (RSDS). RSDS characteristically increased tumor necrosis factor-α (TNFα), IL-6, IL-17A, and IL-22, however, IL-17A and IL-22 (TH17 produced cytokines) were selectively attenuated in circulation and in T-lymphocytes of THT-KO animals. When activated ex vivo, secretion of IL-17A and IL-22 by THT-KO T-lymphocytes was also found to be reduced, but could be partially rescued with supplementation of norepinephrine specifically. Interestingly, THT-KO T-lymphocytes were still able to polarize to TH17 under exogenous polarizing conditions. Last, contrary to our hypothesis, we found RSDS-exposed THT-KO T-lymphocytes still displayed elevated mitochondrial superoxide, suggesting increased mitochondrial superoxide is upstream of T-lymphocyte TH induction, activity, and TH17 regulation. Overall, these data demonstrate TH in T-lymphocytes plays a critical role in RSDS-induced TH17 T-lymphocytes and offer a previously undescribed regulator of inflammation in RSDS.
Collapse
Affiliation(s)
- Safwan K Elkhatib
- Department of Cellular and Integrative Physiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Cassandra M Moshfegh
- Department of Cellular and Integrative Physiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Gabrielle F Watson
- Department of Cellular and Integrative Physiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Adam J Case
- Department of Psychiatry and Behavioral Sciences, Texas A&M Health Science Center, College Station, TX, United States; Department of Medical Physiology, Texas A&M Health Science Center, College Station, TX, United States.
| |
Collapse
|
30
|
Peruzzolo TL, Pinto JV, Roza TH, Shintani AO, Anzolin AP, Gnielka V, Kohmann AM, Marin AS, Lorenzon VR, Brunoni AR, Kapczinski F, Passos IC. Inflammatory and oxidative stress markers in post-traumatic stress disorder: a systematic review and meta-analysis. Mol Psychiatry 2022; 27:3150-3163. [PMID: 35477973 DOI: 10.1038/s41380-022-01564-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 11/09/2022]
Abstract
Post-traumatic stress disorder (PTSD) has been associated with persistent, low-degree inflammation, which could explain the increased prevalence of autoimmune conditions and accelerated aging among patients. The aim of the present study is to assess which inflammatory and oxidative stress markers are associated with PTSD. We carried out a meta-analytic and meta-regression analysis based on a systematic review of studies comparing inflammatory and oxidative stress markers between patients with PTSD and controls. We undertook meta-analyses whenever values of inflammatory and oxidative stress markers were available in two or more studies. Overall, 28,008 abstracts were identified, and 54 studies were included, with a total of 8394 participants. The Newcastle-Ottawa Quality Assessment Scale was used to evaluate the quality of the studies. Concentrations of C-reactive protein (SMD = 0.64; 95% CI: 0.21 to 1.06; p = 0.0031; k = 12), interleukin 6 (SMD = 0.94; 95% CI: 0.36 to 1.52; p = 0.0014; k = 32), and tumor necrosis factor-α (SMD = 0.89; 95% CI: 0.23 to 1.55; p = 0.0080; k = 24) were significantly increased in patients with PTSD in comparison with healthy controls. Interleukin 1β levels almost reached the threshold for significance (SMD = 1.20; 95% CI: -0.04 to 2.44; p = 0.0569; k = 15). No oxidative stress marker was associated with PTSD. These findings may explain why PTSD is associated with accelerated aging and illnesses in which immune activation has a key role, such as cardiovascular diseases and diabetes. In addition, they pointed to the potential role of inflammatory markers as therapeutic targets.
Collapse
Affiliation(s)
- Tatiana Lauxen Peruzzolo
- Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental (CPE) and Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.,Department of Psychiatry, School of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jairo Vinícius Pinto
- Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental (CPE) and Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.,University Hospital, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Thiago Henrique Roza
- Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental (CPE) and Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.,Department of Psychiatry, School of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Augusto Ossamu Shintani
- Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental (CPE) and Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.,Department of Psychiatry, School of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ana Paula Anzolin
- Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental (CPE) and Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.,Department of Psychiatry, School of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Vanessa Gnielka
- Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental (CPE) and Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.,Department of Psychiatry, School of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - André Moura Kohmann
- Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental (CPE) and Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.,Department of Psychiatry, School of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Amanda Salvador Marin
- Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental (CPE) and Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.,Department of Psychiatry, School of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Vitória Ruschel Lorenzon
- Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental (CPE) and Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.,Department of Psychiatry, School of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - André Russowsky Brunoni
- Centro de Pesquisas Clínicas e Epidemiológicas, Hospital Universitário, Universidade de São Paulo, São Paulo, Brasil.,Departamentos de Clínica Médica e Psiquiatria, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brasil.,Instituto Nacional de Biomarcadores em Psiquiatria (IMBION), Laboratory of Neurosciences (LIM-27), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brasil
| | - Flávio Kapczinski
- Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental (CPE) and Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.,Department of Psychiatry, School of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Ives Cavalcante Passos
- Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental (CPE) and Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil. .,Department of Psychiatry, School of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil. .,Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil.
| |
Collapse
|
31
|
Sheikh SAA, Gurel NZ, Gupta S, Chukwu IV, Levantsevych O, Alkhalaf M, Soudan M, Abdulbaki R, Haffar A, Clifford GD, Inan OT, Shah AJ. Validation of a new impedance cardiography analysis algorithm for clinical classification of stress states. Psychophysiology 2022; 59:e14013. [PMID: 35150459 PMCID: PMC9177512 DOI: 10.1111/psyp.14013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 01/01/2023]
Abstract
Pre-ejection period (PEP) is an index of sympathetic nervous system activity that can be computed from electrocardiogram (ECG) and impedance cardiogram (ICG) signals, but sensitive to speech/motion artifact. We sought to validate an ICG noise removal method, three-stage ensemble-average algorithm (TEA), in data acquired from a clinical trial comparing active versus sham non-invasive vagal nerve stimulation (tcVNS) after standardized speech stress. We first compared TEA's performance versus the standard conventional ensemble-average algorithm (CEA) approach to classify noisy ICG segments. We then analyzed ECG and ICG data to measure PEP and compared group-level differences in stress states with each approach. We evaluated 45 individuals, of whom 23 had post-traumatic stress disorder (PTSD). We found that the TEA approach identified artifact-corrupted beats with intraclass correlation coefficient > 0.99 compared to expert adjudication. TEA also resulted in higher group-level differences in PEP between stress states than CEA. PEP values were lower in the speech stress (vs. baseline rest) group using both techniques, but the differences were greater using TEA (12.1 ms) than CEA (8.0 ms). PEP differences in groups divided by PTSD status and tcVNS (active vs. sham) were also greater when using the TEA versus CEA method, although the magnitude of the differences was lower. In conclusion, TEA helps to accurately identify noisy ICG beats during speaking stress, and this increased accuracy improves sensitivity to group-level differences in stress states compared to CEA, suggesting greater clinical utility.
Collapse
Affiliation(s)
- Shafa-at Ali Sheikh
- Department of Biomedical Informatics, Emory University, Atlanta, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, USA
| | - Nil Z. Gurel
- Neurocardiology Research Center of Excellence and Cardiac Arrhythmia Center, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Shishir Gupta
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, USA
| | - Ikenna V. Chukwu
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, USA
| | - Oleksiy Levantsevych
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, USA
| | - Mhmtjamil Alkhalaf
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, USA
| | - Majd Soudan
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, USA
| | - Rami Abdulbaki
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, USA
| | - Ammer Haffar
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, USA
| | - Gari D. Clifford
- Department of Biomedical Informatics, Emory University, Atlanta, USA
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, USA
| | - Omer T. Inan
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, USA
| | - Amit J. Shah
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, USA
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, USA
- Atlanta Veterans Affairs Health Care System, Atlanta, USA
| |
Collapse
|
32
|
Bourassa KJ, Sbarra DA. Cardiovascular reactivity, stress, and personal emotional salience: Choose your tasks carefully. Psychophysiology 2022; 59:e14037. [PMID: 35292974 PMCID: PMC9283235 DOI: 10.1111/psyp.14037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 01/13/2023]
Abstract
Both greater cardiovascular reactivity and lesser reactivity ("blunting") to laboratory stressors are linked to poor health outcomes, including among people who have a history of traumatic experiences. In a sample of recently separated and divorced adults (N = 96), this study examined whether differences in cardiovascular reactivity might be explained by differences in the personal emotional salience of the tasks and trauma history. Participants were assessed for trauma history, current distress related to their marital dissolution, and cardiovascular reactivity during two tasks, a serial subtraction math stressor task and a divorce-recall task. Participants with a greater trauma history evidenced less blood pressure reactivity to the serial subtraction task (a low personal emotional salience task) when compared to participants with less trauma history. In contrast, participants with a greater trauma history evidenced higher blood pressure reactivity to the divorce-recall task, but only if they also reported more divorce-related distress (high personal emotional salience). These associations were not significant for heart rate reactivity. Among people with a history of more traumatic experiences, a task with low personal salience was associated with a lower blood pressure response, whereas a task with higher personal emotional salience was associated with a higher blood pressure response. Future studies examining cardiovascular reactivity would benefit from determining the personal emotional salience of tasks, particularly for groups that have experienced stressful life events or trauma.
Collapse
Affiliation(s)
- Kyle J Bourassa
- Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, North Carolina, USA.,Geriatrics Research, Education, and Clinical Center, Durham VA Health Care System, Durham, North Carolina, USA
| | - David A Sbarra
- Department of Psychology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
33
|
Norcliffe-Kaufmann L. Stress and the baroreflex. Auton Neurosci 2022; 238:102946. [PMID: 35086020 DOI: 10.1016/j.autneu.2022.102946] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/16/2021] [Accepted: 01/16/2022] [Indexed: 11/27/2022]
Abstract
The stress response to emotions elicits the release of glucocorticoids from the adrenal cortex, epinephrine from the adrenal medulla, and norepinephrine from the sympathetic nerves. The baroreflex adapts to buffer these responses to ensure that perfusion to the organs meets the demands while maintaining blood pressure within a within a narrow range. While stressor-evoked autonomic cardiovascular responses may be adaptive for the short-term, the recurrent exaggerated cardiovascular stress reactions can be maladaptive in the long-term. Prolonged stress or loss of the baroreflex's buffering capacity can predispose episodes of heightened sympathetic activity during stress leading to hypertension, tachycardia, and ventricular wall motion abnormalities. This review discusses 1) how the baroreflex responds to acute and chronic stressors, 2) how lesions in the neuronal pathways of the baroreflex alter the ability to respond or counteract the stress response, and 3) the techniques to assess baroreflex sensitivity and stress responses. Evidence suggests that loss of baroreflex sensitivity may predispose heightened autonomic responses to stress and at least in part explain the association between stress, mortality and cardiovascular diseases.
Collapse
|
34
|
Impaired sympathetic neural recruitment during exercise pressor reflex activation in women with post-traumatic stress disorder. Clin Auton Res 2022; 32:115-129. [PMID: 35226233 DOI: 10.1007/s10286-022-00858-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/09/2022] [Indexed: 11/03/2022]
Abstract
Muscle sympathetic nerve activity (MSNA) increases during isometric exercise via increased firing of low-threshold action potentials (AP), recruitment of larger, higher-threshold APs, and synaptic delay modifications. Recent work found that women with post-traumatic stress disorder (PTSD) demonstrate exaggerated early-onset MSNA responses to exercise; however, it is unclear how PTSD affects AP recruitment patterns during fatiguing exercise. We hypothesized that women with PTSD (n = 11, 43 [11] [SD] years) would exhibit exaggerated sympathetic neural recruitment compared to women without PTSD (controls; n = 13, 40 [8] years). MSNA and AP discharge patterns (via microneurography and a continuous wavelet transform) were measured during 1 min of baseline, isometric handgrip exercise (IHG) to fatigue, 2 min of post-exercise circulatory occlusion (PECO), and 3 min of recovery. Women with PTSD were unable to increase AP content per burst compared to controls throughout IHG and PECO (main effect of group: P = 0.026). Furthermore, relative to controls, women with PTSD recruited fewer AP clusters per burst during the first (controls: ∆1.3 [1.2] vs. PTSD: ∆-0.2 [0.8]; P = 0.016) and second minute (controls: ∆1.2 [1.1] vs. PTSD: ∆-0.1 [0.8]; P = 0.022) of PECO, and fewer subpopulations of larger, previously silent axons during the first (controls: ∆5 [4] vs. PTSD: ∆1 [2]; P = 0.020) and second minute (controls: ∆4 [2] vs. PTSD: ∆1 [2]; P = 0.021) of PECO. Conversely, PTSD did not modify the AP cluster size-latency relationship during baseline, the end of IHG, or PECO (all P = 0.658-0.745). Collectively, these data indicate that women with PTSD demonstrate inherent impairments in the fundamental neural coding patterns elicited by the sympathetic nervous system during IHG and exercise pressor reflex activation.
Collapse
|
35
|
Forstenpointner J, Elman I, Freeman R, Borsook D. The Omnipresence of Autonomic Modulation in Health and Disease. Prog Neurobiol 2022; 210:102218. [PMID: 35033599 DOI: 10.1016/j.pneurobio.2022.102218] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/13/2021] [Accepted: 01/10/2022] [Indexed: 10/19/2022]
Abstract
The Autonomic Nervous System (ANS) is a critical part of the homeostatic machinery with both central and peripheral components. However, little is known about the integration of these components and their joint role in the maintenance of health and in allostatic derailments leading to somatic and/or neuropsychiatric (co)morbidity. Based on a comprehensive literature search on the ANS neuroanatomy we dissect the complex integration of the ANS: (1) First we summarize Stress and Homeostatic Equilibrium - elucidating the responsivity of the ANS to stressors; (2) Second we describe the overall process of how the ANS is involved in Adaptation and Maladaptation to Stress; (3) In the third section the ANS is hierarchically partitioned into the peripheral/spinal, brainstem, subcortical and cortical components of the nervous system. We utilize this anatomical basis to define a model of autonomic integration. (4) Finally, we deploy the model to describe human ANS involvement in (a) Hypofunctional and (b) Hyperfunctional states providing examples in the healthy state and in clinical conditions.
Collapse
Affiliation(s)
- Julia Forstenpointner
- Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA; Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, SH, Germany.
| | - Igor Elman
- Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA; Cambridge Health Alliance, Harvard Medical School, Cambridge, MA, USA
| | - Roy Freeman
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - David Borsook
- Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA; Departments of Psychiatry and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
36
|
Stress-related dysautonomias and neurocardiology-based treatment approaches. Auton Neurosci 2022; 239:102944. [DOI: 10.1016/j.autneu.2022.102944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 10/13/2021] [Accepted: 01/16/2022] [Indexed: 11/21/2022]
|
37
|
Grasser LR, Saad B, Bazzi C, Wanna C, Abu Suhaiban H, Mammo D, Jovanovic T, Javanbakht A. Skin conductance response to trauma interview as a candidate biomarker of trauma and related psychopathology in youth resettled as refugees. Eur J Psychotraumatol 2022; 13:2083375. [PMID: 35713586 PMCID: PMC9196716 DOI: 10.1080/20008198.2022.2083375] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
UNLABELLED Background: Posttraumatic stress symptoms (PTSS) include a constellation of physical and emotional profiles that youth exposed to trauma may experience. An estimated 20% of youth are exposed to trauma, and in refugee populations, up to 54% experience posttraumatic stress. Given the physical and mental health consequences associated with trauma exposure and subsequent psychopathology, identifying biomarkers of symptom severity is a top research priority. Objective: Previous research in adults found that skin conductance responses to trauma interview predicted current and future PTSS. We extended this method to refugee youth exposed to civilian war trauma and forced migration, to examine associations between PTSS and skin conductance in this uniquely vulnerable child and adolescent population. Methods: 86 refugee youth ages 7-17 years completed a trauma interview and assessment of self-reported PTSS. The mobile eSense app on a iPad was used to obtain continuous recordings of skin conductance level (SCL) during a trauma interview (trauma SCL). Skin conductance response (SCR) was calculated by subtracting the baseline SCL from the maximum amplitude of the trauma SCL. Results: SCL during trauma was significantly greater than baseline SCL, Trauma exposure was significantly associated with SCR to trauma interview, R2 = .084, p = .042. SCR to trauma interview was positively correlated with reexperiencing (R2 = .127, p = .028), and hyperarousal symptoms (R 2 = .123, p = .048). Conclusions: The present study provides evidence for feasibility of SCR to trauma interview as a candidate biomarker of PTSS in youth. This is the first study to look at SCR to trauma interview in youth resettled as refugees and is part of the limited but growing body of research to look at biomarkers in refugee cohorts more broadly. As the number of forcibly displaced persons surges, early detection and prevention of trauma-related psychology is becoming more important than ever. HIGHLIGHTS Using the mobile eSense app, we demonstrate that skin conductance is measurable in a variety of research settings and that skin conductance response may be a biological indicator of trauma and related psychopathology - namely re-experiencing symptoms - in youth resettled as refugees.
Collapse
Affiliation(s)
- Lana Ruvolo Grasser
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit MI, USA
| | - Bassem Saad
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit MI, USA
| | - Celine Bazzi
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit MI, USA
| | - Cassandra Wanna
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit MI, USA
| | - Hiba Abu Suhaiban
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit MI, USA
| | - Dalia Mammo
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit MI, USA
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit MI, USA
| | - Arash Javanbakht
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit MI, USA
| |
Collapse
|
38
|
Young KA. Matthew J. Friedman and the VA National PTSD Brain Bank: New Transcriptomic Insight into PTSD Pathophysiology. Psychiatry 2022; 85:171-182. [PMID: 35588482 DOI: 10.1080/00332747.2022.2068932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
39
|
Bigalke JA, Carter JR. Sympathetic Neural Control in Humans with Anxiety-Related Disorders. Compr Physiol 2021; 12:3085-3117. [PMID: 34964121 DOI: 10.1002/cphy.c210027] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Numerous conceptual models are used to describe the dynamic responsiveness of physiological systems to environmental pressures, originating with Claude Bernard's milieu intérieur and extending to more recent models such as allostasis. The impact of stress and anxiety upon these regulatory processes has both basic science and clinical relevance, extending from the pioneering work of Hans Selye who advanced the concept that stress can significantly impact physiological health and function. Of particular interest within the current article, anxiety is independently associated with cardiovascular risk, yet mechanisms underlying these associations remain equivocal. This link between anxiety and cardiovascular risk is relevant given the high prevalence of anxiety in the general population, as well as its early age of onset. Chronically anxious populations, such as those with anxiety disorders (i.e., generalized anxiety disorder, panic disorder, specific phobias, etc.) offer a human model that interrogates the deleterious effects that chronic stress and allostatic load can have on the nervous system and cardiovascular function. Further, while many of these disorders do not appear to exhibit baseline alterations in sympathetic neural activity, reactivity to mental stress offers insights into applicable, real-world scenarios in which heightened sympathetic reactivity may predispose those individuals to elevated cardiovascular risk. This article also assesses behavioral and lifestyle modifications that have been shown to concurrently improve anxiety symptoms, as well as sympathetic control. Lastly, future directions of research will be discussed, with a focus on better integration of psychological factors within physiological studies examining anxiety and neural cardiovascular health. © 2022 American Physiological Society. Compr Physiol 12:1-33, 2022.
Collapse
Affiliation(s)
- Jeremy A Bigalke
- Department of Psychology, Montana State University, Bozeman, Montana, USA
| | - Jason R Carter
- Department of Psychology, Montana State University, Bozeman, Montana, USA.,Department of Health and Human Development, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
40
|
Fu Q. Autonomic dysfunction and cardiovascular risk in post-traumatic stress disorder. Auton Neurosci 2021; 237:102923. [PMID: 34844132 DOI: 10.1016/j.autneu.2021.102923] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 09/28/2021] [Accepted: 11/13/2021] [Indexed: 01/15/2023]
Abstract
BACKGROUND Patients with post-traumatic stress disorder (PTSD) have an increased risk for cardiovascular disease. The underlying mechanisms are unclear but impaired autonomic function may contribute. However, research in this field has shown contradictory results and the causal links between PTSD, autonomic dysfunction, and cardiovascular risk remain unknown. This brief review summarizes the current knowledge on alterations in autonomic function and cardiovascular risk in patients with PTSD. LITERATURE SEARCH STRATEGY A PubMed search of the literature was performed using the following keywords: autonomic function, heart rate variability, blood pressure variability, sympathetic activity, baroreflex function, and cardiovascular risk in combination with PTSD. Evidence-based studies conducted between 2000 and 2021 were selected. RESULTS In total 1221 articles were identified and of these, 61 (48 original research papers, 13 review articles) were included in this review. Many, though not all, studies have reported increased activity of the sympathetic nervous system and decreased activity of the parasympathetic nervous system (namely, autonomic imbalance) in PTSD patients. There seems to be enough evidence to suggest impairments in baroreflex function in PTSD, leading to blood pressure dysregulation. It appears that the chronicity of PTSD diagnosis and symptom severity are independent risk factors for cardiovascular disease, which may be linked with impaired autonomic function. CONCLUSIONS Increased cardiovascular risk may be associated with autonomic dysfunction in PTSD. Whether autonomic dysfunction can serve as a biomarker for the onset and progression of PTSD remains to be determined. It also needs to determine if autonomic imbalance increases the risk of developing PTSD.
Collapse
Affiliation(s)
- Qi Fu
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States of America.
| |
Collapse
|
41
|
Nakamura K, Morrison SF. Central sympathetic network for thermoregulatory responses to psychological stress. Auton Neurosci 2021; 237:102918. [PMID: 34823147 DOI: 10.1016/j.autneu.2021.102918] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/05/2021] [Accepted: 11/13/2021] [Indexed: 11/16/2022]
Abstract
In mammals, many types of psychological stressors elicit a variety of sympathoexcitatory responses paralleling the classic fight-or-flight response to a threat to survival, including increased body temperature via brown adipose tissue thermogenesis and cutaneous vasoconstriction, and increased skeletal muscle blood flow via tachycardia and visceral vasoconstriction. Although these responses are usually supportive for stress coping, aberrant sympathetic responses to stress can lead to clinical issues in psychosomatic medicine. Sympathetic stress responses are mediated mostly by sympathetic premotor drives from the rostral medullary raphe region (rMR) and partly by those from the rostral ventrolateral medulla (RVLM). Hypothalamomedullary descending pathways from the dorsomedial hypothalamus (DMH) to the rMR and RVLM mediate important, stress-driven sympathoexcitatory transmission to the premotor neurons to drive the thermal and cardiovascular responses. The DMH also likely sends an excitatory input to the paraventricular hypothalamic nucleus to stimulate stress hormone release. Neurons in the DMH receive a stress-related excitation from the dorsal peduncular cortex and dorsal tenia tecta (DP/DTT) in the ventromedial prefrontal cortex. By connecting the corticolimbic emotion circuit to the central sympathetic and somatic motor systems, the DP/DTT → DMH pathway plays as the primary mediator of the psychosomatic signaling that drives a variety of sympathetic and behavioral stress responses. These brain regions together with other stress-related regions constitute a central neural network for physiological stress responses. This network model is relevant to understanding the central mechanisms by which stress and emotions affect autonomic regulations of homeostasis and to developing new therapeutic strategies for various stress-related disorders.
Collapse
Affiliation(s)
- Kazuhiro Nakamura
- Department of Integrative Physiology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| | - Shaun F Morrison
- Department of Neurological Surgery, Oregon Health and Science University, Portland, OR 97239, USA
| |
Collapse
|
42
|
A hypothalamomedullary network for physiological responses to environmental stresses. Nat Rev Neurosci 2021; 23:35-52. [PMID: 34728833 DOI: 10.1038/s41583-021-00532-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 02/07/2023]
Abstract
Various environmental stressors, such as extreme temperatures (hot and cold), pathogens, predators and insufficient food, can threaten life. Remarkable progress has recently been made in understanding the central circuit mechanisms of physiological responses to such stressors. A hypothalamomedullary neural pathway from the dorsomedial hypothalamus (DMH) to the rostral medullary raphe region (rMR) regulates sympathetic outflows to effector organs for homeostasis. Thermal and infection stress inputs to the preoptic area dynamically alter the DMH → rMR transmission to elicit thermoregulatory, febrile and cardiovascular responses. Psychological stress signalling from a ventromedial prefrontal cortical area to the DMH drives sympathetic and behavioural responses for stress coping, representing a psychosomatic connection from the corticolimbic emotion circuit to the autonomic and somatic motor systems. Under starvation stress, medullary reticular neurons activated by hunger signalling from the hypothalamus suppress thermogenic drive from the rMR for energy saving and prime mastication to promote food intake. This Perspective presents a combined neural network for environmental stress responses, providing insights into the central circuit mechanism for the integrative regulation of systemic organs.
Collapse
|
43
|
Elkhatib SK, Moshfegh CM, Watson GF, Schwab AD, Katsurada K, Patel KP, Case AJ. Splenic denervation attenuates repeated social defeat stress-induced T-lymphocyte inflammation. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2021; 1:190-200. [PMID: 35330608 PMCID: PMC8941638 DOI: 10.1016/j.bpsgos.2021.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/12/2021] [Accepted: 05/06/2021] [Indexed: 11/28/2022] Open
Abstract
Background Post-traumatic stress disorder (PTSD) is a devastating psychological disorder. Patients with PTSD canonically demonstrate an increased risk for inflammatory diseases, as well as increased sympathetic tone and norepinephrine (NE) outflow. Yet, the exact etiology and causal nature of these physiologic changes remain unclear. Previously, we demonstrated that exogenous NE alters mitochondrial superoxide in T-lymphocytes to produce a pro-inflammatory T-helper 17 (TH17) phenotype, and observed similar TH17 polarization in a preclinical model of PTSD. Therefore, we hypothesized sympathetic-driven neuroimmune interactions could mediate psychological trauma-induced T-lymphocyte inflammation. Methods Repeated social defeat stress (RSDS) is a preclinical murine model that recapitulates the behavioral, autonomic, and inflammatory aspects of PTSD. Targeted splenic denervation (Dnx) was performed to deduce the contribution of splenic sympathetic nerves to RSDS-induced inflammation. Eighty-five C57BL/6J mice underwent Dnx or sham-operation, followed by RSDS or control paradigms. Animals were assessed for behavioral, autonomic, inflammatory, and redox profiles. Results Dnx did not alter the antisocial or anxiety-like behavior induced by RSDS. In circulation, RSDS Dnx animals exhibited diminished levels of T-lymphocyte-specific cytokines (IL-2, IL-17A, and IL-22) compared to intact animals, whereas other non-specific inflammatory cytokines (e.g., IL-6, TNF-α, and IL-10) were unaffected by Dnx. Importantly, Dnx specifically ameliorated the increases in RSDS-induced T-lymphocyte mitochondrial superoxide, TH17 polarization, and pro-inflammatory gene expression with minimal impact to non-T-lymphocyte immune populations. Conclusions Overall, our data suggest that sympathetic nerves regulate RSDS-induced splenic T-lymphocyte inflammation, but play less of a role in the behavioral and non-T-lymphocyte inflammatory phenotypes induced by this psychological trauma paradigm.
Collapse
Affiliation(s)
- Safwan K. Elkhatib
- Department of Cellular and Integrative Physiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Cassandra M. Moshfegh
- Department of Cellular and Integrative Physiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Gabrielle F. Watson
- Department of Cellular and Integrative Physiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Aaron D. Schwab
- Department of Cellular and Integrative Physiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Kenichi Katsurada
- Department of Cellular and Integrative Physiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
- School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Kaushik P. Patel
- Department of Cellular and Integrative Physiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Adam J. Case
- Department of Cellular and Integrative Physiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Psychiatry and Behavioral Sciences, College of Medicine, Texas A&M Health Science Center, Bryan, Texas
| |
Collapse
|
44
|
Hamaoka T, Blaha C, Luck JC, Leuenberger UA, Sinoway LI, Cui J. Acute effects of sublingual nitroglycerin on cardiovagal and sympathetic baroreflex sensitivity. Am J Physiol Regul Integr Comp Physiol 2021; 321:R525-R536. [PMID: 34378422 DOI: 10.1152/ajpregu.00304.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of nitroglycerin (glyceryl trinitrate, GTN) on baroreflex sensitivity (BRS) are incompletely understood. Moreover, there are no reports evaluating the acute responses in both the sympathetic BRS (SBRS) and the cardiovagal BRS (CBRS) to the administration of sublingual GTN. We hypothesized that sublingual GTN modulates both CBRS and SBRS. In 10 healthy subjects, beat-to-beat heart rate (HR), blood pressure (BP) and muscle sympathetic nerve activity (MSNA) were recorded before and for 10 min after sublingual administration of GTN 0.4 mg. SBRS was evaluated from the relationship between spontaneous variations in diastolic BP and MSNA. CBRS was assessed with the sequence technique. These variables were assessed during baseline, during min 3rd - 6th (Post A) and 7th -10th min (Post B) after GTN administration. Two min after GTN administration, MSNA increased significantly and remained significantly elevated during recording. Compared to baseline, CBRS decreased significantly (Post A: 12.9 ± 1.6 to 7.1 ± 1.0 ms/mmHg, P < 0.05), while SBRS increased significantly (Post A: 0.8 ± 0.2 to 1.5 ± 0.2 units・beat-1・mmHg-1, P < 0.05) with an upward shift of the operating point. There were no differences in these variables between Post A and B. A clinical dose of GTN increased MSNA rapidly through effects on both CBRS and SBRS. These effects should be kept in mind when nitrates are used to clinically treat chest pain and acute coronary syndromes and used as vasodilators in experimental settings.
Collapse
Affiliation(s)
- Takuto Hamaoka
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Cheryl Blaha
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - J Carter Luck
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Urs A Leuenberger
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Lawrence I Sinoway
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Jian Cui
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
45
|
Szulczewski MT. Transcutaneous Auricular Vagus Nerve Stimulation Combined With Slow Breathing: Speculations on Potential Applications and Technical Considerations. Neuromodulation 2021; 25:380-394. [PMID: 35396070 DOI: 10.1111/ner.13458] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/02/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Transcutaneous auricular vagus nerve stimulation (taVNS) is a relatively novel noninvasive neurostimulation method that is believed to mimic the effects of invasive cervical VNS. It has recently been suggested that the effectiveness of taVNS can be enhanced by combining it with controlled slow breathing. Slow breathing modulates the activity of the vagus nerve and is used in behavioral medicine to decrease psychophysiological arousal. Based on studies that examine the effects of taVNS and slow breathing separately, this article speculates on some of the conditions in which this combination treatment may prove effective. Furthermore, based on findings from studies on the optimization of taVNS and slow breathing, this article provides guidance on how to combine taVNS with slow breathing. MATERIALS AND METHODS A nonsystematic review. RESULTS Both taVNS and slow breathing are considered promising add-on therapeutic approaches for anxiety and depressive disorders, chronic pain, cardiovascular diseases, and insomnia. Therefore, taVNS combined with slow breathing may produce additive or even synergistic beneficial effects in these conditions. Studies on respiratory-gated taVNS during spontaneous breathing suggest that taVNS should be delivered during expiration. Therefore, this article proposes to use taVNS as a breathing pacer to indicate when and for how long to exhale during slow breathing exercises. CONCLUSIONS Combining taVNS with slow breathing seems to be a promising hybrid neurostimulation and behavioral intervention.
Collapse
|
46
|
Weggen JB, Darling AM, Autler AS, Hogwood AC, Decker KP, Imthurn B, Tuzzolo GM, Garten RS. Impact of acute antioxidant supplementation on vascular function and autonomic nervous system modulation in young adults with PTSD. Am J Physiol Regul Integr Comp Physiol 2021; 321:R49-R61. [PMID: 34075811 DOI: 10.1152/ajpregu.00054.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Posttraumatic stress disorder (PTSD) has been associated with an increase in risk of cardiovascular disease (CVD). The goal of this study was to determine if peripheral vascular dysfunction, a precursor to CVD, was present in young adults with PTSD, and if an acute antioxidant (AO) supplementation could modify this potential PTSD-induced vascular dysfunction. Thirteen individuals with PTSD were recruited for this investigation and were compared with 35 age- and sex-matched controls (CTRL). The PTSD group participated in two visits, consuming either a placebo (PTSD-PL) or antioxidants (PTSD-AO; vitamins C and E; α-lipoic acid) before their visits, whereas the CTRL subjects only participated in one visit. Upper and lower limb vascular functions were assessed via flow-mediated dilation and passive leg movement technique. Heart rate variability was utilized to assess autonomic nervous system modulation. The PTSD-PL condition, when compared with the CTRL group, reported lower arm and leg microvascular function as well as sympathetic nervous system (SNS) predominance. After acute AO supplementation, arm, but not leg, microvascular function was improved and SNS predominance was lowered to which the prior difference between PTSD group and CTRL was no longer significant. Young individuals with PTSD demonstrated lower arm and leg microvascular function as well as greater SNS predominance when compared with age- and sex-matched controls. Furthermore, this lower vascular/autonomic function was augmented by an acute AO supplementation to the level of the healthy controls, potentially implicating oxidative stress as a contributor to this blunted vascular/autonomic function.
Collapse
Affiliation(s)
- Jennifer B Weggen
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Ashley M Darling
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| | - Aaron S Autler
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Austin C Hogwood
- Department of Kinesiology, University of Virginia, Charlottesville, Virginia
| | - Kevin P Decker
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Brandon Imthurn
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Gina M Tuzzolo
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Ryan S Garten
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
47
|
Post-traumatic stress disorder and its association with stroke and stroke risk factors: A literature review. Neurobiol Stress 2021; 14:100332. [PMID: 34026954 PMCID: PMC8122169 DOI: 10.1016/j.ynstr.2021.100332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 03/27/2021] [Accepted: 04/20/2021] [Indexed: 12/19/2022] Open
Abstract
Stroke is a major cause of mortality and disability globally that has multiple risk factors. A risk factor that has recently gained more attention is post-traumatic stress disorder (PTSD). Literature searches were carried out for updated PTSD information and for the relationship between PTSD and stroke. The review was divided into two sections, one exploring PTSD as an independent risk factor for stroke, with a second concentrating on PTSD's influence on stroke risk factors. The study presents accumulating evidence that shows traumatic stress predicts stroke and is also linked to many major stroke risk factors. The review contributes knowledge to stroke aetiology and acts as a reference for understanding the relationship between PTSD and stroke. The information presented indicates that screening and identification of traumatic experience would be beneficial for directing stroke patients to appropriate psychological and lifestyle interventions. In doing so, the burden of stroke may be reduced worldwide.
Collapse
|
48
|
Cardiovascular pathophysiology from the cardioneural perspective and its clinical applications. Trends Cardiovasc Med 2021; 32:172-177. [PMID: 33711428 PMCID: PMC8426431 DOI: 10.1016/j.tcm.2021.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 12/24/2022]
Abstract
Coronary heart disease and psychological stress factors such as depression are prevalent and associated with high morbidity/mortality; they are also challenging to manage, especially when treated in isolation of each other. Recent advances support an integrated approach to their management that is built on a foundation of an extensive, multi-component network of neurological structures. In this review, we describe this extensive cardioneural network that encompasses the heart, brain, spinal cord, and ganglia throughout the body, and then discuss ambulatory and laboratory-based non-invasive measures of this network that both measure psychological stress and heart disease severity. Lastly, we discuss their potential transformative clinical and public health applications, and also possible cardioneural interventions such as exercise and biofeedback.
Collapse
|
49
|
Holwerda SW, Carter JR, Yang H, Wang J, Pierce GL, Fadel PJ. CORP: Standardizing methodology for assessing spontaneous baroreflex control of muscle sympathetic nerve activity in humans. Am J Physiol Heart Circ Physiol 2021; 320:H762-H771. [PMID: 33275522 PMCID: PMC8082800 DOI: 10.1152/ajpheart.00704.2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/28/2022]
Abstract
The use of spontaneous bursts of muscle sympathetic nerve activity (MSNA) to assess arterial baroreflex control of sympathetic nerve activity has seen increased utility in studies of both health and disease. However, methods used for analyzing spontaneous MSNA baroreflex sensitivity are highly variable across published studies. Therefore, we sought to comprehensively examine methods of producing linear regression slopes to quantify spontaneous MSNA baroreflex sensitivity in a large cohort of subjects (n = 150) to support a standardized procedure for analysis that would allow for consistent and comparable results across laboratories. The primary results demonstrated that 1) consistency of linear regression slopes was considerably improved when the correlation coefficient was above -0.70, which is more stringent compared with commonly reported criterion of -0.50, 2) longer recording durations increased the percentage of linear regressions producing correlation coefficients above -0.70 (1 min = 15%, 2 min = 28%, 5 min = 53%, 10 min = 67%, P < 0.001) and reaching statistical significance (1 min = 40%, 2 min = 69%, 5 min = 78%, 10 min = 89%, P < 0.001), 3) correlation coefficients were improved with 3-mmHg versus 1-mmHg and 2-mmHg diastolic blood pressure (BP) bin size, and 4) linear regression slopes were reduced when the acquired BP signal was not properly aligned with the cardiac cycle triggering the burst of MSNA. In summary, these results support the use of baseline recording durations of 10 min, a correlation coefficient above -0.70 for reliable linear regressions, 3-mmHg bin size, and importance of properly time-aligning MSNA and diastolic BP. Together, these findings provide best practices for determining spontaneous MSNA baroreflex sensitivity under resting conditions for improved rigor and reproducibility of results.
Collapse
Affiliation(s)
- Seth W Holwerda
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Jason R Carter
- Department of Health and Human Development, Montana State University, Bozeman, Montana
| | - Huan Yang
- Department of Neurology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts
| | - Jing Wang
- College of Nursing, University of Texas at Arlington, Arlington, Texas
| | - Gary L Pierce
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa
| | - Paul J Fadel
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| |
Collapse
|
50
|
Zhao YF, Huang ZD, Gu HY, Guo GL, Yuan RX, Zhang C. Key Clinical Interest Outcomes of Pharmaceutical Administration for Veterans With Post-Traumatic Stress Disorder Based on Pooled Evidences of 36 Randomised Controlled Trials With 2,331 Adults. Front Pharmacol 2021; 11:602447. [PMID: 33390990 PMCID: PMC7773915 DOI: 10.3389/fphar.2020.602447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/26/2020] [Indexed: 02/01/2023] Open
Abstract
Background: The effects of drug treatment on veterans, who have a high risk of post-traumatic stress disorder (PTSD), are not clear, and the guidelines are different from the recommendations of the recent meta-analysis. Our goal was to find the efficacy and frequencies of complications of drugs that can treat PTSD in veterans. Method: We searched Ovid MEDLINE, Ovid Embase, The Cochrane Library and Web of Science until January 1, 2020. The outcomes were designed as the change of PTSD total scale, subsymptom score, response rate, frequencies of complications outcomes, and acceptability. Results: We included a total of 36 randomised controlled trials with a total of 2,331 adults. In terms of overall effect, drug treatment is more effective than placebo in change in total PTSD symptoms scale (SMD = -0.24, 95% CI [-0.42, -0.06]) and response (RR = 1.66, 95% CI [1.01, 2.72]). However, in terms of frequencies of complications, drugs generally had a higher withdrawal rate (RR = 1.02, 95% CI [0.86, 1.20]) and a higher frequencies of complications (RR = 1.72, 95% CI [1.20, 2.47]) than placebo. Risperidone showed a good curative effect in change in total PTSD symptoms scale (SMD = -0.22, 95% CI [-0.43, 0.00]) and acceptability (RR = 1.31, 95% CI [0.82, 2.59]). The drugs acting on 5-HT receptors, our results showed that symptoms of hyper-arousal (SMD = -0.54, 95% CI [-0.86, -0.21]), symptoms of re-experiencing (SMD = -0.62, 95% CI [-0.86, -0.39]) and symptoms of avoidance (SMD = -0.53, 95% CI [- 0.77,-0.3]), The drugs acting on dopamine receptors, our results showed that symptoms of re-experiencing (SMD = -0.35, 95% CI [-0.55, -0.16]) and the drugs acting on α2 receptor has a significant effect on reducing total PTSD symptoms scale (SMD = -0.34, 95% CI [-0.62, -0.06]). Conclusion: Drug therapy can effectively treat PTSD, but its frequencies of complications should be considered. Different from the guidelines for adult PTSD, this study supports atypical antipsychotics, selective serotonin reuptake inhibitors and receptors that act on 5-HT and dopamine for the treatment of PTSD in veterans. Based on evidence among these drugs, the risperidone is the most effective for veterans, otherwise, sertraline is used as an alternative.
Collapse
Affiliation(s)
- Yi-Fan Zhao
- Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | | | - Hui-Yun Gu
- Department of Spine and Orthopedic Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Guang-Ling Guo
- Center of Women's Health Sciences, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Rui-Xia Yuan
- Clinical Big Data Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chao Zhang
- Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|