1
|
Watanabe H, Kobikov Y, Nosova O, Sarkisyan D, Galatenko V, Carvalho L, Maia GH, Lukoyanov N, Lavrov I, Ossipov MH, Hallberg M, Schouenborg J, Zhang M, Bakalkin G. The Left-Right Side-Specific Neuroendocrine Signaling from Injured Brain: An Organizational Principle. FUNCTION 2024; 5:zqae013. [PMID: 38985004 PMCID: PMC11237900 DOI: 10.1093/function/zqae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 07/11/2024] Open
Abstract
A neurological dogma is that the contralateral effects of brain injury are set through crossed descending neural tracts. We have recently identified a novel topographic neuroendocrine system (T-NES) that operates via a humoral pathway and mediates the left-right side-specific effects of unilateral brain lesions. In rats with completely transected thoracic spinal cords, unilateral injury to the sensorimotor cortex produced contralateral hindlimb flexion, a proxy for neurological deficit. Here, we investigated in acute experiments whether T-NES consists of left and right counterparts and whether they differ in neural and molecular mechanisms. We demonstrated that left- and right-sided hormonal signaling is differentially blocked by the δ-, κ- and µ-opioid antagonists. Left and right neurohormonal signaling differed in targeting the afferent spinal mechanisms. Bilateral deafferentation of the lumbar spinal cord abolished the hormone-mediated effects of the left-brain injury but not the right-sided lesion. The sympathetic nervous system was ruled out as a brain-to-spinal cord-signaling pathway since hindlimb responses were induced in rats with cervical spinal cord transections that were rostral to the preganglionic sympathetic neurons. Analysis of gene-gene co-expression patterns identified the left- and right-side-specific gene co-expression networks that were coordinated via the humoral pathway across the hypothalamus and lumbar spinal cord. The coordination was ipsilateral and disrupted by brain injury. These findings suggest that T-NES is bipartite and that its left and right counterparts contribute to contralateral neurological deficits through distinct neural mechanisms, and may enable ipsilateral regulation of molecular and neural processes across distant neural areas along the neuraxis.
Collapse
Affiliation(s)
- Hiroyuki Watanabe
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, SE-751 24, Sweden
- Department of Molecular Medicine, University of Southern Denmark, Odense, DK-5230, Denmark
| | - Yaromir Kobikov
- Volunteer Associate at Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, SE-751 24, Sweden
| | - Olga Nosova
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, SE-751 24, Sweden
| | - Daniil Sarkisyan
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, SE-751 24, Sweden
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, SE-751 08, Sweden
| | | | - Liliana Carvalho
- Departamento de Biomedicina da Faculdade de Medicina da Universidade do Porto, Porto 4200-319, Portugal
| | - Gisela H Maia
- Centro de Investigação em Saúde Translacional e Biotecnologia Médica (TBIO)/Rede de Investigação em Saúde (RISE-Health), Escola Superior de Saúde, Instituto Politécnico do Porto, Porto 4200-072, Portugal
- Medibrain, Vila do Conde 4480-807, Portugal
- Brain Research Institute, Porto 4450-208, Portugal
| | - Nikolay Lukoyanov
- Departamento de Biomedicina da Faculdade de Medicina da Universidade do Porto, Porto 4200-319, Portugal
- Brain Research Institute, Porto 4450-208, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal
| | - Igor Lavrov
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael H Ossipov
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ 85724-5050, USA
| | - Mathias Hallberg
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, SE-751 24, Sweden
| | - Jens Schouenborg
- Neuronano Research Center, Department of Experimental Medical Science, Lund University, Lund 223 63, Sweden
| | - Mengliang Zhang
- Department of Molecular Medicine, University of Southern Denmark, Odense, DK-5230, Denmark
- Neuronano Research Center, Department of Experimental Medical Science, Lund University, Lund 223 63, Sweden
| | - Georgy Bakalkin
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, SE-751 24, Sweden
| |
Collapse
|
2
|
Henderson FC, Schubart JR, Narayanan MV, Tuchman K, Mills SE, Poppe DJ, Koby MB, Rowe PC, Francomano CA. Craniocervical instability in patients with Ehlers-Danlos syndromes: outcomes analysis following occipito-cervical fusion. Neurosurg Rev 2024; 47:27. [PMID: 38163828 PMCID: PMC10758368 DOI: 10.1007/s10143-023-02249-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/30/2023] [Accepted: 12/09/2023] [Indexed: 01/03/2024]
Abstract
Craniocervical instability (CCI) is increasingly recognized in hereditary disorders of connective tissue and in some patients following suboccipital decompression for Chiari malformation (CMI) or low-lying cerebellar tonsils (LLCT). CCI is characterized by severe headache and neck pain, cervical medullary syndrome, lower cranial nerve deficits, myelopathy, and radiological metrics, for which occipital cervical fusion (OCF) has been advocated. We conducted a retrospective analysis of patients with CCI and Ehlers-Danlos syndrome (EDS) to determine whether the surgical outcomes supported the criteria by which patients were selected for OCF. Fifty-three consecutive subjects diagnosed with EDS, who presented with severe head and neck pain, lower cranial nerve deficits, cervical medullary syndrome, myelopathy, and radiologic findings of CCI, underwent open reduction, stabilization, and OCF. Thirty-two of these patients underwent suboccipital decompression for obstruction of cerebral spinal fluid flow. Questionnaire data and clinical findings were abstracted by a research nurse. Follow-up questionnaires were administered at 5-28 months (mean 15.1). The study group demonstrated significant improvement in headache and neck pain (p < 0.001), decreased use of pain medication (p < 0.0001), and improved Karnofsky Performance Status score (p < 0.001). Statistically significant improvement was also demonstrated for nausea, syncope (p < 0.001), speech difficulties, concentration, vertigo, dizziness, numbness, arm weakness, and fatigue (p = 0.001). The mental fatigue score and orthostatic grading score were improved (p < 0.01). There was no difference in pain improvement between patients with CMI/LLCT and those without. This outcomes analysis of patients with disabling CCI in the setting of EDS demonstrated significant benefits of OCF. The results support the reasonableness of the selection criteria for OCF. We advocate for a multi-center, prospective clinical trial of OCF in this population.
Collapse
Affiliation(s)
- Fraser C Henderson
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA.
- The Metropolitan Neurosurgery Group LLC, Silver Spring, MD, USA.
| | - Jane R Schubart
- Department of Surgery, Penn State College of Medicine, Hershey, PA, USA
| | - Malini V Narayanan
- Division of Neurosurgery, University of Maryland Capital Region Medical Center, Largo, Maryland, USA
| | - Kelly Tuchman
- The Metropolitan Neurosurgery Group LLC, Silver Spring, MD, USA
| | - Susan E Mills
- Department of Surgery, Penn State College of Medicine, Hershey, PA, USA
| | - Dorothy J Poppe
- Bobby Jones Chiari & Syringomyelia Foundation, Staten Island, New York, USA
| | - Myles B Koby
- Luminis Health, Doctors Community Medical Center, Lanham, Maryland, USA
| | - Peter C Rowe
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Clair A Francomano
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
3
|
Zsombok A, Desmoulins LD, Derbenev AV. Sympathetic circuits regulating hepatic glucose metabolism: where we stand. Physiol Rev 2024; 104:85-101. [PMID: 37440208 PMCID: PMC11281813 DOI: 10.1152/physrev.00005.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/12/2023] [Accepted: 07/10/2023] [Indexed: 07/14/2023] Open
Abstract
The prevalence of metabolic disorders, including type 2 diabetes mellitus, continues to increase worldwide. Although newer and more advanced therapies are available, current treatments are still inadequate and the search for solutions remains. The regulation of energy homeostasis, including glucose metabolism, involves an exchange of information between the nervous systems and peripheral organs and tissues; therefore, developing treatments to alter central and/or peripheral neural pathways could be an alternative solution to modulate whole body metabolism. Liver glucose production and storage are major mechanisms controlling glycemia, and the autonomic nervous system plays an important role in the regulation of hepatic functions. Autonomic nervous system imbalance contributes to excessive hepatic glucose production and thus to the development and progression of type 2 diabetes mellitus. At cellular levels, change in neuronal activity is one of the underlying mechanisms of autonomic imbalance; therefore, modulation of the excitability of neurons involved in autonomic outflow governance has the potential to improve glycemic status. Tissue-specific subsets of preautonomic neurons differentially control autonomic outflow; therefore, detailed information about neural circuits and properties of liver-related neurons is necessary for the development of strategies to regulate liver functions via the autonomic nerves. This review provides an overview of our current understanding of the hypothalamus-ventral brainstem-liver pathway involved in the sympathetic regulation of the liver, outlines strategies to identify organ-related neurons, and summarizes neuronal plasticity during diabetic conditions with a particular focus on liver-related neurons in the paraventricular nucleus.
Collapse
Affiliation(s)
- Andrea Zsombok
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
- Tulane Brain Institute, Tulane University, New Orleans, Louisiana, United States
| | - Lucie D Desmoulins
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| | - Andrei V Derbenev
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
- Tulane Brain Institute, Tulane University, New Orleans, Louisiana, United States
| |
Collapse
|
4
|
Carey H, Pegios M, Martin L, Saleeba C, Turner AJ, Everett NA, Bjerke IE, Puchades MA, Bjaalie JG, McMullan S. DeepSlice: rapid fully automatic registration of mouse brain imaging to a volumetric atlas. Nat Commun 2023; 14:5884. [PMID: 37735467 PMCID: PMC10514056 DOI: 10.1038/s41467-023-41645-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
Registration of data to a common frame of reference is an essential step in the analysis and integration of diverse neuroscientific data. To this end, volumetric brain atlases enable histological datasets to be spatially registered and analyzed, yet accurate registration remains expertise-dependent and slow. In order to address this limitation, we have trained a neural network, DeepSlice, to register mouse brain histological images to the Allen Brain Common Coordinate Framework, retaining registration accuracy while improving speed by >1000 fold.
Collapse
Affiliation(s)
- Harry Carey
- Macquarie Medical School, Faculty of Medicine, Health & Human Sciences, Macquarie University, Marsfield, NSW, Australia
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Michael Pegios
- Macquarie Medical School, Faculty of Medicine, Health & Human Sciences, Macquarie University, Marsfield, NSW, Australia
| | | | - Chris Saleeba
- Macquarie Medical School, Faculty of Medicine, Health & Human Sciences, Macquarie University, Marsfield, NSW, Australia
| | - Anita J Turner
- Macquarie Medical School, Faculty of Medicine, Health & Human Sciences, Macquarie University, Marsfield, NSW, Australia
| | | | - Ingvild E Bjerke
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Maja A Puchades
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Jan G Bjaalie
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Simon McMullan
- Macquarie Medical School, Faculty of Medicine, Health & Human Sciences, Macquarie University, Marsfield, NSW, Australia.
| |
Collapse
|
5
|
Kulkarni SS, Mischel NA, Mueller PJ. Revisiting differential control of sympathetic outflow by the rostral ventrolateral medulla. Front Physiol 2023; 13:1099513. [PMID: 36733693 PMCID: PMC9887112 DOI: 10.3389/fphys.2022.1099513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/23/2022] [Indexed: 01/18/2023] Open
Abstract
The rostral ventrolateral medulla (RVLM) is an important brain region involved in both resting and reflex regulation of the sympathetic nervous system. Anatomical evidence suggests that as a bilateral structure, each RVLM innervates sympathetic preganglionic neurons on both sides of the spinal cord. However, the functional importance of ipsilateral versus contralateral projections from the RVLM is lacking. Similarly, during hypotension, the RVLM is believed to rely primarily on withdrawal of tonic gamma aminobutyric acid (GABA) inhibition to increase sympathetic outflow but whether GABA withdrawal mediates increased activity of functionally different sympathetic nerves is unknown. We sought to test the hypothesis that activation of the ipsilateral versus contralateral RVLM produces differential increases in splanchnic versus adrenal sympathetic nerve activities, as representative examples of functionally different sympathetic nerves. We also tested whether GABA withdrawal is responsible for hypotension-induced increases in splanchnic and adrenal sympathetic nerve activity. To test our hypothesis, we measured splanchnic and adrenal sympathetic nerve activity simultaneously in Inactin-anesthetized, male Sprague-Dawley rats during ipsilateral or contralateral glutamatergic activation of the RVLM. We also produced hypotension (sodium nitroprusside, i.v.) before and after bilateral blockade of GABAA receptors in the RVLM (bicuculline, 5 mM 90 nL). Glutamate (100 mM, 30 nL) injected into the ipsilateral or contralateral RVLM produced equivalent increases in splanchnic sympathetic nerve activity, but increased adrenal sympathetic nerve activity by more than double with ipsilateral injections versus contralateral injections (p < 0.05; n = 6). In response to hypotension, increases in adrenal sympathetic nerve activity were similar after bicuculline (p > 0.05), but splanchnic sympathetic nerve activity responses were eliminated (p < 0.05; n = 5). These results provide the first functional evidence that the RVLM has predominantly ipsilateral innervation of adrenal nerves. In addition, baroreflex-mediated increases in splanchnic but not adrenal sympathetic nerve activity are mediated by GABAA receptors in the RVLM. Our studies provide a deeper understanding of neural control of sympathetic regulation and insight towards novel treatments for cardiovascular disease involving sympathetic nervous system dysregulation.
Collapse
Affiliation(s)
| | | | - Patrick J. Mueller
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
6
|
The Role of Sympathetic Nerves in Osteoporosis: A Narrative Review. Biomedicines 2022; 11:biomedicines11010033. [PMID: 36672541 PMCID: PMC9855775 DOI: 10.3390/biomedicines11010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/25/2022] Open
Abstract
Osteoporosis, a systemic bone disease, is characterized by decreased bone density due to various reasons, destructed bone microstructure, and increased bone fragility. The incidence of osteoporosis is very high among the elderly, and patients with osteoporosis are prone to suffer from spine fractures and hip fractures, which cause great harm to patients. Meanwhile, osteoporosis is mainly treated with anti-osteoporosis drugs that have side effects. Therefore, the development of new treatment modalities has a significant clinical impact. Sympathetic nerves play an important role in various physiological activities and the regulation of osteoporosis as well. Therefore, the role of sympathetic nerves in osteoporosis was reviewed, aiming to provide information for future targeting of sympathetic nerves in osteoporosis.
Collapse
|
7
|
Foley C, Litscher G. A Biophysical Model for Cardiovascular Effects of Acupuncture-Underlying Mechanisms Based on First Principles. Med Acupunct 2022; 34:353-370. [PMID: 36644426 PMCID: PMC9805889 DOI: 10.1089/acu.2022.0050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
According to recent translations by medical professionals of the foundational texts of Chinese Medicine, the acupuncture channel system can be reconciled with the neurovasculature. From there, the underlying mechanisms of the effects of acupuncture can be drawn from established physiology and known physical laws. A large body of research has been carried out using cardiovascular markers to measure the effects of acupuncture. Three of these parameters are re-viewed and explored anew in detail. The focus is on changes in microcirculation, blood pressure, and heart rate variability. The physiological mechanisms accounting for the observed changes are proposed to be ascending vasodilatation, resetting of the baroreceptor reflex, and re-organization of heart beating patterns around intrinsically assigned attractor sets.
Collapse
Affiliation(s)
- Clare Foley
- Biophysicist and Licensed Acupuncturist (MSc. Biophysics, NP, Ac. Lic.), Dublin, Ireland
| | - Gerhard Litscher
- Research Unit of Biomedical Engineering in Anesthesia and Intensive Care Medicine, Research Unit for Complementary and Integrative Laser Medicine, Department of Anesthesiology and Intensive Care Medicine, Traditional Chinese Medicine (TCM) Research Center Graz, Medical University of Graz, Graz, Austria
| |
Collapse
|
8
|
Lee JB, Katayama K, Millar PJ. Upper and lower limb muscle sympathetic responses to contralateral exercise in healthy humans: A pilot study. Auton Neurosci 2022; 243:103024. [PMID: 36108469 DOI: 10.1016/j.autneu.2022.103024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 10/14/2022]
Abstract
Muscle sympathetic nerve activity (MSNA) is similar between limbs at rest, although a subset of MSNA bursts do demonstrate limb-specific discharge. Whether limb differences in MSNA synchronicity are present during exercise remains controversial. We concurrently measured MSNA from the radial and fibular nerves at rest and during rhythmic handgrip (RHG), static handgrip (SHG), and post-exercise circulatory occlusion (PECO). MSNA burst frequency and incidence were similar between nerve sites during all conditions. Synchronous bursts resulted in larger increases in sympathetic-blood pressure transduction compared to isolated bursts (∆ + 3.6 ± 2.1 vs. +2.3 ± 2.4 mmHg, P = 0.01). The proportion of bursts firing synchronously between nerves at rest was slightly increased during RHG ([rest vs. exercise; mean ± SD] 45.3 ± 7.1 vs. 61.6 ± 7.2 %) and similar during SHG (56.2 ± 7.2 vs. 54 ± 10.6 %). In contrast, burst firing synchronicity increased during PECO (83.8 ± 12.4 %) alongside larger burst amplitudes. Inter-limb differences in resting MSNA are preserved during handgrip exercise, whereas isolated metaboreflex activation results in greater burst synchronization between limbs.
Collapse
Affiliation(s)
- Jordan B Lee
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Keisho Katayama
- Research Center of Health, Physical Fitness and Sports, Graduate School of Medicine, Nagoya University, Japan
| | - Philip J Millar
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada; Toronto General Research Institute, Toronto General Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
9
|
Slater C, Liu Y, Weiss E, Yu K, Wang Q. The Neuromodulatory Role of the Noradrenergic and Cholinergic Systems and Their Interplay in Cognitive Functions: A Focused Review. Brain Sci 2022; 12:890. [PMID: 35884697 PMCID: PMC9320657 DOI: 10.3390/brainsci12070890] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 12/15/2022] Open
Abstract
The noradrenergic and cholinergic modulation of functionally distinct regions of the brain has become one of the primary organizational principles behind understanding the contribution of each system to the diversity of neural computation in the central nervous system. Decades of work has shown that a diverse family of receptors, stratified across different brain regions, and circuit-specific afferent and efferent projections play a critical role in helping such widespread neuromodulatory systems obtain substantial heterogeneity in neural information processing. This review briefly discusses the anatomical layout of both the noradrenergic and cholinergic systems, as well as the types and distributions of relevant receptors for each system. Previous work characterizing the direct and indirect interaction between these two systems is discussed, especially in the context of higher order cognitive functions such as attention, learning, and the decision-making process. Though a substantial amount of work has been done to characterize the role of each neuromodulator, a cohesive understanding of the region-specific cooperation of these two systems is not yet fully realized. For the field to progress, new experiments will need to be conducted that capitalize on the modular subdivisions of the brain and systematically explore the role of norepinephrine and acetylcholine in each of these subunits and across the full range of receptors expressed in different cell types in these regions.
Collapse
Affiliation(s)
- Cody Slater
- Department of Biomedical Engineering, Columbia University, ET 351, 500 W. 120th Street, New York, NY 10027, USA; (C.S.); (Y.L.); (E.W.); (K.Y.)
- Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Yuxiang Liu
- Department of Biomedical Engineering, Columbia University, ET 351, 500 W. 120th Street, New York, NY 10027, USA; (C.S.); (Y.L.); (E.W.); (K.Y.)
| | - Evan Weiss
- Department of Biomedical Engineering, Columbia University, ET 351, 500 W. 120th Street, New York, NY 10027, USA; (C.S.); (Y.L.); (E.W.); (K.Y.)
| | - Kunpeng Yu
- Department of Biomedical Engineering, Columbia University, ET 351, 500 W. 120th Street, New York, NY 10027, USA; (C.S.); (Y.L.); (E.W.); (K.Y.)
| | - Qi Wang
- Department of Biomedical Engineering, Columbia University, ET 351, 500 W. 120th Street, New York, NY 10027, USA; (C.S.); (Y.L.); (E.W.); (K.Y.)
| |
Collapse
|
10
|
Miki K, Ikegame S, Yoshimoto M. Regional Differences in Sympathetic Nerve Activity Are Generated by Multiple Arterial Baroreflex Loops Arranged in Parallel. Front Physiol 2022; 13:858654. [PMID: 35444564 PMCID: PMC9014290 DOI: 10.3389/fphys.2022.858654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
In this review, by evaluating the responses during freezing, rapid eye movement (REM) sleep, and treadmill exercise, we discuss how multiple baroreflex loops arranged in parallel act on different organs to modulate sympathetic nerve activity (SNA) in a region-specific and coordinated manner throughout the body. During freezing behaviors, arterial pressure (AP) remains unchanged, heart rate (HR) persistently decreases, renal SNA (RSNA) increases, and lumbar SNA (LSNA) remains unchanged. The baroreflex curve for RSNA shifts upward; that for LSNA remains unchanged; and that for HR shifts to the left. These region-specific changes in baroreflex curves are responsible for the region-specific changes in RSNA, LSNA, and HR during freezing. The decreased HR could allow the heart to conserve energy, which is offset by the increased RSNA caused by decreased vascular conductance, resulting in an unchanged AP. In contrast, the unchanged LSNA leaves the muscles in readiness for fight or flight. During REM sleep, AP increases, RSNA and HR decrease, while LSNA is elevated. The baroreflex curve for RSNA during REM sleep is vertically compressed in comparison with that during non-REM sleep. Cerebral blood flow is elevated while cardiac output is decreased during REM sleep. To address this situation, the brain activates the LSNA selectively, causing muscle vasoconstriction, which overcomes vasodilation of the kidneys as a result of the decreased RSNA and cardiac output. Accordingly, AP can be maintained during REM sleep. During treadmill exercise, AP, HR, and RSNA increase simultaneously. The baroreflex curve for RSNA shifts right-upward with the increased feedback gain, allowing maintenance of a stable AP with significant fluctuations in the vascular conductance of working muscles. Thus, the central nervous system may employ behavior-specific scenarios for modulating baroreflex loops for differential control of SNA, changing the SNA in a region-specific and coordinated manner, and then optimizing circulatory regulation corresponding to different behaviors.
Collapse
Affiliation(s)
- Kenju Miki
- Autonomic Physiology Laboratory, Faculty of Life Science and Human Technology, Nara Women's University, Kita-Uoya Nishimachi, Nara, Japan
| | - Shizuka Ikegame
- Autonomic Physiology Laboratory, Faculty of Life Science and Human Technology, Nara Women's University, Kita-Uoya Nishimachi, Nara, Japan
| | - Misa Yoshimoto
- Autonomic Physiology Laboratory, Faculty of Life Science and Human Technology, Nara Women's University, Kita-Uoya Nishimachi, Nara, Japan
| |
Collapse
|
11
|
Barioni NO, Derakhshan F, Tenorio Lopes L, Onimaru H, Roy A, McDonald F, Scheibli E, Baghdadwala MI, Heidari N, Bharadia M, Ikeda K, Yazawa I, Okada Y, Harris MB, Dutschmann M, Wilson RJA. Novel oxygen sensing mechanism in the spinal cord involved in cardiorespiratory responses to hypoxia. SCIENCE ADVANCES 2022; 8:eabm1444. [PMID: 35333571 PMCID: PMC8956269 DOI: 10.1126/sciadv.abm1444] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 02/04/2022] [Indexed: 05/05/2023]
Abstract
As blood oxygenation decreases (hypoxemia), mammals mount cardiorespiratory responses, increasing oxygen to vital organs. The carotid bodies are the primary oxygen chemoreceptors for breathing, but sympathetic-mediated cardiovascular responses to hypoxia persist in their absence, suggesting additional high-fidelity oxygen sensors. We show that spinal thoracic sympathetic preganglionic neurons are excited by hypoxia and silenced by hyperoxia, independent of surrounding astrocytes. These spinal oxygen sensors (SOS) enhance sympatho-respiratory activity induced by CNS asphyxia-like stimuli, suggesting they bestow a life-or-death advantage. Our data suggest the SOS use a mechanism involving neuronal nitric oxide synthase 1 (NOS1) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX). We propose NOS1 serves as an oxygen-dependent sink for NADPH in hyperoxia. In hypoxia, NADPH catabolism by NOS1 decreases, increasing availability of NADPH to NOX and launching reactive oxygen species-dependent processes, including transient receptor potential channel activation. Equipped with this mechanism, SOS are likely broadly important for physiological regulation in chronic disease, spinal cord injury, and cardiorespiratory crisis.
Collapse
Affiliation(s)
- Nicole O. Barioni
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Fatemeh Derakhshan
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Luana Tenorio Lopes
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Hiroshi Onimaru
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
| | - Arijit Roy
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Fiona McDonald
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Erika Scheibli
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mufaddal I. Baghdadwala
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Negar Heidari
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Manisha Bharadia
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Keiko Ikeda
- Division of Internal Medicine, Murayama Medical Center, Musashimurayama, Tokyo, Japan
| | - Itaru Yazawa
- Global Research Center for Innovative Life Science, Peptide Drug Innovation, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo 142-8501, Japan
| | - Yasumasa Okada
- Division of Internal Medicine, Murayama Medical Center, Musashimurayama, Tokyo, Japan
| | - Michael B. Harris
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - Mathias Dutschmann
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, 3052, Australia
| | - Richard J. A. Wilson
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
12
|
Guyenet PG, Stornetta RL. Rostral ventrolateral medulla, retropontine region and autonomic regulations. Auton Neurosci 2021; 237:102922. [PMID: 34814098 DOI: 10.1016/j.autneu.2021.102922] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 12/17/2022]
Abstract
The rostral half of the ventrolateral medulla (RVLM) and adjacent ventrolateral retropontine region (henceforth RVLMRP) have been divided into various sectors by neuroscientists interested in breathing or autonomic regulations. The RVLMRP regulates respiration, glycemia, vigilance and inflammation, in addition to blood pressure. It contains interoceptors that respond to acidification, hypoxia and intracranial pressure and its rostral end contains the retrotrapezoid nucleus (RTN) which is the main central respiratory chemoreceptor. Acid detection by the RTN is an intrinsic property of the principal neurons that is enhanced by paracrine influences from surrounding astrocytes and CO2-dependent vascular constriction. RTN mediates the hypercapnic ventilatory response via complex projections to the respiratory pattern generator (CPG). The RVLM contributes to autonomic response patterns via differential recruitment of several subtypes of adrenergic (C1) and non-adrenergic neurons that directly innervate sympathetic and parasympathetic preganglionic neurons. The RVLM also innervates many brainstem and hypothalamic nuclei that contribute, albeit less directly, to autonomic responses. All lower brainstem noradrenergic clusters including the locus coeruleus are among these targets. Sympathetic tone to the circulatory system is regulated by subsets of presympathetic RVLM neurons whose activity is continuously restrained by the baroreceptors and modulated by the respiratory CPG. The inhibitory input from baroreceptors and the excitatory input from the respiratory CPG originate from neurons located in or close to the rhythm generating region of the respiratory CPG (preBötzinger complex).
Collapse
Affiliation(s)
- Patrice G Guyenet
- University of Virginia School of Medicine, Department of Pharmacology, 1340 Jefferson Park Avenue, Charlottesville, VA 22908-0735, USA.
| | - Ruth L Stornetta
- University of Virginia School of Medicine, Department of Pharmacology, 1340 Jefferson Park Avenue, Charlottesville, VA 22908-0735, USA.
| |
Collapse
|
13
|
Kondo N, Yoshimoto M, Ikegame S, Miki K. Differential shifts in baroreflex control of renal and lumbar sympathetic nerve activity induced by freezing behaviour in rats. Exp Physiol 2021; 106:2060-2069. [PMID: 34333800 DOI: 10.1113/ep089742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/29/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Is the arterial baroreflex involved in causing patterned, region-specific changes in sympathetic nerve activity during freezing behaviour in conscious rats? What is the main finding and its importance? Freezing behaviour is accompanied by differential shifts in the baroreflex control of renal and lumbar sympathetic nerve activity and heart rate. It is noteworthy that baroreflex pathways may be discretely separated, allowing differential modification of baroreflex curves that may generate differential changes in sympathetic nerve activity during freezing behaviour. ABSTRACT The present study was designed to test whether the baroreflex stimulus-response curves for renal sympathetic nerve activity (RSNA), lumbar sympathetic nerve activity (LSNA) and heart rate (HR) were shifted in a regionally specific manner during freezing behaviour in conscious rats. Male Wistar rats were chronically instrumented with electrodes and arterial and venous catheters for measurement of RSNA, LSNA and electrocardiogram. After a 60-min control period, freezing behaviour in conscious rats was induced by exposure to loud white noise (90 dB) for 10 min. The baroreflex curves for RSNA, LSNA and HR were generated by changing systemic arterial pressure using rapid intravenous infusions of vasoactive drugs and then fitted to an inverse sigmoid function curve. During the freezing behaviour, the baroreflex curve for RSNA was expanded upward with a significant (P < 0.001) increase (by 153% compared with the control level) in the upper plateau (maximum capacity of RSNA drive), whereas the baroreflex curve for LSNA remained unchanged. Conversely, the baroreflex curve for HR was shifted leftward with a significant (P = 0.004) decrease (by 11 mmHg relative to the control level) in the midpoint pressure. Our results indicate that baroreflex curve shifts for RSNA, LSNA and HR occur in a regionally specific manner during freezing behaviour. This indicates that baroreflex pathways may be discretely separated, allowing differential modification of baroreflex curves that may generate differential changes in sympathetic nerve activity during freezing behaviour.
Collapse
Affiliation(s)
- Naomi Kondo
- Department of Environmental Health, Life Science and Human Technology, Nara Women's University, Kita-Uoya Nishimachi, Nara, Japan
| | - Misa Yoshimoto
- Department of Environmental Health, Life Science and Human Technology, Nara Women's University, Kita-Uoya Nishimachi, Nara, Japan
| | - Shizuka Ikegame
- Department of Environmental Health, Life Science and Human Technology, Nara Women's University, Kita-Uoya Nishimachi, Nara, Japan
| | - Kenju Miki
- Department of Environmental Health, Life Science and Human Technology, Nara Women's University, Kita-Uoya Nishimachi, Nara, Japan
| |
Collapse
|
14
|
Sethi S, Augustine RA, Bouwer GT, Perkinson MR, Cheong I, Bussey CT, Schwenke DO, Brown CH, Lamberts RR. Increased neuronal activation in sympathoregulatory regions of the brain and spinal cord in type 2 diabetic rats. J Neuroendocrinol 2021; 33:e13016. [PMID: 34338379 DOI: 10.1111/jne.13016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/21/2021] [Accepted: 07/13/2021] [Indexed: 11/27/2022]
Abstract
Increased cardiac sympathetic nerve activity in type 2 diabetes mellitus (DM) suggests impaired autonomic control of the heart. However, the central regions that contribute to the autonomic cardiac pathologies in type 2 DM are unknown. Therefore, we tested the hypothesis that neuronal activation would be increased in central sympathoregulatory areas in a pre-clinical type 2 DM animal model. Immunohistochemistry in 20-week-old male Zucker diabetic fatty (ZDF) rats revealed an increased number of neurones expressing ΔFosB (a marker of chronic neuronal activation) in the intermediolateral column (IML) of the spinal cord in DM compared to non-diabetic (non-DM) rats (P < 0.05). Rostral ventrolateral medulla (RVLM) neurones activate IML neurones and receive inputs from the hypothalamic paraventricular nucleus (PVN), as well as the nucleus tractus solitarius (NTS) and area postrema (AP), in the brainstem. We observed more ΔFosB-positive noradrenergic RVLM neurones (P < 0.001) and corticotrophin-releasing hormone PVN neurones (P < 0.05) in DM compared to non-DM rats. More ΔFosB-positive neurones were also observed in the NTS (P < 0.05) and AP (P < 0.01) of DM rats compared to non-DM rats. Finally, because DM ZDF rats are obese, we also expected increased activation of pro-opiomelanocortin (POMC) arcuate nucleus (ARC) neurones in DM rats; however, fewer ΔFosB-positive POMC ARC neurones were observed in DM compared to non-DM rats (P < 0.01). In conclusion, increased neuronal activation in the IML of type 2 DM ZDF rats might be driven by RVLM neurones that are possibly activated by PVN, NTS and AP inputs. Elucidating the contribution of central sympathoexcitatory drive in type 2 DM might improve the effectiveness of pharmacotherapies for diabetic heart disease.
Collapse
Affiliation(s)
- Shivani Sethi
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Brain Health Research Centre, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Rachael A Augustine
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Brain Health Research Centre, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Gregory T Bouwer
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Brain Health Research Centre, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Michael R Perkinson
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Brain Health Research Centre, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Isaiah Cheong
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Brain Health Research Centre, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Carol T Bussey
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Physiology, University of Auckland, Grafton, Auckland, New Zealand
| | - Daryl O Schwenke
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Colin H Brown
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Brain Health Research Centre, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Regis R Lamberts
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
15
|
Henderson FC, Rowe PC, Narayanan M, Rosenbaum R, Koby M, Tuchmann K, Francomano CA. Refractory Syncope and Presyncope Associated with Atlantoaxial Instability: Preliminary Evidence of Improvement Following Surgical Stabilization. World Neurosurg 2021; 149:e854-e865. [PMID: 33540088 DOI: 10.1016/j.wneu.2021.01.084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND The proclivity to atlantoaxial instability (AAI) has been widely reported for conditions such as rheumatoid arthritis and Down syndrome. Similarly, we have found a higher than expected incidence of AAI in hereditary connective tissue disorders. We demonstrate a strong association of AAI with manifestations of dysautonomia, in particular syncope and lightheadedness, and make preliminary observations as to the salutary effect of surgical stabilization of the atlantoaxial motion segment. METHODS In an institutional review board-approved retrospective study, 20 subjects (16 women, 4 men) with hereditary connective tissue disorders had AAI diagnosed by computed tomography. Subjects underwent realignment (reduction), stabilization, and fusion of the C1-C2 motion segment. All subjects completed preoperative and postoperative questionnaires in which they were asked about performance, function, and autonomic symptoms, including lightheadedness, presyncope, and syncope. RESULTS All patients with AAI reported lightheadedness, and 15 had refractory syncope or presyncope despite maximal medical management and physical therapy. Postoperatively, subjects reported a statistically significant improvement in lightheadedness (P = 0.003), presyncope (P = 0.006), and syncope (P = 0.03), and in the frequency (P < 0.05) of other symptoms related to autonomic function, such as nausea, exercise intolerance, palpitations, tremors, heat intolerance, gastroesophageal reflux, and sleep apnea. CONCLUSIONS This study draws attention to the potential for AAI to present with syncope or presyncope that is refractory to medical management, and for surgical stabilization of AAI to lead to improvement of these and other autonomic symptoms.
Collapse
Affiliation(s)
- Fraser C Henderson
- Department Neurosurgery, University of Maryland Capital Region Health Center, Cheverly, Maryland, USA; Departments of Neurosurgery and Radiology, Doctors Community Hospital, Lanham, Maryland, USA; Metropolitan Neurosurgery Group LLC, Silver Spring, Maryland, USA.
| | - Peter C Rowe
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Malini Narayanan
- Department Neurosurgery, University of Maryland Capital Region Health Center, Cheverly, Maryland, USA; Departments of Neurosurgery and Radiology, Doctors Community Hospital, Lanham, Maryland, USA; Metropolitan Neurosurgery Group LLC, Silver Spring, Maryland, USA
| | - Robert Rosenbaum
- Department Neurosurgery, University of Maryland Capital Region Health Center, Cheverly, Maryland, USA; Departments of Neurosurgery and Radiology, Doctors Community Hospital, Lanham, Maryland, USA; Metropolitan Neurosurgery Group LLC, Silver Spring, Maryland, USA; Department of Neurosurgery, Walter Reed-Bethesda National Military Medical Center, Bethesda, Maryland, USA
| | - Myles Koby
- Departments of Neurosurgery and Radiology, Doctors Community Hospital, Lanham, Maryland, USA
| | - Kelly Tuchmann
- Metropolitan Neurosurgery Group LLC, Silver Spring, Maryland, USA
| | - Clair A Francomano
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
16
|
Takemoto Y. Topographic carotid vasoconstriction in the rostral ventrolateral medulla of rats. Auton Neurosci 2020; 229:102720. [DOI: 10.1016/j.autneu.2020.102720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023]
|
17
|
Incognito AV, Nardone M, Teixeira AL, Lee JB, Kathia MM, Millar PJ. Muscle sympathetic single-unit response patterns during progressive muscle metaboreflex activation in young healthy adults. J Neurophysiol 2020; 124:682-690. [PMID: 32727266 DOI: 10.1152/jn.00305.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Muscle sympathetic single units can respond differentially to stress, but whether these responses are linked to the degree of sympathoexcitation is unclear. Fifty-three muscle sympathetic single units (microneurography) were recorded in 17 participants (8 women; 24 ± 3 yr). Five 40-s bouts of 10% static handgrip were performed during a 10-min forearm ischemia to progressively increase metabolite accumulation. Each static handgrip was separated by a 75-s ischemic rest [postexercise circulatory occlusion (PECO)] to assess the isolated action of the muscle metaboreflex. During each set of PECO, individual single units were classified as activated, nonresponsive, or inhibited if the spike frequency was above, within, or below the baseline variability, respectively. From sets 1-5 of PECO, the proportion of single units with activated (34, 45, 68, 87, and 89%), nonresponsive (43, 44, 23, 7, and 9%), or inhibited (23, 11, 9, 6, and 2%) responses changed (P < 0.001) as total muscle sympathoexcitation increased. A total of 51/53 (96%) single units were activated in at least one set of PECO, 16 (31%) initially inhibited before activation. This response pattern delayed the activation onset compared with noninhibited units (set 3 ± 1 vs. 2 ± 1, P < 0.001). Once activated, the spike-frequency rate of rise was similar (8.5 ± 6.5 vs. 7.1 ± 6.0 spikes/min per set, P = 0.48). Muscle sympathetic single-unit firing demonstrated differential control during muscle metaboreflex activation. Single units that were initially inhibited during progressive metaboreflex activation were capable of being activated in later sets. These findings reveal that single-unit activity is influenced by convergent neural inputs (i.e., both inhibitory and excitatory), which yield heterogenous single-unit activation thresholds.NEW & NOTEWORTHY Muscle sympathetic single units respond differentially to sympathoexcitatory stress such that single units can increase firing to contribute to the sympathoexcitatory response or can be nonresponsive or even inhibited. We observed a subgroup of single units that can respond bidirectionally, being first inhibited before activated by progressive increases in forearm muscle metaboreflex activation. These results suggest convergent neural inputs (i.e., inhibitory and excitatory), which yield heterogenous muscle sympathetic single-unit activation thresholds.
Collapse
Affiliation(s)
- Anthony V Incognito
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Massimo Nardone
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - André L Teixeira
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Jordan B Lee
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Muhammad M Kathia
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Philip J Millar
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.,Toronto General Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Guyenet PG, Stornetta RL, Souza GMPR, Abbott SBG, Brooks VL. Neuronal Networks in Hypertension: Recent Advances. Hypertension 2020; 76:300-311. [PMID: 32594802 DOI: 10.1161/hypertensionaha.120.14521] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurogenic hypertension is associated with excessive sympathetic nerve activity to the kidneys and portions of the cardiovascular system. Here we examine the brain regions that cause heightened sympathetic nerve activity in animal models of neurogenic hypertension, and we discuss the triggers responsible for the changes in neuronal activity within these regions. We highlight the limitations of the evidence and, whenever possible, we briefly address the pertinence of the findings to human hypertension. The arterial baroreflex reduces arterial blood pressure variability and contributes to the arterial blood pressure set point. This set point can also be elevated by a newly described cerebral blood flow-dependent and astrocyte-mediated sympathetic reflex. Both reflexes converge on the presympathetic neurons of the rostral medulla oblongata, and both are plausible causes of neurogenic hypertension. Sensory afferent dysfunction (reduced baroreceptor activity, increased renal, or carotid body afferent) contributes to many forms of neurogenic hypertension. Neurogenic hypertension can also result from activation of brain nuclei or sensory afferents by excess circulating hormones (leptin, insulin, Ang II [angiotensin II]) or sodium. Leptin raises blood vessel sympathetic nerve activity by activating the carotid bodies and subsets of arcuate neurons. Ang II works in the lamina terminalis and probably throughout the brain stem and hypothalamus. Sodium is sensed primarily in the lamina terminalis. Regardless of its cause, the excess sympathetic nerve activity is mediated to some extent by activation of presympathetic neurons located in the rostral ventrolateral medulla or the paraventricular nucleus of the hypothalamus. Increased activity of the orexinergic neurons also contributes to hypertension in selected models.
Collapse
Affiliation(s)
- Patrice G Guyenet
- From the Department of Pharmacology, University of Virginia, Charlottesville (P.G.G., R.L.S., G.M.P.R.S., S.B.G.A.)
| | - Ruth L Stornetta
- From the Department of Pharmacology, University of Virginia, Charlottesville (P.G.G., R.L.S., G.M.P.R.S., S.B.G.A.)
| | - George M P R Souza
- From the Department of Pharmacology, University of Virginia, Charlottesville (P.G.G., R.L.S., G.M.P.R.S., S.B.G.A.)
| | - Stephen B G Abbott
- From the Department of Pharmacology, University of Virginia, Charlottesville (P.G.G., R.L.S., G.M.P.R.S., S.B.G.A.)
| | - Virginia L Brooks
- Department of Chemical Physiology and Biochemistry, Oregon Health & Sciences University, Portland (V.L.B.)
| |
Collapse
|
19
|
Miller DM, Joshi A, Kambouroglos ET, Engstrom IC, Bielanin JP, Wittman SR, McCall AA, Barman SM, Yates BJ. Responses of neurons in the rostral ventrolateral medulla of conscious cats to anticipated and passive movements. Am J Physiol Regul Integr Comp Physiol 2020; 318:R481-R492. [PMID: 31940234 PMCID: PMC7099461 DOI: 10.1152/ajpregu.00205.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 12/04/2019] [Accepted: 01/02/2020] [Indexed: 11/22/2022]
Abstract
The vestibular system contributes to regulating sympathetic nerve activity and blood pressure. Initial studies in decerebrate animals showed that neurons in the rostral ventrolateral medulla (RVLM) respond to small-amplitude (<10°) rotations of the body, as in other brain areas that process vestibular signals, although such movements do not affect blood distribution in the body. However, a subsequent experiment in conscious animals showed that few RVLM neurons respond to small-amplitude movements. This study tested the hypothesis that RVLM neurons in conscious animals respond to signals from the vestibular otolith organs elicited by large-amplitude static tilts. The activity of approximately one-third of RVLM neurons whose firing rate was related to the cardiac cycle, and thus likely received baroreceptor inputs, was modulated by vestibular inputs elicited by 40° head-up tilts in conscious cats, but not during 10° sinusoidal rotations in the pitch plane that affected the activity of neurons in brain regions providing inputs to the RVLM. These data suggest the existence of brain circuitry that suppresses vestibular influences on the activity of RVLM neurons and the sympathetic nervous system unless these inputs are physiologically warranted. We also determined that RVLM neurons failed to respond to a light cue signaling the movement, suggesting that feedforward cardiovascular responses do not occur before passive movements that require cardiovascular adjustments.
Collapse
Affiliation(s)
- Derek M Miller
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Asmita Joshi
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Isaiah C Engstrom
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - John P Bielanin
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Samuel R Wittman
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Andrew A McCall
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Susan M Barman
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Bill J Yates
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
20
|
Takemoto Y. Muscle vasodilator response via potential adrenaline secretion to L-cysteine microinjected in rostral ventrolateral medulla of rats. Auton Neurosci 2020; 224:102644. [DOI: 10.1016/j.autneu.2020.102644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 02/07/2023]
|
21
|
Leenen FHH, Wang HW, Hamlyn JM. Sodium pumps, ouabain and aldosterone in the brain: A neuromodulatory pathway underlying salt-sensitive hypertension and heart failure. Cell Calcium 2019; 86:102151. [PMID: 31954234 DOI: 10.1016/j.ceca.2019.102151] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 12/15/2019] [Indexed: 02/08/2023]
Abstract
Accumulating evidence obtained over the last three decades has revealed a neuroendocrine system in the brain that mediates long term increases in blood pressure. The system involves distinct ion transport pathways including the alpha-2 isoform of the Na,K pump and epithelial sodium channels, as well as critical hormone elements such as angiotensin II, aldosterone, mineralocorticoid receptors and endogenous ouabain. Activation of this system either by circulating or central sodium ions and/or angiotensin II leads to a cascading sequence of events that begins in the hypothalamus and involves the participation of several brain nuclei including the subfornical organ, supraoptic and paraventricular nuclei and the rostral ventral medulla. Key events include heightened aldosterone synthesis and mineralocorticoid receptor activation, upregulation of epithelial sodium channels, augmented synthesis and secretion of endogenous ouabain from hypothalamic magnocellular neurons, and sustained increases in sympathetic outflow. The latter step depends upon increased production of angiotensin II and the primary amplification of angiotensin II type I receptor signaling from the paraventricular nucleus to the rostral ventral lateral medulla. The transmission of sympathetic traffic is secondarily amplified in the periphery by increased short- and long-term potentiation in sympathetic ganglia and by sustained actions of endogenous ouabain in the vascular wall that augment expression of sodium calcium exchange, increase cytosolic Ca2+ and heighten myogenic tone and contractility. Upregulation of this multi-amplifier system participates in forms of hypertension where salt, angiotensin and/or aldosterone are elevated and contributes to adverse outcomes in heart failure.
Collapse
Affiliation(s)
- Frans H H Leenen
- Brain and Heart Research Group, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Hong-Wei Wang
- Brain and Heart Research Group, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - John M Hamlyn
- Department of Physiology, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
22
|
Toor RUAS, Sun QJ, Kumar NN, Le S, Hildreth CM, Phillips JK, McMullan S. Neurons in the Intermediate Reticular Nucleus Coordinate Postinspiratory Activity, Swallowing, and Respiratory-Sympathetic Coupling in the Rat. J Neurosci 2019; 39:9757-9766. [PMID: 31666354 PMCID: PMC6891060 DOI: 10.1523/jneurosci.0502-19.2019] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 10/04/2019] [Accepted: 10/15/2019] [Indexed: 11/21/2022] Open
Abstract
Breathing results from sequential recruitment of muscles in the expiratory, inspiratory, and postinspiratory (post-I) phases of the respiratory cycle. Here we investigate whether neurons in the medullary intermediate reticular nucleus (IRt) are components of a central pattern generator (CPG) that generates post-I activity in laryngeal adductors and vasomotor sympathetic nerves and interacts with other members of the central respiratory network to terminate inspiration. We first identified the region of the (male) rat IRt that contains the highest density of lightly cholinergic neurons, many of which are glutamatergic, which aligns well with the putative postinspiratory complex in the mouse (Anderson et al., 2016). Acute bilateral inhibition of this region reduced the amplitudes of post-I vagal and sympathetic nerve activities. However, although associated with reduced expiratory duration and increased respiratory frequency, IRt inhibition did not affect inspiratory duration or abolish the recruitment of post-I activity during acute hypoxemia as predicted. Rather than representing an independent CPG for post-I activity, we hypothesized that IRt neurons may instead function as a relay that distributes post-I activity generated elsewhere, and wondered whether they could be a site of integration for para-respiratory CPGs that drive the same outputs. Consistent with this idea, IRt inhibition blocked rhythmic motor and autonomic components of fictive swallow but not swallow-related apnea. Our data support a role for IRt neurons in the transmission of post-I and swallowing activity to motor and sympathetic outputs, but suggest that other mechanisms also contribute to the generation of post-I activity.SIGNIFICANCE STATEMENT Interactions between multiple coupled oscillators underlie a three-part respiratory cycle composed from inspiratory, postinspiratory (post-I), and late-expiratory phases. Central post-I activity terminates inspiration and activates laryngeal motoneurons. We investigate whether neurons in the intermediate reticular nucleus (IRt) form the central pattern generator (CPG) responsible for post-I activity. We confirm that IRt activity contributes to post-I motor and autonomic outputs, and find that IRt neurons are necessary for activation of the same outputs during swallow, but that they are not required for termination of inspiration or recruitment of post-I activity during hypoxemia. We conclude that this population may not represent a distinct CPG, but instead may function as a premotor relay that integrates activity generated by diverse respiratory and nonrespiratory CPGs.
Collapse
Affiliation(s)
- Rahat Ul Ain Summan Toor
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, 2109 New South Wales, Australia, and
| | - Qi-Jian Sun
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, 2109 New South Wales, Australia, and
| | - Natasha N Kumar
- Department of Pharmacology, School of Medical Science, University of New South Wales, 2052 New South Wales, Australia
| | - Sheng Le
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, 2109 New South Wales, Australia, and
| | - Cara M Hildreth
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, 2109 New South Wales, Australia, and
| | - Jacqueline K Phillips
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, 2109 New South Wales, Australia, and
| | - Simon McMullan
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, 2109 New South Wales, Australia, and
| |
Collapse
|
23
|
Chandler DJ, Jensen P, McCall JG, Pickering AE, Schwarz LA, Totah NK. Redefining Noradrenergic Neuromodulation of Behavior: Impacts of a Modular Locus Coeruleus Architecture. J Neurosci 2019; 39:8239-8249. [PMID: 31619493 PMCID: PMC6794927 DOI: 10.1523/jneurosci.1164-19.2019] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/30/2019] [Accepted: 08/03/2019] [Indexed: 01/09/2023] Open
Abstract
The locus coeruleus (LC) is a seemingly singular and compact neuromodulatory nucleus that is a prominent component of disparate theories of brain function due to its broad noradrenergic projections throughout the CNS. As a diffuse neuromodulatory system, noradrenaline affects learning and decision making, control of sleep and wakefulness, sensory salience including pain, and the physiology of correlated forebrain activity (ensembles and networks) and brain hemodynamic responses. However, our understanding of the LC is undergoing a dramatic shift due to the application of state-of-the-art methods that reveal a nucleus of many modules that provide targeted neuromodulation. Here, we review the evidence supporting a modular LC based on multiple levels of observation (developmental, genetic, molecular, anatomical, and neurophysiological). We suggest that the concept of the LC as a singular nucleus and, alongside it, the role of the LC in diverse theories of brain function must be reconsidered.
Collapse
Affiliation(s)
- Dan J Chandler
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, New Jersey 08084
| | - Patricia Jensen
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| | - Jordan G McCall
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri 63110, Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, Missouri 63110, Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, Missouri 63110, and Washington University Pain Center, Washington University in St. Louis, St. Louis, Missouri 63110
| | - Anthony E Pickering
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, United Kingdom
- Bristol Anaesthesia, Pain and Critical Care Sciences, Translational Health Sciences, Bristol Medical School, Bristol Royal Infirmary, Bristol, BS2 8HW, United Kingdom
| | | | - Nelson K Totah
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, Germany 72076,
- Helsinki Institute of Life Science, Helsinki 00014, Finland, and
- School of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
24
|
Incognito AV, Jendzjowsky NG. The organization of the sympathetic nervous system: shining new light on historic views. J Physiol 2019; 597:5327-5329. [PMID: 31535387 DOI: 10.1113/jp278898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Anthony V Incognito
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Nicholas G Jendzjowsky
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
25
|
Saleeba C, Dempsey B, Le S, Goodchild A, McMullan S. A Student's Guide to Neural Circuit Tracing. Front Neurosci 2019; 13:897. [PMID: 31507369 PMCID: PMC6718611 DOI: 10.3389/fnins.2019.00897] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/12/2019] [Indexed: 12/17/2022] Open
Abstract
The mammalian nervous system is comprised of a seemingly infinitely complex network of specialized synaptic connections that coordinate the flow of information through it. The field of connectomics seeks to map the structure that underlies brain function at resolutions that range from the ultrastructural, which examines the organization of individual synapses that impinge upon a neuron, to the macroscopic, which examines gross connectivity between large brain regions. At the mesoscopic level, distant and local connections between neuronal populations are identified, providing insights into circuit-level architecture. Although neural tract tracing techniques have been available to experimental neuroscientists for many decades, considerable methodological advances have been made in the last 20 years due to synergies between the fields of molecular biology, virology, microscopy, computer science and genetics. As a consequence, investigators now enjoy an unprecedented toolbox of reagents that can be directed against selected subpopulations of neurons to identify their efferent and afferent connectomes. Unfortunately, the intersectional nature of this progress presents newcomers to the field with a daunting array of technologies that have emerged from disciplines they may not be familiar with. This review outlines the current state of mesoscale connectomic approaches, from data collection to analysis, written for the novice to this field. A brief history of neuroanatomy is followed by an assessment of the techniques used by contemporary neuroscientists to resolve mesoscale organization, such as conventional and viral tracers, and methods of selecting for sub-populations of neurons. We consider some weaknesses and bottlenecks of the most widely used approaches for the analysis and dissemination of tracing data and explore the trajectories that rapidly developing neuroanatomy technologies are likely to take.
Collapse
Affiliation(s)
- Christine Saleeba
- Neurobiology of Vital Systems Node, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
- The School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Bowen Dempsey
- CNRS, Hindbrain Integrative Neurobiology Laboratory, Neuroscience Paris-Saclay Institute (Neuro-PSI), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Sheng Le
- Neurobiology of Vital Systems Node, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ann Goodchild
- Neurobiology of Vital Systems Node, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Simon McMullan
- Neurobiology of Vital Systems Node, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|