1
|
Heath-Freudenthal A, Estrada A, von Alvensleben I, Julian CG. Surviving birth at high altitude. J Physiol 2024; 602:5463-5473. [PMID: 38520695 PMCID: PMC11418585 DOI: 10.1113/jp284554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 03/11/2024] [Indexed: 03/25/2024] Open
Abstract
This Symposium Review examines challenges to surviving birth and infancy at high altitudes. Chronic exposure to the environmental hypoxia of high altitudes increases the incidence of maternal vascular disorders of pregnancy characterized by placental insufficiency, restricted fetal growth and preterm delivery, and impairs pulmonary vascular health during infancy. While each condition independently contributes to excess morbidity and mortality in early life, evidence indicates vascular disorders of pregnancy and infantile pulmonary vascular dysfunction are intertwined. By integrating our recent scientific and clinical observations in Bolivia with existing literature, we propose potential avenues to reduce the infant mortality burden at high altitudes and reduce pulmonary vascular disease in highland neonates, and emphasize the need for further research to address unresolved questions.
Collapse
Affiliation(s)
| | | | | | - Colleen G. Julian
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, Colorado, US
| |
Collapse
|
2
|
Moore LG, Lorca RA, Gumina DL, Wesolowski SR, Reisz JA, Cioffi-Ragan D, Houck JA, Banerji S, Euser AG, D'Alessandro A, Hobbins JC, Julian CG. Maternal AMPK pathway activation with uterine artery blood flow and fetal growth maintenance during hypoxia. Am J Physiol Heart Circ Physiol 2024; 327:H778-H792. [PMID: 39028630 PMCID: PMC11482288 DOI: 10.1152/ajpheart.00193.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
High-altitude (HA) hypoxia lowers uterine artery (UtA) blood flow during pregnancy and birth weight. Adenosine monophosphate kinase (AMPK) activation has selective, uteroplacental vasodilator effects that lessen hypoxia-associated birth weight reductions. In this study, we determined the relationship between AMPK-pathway gene expression and metabolites in the maternal circulation during HA pregnancy as well as with the maintenance of UtA blood flow and birth weight at HA. Residents at HA (2,793 m) versus low altitude (LA; 1,640 m) had smaller UtA diameters at weeks 20 and 34, lower UtA blood flow at week 20, and lower birth weight babies. At week 34, women residing at HA versus women residing at LA had decreased expression of upstream and downstream AMPK-pathway genes. Expression of the α1-AMPK catalytic subunit, PRKAA1, correlated positively with UtA diameter and blood flow at weeks 20 (HA) and 34 (LA). Downstream AMPK-pathway gene expression positively correlated with week 20 fetal biometry at both altitudes and with UtA diameter and birth weight at LA. Reduced gene expression of AMPK activators and downstream targets in women residing at HA versus women residing at LA, together with positive correlations between PRKAA1 gene expression, UtA diameter, and blood flow suggest that greater sensitivity to AMPK activation at midgestation at HA may help offset later depressant effects of hypoxia on fetal growth.NEW & NOTEWORTHY Fetal growth restriction (FGR) is increased and uterine artery (UtA) blood flow is lower at high altitudes (HA) but not all HA pregnancies have FGR. Here we show that greater UtA diameter and blood flow at week 20 are positively correlated with higher expression of the gene encoding the α1-catalytic subunit of AMP protein kinase, PRKAA1, suggesting that increased AMPK activation may help to prevent the detrimental effects of chronic hypoxia on fetal growth.
Collapse
Affiliation(s)
- Lorna G Moore
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Ramón A Lorca
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Diane L Gumina
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- The University of Colorado John C. Hobbins Perinatal Center, Denver, Colorado, United States
| | - Stephanie R Wesolowski
- Division of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Darleen Cioffi-Ragan
- The University of Colorado John C. Hobbins Perinatal Center, Denver, Colorado, United States
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Julie A Houck
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Sarah Banerji
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Anna G Euser
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - John C Hobbins
- The University of Colorado John C. Hobbins Perinatal Center, Denver, Colorado, United States
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Colleen G Julian
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
3
|
Sarankhuu BE, Jeon HJ, Jeong DU, Park SR, Kim TH, Lee SK, Han AR, Yu SL, Kang J. Adiponectin receptor 1 regulates endometrial receptivity via the adenosine monophosphate‑activated protein kinase/E‑cadherin pathway. Mol Med Rep 2024; 30:184. [PMID: 39155876 DOI: 10.3892/mmr.2024.13308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/26/2024] [Indexed: 08/20/2024] Open
Abstract
Endometrial receptivity is essential for successful embryo implantation and pregnancy initiation and is regulated via various signaling pathways. Adiponectin, an important adipokine, may be a potential regulator of reproductive system functions. The aim of the present study was to elucidate the regulatory role of adiponectin receptor 1 (ADIPOR1) in endometrial receptivity. The endometrial receptivity between RL95‑2 and AN3CA cell lines was confirmed using an in vitro JAr spheroid attachment model. 293T cells were transfected with control or short hairpin (sh)ADIPOR1 vectors and RL95‑2 cells were transduced with lentiviral particles targeting ADIPOR1. Reverse transcription‑quantitative PCR and immunoblot assays were also performed. ADIPOR1 was consistently upregulated in the endometrium during the mid‑secretory phase compared with that in the proliferative phase and in receptive RL95‑2 cells compared with that in non‑receptive AN3CA cells. Stable cell lines with diminished ADIPOR1 expression caused by shRNA showed reduced E‑cadherin expression and attenuated in vitro endometrial receptivity. ADIPOR1 regulated AMP‑activated protein kinase (AMPK) activity in endometrial epithelial cells. Regulation of AMPK activity via dorsomorphin and 5‑aminoimidazole‑4‑carboxamide ribonucleotide affected E‑cadherin expression and in vitro endometrial receptivity. The ADIPOR1/AMPK/E‑cadherin axis is vital to endometrial receptivity. These findings can help improve fertility treatments and outcomes.
Collapse
Affiliation(s)
- Bolor-Erdene Sarankhuu
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Hye Jin Jeon
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Da-Un Jeong
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Seok-Rae Park
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Tae-Hyun Kim
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Sung Ki Lee
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Ae Ra Han
- I‑Dream Clinic, Department of Obstetrics and Gynecology, Mizmedi Hospital, Seoul 07639, Republic of Korea
| | - Seong-Lan Yu
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Jaeku Kang
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| |
Collapse
|
4
|
Moore LG, Wesolowski SR, Lorca RA, Murray AJ, Julian CG. Why is human uterine artery blood flow during pregnancy so high? Am J Physiol Regul Integr Comp Physiol 2022; 323:R694-R699. [PMID: 36094446 PMCID: PMC9602899 DOI: 10.1152/ajpregu.00167.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/12/2022] [Accepted: 09/07/2022] [Indexed: 11/22/2022]
Abstract
In healthy near-term women, blood flow to the uteroplacental circulation is estimated as 841 mL/min, which is greater than in other mammalian species. We argue that as uterine venous Po2 sets the upper limit for O2 diffusion to the fetus, high uterine artery blood flow serves to narrow the maternal arterial-to-uterine venous Po2 gradient and thereby raise uterine vein Po2. In support, we show that the reported levels for uterine artery blood flow agree with what is required to maintain normal fetal growth. Although residence at high altitudes (>2,500 m) depresses fetal growth, not all populations are equally affected; Tibetans and Andeans have higher levels of uterine artery blood flow than newcomers and exhibit normal fetal growth. Estimates of uterine venous Po2 from the umbilical blood-gas data available from healthy Andean pregnancies indicate that their high levels of uterine artery blood flow are consistent with their reported, normal birth weights. Unknown, however, are the effects on placental gas exchange of the lower levels of uterine artery blood flow seen in high-altitude newcomers or hypoxia-associated pregnancy complications. We speculate that, by widening the maternal artery to uterine vein Po2 gradient, lower levels of uterine artery blood flow prompt metabolic changes that slow fetal growth to match O2 supply.
Collapse
Affiliation(s)
- Lorna G Moore
- Department of Obstetrics and Gynecology, University of Colorado Denver, Aurora, Colorado
| | | | - Ramón A Lorca
- Department of Obstetrics and Gynecology, University of Colorado Denver, Aurora, Colorado
| | - Andrew J Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Colleen G Julian
- Department of Biomedical Informatics, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
5
|
Yu JJ, Non AL, Heinrich EC, Gu W, Alcock J, Moya EA, Lawrence ES, Tift MS, O'Brien KA, Storz JF, Signore AV, Khudyakov JI, Milsom WK, Wilson SM, Beall CM, Villafuerte FC, Stobdan T, Julian CG, Moore LG, Fuster MM, Stokes JA, Milner R, West JB, Zhang J, Shyy JY, Childebayeva A, Vázquez-Medina JP, Pham LV, Mesarwi OA, Hall JE, Cheviron ZA, Sieker J, Blood AB, Yuan JX, Scott GR, Rana BK, Ponganis PJ, Malhotra A, Powell FL, Simonson TS. Time Domains of Hypoxia Responses and -Omics Insights. Front Physiol 2022; 13:885295. [PMID: 36035495 PMCID: PMC9400701 DOI: 10.3389/fphys.2022.885295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
The ability to respond rapidly to changes in oxygen tension is critical for many forms of life. Challenges to oxygen homeostasis, specifically in the contexts of evolutionary biology and biomedicine, provide important insights into mechanisms of hypoxia adaptation and tolerance. Here we synthesize findings across varying time domains of hypoxia in terms of oxygen delivery, ranging from early animal to modern human evolution and examine the potential impacts of environmental and clinical challenges through emerging multi-omics approaches. We discuss how diverse animal species have adapted to hypoxic environments, how humans vary in their responses to hypoxia (i.e., in the context of high-altitude exposure, cardiopulmonary disease, and sleep apnea), and how findings from each of these fields inform the other and lead to promising new directions in basic and clinical hypoxia research.
Collapse
Affiliation(s)
- James J. Yu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Amy L. Non
- Department of Anthropology, Division of Social Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Erica C. Heinrich
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, United States
| | - Wanjun Gu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
- Herbert Wertheim School of Public Health and Longevity Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Joe Alcock
- Department of Emergency Medicine, University of New Mexico, Albuquerque, MX, United States
| | - Esteban A. Moya
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Elijah S. Lawrence
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Michael S. Tift
- Department of Biology and Marine Biology, College of Arts and Sciences, University of North Carolina Wilmington, Wilmington, NC, United States
| | - Katie A. O'Brien
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
- Department of Physiology, Development and Neuroscience, Faculty of Biology, School of Biological Sciences, University of Cambridge, Cambridge, ENG, United Kingdom
| | - Jay F. Storz
- School of Biological Sciences, College of Arts and Sciences, University of Nebraska-Lincoln, Lincoln, IL, United States
| | - Anthony V. Signore
- School of Biological Sciences, College of Arts and Sciences, University of Nebraska-Lincoln, Lincoln, IL, United States
| | - Jane I. Khudyakov
- Department of Biological Sciences, University of the Pacific, Stockton, CA, United States
| | | | - Sean M. Wilson
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda, CA, United States
| | | | | | | | - Colleen G. Julian
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Lorna G. Moore
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Aurora, CO, United States
| | - Mark M. Fuster
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Jennifer A. Stokes
- Department of Kinesiology, Southwestern University, Georgetown, TX, United States
| | - Richard Milner
- San Diego Biomedical Research Institute, San Diego, CA, United States
| | - John B. West
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Jiao Zhang
- Department of Medicine, UC San Diego School of Medicine, San Diego, CA, United States
| | - John Y. Shyy
- Department of Medicine, UC San Diego School of Medicine, San Diego, CA, United States
| | - Ainash Childebayeva
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - José Pablo Vázquez-Medina
- Department of Integrative Biology, College of Letters and Science, University of California, Berkeley, Berkeley, CA, United States
| | - Luu V. Pham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Omar A. Mesarwi
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - James E. Hall
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Zachary A. Cheviron
- Division of Biological Sciences, College of Humanities and Sciences, University of Montana, Missoula, MT, United States
| | - Jeremy Sieker
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Arlin B. Blood
- Department of Pediatrics Division of Neonatology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Jason X. Yuan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Graham R. Scott
- Department of Pediatrics Division of Neonatology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Brinda K. Rana
- Moores Cancer Center, UC San Diego, La Jolla, CA, United States
- Department of Psychiatry, UC San Diego, La Jolla, CA, United States
| | - Paul J. Ponganis
- Center for Marine Biotechnology and Biomedicine, La Jolla, CA, United States
| | - Atul Malhotra
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Frank L. Powell
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Tatum S. Simonson
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW Preeclampsia complicates 5-10% of all pregnancies and is a leading cause of maternal and perinatal mortality and morbidity. The placenta plays a pivotal role in determining pregnancy outcome by supplying the fetus with oxygen and nutrients and by synthesizing hormones. Placental function is highly dependent on energy supplied by mitochondria. It is well-known that preeclampsia is originated from placental dysfunction, although the etiology of it remains elusive. RECENT FINDINGS During the last three decades, substantial evidence suggests that mitochondrial abnormality is a major contributor to placental dysfunction. In addition, mitochondrial damage caused by circulating bioactive factors released from the placenta may cause endothelial dysfunction and subsequent elevation in maternal blood pressure. In this review, we summarize the current knowledge of mitochondrial abnormality in the pathogenesis of preeclampsia and discuss therapeutic approaches targeting mitochondria for treatment of preeclampsia.
Collapse
|
7
|
Sissala N, Myllymäki E, Mohr F, Halmetoja R, Kuvaja P, Dimova EY, Koivunen P. Hypoxia ameliorates maternal diet-induced insulin resistance during pregnancy while having a detrimental effect on the placenta. Physiol Rep 2022; 10:e15302. [PMID: 35535947 PMCID: PMC9088222 DOI: 10.14814/phy2.15302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 03/29/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023] Open
Abstract
Maternal overweight/obesity contributes significantly to the development of gestational diabetes, which causes risks to both mother and fetus and is increasing sharply in prevalence worldwide. Since hypoxia reprograms energy metabolism and can alleviate weight gain, adiposity, insulin resistance (IR), and dyslipidemia, we set out to study the potential of sustained reduced ambient oxygen tension (15% O2 ) during pregnancy for alleviating the detrimental effects of diet-induced IR in C57Bl/6N mice, taking normal chow-fed and normoxia (21% O2 ) groups as controls. Our data show that hypoxic intervention reduced maternal weight gain, adiposity, and adipose tissue inflammation, and ameliorated maternal glucose metabolism and IR during gestation in diet-induced IR relative to normoxia. Where diet-induced IR reduced maternal hemoglobin and increased serum erythropoietin levels, hypoxic intervention compensated for these changes. Diet-induced IR reduced fetal growth in normoxia, and even more in hypoxia. Hypoxic intervention reduced liver weight gain during pregnancy in the dams with diet-induced IR, maternal liver weight being positively associated with embryo number. In case of diet-induced IR, the hypoxic intervention compromised placental energy metabolism and vascularization and increased end-pregnancy placental necrosis. Altogether, these data show that although hypoxic intervention mediates several beneficial effects on maternal metabolism, the combination of it with diet-induced IR is even more detrimental to the placental and fetal outcome than diet-induced IR alone.
Collapse
Affiliation(s)
- Niina Sissala
- Biocenter Oulu and Faculty of Biochemistry and Molecular MedicineOulu Center for Cell‐Matrix ResearchUniversity of OuluOuluFinland
| | - Elisa Myllymäki
- Biocenter Oulu and Faculty of Biochemistry and Molecular MedicineOulu Center for Cell‐Matrix ResearchUniversity of OuluOuluFinland
| | - Florian Mohr
- Biocenter Oulu and Faculty of Biochemistry and Molecular MedicineOulu Center for Cell‐Matrix ResearchUniversity of OuluOuluFinland
| | - Riikka Halmetoja
- Biocenter Oulu and Faculty of Biochemistry and Molecular MedicineOulu Center for Cell‐Matrix ResearchUniversity of OuluOuluFinland
| | - Paula Kuvaja
- Finnish Institute for Health and WelfareOuluFinland
| | - Elitsa Y. Dimova
- Biocenter Oulu and Faculty of Biochemistry and Molecular MedicineOulu Center for Cell‐Matrix ResearchUniversity of OuluOuluFinland
| | - Peppi Koivunen
- Biocenter Oulu and Faculty of Biochemistry and Molecular MedicineOulu Center for Cell‐Matrix ResearchUniversity of OuluOuluFinland
| |
Collapse
|
8
|
Dolma P, Angchuk PT, Jain V, Dadhwal V, Kular D, Williams DJ, Montgomery HE, Hillman SL. High-altitude population neonatal and maternal phenotypes associated with birthweight protection. Pediatr Res 2022; 91:137-142. [PMID: 34103679 PMCID: PMC8770120 DOI: 10.1038/s41390-021-01593-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 05/13/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND States which reduce foetal oxygen delivery are associated with impaired intrauterine growth. Hypoxia results when barometric pressure falls with ascent to altitude, and with it the partial pressure of inspired oxygen ('hypobaric hypoxia'). birthweight is reduced when native lowlanders gestate at such high altitude (HA)-an effect mitigated in native (millennia) HA populations. Studying HA populations offer a route to explore the mechanisms by which hypoxia impacts foetal growth. METHODS Between February 2017 and January 2019, we prospectively studied 316 pregnant women, in Leh, Ladakh (altitude 3524 m, where oxygen partial pressure is reduced by 1/3) and 101 pregnant women living in Delhi (low altitude, 216 m above sea level). RESULTS Of Ladakhi HA newborns, 14% were small for gestational age (<10th birthweight centile) vs 19% of newborn at low altitude. At HA, increased maternal body mass index, age, and uterine artery (UtA) diameter were positively associated with growth >10th weight centile. CONCLUSIONS This study showed that Ladakhi offspring birthweight is relatively spared from the expected adverse HA effects. Furthermore, maternal body composition and greater UtA size may be physiological HA adaptations and warrant further study, as they offer potential mechanisms to overcome hypoxia-related growth issues. IMPACT Reduced foetal oxygen delivery seen in native lowlanders who gestate at HA causes foetal growth restriction-an effect thought to be mitigated in native HA populations. We found that greater maternal body mass and UtA diameter were associated with increased offspring birthweight in a (Ladakh) HA population. This supports a role for them as physiological mediators of adaptation and provides insights into potential mechanisms that may treat hypoxia-related growth issues.
Collapse
Affiliation(s)
| | | | - Vandana Jain
- grid.413618.90000 0004 1767 6103All India Institute of Medical Sciences (AIIMS), Delhi, India
| | - Vatsla Dadhwal
- grid.413618.90000 0004 1767 6103All India Institute of Medical Sciences (AIIMS), Delhi, India
| | - Dalvir Kular
- grid.439787.60000 0004 0400 6717University Hospital Lewisham NHS Trust, London, UK
| | - David J. Williams
- grid.83440.3b0000000121901201University College London Institute for Women’s Health, London, UK
| | - Hugh E. Montgomery
- grid.83440.3b0000000121901201Centre for Human Health and Performance, University College London, London, UK
| | - Sara L. Hillman
- grid.83440.3b0000000121901201University College London Institute for Women’s Health, London, UK
| |
Collapse
|
9
|
Hung TH, Wu CP, Chen SF. Differential Changes in Akt and AMPK Phosphorylation Regulating mTOR Activity in the Placentas of Pregnancies Complicated by Fetal Growth Restriction and Gestational Diabetes Mellitus With Large-For-Gestational Age Infants. Front Med (Lausanne) 2021; 8:788969. [PMID: 34938752 PMCID: PMC8685227 DOI: 10.3389/fmed.2021.788969] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/18/2021] [Indexed: 01/04/2023] Open
Abstract
Background: Dysregulation of placental mechanistic target of rapamycin (mTOR) activity has been implicated in the pathophysiology of pregnancies complicated by idiopathic fetal growth restriction (FGR) and gestational diabetes mellitus (GDM) with large-for-gestational-age (LGA) infants. However, the underlying mechanisms remain unclear. Methods: We obtained placentas from women with normal pregnancies (n = 11) and pregnancies complicated by FGR (n = 12) or GDM with LGA infants (n = 12) to compare the levels of total and phosphorylated forms of Akt, AMPK, TSC2, and mTOR among the three groups and used primary cytotrophoblast cells isolated from 30 normal term placentas to study the effects of oxygen–glucose deprivation (OGD) and increasing glucose concentrations on the changes of these factors in vitro. Results: Placentas from FGR pregnancies had lower phosphorylated Akt (p-Akt) levels (P < 0.05), higher p-AMPKα levels (P < 0.01), and lower mTOR phosphorylation (P < 0.05) compared to that of normal pregnant women. Conversely, women with GDM and LGA infants had higher p-Akt (P < 0.001), lower p-AMPKα (P < 0.05), and higher p-mTOR levels (P < 0.05) in the placentas than normal pregnant women. Furthermore, primary cytotrophoblast cells subjected to OGD had lower p-Akt and p-mTOR (both P < 0.05) and higher p-AMPKα levels (P < 0.05) than those cultured under standard conditions, but increasing glucose concentrations had opposite effects on the respective levels. Administering compound C, an AMPK inhibitor, did not significantly affect Akt phosphorylation but partially reversed mTOR phosphorylation. Administering LY294002, an Akt inhibitor, decreased p-mTOR levels, but did not change the levels of total and phosphorylated AMPKα. Conclusion: These results suggest that Akt and AMPK are involved in the regulation of trophoblast mTOR activity in the placentas of pregnancies complicated by FGR and GDM with LGA infants.
Collapse
Affiliation(s)
- Tai-Ho Hung
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, Taiwan.,Department of Obstetrics and Gynecology, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan.,Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chung-Pu Wu
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, Taiwan.,Graduate Institute of Biomedical Sciences, Department of Physiology and Pharmacology and Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Szu-Fu Chen
- Department of Physical Medicine and Rehabilitation, Cheng Hsin General Hospital, Taipei, Taiwan
| |
Collapse
|
10
|
Valenzuela-Melgarejo FJ, Lagunas C, Carmona-Pastén F, Jara-Medina K, Delgado G. Supraphysiological Role of Melatonin Over Vascular Dysfunction of Pregnancy, a New Therapeutic Agent? Front Physiol 2021; 12:767684. [PMID: 34867473 PMCID: PMC8635235 DOI: 10.3389/fphys.2021.767684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/07/2021] [Indexed: 11/25/2022] Open
Abstract
Hypertension can be induced by the disruption of factors in blood pressure regulation. This includes several systems such as Neurohumoral, Renin-angiotensin-aldosterone, the Circadian clock, and melatonin production, which can induce elevation and non-dipping blood pressure. Melatonin has a supraphysiological role as a chronobiotic agent and modulates vascular system processes via pro/antiangiogenic factors, inflammation, the immune system, and oxidative stress regulation. An elevation of melatonin production is observed during pregnancy, modulating the placenta and fetus’s physiological functions. Their impairment production can induce temporal desynchronization of cell proliferation, differentiation, or invasion from trophoblast cells results in vascular insufficiencies, elevating the risk of poor fetal/placental development. Several genes are associated with vascular disease and hypertension during pregnancy via impaired inflammatory response, hypoxia, and oxidative stress, such as cytokines/chemokines IL-1β, IL-6, IL-8, and impairment expression in endothelial cells/VSMCs of HIF1α and eNOS genes. Pathological placentas showed differentially expressed genes (DEG), including vascular genes as CITED2, VEGF, PL-II, PIGF, sFLT-1, and sENG, oncogene JUNB, scaffolding protein CUL7, GPER1, and the pathways of SIRT/AMPK and MAPK/ERK. Additionally, we observed modification of subunits of NADPH oxidase and extracellular matrix elements, i.e., Glypican and Heparanase and KCa channel. Mothers with a low level of melatonin showed low production of proangiogenic factor VEGF, increasing the risk of preeclampsia, premature birth, and abortion. In contrast, melatonin supplementation can reduce systolic pressure, prevent oxidative stress, induce the activation of the antioxidants system, and lessen proteinuria and serum level of sFlt-1. Moreover, melatonin can repair the endothelial damage from preeclampsia at the placenta level, increasing PIGF, Nrf-2, HO-1 production and reducing critical markers of vascular injury during the pregnancy. Melatonin also restores the umbilical and uterine blood flow after oxidative stress and inhibits vascular inflammation and VCAM-1, Activin-A, and sEng production. The beneficial effects of melatonin over pathological pregnancies can be partially observed in normal pregnancies, suggesting the dual role of/over placental physiology could contribute to protection and have therapeutic applications in vascular pathologies of pregnancies in the future.
Collapse
Affiliation(s)
- Francisco J Valenzuela-Melgarejo
- Laboratory of Molecular Cell Biology, Department of Basic Sciences, Universidad del Bío-Bío, Campus Fernando May, Chillán, Chile
| | - Constanza Lagunas
- Laboratory of Molecular Cell Biology, Department of Basic Sciences, Universidad del Bío-Bío, Campus Fernando May, Chillán, Chile
| | - Fabiola Carmona-Pastén
- Laboratory of Molecular Cell Biology, Department of Basic Sciences, Universidad del Bío-Bío, Campus Fernando May, Chillán, Chile
| | - Kevins Jara-Medina
- Laboratory of Molecular Cell Biology, Department of Basic Sciences, Universidad del Bío-Bío, Campus Fernando May, Chillán, Chile
| | - Gustavo Delgado
- Laboratory of Molecular Cell Biology, Department of Basic Sciences, Universidad del Bío-Bío, Campus Fernando May, Chillán, Chile
| |
Collapse
|
11
|
Kong L, Zhang H, Lu C, Shi K, Huang H, Zheng Y, Wang Y, Wang D, Wang H, Huang W. AICAR, an AMP-Activated Protein Kinase Activator, Ameliorates Acute Pancreatitis-Associated Liver Injury Partially Through Nrf2-Mediated Antioxidant Effects and Inhibition of NLRP3 Inflammasome Activation. Front Pharmacol 2021; 12:724514. [PMID: 34531748 PMCID: PMC8438129 DOI: 10.3389/fphar.2021.724514] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 08/12/2021] [Indexed: 12/13/2022] Open
Abstract
Acute pancreatitis (AP) is a highly fatal acute inflammation and is often accompanied by multiple organ dysfunction syndrome (MODS). The liver, one of the most vulnerable extrapancreatic organs in AP, is the major organ involved in the evolution of the disease and correlates strongly with the occurrence of MODS. However, the etiology of pancreatitis-associated liver injury (PALI) has not been clarified and currently lacks an effective treatment. 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR) is a cell permeable nucleoside with pleiotropic effects on anti-inflammatory and antioxidant stress that binds with adenosine monophosphate protein kinase (AMPK) and induces AMPK activation. However, the role of AICAR in PALI remains elusive. Here, we show that activation of AMPK by AICAR, a direct AMPK agonist, significantly ameliorates sodium taurocholate-induced PALI in rats, whereas treatment of PALI rats with the AMPK antagonist Compound C profoundly exacerbates the degree of liver injury, suggesting that hepatic AMPK activation exerts an essential protective role in PALI. Mechanistically, AICAR induces AMPK activation, which in turn activates nuclear factor erythroid 2-related factor 2(Nrf2) -regulated hepatic antioxidant capacity and inhibits NLRP3 inflammasome-mediated pyrolysis, protecting rats from sodium taurocholate-induced PALI. In addition, Nrf2 deficiency strikingly weakens the beneficial effects of AICAR on alleviation of liver injury, oxidative stress and NLRP3 inflammasome activation in L-arginine-induced PALI mice. Thus, AICAR protects against PALI in rodents by triggering AMPK, which is mediated at least in part by Nrf2-modulated antioxidant effects and NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Lijun Kong
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hewei Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chaosheng Lu
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Keqing Shi
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongjian Huang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yushu Zheng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yongqiang Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dan Wang
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongwei Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Huang
- Department of Nutrition, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
12
|
Jones AK, Rozance PJ, Brown LD, Lorca RA, Julian CG, Moore LG, Limesand SW, Wesolowski SR. Uteroplacental nutrient flux and evidence for metabolic reprogramming during sustained hypoxemia. Physiol Rep 2021; 9:e15033. [PMID: 34558219 PMCID: PMC8461030 DOI: 10.14814/phy2.15033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/23/2021] [Indexed: 01/14/2023] Open
Abstract
Gestational hypoxemia is often associated with reduced birth weight, yet how hypoxemia controls uteroplacental nutrient metabolism and supply to the fetus is unclear. This study tested the effects of maternal hypoxemia (HOX) between 0.8 and 0.9 gestation on uteroplacental nutrient metabolism and flux to the fetus in pregnant sheep. Despite hypoxemia, uteroplacental and fetal oxygen utilization and net glucose and lactate uptake rates were similar in HOX (n = 11) compared to CON (n = 7) groups. HOX fetuses had increased lactate and pyruvate concentrations and increased net pyruvate output to the utero-placenta. In the HOX group, uteroplacental flux of alanine to the fetus was decreased, as was glutamate flux from the fetus. HOX fetuses had increased alanine and decreased aspartate, serine, and glutamate concentrations. In HOX placental tissue, we identified hypoxic responses that should increase mitochondrial efficiency (decreased SDHB, increased COX4I2) and increase lactate production from pyruvate (increased LDHA protein and LDH activity, decreased LDHB and MPC2), both resembling metabolic reprogramming, but with evidence for decreased (PFK1, PKM2), rather than increased, glycolysis and AMPK phosphorylation. This supports a fetal-uteroplacental shuttle during sustained hypoxemia whereby uteroplacental tissues produce lactate as fuel for the fetus using pyruvate released from the fetus, rather than pyruvate produced from glucose in the placenta, given the absence of increased uteroplacental glucose uptake and glycolytic gene activation. Together, these results provide new mechanisms for how hypoxemia, independent of AMPK activation, regulates uteroplacental metabolism and nutrient allocation to the fetus, which allow the fetus to defend its oxidative metabolism and growth.
Collapse
Affiliation(s)
- Amanda K. Jones
- Perinatal Research Center, Department of PediatricsUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Paul J. Rozance
- Perinatal Research Center, Department of PediatricsUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Laura D. Brown
- Perinatal Research Center, Department of PediatricsUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Ramón A. Lorca
- Department of Obstetrics and GynecologyUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Colleen G. Julian
- Department of MedicineUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Lorna G. Moore
- Department of Obstetrics and GynecologyUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Sean W. Limesand
- School of Animal and Comparative Biomedical SciencesUniversity of ArizonaTucsonArizonaUSA
| | - Stephanie R. Wesolowski
- Perinatal Research Center, Department of PediatricsUniversity of Colorado School of MedicineAuroraColoradoUSA
| |
Collapse
|
13
|
Liu H, Tenzing N, van Patot MT, Qile M, Ge RL, Wuren T. Enhanced Placental Mitochondrial Respiration in Tibetan Women at High Altitude. Front Physiol 2021; 12:697022. [PMID: 34335303 PMCID: PMC8317222 DOI: 10.3389/fphys.2021.697022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/18/2021] [Indexed: 12/22/2022] Open
Abstract
Living at high altitudes is extremely challenging as it entails exposure to hypoxia, low temperatures, and high levels of UV radiation. However, the Tibetan population has adapted to such conditions on both a physiological and genetic level over 30,000–40,000 years. It has long been speculated that fetal growth restriction is caused by abnormal placental development. We previously demonstrated that placentas from high-altitude Tibetans were protected from oxidative stress induced by labor compared to those of European descent. However, little is known about how placental mitochondria change during high-altitude adaptation. In this study, we aimed to uncover the mechanism of such adaptation by studying the respiratory function of the placental mitochondria of high-altitude Tibetans, lower-altitude Tibetans, and lower-altitude Chinese Han. We discovered that mitochondrial respiration was greater in high-altitude than in lower-altitude Tibetans in terms of OXPHOS via complexes I and I+II, ETSmax capacity, and non-phosphorylating respiration, whereas non-ETS respiration, LEAK/ETS, and OXPHOS via complex IV did not differ. Respiration in lower-altitude Tibetans and Han was similar for all tested respiratory states. Placentas from high-altitude Tibetan women were protected from acute ischemic/hypoxic insult induced by labor, and increased mitochondrial respiration may represent an acute response that induces mitochondrial adaptations.
Collapse
Affiliation(s)
- Huifang Liu
- Research Center for High Altitude Medicine, Qinghai University, Xining, China.,Key Laboratory for Application of High-Altitude Medicine, Qinghai University, Xining, China.,Affiliated Hospital of Qinghai University, Xining, China
| | - Noryung Tenzing
- Research Center for High Altitude Medicine, Qinghai University, Xining, China.,Key Laboratory for Application of High-Altitude Medicine, Qinghai University, Xining, China.,Affiliated Hospital of Qinghai University, Xining, China
| | | | - Muge Qile
- Research Center for High Altitude Medicine, Qinghai University, Xining, China.,Key Laboratory for Application of High-Altitude Medicine, Qinghai University, Xining, China
| | - Ri-Li Ge
- Research Center for High Altitude Medicine, Qinghai University, Xining, China.,Key Laboratory for Application of High-Altitude Medicine, Qinghai University, Xining, China
| | - Tana Wuren
- Research Center for High Altitude Medicine, Qinghai University, Xining, China.,Key Laboratory for Application of High-Altitude Medicine, Qinghai University, Xining, China
| |
Collapse
|
14
|
Hu M, Li J, Baker PN, Tong C. Revisiting preeclampsia: a metabolic disorder of the placenta. FEBS J 2021; 289:336-354. [PMID: 33529475 DOI: 10.1111/febs.15745] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/13/2021] [Accepted: 01/29/2021] [Indexed: 12/31/2022]
Abstract
Preeclampsia (PE) is a leading cause of maternal and neonatal mortality and morbidity worldwide, impacting the long-term health of both mother and offspring. PE has long been characterized by deficient trophoblast invasion into the uterus and consequent placental hypoperfusion, yet the upstream causative factors and effective interventional targets for PE remain unknown. Alterations in the metabolism of preeclamptic placentas are thought to result from placental ischemia, while disturbances of the metabolism and of metabolites in PE pathogenesis are largely ignored. In fact, as one of the largest fetal organs at birth, the placenta consumes a considerable amount of glucose and fatty acid. Increasing evidence suggests glucose and fatty acid exist as energy substrates and regulate placental development through bioactive derivates. Moreover, recent findings have revealed that the placental metabolism adapts readily to environmental changes, altering its response to nutrients and endocrine signals; this adaptability optimizes pregnancy outcomes by diversifying available carbon sources for energy production, hormone synthesis, angiogenesis, immune activation, and tolerance, and fetoplacental growth. These observations raise the possibility that carbohydrate and lipid metabolism abnormalities play a role in both the etiology and clinical progression of PE, sparking a renewed interest in the interrelationship between PE and metabolic dysregulation. This review will focus on key metabolic substrates and regulatory molecules in the placenta and aim to provide novel insights with respect to the metabolism's role in modulating placental development and functions. Further investigations from this perspective are poised to decipher the etiology of PE and suggest potential therapies.
Collapse
Affiliation(s)
- Mingyu Hu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, China
| | - Ji Li
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | | | - Chao Tong
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, China
| |
Collapse
|
15
|
Zhang W, Li JY, Wei XC, Wang Q, Yang JY, Hou H, Du ZW, Wu XA. Effects of dibutyl phthalate on lipid metabolism in liver and hepatocytes based on PPARα/SREBP-1c/FAS/GPAT/AMPK signal pathway. Food Chem Toxicol 2021; 149:112029. [PMID: 33508418 DOI: 10.1016/j.fct.2021.112029] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/02/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023]
Abstract
Phateacid esters (PAEs), such as dibutyl phthalate (DBP), have been widely used and human exposure results into serious toxic effects; such as the development of fatty liver disease. In the present study, SD rat models for in vivo study (normal and fatty liver model group) and hepatocytes for in vitro study (normal and abnormal lipid metabolism model group) were established to determine the effects of DBP on liver function and discover the possible mechanisms. Meanwhile, the peroxisome proliferator activated receptor (PPARα) blocker, GW6471, with the Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) activator, AICAR, were applied in vitro study to clarify the role of PPARα/SREBP-1c/FAS/GPAT/AMPK signal pathway in the process. Results suggested that DBP could activate PPARα signaling pathway and affected the protein expression of SREBP, FAS and GPAT to cause hyperlipidemia and abnormal liver function. DBP also could inhibit the phosphorylation and activation of AMPK to inhibit the decomposition and metabolism of lipids. Interestingly, the effects of DBP could be alleviated by GW6471 and AICAR. Our experimental results provide reliable evidence that DBP exposure could further induce liver lipid metabolism disorder and other hepatic toxicity through PPARα/SREBP-1c/FAS/GPAT/AMPK signal pathway.
Collapse
Affiliation(s)
- Wang Zhang
- Department of Pharmacy, Hefei BOE Hospital, Hefei, PR China
| | - Jing-Ya Li
- Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, 230031, China; Department of Biological Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Xiao-Chen Wei
- Department of Pharmacy, Hefei BOE Hospital, Hefei, PR China
| | - Qian Wang
- Department of Pharmacy, Hefei BOE Hospital, Hefei, PR China
| | - Ji-Yang Yang
- Department of Pharmacy, Hefei BOE Hospital, Hefei, PR China
| | - Huan Hou
- Department of Pharmacy, Hefei BOE Hospital, Hefei, PR China
| | - Zi-Wei Du
- Department of Pharmacy, Hefei BOE Hospital, Hefei, PR China
| | - Xin-An Wu
- Department of Pharmacy, Hefei BOE Hospital, Hefei, PR China.
| |
Collapse
|
16
|
Bailey B, Euser AG, Bol KA, Julian CG, Moore LG. High-altitude residence alters blood-pressure course and increases hypertensive disorders of pregnancy. J Matern Fetal Neonatal Med 2020; 35:1264-1271. [PMID: 32228111 DOI: 10.1080/14767058.2020.1745181] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Objectives: To determine whether the full spectrum of hypertensive disorders of pregnancy (HDP) - comprising gestational hypertension; preeclampsia with or without severe features; eclampsia; and Hemolysis, Elevated Liver enzymes, and Low Platelets (HELLP) Syndrome - is increased at high (≥2500 m, 8250 ft) compared with lower altitudes in Colorado independent of maternal background characteristics, and if so their relationship to neonatal well-being.Methods: A retrospective cohort study was conducted using statewide birth-certificate data to compare the frequency of gestational hypertension, preeclampsia (with or without severe features), eclampsia, HELLP Syndrome, or all HDP combined in 617,958 Colorado women who lived at high vs. low altitude (<2500 m) and delivered during the 10-year period, 2007-2016. We also compared blood-pressure changes longitudinally during pregnancy and the frequency of HDP in 454 high (>2500 m)- vs. low (<1700 m)-altitude Colorado residents delivering in 2013 and 2014, and matched for maternal risk factors. Data were compared between altitudes using t-tests or chi-square, and by multiple or logistic regression analyses to adjust for risk factors and predict specific hypertensive or neonatal complications.Results: Statewide, high-altitude residence increased the frequency of each HDP disorder separately or all combined by 33%. High-altitude women studied longitudinally also had more HDP accompanied by higher blood pressures throughout pregnancy. The frequency of low birth weight infants (<2500 g), 5-min Apgar scores <7, and NICU admissions were also greater at high than low altitudes statewide, with the latter being accounted for by the increased incidence of HDP.Conclusions: Residence at high altitude constitutes a risk factor for HDP and recommends increased clinical surveillance. The increased incidence also makes high altitude a natural laboratory for evaluating the efficacy of predictive biomarkers or new therapies for HDP.
Collapse
Affiliation(s)
- Beth Bailey
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA
| | - Anna G Euser
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA
| | - Kirk A Bol
- Center for Health and Environmental Data, Colorado Department of Public Health and Environment, Denver, CO, USA
| | - Colleen G Julian
- Division of Personalized Medicine and Bioinformatics, Department of Medicine, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA
| | - Lorna G Moore
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|