1
|
Luque MA, Morcuende S, Torres B, Herrero L. Kv7/M channel dysfunction produces hyperexcitability in hippocampal CA1 pyramidal cells of Fmr1 knockout mice. J Physiol 2024; 602:3769-3791. [PMID: 38976504 DOI: 10.1113/jp285244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 06/18/2024] [Indexed: 07/10/2024] Open
Abstract
Fragile X syndrome (FXS), the most frequent monogenic form of intellectual disability, is caused by transcriptional silencing of the FMR1 gene that could render neuronal hyperexcitability. Here we show that pyramidal cells (PCs) in the dorsal CA1 region of the hippocampus elicited a larger action potential (AP) number in response to suprathreshold stimulation in juvenile Fmr1 knockout (KO) than wild-type (WT) mice. Because Kv7/M channels modulate CA1 PC excitability in rats, we investigated if their dysfunction produces neuronal hyperexcitability in Fmr1 KO mice. Immunohistochemical and western blot analyses showed no differences in the expression of Kv7.2 and Kv7.3 channel subunits between genotypes; however, the current mediated by Kv7/M channels was reduced in Fmr1 KO mice. In both genotypes, bath application of XE991 (10 μM), a blocker of Kv7/M channels: produced an increased AP number, produced an increased input resistance, produced a decreased AP voltage threshold and shaped AP medium afterhyperpolarization by increasing mean velocities. Retigabine (10 μM), an opener of Kv7/M channels, produced opposite effects to XE991. Both XE991 and retigabine abolished differences in all these parameters found in control conditions between genotypes. Furthermore, a low concentration of retigabine (2.5 μM) normalized CA1 PC excitability of Fmr1 KO mice. Finally, ex vivo seizure-like events evoked by 4-aminopyiridine (200 μM) in the dorsal CA1 region were more frequent in Fmr1 KO mice, and were abolished by retigabine (5-10 μM). We conclude that CA1 PCs of Fmr1 KO mice exhibit hyperexcitability, caused by Kv7/M channel dysfunction, and increased epileptiform activity, which were abolished by retigabine. KEY POINTS: Dorsal pyramidal cells of the hippocampal CA1 region of Fmr1 knockout mice exhibit hyperexcitability. Kv7/M channel activity, but not expression, is reduced in pyramidal cells of the hippocampal CA1 region of Fmr1 knockout mice. Kv7/M channel dysfunction causes hyperexcitability in pyramidal cells of the hippocampal CA1 region of Fmr1 knockout mice by increasing input resistance, decreasing AP voltage threshold and shaping medium afterhyperpolarization. A Kv7/M channel opener normalizes neuronal excitability in pyramidal cells of the hippocampal CA1 region of Fmr1 knockout mice. Ex vivo seizure-like events evoked in the dorsal CA1 region were more frequent in Fmr1 KO mice, and such an epileptiform activity was abolished by a Kv7/M channel opener depending on drug concentration. Kv7/M channels may represent a therapeutic target for treating symptoms associated with hippocampal alterations in fragile X syndrome.
Collapse
Affiliation(s)
- M Angeles Luque
- Departamento Fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Sara Morcuende
- Departamento Fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Blas Torres
- Departamento Fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Luis Herrero
- Departamento Fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
2
|
Aceto G, Nardella L, Nanni S, Pecci V, Bertozzi A, Nutarelli S, Viscomi MT, Colussi C, D'Ascenzo M, Grassi C. Glycine-induced activation of GPR158 increases the intrinsic excitability of medium spiny neurons in the nucleus accumbens. Cell Mol Life Sci 2024; 81:268. [PMID: 38884814 PMCID: PMC11335193 DOI: 10.1007/s00018-024-05260-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 06/18/2024]
Abstract
It has been recently established that GPR158, a class C orphan G protein-coupled receptor, serves as a metabotropic glycine receptor. GPR158 is highly expressed in the nucleus accumbens (NAc), a major input structure of the basal ganglia that integrates information from cortical and subcortical structures to mediate goal-directed behaviors. However, whether glycine modulates neuronal activity in the NAc through GPR158 activation has not been investigated yet. Using whole-cell patch-clamp recordings, we found that glycine-dependent activation of GPR158 increased the firing rate of NAc medium spiny neurons (MSNs) while it failed to significantly affect the excitability of cholinergic interneurons (CIN). In MSNs GPR158 activation reduced the latency to fire, increased the action potential half-width, and reduced action potential afterhyperpolarization, effects that are all consistent with negative modulation of potassium M-currents, that in the central nervous system are mainly carried out by Kv7/KCNQ-channels. Indeed, we found that the GPR158-induced increase in MSN excitability was associated with decreased M-current amplitude, and selective pharmacological inhibition of the M-current mimicked and occluded the effects of GPR158 activation. In addition, when the protein kinase A (PKA) or extracellular signal-regulated kinase (ERK) signaling was pharmacologically blocked, modulation of MSN excitability by GPR158 activation was suppressed. Moreover, GPR158 activation increased the phosphorylation of ERK and Kv7.2 serine residues. Collectively, our findings suggest that GPR158/PKA/ERK signaling controls MSN excitability via Kv7.2 modulation. Glycine-dependent activation of GPR158 may significantly affect MSN firing in vivo, thus potentially mediating specific aspects of goal-induced behaviors.
Collapse
Affiliation(s)
- Giuseppe Aceto
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, 00168, Italy
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, 00168, Italy
| | - Luca Nardella
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, 00168, Italy
| | - Simona Nanni
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, 00168, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, 00168, Italy
| | - Valeria Pecci
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, 00168, Italy
| | - Alessia Bertozzi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, 00168, Italy
- Istituto di Analisi dei Sistemi ed Informatica "Antonio Ruberti", National Research Council, Rome, Italy
| | - Sofia Nutarelli
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, 00168, Italy
| | - Maria Teresa Viscomi
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, 00168, Italy
| | - Claudia Colussi
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, 00168, Italy
- Istituto di Analisi dei Sistemi ed Informatica "Antonio Ruberti", National Research Council, Rome, Italy
| | - Marcello D'Ascenzo
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, 00168, Italy.
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, 00168, Italy.
| | - Claudio Grassi
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, 00168, Italy
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, 00168, Italy
| |
Collapse
|
3
|
Li Y, Yang X, Yan S, Sun Z. Complexity decline of hippocampal CA1 circuit model due to cholinergic deficiency associated with Alzheimer's disease. Cogn Neurodyn 2024; 18:1265-1283. [PMID: 38826656 PMCID: PMC11143170 DOI: 10.1007/s11571-023-09958-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/19/2023] [Accepted: 03/08/2023] [Indexed: 06/04/2024] Open
Abstract
A hallmark of Alzheimer's disease (AD) is cholinergic system dysfunction, directly affecting the hippocampal neurons. Previous experiments have demonstrated that reduced complexity is one significant effect of AD on electroencephalography (EEG). Motivated by these, this study explores reduced EEG complexity of cholinergic deficiency in AD by neurocomputation. We first construct a new hippocampal CA1 circuit model with cholinergic action. M-current I M and calcium-activated potassium current I AHP are newly introduced in the model to describe cholinergic input from the medial septum. Then, by enhancing I M and I AHP to mimic cholinergic deficiency, how cholinergic deficiency influences the model complexity is investigated by sample entropy (SampEn) and approximate entropy (ApEn). Numerical results show a more severe cholinergic deficit with lower model complexity. Furthermore, we conclude that the decline of SampEn and ApEn is due to the greatly diminished excitability of model neurons. These suggest that decreased neuronal excitability due to cholinergic impairment may contribute to reduced EEG complexity in AD. Subsequently, statistical analysis between simulated AD patients and normal control (NC) groups demonstrates that SampEn and auto-mutual-information (AMI) decrease rates significantly differ. Compared to NC, AD patients have a lower SampEn and a less negative AMI decline rate. These imply a low rate of new-generation information in AD brains with cholinergic deficits. Interestingly, the statistical correlation between SampEn and AMI is analyzed, and they have a large negative Pearson correlation coefficient. Thus, AMI reduction rates may be a complementary tool for complex analysis. Our modeling and complex analysis are expected to provide a deeper understanding of the reduced EEG complexity resulting from cholinergic deficiency.
Collapse
Affiliation(s)
- YeZi Li
- School of Mathematics and Statistics, Shaanxi Normal University, Xi’an, 710062 People’s Republic of China
| | - XiaoLi Yang
- School of Mathematics and Statistics, Shaanxi Normal University, Xi’an, 710062 People’s Republic of China
| | - SiLu Yan
- School of Mathematics and Statistics, Shaanxi Normal University, Xi’an, 710062 People’s Republic of China
| | - ZhongKui Sun
- School of Mathematics and Statistics, Northwestern Polytechnical University, Xi’an, 710072 People’s Republic of China
| |
Collapse
|
4
|
Arias ER, Sánchez-Tafolla BM, Terrón C, Martínez LA, Zetina ME, Morales MA, Cifuentes F. Long-term potentiation and its neurotrophin-dependent modulation in the superior cervical ganglion of the rat are influenced by KCNQ channel function. Can J Physiol Pharmacol 2023; 101:539-547. [PMID: 37406358 DOI: 10.1139/cjpp-2022-0552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Ganglionic long-term potentiation (gLTP) in the rat superior cervical ganglion (SCG) is differentially modulated by neurotrophic factors (Nts): brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF). KCNQ/M channels, key regulators of neuronal excitability, and firing pattern are modulated by Nts; therefore, they might contribute to gLTP expression and to the Nts-dependent modulation of gLTP. In the SCG of rats, we characterized the presence of the KCNQ2 isoform and the effects of opposite KCNQ/M channel modulators on gLTP in control condition and under Nts modulation. Immunohistochemical and reverse transcriptase polymerase chain reaction analyses showed the expression of the KCNQ2 isoform. We found that 1 µmol/L XE991, a channel inhibitor, significantly reduced gLTP (∼50%), whereas 5 µmol/L flupirtine, a channel activator, significantly increased gLTP (1.3- to 1.7-fold). Both modulators counterbalanced the effects of the Nts on gLTP. Data suggest that KCNQ/M channels are likely involved in gLTP expression and in the modulation exerted by BDNF and NGF.
Collapse
Affiliation(s)
- Erwin R Arias
- Departamento de Biología Celular & Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.U., Coyoacán 04510, Ciudad de México, México
| | - Berardo M Sánchez-Tafolla
- Departamento de Biología Celular & Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.U., Coyoacán 04510, Ciudad de México, México
| | - Carlos Terrón
- Departamento de Biología Celular & Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.U., Coyoacán 04510, Ciudad de México, México
| | - Luis A Martínez
- Departamento de Biología Celular & Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.U., Coyoacán 04510, Ciudad de México, México
| | - Maria E Zetina
- Departamento de Biología Celular & Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.U., Coyoacán 04510, Ciudad de México, México
| | - Miguel A Morales
- Departamento de Biología Celular & Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.U., Coyoacán 04510, Ciudad de México, México
| | - Fredy Cifuentes
- Departamento de Biología Celular & Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.U., Coyoacán 04510, Ciudad de México, México
| |
Collapse
|
5
|
Dalla Porta L, Barbero-Castillo A, Sanchez-Sanchez JM, Sanchez-Vives MV. M-current modulation of cortical slow oscillations: Network dynamics and computational modeling. PLoS Comput Biol 2023; 19:e1011246. [PMID: 37405991 DOI: 10.1371/journal.pcbi.1011246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 06/06/2023] [Indexed: 07/07/2023] Open
Abstract
The slow oscillation is a synchronized network activity expressed by the cortical network in slow wave sleep and under anesthesia. Waking up requires a transition from this synchronized brain state to a desynchronized one. Cholinergic innervation is critical for the transition from slow-wave-sleep to wakefulness, and muscarinic action is largely exerted through the muscarinic-sensitive potassium current (M-current) block. We investigated the dynamical impact of blocking the M-current on slow oscillations, both in cortical slices and in a cortical network computational model. Blocking M-current resulted in an elongation of Up states (by four times) and in a significant firing rate increase, reflecting an increased network excitability, albeit no epileptiform discharges occurred. These effects were replicated in a biophysical cortical model, where a parametric reduction of the M-current resulted in a progressive elongation of Up states and firing rate. All neurons, and not only those modeled with M-current, increased their firing rates due to network recurrency. Further increases in excitability induced even longer Up states, approaching the microarousals described in the transition towards wakefulness. Our results bridge an ionic current with network modulation, providing a mechanistic insight into network dynamics of awakening.
Collapse
Affiliation(s)
- Leonardo Dalla Porta
- Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | | | - Maria V Sanchez-Vives
- Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- ICREA, Passeig Lluís Companys, Barcelona, Spain
| |
Collapse
|
6
|
Brun L, Viemari J, Villard L. Mouse models of Kcnq2 dysfunction. Epilepsia 2022; 63:2813-2826. [PMID: 36047730 PMCID: PMC9828481 DOI: 10.1111/epi.17405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 01/12/2023]
Abstract
Variants in the Kv7.2 channel subunit encoded by the KCNQ2 gene cause epileptic disorders ranging from a benign form with self-limited epileptic seizures and normal development to severe forms with intractable epileptic seizures and encephalopathy. The biological mechanisms involved in these neurological diseases are still unclear. The disease remains intractable in patients affected by the severe form. Over the past 20 years, KCNQ2 models have been developed to elucidate pathological mechanisms and to identify new therapeutic targets. The diversity of Kcnq2 mouse models has proven invaluable to access neuronal networks and evaluate the associated cognitive deficits. This review summarizes the available models and their contribution to our current understanding of KCNQ2 epileptic disorders.
Collapse
Affiliation(s)
- Lucile Brun
- Aix Marseille Univ, Inserm, MMGMarseilleFrance
| | | | - Laurent Villard
- Aix Marseille Univ, Inserm, MMGMarseilleFrance,Service de Génétique Médicale, AP‐HM, Hôpital de La TimoneMarseilleFrance
| |
Collapse
|
7
|
Antagonism of the Muscarinic Acetylcholine Type 1 Receptor Enhances Mitochondrial Membrane Potential and Expression of Respiratory Chain Components via AMPK in Human Neuroblastoma SH-SY5Y Cells and Primary Neurons. Mol Neurobiol 2022; 59:6754-6770. [PMID: 36002781 PMCID: PMC9525428 DOI: 10.1007/s12035-022-03003-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/16/2022] [Indexed: 12/05/2022]
Abstract
Impairments in mitochondrial physiology play a role in the progression of multiple neurodegenerative conditions, including peripheral neuropathy in diabetes. Blockade of muscarinic acetylcholine type 1 receptor (M1R) with specific/selective antagonists prevented mitochondrial dysfunction and reversed nerve degeneration in in vitro and in vivo models of peripheral neuropathy. Specifically, in type 1 and type 2 models of diabetes, inhibition of M1R using pirenzepine or muscarinic toxin 7 (MT7) induced AMP-activated protein kinase (AMPK) activity in dorsal root ganglia (DRG) and prevented sensory abnormalities and distal nerve fiber loss. The human neuroblastoma SH-SY5Y cell line has been extensively used as an in vitro model system to study mechanisms of neurodegeneration in DRG neurons and other neuronal sub-types. Here, we tested the hypothesis that pirenzepine or MT7 enhance AMPK activity and via this pathway augment mitochondrial function in SH-SY5Y cells. M1R expression was confirmed by utilizing a fluorescent dye, ATTO590-labeled MT7, that exhibits great specificity for this receptor. M1R antagonist treatment in SH-SY5Y culture increased AMPK phosphorylation and mitochondrial protein expression (OXPHOS). Mitochondrial membrane potential (MMP) was augmented in pirenzepine and MT7 treated cultured SH-SY5Y cells and DRG neurons. Compound C or AMPK-specific siRNA suppressed pirenzepine or MT7-induced elevation of OXPHOS expression and MMP. Moreover, muscarinic antagonists induced hyperpolarization by activating the M-current and, thus, suppressed neuronal excitability. These results reveal that negative regulation of this M1R-dependent pathway could represent a potential therapeutic target to elevate AMPK activity, enhance mitochondrial function, suppress neuropathic pain, and enhance nerve repair in peripheral neuropathy.
Collapse
|
8
|
Edmond MA, Hinojo-Perez A, Wu X, Perez Rodriguez ME, Barro-Soria R. Distinctive mechanisms of epilepsy-causing mutants discovered by measuring S4 movement in KCNQ2 channels. eLife 2022; 11:77030. [PMID: 35642783 PMCID: PMC9197397 DOI: 10.7554/elife.77030] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/31/2022] [Indexed: 01/10/2023] Open
Abstract
Neuronal KCNQ channels mediate the M-current, a key regulator of membrane excitability in the central and peripheral nervous systems. Mutations in KCNQ2 channels cause severe neurodevelopmental disorders, including epileptic encephalopathies. However, the impact that different mutations have on channel function remains poorly defined, largely because of our limited understanding of the voltage-sensing mechanisms that trigger channel gating. Here, we define the parameters of voltage sensor movements in wt-KCNQ2 and channels bearing epilepsy-associated mutations using cysteine accessibility and voltage clamp fluorometry (VCF). Cysteine modification reveals that a stretch of eight to nine amino acids in the S4 becomes exposed upon voltage sensing domain activation of KCNQ2 channels. VCF shows that the voltage dependence and the time course of S4 movement and channel opening/closing closely correlate. VCF reveals different mechanisms by which different epilepsy-associated mutations affect KCNQ2 channel voltage-dependent gating. This study provides insight into KCNQ2 channel function, which will aid in uncovering the mechanisms underlying channelopathies.
Collapse
Affiliation(s)
- Michaela A Edmond
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, United States
| | - Andy Hinojo-Perez
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, United States
| | - Xiaoan Wu
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, United States
| | - Marta E Perez Rodriguez
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, United States
| | - Rene Barro-Soria
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, United States
| |
Collapse
|
9
|
Mednikova YS, Voronkov DN, Khudoerkov RM, Pasikova NV, Zakharova NM. The Active and Passive Components of Neuronal Excitation and its Glial Support. Biophysics (Nagoya-shi) 2021. [DOI: 10.1134/s0006350921040126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
10
|
McMartin L, Kiraly M, Heller HC, Madison DV, Ruby NF. Disruption of circadian timing increases synaptic inhibition and reduces cholinergic responsiveness in the dentate gyrus. Hippocampus 2021; 31:422-434. [PMID: 33439521 PMCID: PMC8048473 DOI: 10.1002/hipo.23301] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 12/28/2020] [Accepted: 01/02/2021] [Indexed: 12/11/2022]
Abstract
We investigated synaptic mechanisms in the hippocampus that could explain how loss of circadian timing leads to impairments in spatial and recognition memory. Experiments were performed in hippocampal slices from Siberian hamsters (Phodopus sungorus) because, unlike mice and rats, their circadian rhythms are easily eliminated without modifications to their genome and without surgical manipulations, thereby leaving neuronal circuits intact. Recordings of excitatory postsynaptic field potentials and population spikes in area CA1 and dentate gyrus granule cells revealed no effect of circadian arrhythmia on basic functions of synaptic circuitry, including long-term potentiation. However, dentate granule cells from circadian-arrhythmic animals maintained a more depolarized resting membrane potential than cells from circadian-intact animals; a significantly greater proportion of these cells depolarized in response to the cholinergic agonist carbachol (10 μM), and did so by increasing their membrane potential three-fold greater than cells from the control (entrained) group. Dentate granule cells from arrhythmic animals also exhibited higher levels of tonic inhibition, as measured by the frequency of spontaneous inhibitory postsynaptic potentials. Carbachol also decreased stimulus-evoked synaptic excitation in dentate granule cells from both intact and arrhythmic animals as expected, but reduced stimulus-evoked synaptic inhibition only in cells from control hamsters. These findings show that loss of circadian timing is accompanied by greater tonic inhibition, and increased synaptic inhibition in response to muscarinic receptor activation in dentate granule cells. Increased inhibition would likely attenuate excitation in dentate-CA3 microcircuits, which in turn might explain the spatial memory deficits previously observed in circadian-arrhythmic hamsters.
Collapse
Affiliation(s)
- Laura McMartin
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, USA
| | - Marianna Kiraly
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, USA
| | - H Craig Heller
- Biology Department, Stanford University, Stanford, California, USA
| | - Daniel V Madison
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, USA
| | - Norman F Ruby
- Biology Department, Stanford University, Stanford, California, USA
| |
Collapse
|
11
|
The M-current works in tandem with the persistent sodium current to set the speed of locomotion. PLoS Biol 2020; 18:e3000738. [PMID: 33186352 PMCID: PMC7688130 DOI: 10.1371/journal.pbio.3000738] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 11/25/2020] [Accepted: 10/13/2020] [Indexed: 01/20/2023] Open
Abstract
The central pattern generator (CPG) for locomotion is a set of pacemaker neurons endowed with inherent bursting driven by the persistent sodium current (INaP). How they proceed to regulate the locomotor rhythm remained unknown. Here, in neonatal rodents, we identified a persistent potassium current critical in regulating pacemakers and locomotion speed. This current recapitulates features of the M-current (IM): a subthreshold noninactivating outward current blocked by 10,10-bis(4-pyridinylmethyl)-9(10H)-anthracenone dihydrochloride (XE991) and enhanced by N-(2-chloro-5-pyrimidinyl)-3,4-difluorobenzamide (ICA73). Immunostaining and mutant mice highlight an important role of Kv7.2-containing channels in mediating IM. Pharmacological modulation of IM regulates the emergence and the frequency regime of both pacemaker and CPG activities and controls the speed of locomotion. Computational models captured these results and showed how an interplay between IM and INaP endows the locomotor CPG with rhythmogenic properties. Overall, this study provides fundamental insights into how IM and INaP work in tandem to set the speed of locomotion.
Collapse
|
12
|
Smith PA. K + Channels in Primary Afferents and Their Role in Nerve Injury-Induced Pain. Front Cell Neurosci 2020; 14:566418. [PMID: 33093824 PMCID: PMC7528628 DOI: 10.3389/fncel.2020.566418] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Sensory abnormalities generated by nerve injury, peripheral neuropathy or disease are often expressed as neuropathic pain. This type of pain is frequently resistant to therapeutic intervention and may be intractable. Numerous studies have revealed the importance of enduring increases in primary afferent excitability and persistent spontaneous activity in the onset and maintenance of peripherally induced neuropathic pain. Some of this activity results from modulation, increased activity and /or expression of voltage-gated Na+ channels and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. K+ channels expressed in dorsal root ganglia (DRG) include delayed rectifiers (Kv1.1, 1.2), A-channels (Kv1.4, 3.3, 3.4, 4.1, 4.2, and 4.3), KCNQ or M-channels (Kv7.2, 7.3, 7.4, and 7.5), ATP-sensitive channels (KIR6.2), Ca2+-activated K+ channels (KCa1.1, 2.1, 2.2, 2.3, and 3.1), Na+-activated K+ channels (KCa4.1 and 4.2) and two pore domain leak channels (K2p; TWIK related channels). Function of all K+ channel types is reduced via a multiplicity of processes leading to altered expression and/or post-translational modification. This also increases excitability of DRG cell bodies and nociceptive free nerve endings, alters axonal conduction and increases neurotransmitter release from primary afferent terminals in the spinal dorsal horn. Correlation of these cellular changes with behavioral studies provides almost indisputable evidence for K+ channel dysfunction in the onset and maintenance of neuropathic pain. This idea is underlined by the observation that selective impairment of just one subtype of DRG K+ channel can produce signs of pain in vivo. Whilst it is established that various mediators, including cytokines and growth factors bring about injury-induced changes in DRG function and excitability, evidence presently available points to a seminal role for interleukin 1β (IL-1β) in control of K+ channel function. Despite the current state of knowledge, attempts to target K+ channels for therapeutic pain management have met with limited success. This situation may change with the advent of personalized medicine. Identification of specific sensory abnormalities and genetic profiling of individual patients may predict therapeutic benefit of K+ channel activators.
Collapse
Affiliation(s)
- Peter A. Smith
- Department of Pharmacology and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
13
|
Jiang P, Yang X, Sun Z. Dynamics analysis of the hippocampal neuronal model subjected to cholinergic action related with Alzheimer's disease. Cogn Neurodyn 2020; 14:483-500. [PMID: 32655712 PMCID: PMC7334339 DOI: 10.1007/s11571-020-09586-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 02/24/2020] [Accepted: 03/24/2020] [Indexed: 12/26/2022] Open
Abstract
There are evidences that the region of hippocampus is affected in the early stage of Alzheimer's disease (AD). Moreover, the hippocampal pyramidal neurons receive cholinergic input from the medial septum. Thus, this study, based on the results of electrophysiological experiments, first constructs a modified hippocampal CA1 pyramidal neuronal model by introducing two new currents of M-current and calcium ion-activated potassium ion current to depict the cholinergic input receiving from the medial septum, and then explores how acetylcholine deficiency and beta-amyloid accumulation under the pathological condition of AD influence the neuronal dynamics in terms of theta band power and spiking frequency using computational approach. By simulating acetylcholine potentiated M-current and calcium ion-activated potassium ion current, numerical results reveal that the relative theta band power increases significantly and the firing rate decreases obviously when acetylcholine is deficient. Similarly, by simulating beta-amyloid enhanced delay rectification potassium ion current, we also detect that the relative theta band power increases as well as the firing rate decreases remarkably as beta-amyloid is accumulated. In addition, the mechanism underlying these dynamical changes in theta rhythm and firing behavior is investigated by nonlinear behavioral analysis, which demonstrates that both deficiency in acetylcholine and accumulation in beta-amyloid can promote the emergence of stable equilibrium state in this modified hippocampal neuronal model. Note that acetylcholine deficiency together with beta-amyloid deposition plays key role in the pathogenesis of AD. We expect these findings could have important implications on better understanding pathogenesis and expounding potential biomarkers for AD.
Collapse
Affiliation(s)
- PeiHao Jiang
- College of Mathematics and Information Science, Shaanxi Normal University, Xi’an, 710062 People’s Republic of China
| | - XiaoLi Yang
- College of Mathematics and Information Science, Shaanxi Normal University, Xi’an, 710062 People’s Republic of China
| | - ZhongKui Sun
- Department of Applied Mathematics, Northwestern Polytechnical University, Xi’an, 710072 People’s Republic of China
| |
Collapse
|
14
|
Wilenkin B, Burris KD, Eastwood BJ, Sher E, Williams AC, Priest BT. Development of an Electrophysiological Assay for Kv7 Modulators on IonWorks Barracuda. Assay Drug Dev Technol 2020; 17:310-321. [PMID: 31634018 DOI: 10.1089/adt.2019.942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Relief from chronic pain continues to represent a large unmet need. The voltage-gated potassium channel Kv7.2/7.3, also known as KCNQ2/3, is a key contributor to the control of resting membrane potential and excitability in nociceptive neurons and represents a promising target for potential therapeutics. In this study, we present a medium throughput electrophysiological assay for the identification and characterization of modulators of Kv7.2/7.3 channels, using the IonWorks Barracuda™ automated voltage clamp platform. The assay combines a family of voltage steps used to construct conductance curves with a unique analysis method. Kv7.2/7.3 modulators shift the activation voltage and/or change the maximal conductance of the current, and both parameters have been used to quantify compound mediated effects. Both effects are expected to modulate neuronal excitability in vivo. The analysis method described assigns a single potency value that combines changes in activation voltage and maximal conductance and is expected to predict compound mediated changes in excitability.
Collapse
Affiliation(s)
- Benjamin Wilenkin
- Department of Quantitative Biology, Eli Lilly and Company, Indianapolis, Indiana
| | - Kevin D Burris
- Department of Quantitative Biology, Eli Lilly and Company, Indianapolis, Indiana
| | - Brian J Eastwood
- Department of Statistics, Eli Lilly and Company, Indianapolis, Indiana
| | - Emanuele Sher
- Department of Discovery Pain Group, Eli Lilly and Company, Indianapolis, Indiana
| | - Andrew C Williams
- Department of Medicinal Chemistry, Eli Lilly and Company, Indianapolis, Indiana
| | - Birgit T Priest
- Department of Quantitative Biology, Eli Lilly and Company, Indianapolis, Indiana
| |
Collapse
|
15
|
Villalba-Galea CA. Modulation of K V7 Channel Deactivation by PI(4,5)P 2. Front Pharmacol 2020; 11:895. [PMID: 32636742 PMCID: PMC7318307 DOI: 10.3389/fphar.2020.00895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/02/2020] [Indexed: 01/16/2023] Open
Abstract
The activity of KV7 channels critically contributes to the regulation of cellular electrical excitability in many cell types. In the central nervous system, the heteromeric KV7.2/KV7.3 channel is thought to be the chief molecular entity giving rise to M-currents. These K+-currents as so called because they are inhibited by the activation of Gq protein-coupled muscarinic receptors. In general, activation of Gq protein-coupled receptors (GqPCRs) decreases the concentration of the phosphoinositide PI(4,5)P2 which is required for KV7 channel activity. It has been recently reported that the deactivation rate of KV7.2/KV7.3 channels decreases as a function of activation. This suggests that the activated/open channel stabilizes as activation persists. This property has been regarded as evidence for the existence of modal behavior in the activity of these channels. In particular, it has been proposed that the heteromeric KV7.2/KV7.3 channel has at least two modes of activity that can be distinguished by both their deactivation kinetics and sensitivity to Retigabine. The current study was aimed at understanding the effect of PI(4,5)P2 depletion on the modal behavior of KV7.2/KV7.3 channels. Here, it was hypothesized that depleting the membrane of P(4,5)P2 would hamper the stabilization of the activated/open channel, resulting in higher rates of deactivation of the heteromeric KV7.2/KV7.3 channel. In addressing this question, it was found that the activity-dependent slowdown of the deactivation was not as prominent when channels were co-expressed with the chimeric phosphoinositide-phosphatase Ci-VS-TPIP or when cells were treated with the phosphoinositide kinase inhibitor Wortmannin. Further, it was observed that either of these approaches to deplete PI(4,5)P2 had a higher impact on the kinetic of deactivation following prolonged activation, while having little or no effect when activation was short-lived. Furthermore, it was observed that the action of either Ci-VS-TPIP or Wortmannin reduced the effect of Retigabine on the kinetics of deactivation, having a higher impact when activation was prolonged. These combined observations led to the conclusion that the deactivation kinetic of KV7.2/KV7.3 channels was sensitive to PI(4,5)P2 depletion in an activation-dependent manner, displaying a stronger effect on deactivation following prolonged activation.
Collapse
Affiliation(s)
- Carlos A. Villalba-Galea
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, United States
| |
Collapse
|
16
|
Inoue M, Harada K, Matsuoka H. Mechanisms for pituitary adenylate cyclase-activating polypeptide-induced increase in excitability in guinea-pig and mouse adrenal medullary cells. Eur J Pharmacol 2020; 872:172956. [DOI: 10.1016/j.ejphar.2020.172956] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/18/2020] [Accepted: 01/24/2020] [Indexed: 10/25/2022]
|
17
|
Gillet C, Kurth S, Kuenzel T. Muscarinic modulation of M and h currents in gerbil spherical bushy cells. PLoS One 2020; 15:e0226954. [PMID: 31940388 PMCID: PMC6961914 DOI: 10.1371/journal.pone.0226954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/10/2019] [Indexed: 11/18/2022] Open
Abstract
Descending cholinergic fibers innervate the cochlear nucleus. Spherical bushy cells, principal neurons of the anterior part of the ventral cochlear nucleus, are depolarized by cholinergic agonists on two different time scales. A fast and transient response is mediated by alpha-7 homomeric nicotinic receptors while a slow and long-lasting response is mediated by muscarinic receptors. Spherical bushy cells were shown to express M3 receptors, but the receptor subtypes involved in the slow muscarinic response were not physiologically identified yet. Whole-cell patch clamp recordings combined with pharmacology and immunohistochemistry were performed to identify the muscarinic receptor subtypes and the effector currents involved. Spherical bushy cells also expressed both M1 and M2 receptors. The M1 signal was stronger and mainly somatic while the M2 signal was localized in the neuropil and on the soma of bushy cells. Physiologically, the M-current was observed for the gerbil spherical bushy cells and was inhibited by oxotremorine-M application. Surprisingly, long application of carbachol showed only a transient depolarization. Even though no muscarinic depolarization could be detected, the input resistance increased suggesting a decrease in the cell conductance that matched with the closure of M-channels. The hyperpolarization-activated currents were also affected by muscarinic activation and counteracted the effect of the inactivation of M-current on the membrane potential. We hypothesize that this double muscarinic action might allow adaptation of effects during long durations of cholinergic activation.
Collapse
Affiliation(s)
- Charlène Gillet
- Auditory Neurophysiology Group, Department of Chemosensation, RWTH Aachen University, Worringerweg, Aachen, Germany
| | - Stefanie Kurth
- Department of Chemosensation, RWTH Aachen University, Worringerweg, Aachen, Germany
| | - Thomas Kuenzel
- Auditory Neurophysiology Group, Department of Chemosensation, RWTH Aachen University, Worringerweg, Aachen, Germany
- Department of Chemosensation, RWTH Aachen University, Worringerweg, Aachen, Germany
- * E-mail:
| |
Collapse
|
18
|
Abstract
Here, I recount some adventures that I and my colleagues have had over some 60 years since 1957 studying the effects of drugs and neurotransmitters on neuronal excitability and ion channel function, largely, but not exclusively, using sympathetic neurons as test objects. Studies include effects of centrally active drugs on sympathetic transmission; neuronal action and neuroglial uptake of GABA in the ganglia and brain; the action of muscarinic agonists on sympathetic neurons; the action of bradykinin on neuroblastoma-derived cells; and the identification of M-current as a target for muscarinic action, including experiments to determine its distribution, molecular composition, neurotransmitter sensitivity, and intracellular regulation by phospholipids and their hydrolysis products. Techniques used include electrophysiological recording (extracellular, intracellular microelectrode, whole-cell, and single-channel patch-clamp), autoradiography, messenger RNA and complementary DNA expression, antibody injection, antisense knockdown, and membrane-targeted lipidated peptides. I finish with some recollections about my scientific career, funding, and changes in laboratory life and pharmacology research over the past 60 years.
Collapse
Affiliation(s)
- David A. Brown
- Departments of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
19
|
Understanding phosphoinositides: rare, dynamic, and essential membrane phospholipids. Biochem J 2019; 476:1-23. [PMID: 30617162 DOI: 10.1042/bcj20180022] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/03/2018] [Accepted: 12/07/2018] [Indexed: 12/15/2022]
Abstract
Polyphosphoinositides (PPIs) are essential phospholipids located in the cytoplasmic leaflet of eukaryotic cell membranes. Despite contributing only a small fraction to the bulk of cellular phospholipids, they make remarkable contributions to practically all aspects of a cell's life and death. They do so by recruiting cytoplasmic proteins/effectors or by interacting with cytoplasmic domains of membrane proteins at the membrane-cytoplasm interface to organize and mold organelle identity. The present study summarizes aspects of our current understanding concerning the metabolism, manipulation, measurement, and intimate roles these lipids play in regulating membrane homeostasis and vital cell signaling reactions in health and disease.
Collapse
|
20
|
Paz RM, Tubert C, Stahl A, Díaz AL, Etchenique R, Murer MG, Rela L. Inhibition of striatal cholinergic interneuron activity by the Kv7 opener retigabine and the nonsteroidal anti-inflammatory drug diclofenac. Neuropharmacology 2018; 137:309-321. [PMID: 29758221 DOI: 10.1016/j.neuropharm.2018.05.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 04/26/2018] [Accepted: 05/07/2018] [Indexed: 11/18/2022]
Abstract
Striatal cholinergic interneurons provide modulation to striatal circuits involved in voluntary motor control and goal-directed behaviors through their autonomous tonic discharge and their firing "pause" responses to novel and rewarding environmental events. Striatal cholinergic interneuron hyperactivity was linked to the motor deficits associated with Parkinson's disease and the adverse effects of chronic antiparkinsonian therapy like l-DOPA-induced dyskinesia. Here we addressed whether Kv7 channels, which provide negative feedback to excitation in other neuron types, are involved in the control of striatal cholinergic interneuron tonic activity and response to excitatory inputs. We found that autonomous firing of striatal cholinergic interneurons is not regulated by Kv7 channels. In contrast, Kv7 channels limit the summation of excitatory postsynaptic potentials in cholinergic interneurons through a postsynaptic mechanism. Striatal cholinergic interneurons have a high reserve of Kv7 channels, as their opening using pharmacological tools completely silenced the tonic firing and markedly reduced their intrinsic excitability. A strong inhibition of striatal cholinergic interneurons was also observed in response to the anti-inflammatory drugs diclofenac and meclofenamic acid, however, this effect was independent of Kv7 channels. These data bring attention to new potential molecular targets and pharmacological tools to control striatal cholinergic interneuron activity in pathological conditions where they are believed to be hyperactive, including Parkinson's disease.
Collapse
Affiliation(s)
- Rodrigo Manuel Paz
- Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica "Bernardo Houssay" (IFIBIO-Houssay), Grupo de Neurociencia de Sistemas, Buenos Aires 1121, Argentina
| | - Cecilia Tubert
- Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica "Bernardo Houssay" (IFIBIO-Houssay), Grupo de Neurociencia de Sistemas, Buenos Aires 1121, Argentina
| | - Agostina Stahl
- Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica "Bernardo Houssay" (IFIBIO-Houssay), Grupo de Neurociencia de Sistemas, Buenos Aires 1121, Argentina
| | - Analía López Díaz
- Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica "Bernardo Houssay" (IFIBIO-Houssay), Grupo de Neurociencia de Sistemas, Buenos Aires 1121, Argentina
| | - Roberto Etchenique
- Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CONICET, Ciudad Universitaria Pabellón 2, AR1428EHA Buenos Aires, Argentina
| | - Mario Gustavo Murer
- Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica "Bernardo Houssay" (IFIBIO-Houssay), Grupo de Neurociencia de Sistemas, Buenos Aires 1121, Argentina
| | - Lorena Rela
- Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica "Bernardo Houssay" (IFIBIO-Houssay), Grupo de Neurociencia de Sistemas, Buenos Aires 1121, Argentina.
| |
Collapse
|
21
|
Marked bias towards spontaneous synaptic inhibition distinguishes non-adapting from adapting layer 5 pyramidal neurons in the barrel cortex. Sci Rep 2017; 7:14959. [PMID: 29097689 PMCID: PMC5668277 DOI: 10.1038/s41598-017-14971-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 10/19/2017] [Indexed: 11/18/2022] Open
Abstract
Pyramidal neuron subtypes differ in intrinsic electrophysiology properties and dendritic morphology. However, do different pyramidal neuron subtypes also receive synaptic inputs that are dissimilar in frequency and in excitation/inhibition balance? Unsupervised clustering of three intrinsic parameters that vary by cell subtype – the slow afterhyperpolarization, the sag, and the spike frequency adaptation – split layer 5 barrel cortex pyramidal neurons into two clusters: one of adapting cells and one of non-adapting cells, corresponding to previously described thin- and thick-tufted pyramidal neurons, respectively. Non-adapting neurons presented frequencies of spontaneous inhibitory postsynaptic currents (sIPSCs) and spontaneous excitatory postsynaptic currents (sEPSCs) three- and two-fold higher, respectively, than those of adapting neurons. The IPSC difference between pyramidal subtypes was activity independent. A subset of neurons were thy1-GFP positive, presented characteristics of non-adapting pyramidal neurons, and also had higher IPSC and EPSC frequencies than adapting neurons. The sEPSC/sIPSC frequency ratio was higher in adapting than in non-adapting cells, suggesting a higher excitatory drive in adapting neurons. Therefore, our study on spontaneous synaptic inputs suggests a different extent of synaptic information processing in adapting and non-adapting barrel cortex neurons, and that eventual deficits in inhibition may have differential effects on the excitation/inhibition balance in adapting and non-adapting neurons.
Collapse
|
22
|
Ghezzi F, Corsini S, Nistri A. Electrophysiological characterization of the M-current in rat hypoglossal motoneurons. Neuroscience 2017; 340:62-75. [DOI: 10.1016/j.neuroscience.2016.10.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/14/2016] [Accepted: 10/19/2016] [Indexed: 10/20/2022]
|
23
|
Greene DL, Hoshi N. Modulation of Kv7 channels and excitability in the brain. Cell Mol Life Sci 2016; 74:495-508. [PMID: 27645822 DOI: 10.1007/s00018-016-2359-y] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/25/2016] [Accepted: 09/06/2016] [Indexed: 11/26/2022]
Abstract
Neuronal Kv7 channels underlie a voltage-gated non-inactivating potassium current known as the M-current. Due to its particular characteristics, Kv7 channels show pronounced control over the excitability of neurons. We will discuss various factors that have been shown to drastically alter the activity of this channel such as protein and phospholipid interactions, phosphorylation, calcium, and numerous neurotransmitters. Kv7 channels locate to key areas for the control of action potential initiation and propagation. Moreover, we will explore the dynamic surface expression of the channel modulated by neurotransmitters and neural activity. We will also focus on known principle functions of neural Kv7 channels: control of resting membrane potential and spiking threshold, setting the firing frequency, afterhyperpolarization after burst firing, theta resonance, and transient hyperexcitability from neurotransmitter-induced suppression of the M-current. Finally, we will discuss the contribution of altered Kv7 activity to pathologies such as epilepsy and cognitive deficits.
Collapse
Affiliation(s)
- Derek L Greene
- Department of Pharmacology, University of California, 360 Med Surge II, Irvine, CA, 92697, USA
| | - Naoto Hoshi
- Department of Pharmacology, University of California, 360 Med Surge II, Irvine, CA, 92697, USA.
- Department of Physiology and Biophysics, University of California, Irvine, USA.
| |
Collapse
|
24
|
Kobayashi R, Kitano K. Impact of slow K(+) currents on spike generation can be described by an adaptive threshold model. J Comput Neurosci 2016; 40:347-62. [PMID: 27085337 PMCID: PMC4860204 DOI: 10.1007/s10827-016-0601-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 03/06/2016] [Accepted: 04/01/2016] [Indexed: 12/01/2022]
Abstract
A neuron that is stimulated by rectangular current injections initially responds with a high firing rate, followed by a decrease in the firing rate. This phenomenon is called spike-frequency adaptation and is usually mediated by slow K(+) currents, such as the M-type K(+) current (I M ) or the Ca(2+)-activated K(+) current (I AHP ). It is not clear how the detailed biophysical mechanisms regulate spike generation in a cortical neuron. In this study, we investigated the impact of slow K(+) currents on spike generation mechanism by reducing a detailed conductance-based neuron model. We showed that the detailed model can be reduced to a multi-timescale adaptive threshold model, and derived the formulae that describe the relationship between slow K(+) current parameters and reduced model parameters. Our analysis of the reduced model suggests that slow K(+) currents have a differential effect on the noise tolerance in neural coding.
Collapse
Affiliation(s)
- Ryota Kobayashi
- Principles of Informatics Research Division, National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan. .,Department of Informatics, SOKENDAI (The Graduate University for Advanced Studies), 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan.
| | - Katsunori Kitano
- Department of Human and Computer Intelligence, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| |
Collapse
|
25
|
Alberdi A, Gomis-Perez C, Bernardo-Seisdedos G, Alaimo A, Malo C, Aldaregia J, Lopez-Robles C, Areso P, Butz E, Wahl-Schott C, Villarroel A. Uncoupling PIP2-calmodulin regulation of Kv7.2 channels by an assembly destabilizing epileptogenic mutation. J Cell Sci 2015; 128:4014-23. [PMID: 26359296 DOI: 10.1242/jcs.176420] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/09/2015] [Indexed: 01/15/2023] Open
Abstract
We show that the combination of an intracellular bi-partite calmodulin (CaM)-binding site and a distant assembly region affect how an ion channel is regulated by a membrane lipid. Our data reveal that regulation by phosphatidylinositol(4,5)bisphosphate (PIP2) and stabilization of assembled Kv7.2 subunits by intracellular coiled-coil regions far from the membrane are coupled molecular processes. Live-cell fluorescence energy transfer measurements and direct binding studies indicate that remote coiled-coil formation creates conditions for different CaM interaction modes, each conferring different PIP2 dependency to Kv7.2 channels. Disruption of coiled-coil formation by epilepsy-causing mutation decreases apparent CaM-binding affinity and interrupts CaM influence on PIP2 sensitivity.
Collapse
Affiliation(s)
- Araitz Alberdi
- Unidad de Biofísica, Consejo Superior de Investigaciones Científicas, CSIC, UPV/EHU, Barrio Sarriena s/n, Leioa 48940, Spain
| | - Carolina Gomis-Perez
- Unidad de Biofísica, Consejo Superior de Investigaciones Científicas, CSIC, UPV/EHU, Barrio Sarriena s/n, Leioa 48940, Spain
| | - Ganeko Bernardo-Seisdedos
- Unidad de Biofísica, Consejo Superior de Investigaciones Científicas, CSIC, UPV/EHU, Barrio Sarriena s/n, Leioa 48940, Spain
| | - Alessandro Alaimo
- Unidad de Biofísica, Consejo Superior de Investigaciones Científicas, CSIC, UPV/EHU, Barrio Sarriena s/n, Leioa 48940, Spain
| | - Covadonga Malo
- Unidad de Biofísica, Consejo Superior de Investigaciones Científicas, CSIC, UPV/EHU, Barrio Sarriena s/n, Leioa 48940, Spain
| | - Juncal Aldaregia
- Unidad de Biofísica, Consejo Superior de Investigaciones Científicas, CSIC, UPV/EHU, Barrio Sarriena s/n, Leioa 48940, Spain
| | - Carlos Lopez-Robles
- Unidad de Biofísica, Consejo Superior de Investigaciones Científicas, CSIC, UPV/EHU, Barrio Sarriena s/n, Leioa 48940, Spain
| | - Pilar Areso
- Departament de Farmacología, UPV/EHU, Universidad del País Vasco, Barrio Sarriena s/n, Leioa 48940, Spain
| | - Elisabeth Butz
- Department of Pharmacy, Center for Drug Research and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität, München 81377, Germany
| | - Christian Wahl-Schott
- Department of Pharmacy, Center for Drug Research and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität, München 81377, Germany
| | - Alvaro Villarroel
- Unidad de Biofísica, Consejo Superior de Investigaciones Científicas, CSIC, UPV/EHU, Barrio Sarriena s/n, Leioa 48940, Spain
| |
Collapse
|
26
|
Muscarinic receptor-mediated excitation of rat intracardiac ganglion neurons. Neuropharmacology 2015; 95:395-404. [DOI: 10.1016/j.neuropharm.2015.04.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 03/13/2015] [Accepted: 04/14/2015] [Indexed: 11/23/2022]
|
27
|
Harada K, Matsuoka H, Miyata H, Matsui M, Inoue M. Identification of muscarinic receptor subtypes involved in catecholamine secretion in adrenal medullary chromaffin cells by genetic deletion. Br J Pharmacol 2015; 172:1348-59. [PMID: 25393049 DOI: 10.1111/bph.13011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 10/26/2014] [Accepted: 10/31/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Activation of muscarinic receptors results in catecholamine secretion in adrenal chromaffin cells in many mammals, and muscarinic receptors partly mediate synaptic transmission from the splanchnic nerve, at least in guinea pigs. To elucidate the physiological functions of muscarinic receptors in chromaffin cells, it is necessary to identify the muscarinic receptor subtypes involved in excitation. EXPERIMENTAL APPROACH To identify muscarinic receptors, pharmacological tools and strains of mice where one or several muscarinic receptor subtypes were genetically deleted were used. Cellular responses to muscarinic stimulation in isolated chromaffin cells were studied with the patch clamp technique and amperometry. KEY RESULTS Muscarinic M₁, M₄ and M₅ receptors were immunologically detected in mouse chromaffin cells, and these receptors disappeared after the appropriate gene deletion. Mouse cells secreted catecholamines in response to muscarinic agonists, angiotensin II and a decrease in external pH. Genetic deletion of M₁, but not M₃, M₄ or M₅, receptors in mice abolished secretion in response to muscarine, but not to other stimuli. The muscarine-induced secretion was suppressed by MT7, a snake peptide toxin specific for M₁ receptors. Similarly, muscarine failed to induce an inward current in the presence of MT7 in mouse and rat chromaffin cells. The binding affinity of VU0255035 for the inhibition of muscarine-induced currents agreed with that for the M₁ receptor. CONCLUSIONS AND IMPLICATIONS Based upon the effects of genetic deletion of muscarinic receptors and MT7, it is concluded that the M₁ receptor alone is responsible for muscarine-induced catecholamine secretion.
Collapse
Affiliation(s)
- Keita Harada
- Department of Cell and Systems Physiology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, Japan
| | | | | | | | | |
Collapse
|
28
|
Springer MG, Kullmann PHM, Horn JP. Virtual leak channels modulate firing dynamics and synaptic integration in rat sympathetic neurons: implications for ganglionic transmission in vivo. J Physiol 2014; 593:803-23. [PMID: 25398531 DOI: 10.1113/jphysiol.2014.284125] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 11/04/2014] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS The synaptic organization of paravertebral sympathetic ganglia enables them to relay activity from the spinal cord to the periphery and thereby control autonomic functions, including blood pressure and body temperature. The present experiments were done to reconcile conflicting observations in tissue culture, intact isolated ganglia and living animals. By recording intracellularly from dissociated neurons and intact ganglia, we found that when electrode damage makes cells leaky it could profoundly distort cellular excitability and the integration of synaptic potentials. The experiments relied on the dynamic clamp method, which allows the creation of virtual ion channels by injecting current into a cell based upon a mathematical model and using rapid feedback between the model and cell. The results support the hypothesis that sympathetic ganglia can produce a 2.4-fold amplification of presynaptic activity. This could aid understanding of the neural hyperactivity that is believed to drive high blood pressure in some patients. ABSTRACT The excitability of rat sympathetic neurons and integration of nicotinic EPSPs were compared in primary cell culture and in the acutely isolated intact superior cervical ganglion using whole cell patch electrode recordings. When repetitive firing was classified by Hodgkin's criteria in cultured cells, 18% displayed tonic class 1 excitability, 36% displayed adapting class 2 excitability and 46% displayed phasic class 3 excitability. In the intact ganglion, 71% of cells were class 1 and 29% were class 2. This diverges from microelectrode reports that nearly 100% of superior cervical ganglion neurons show phasic class 3 firing. The hypothesis that the disparity between patch and microelectrode data arises from a shunt conductance was tested using the dynamic clamp in cell culture. Non-depolarizing shunts of 3-10 nS converted cells from classes 1 and 2 to class 3 dynamics with current-voltage relations that replicated microelectrode data. Primary and secondary EPSPs recorded from the intact superior cervical ganglion were modelled as virtual synapses in cell culture using the dynamic clamp. Stimulating sympathetic neurons with virtual synaptic activity, designed to replicate in vivo recordings of EPSPs in muscle vasoconstrictor neurons, produced a 2.4-fold amplification of presynaptic activity. This gain in postsynaptic output did not differ between neurons displaying the three classes of excitability. Mimicry of microelectrode damage by virtual leak channels reduced and eventually obliterated synaptic gain by inhibiting summation of subthreshold EPSPs. These results provide a framework for interpreting sympathetic activity recorded from intact animals and support the hypothesis that paravertebral ganglia function as activity-dependent amplifiers of spinal output from preganglionic circuitry.
Collapse
Affiliation(s)
- Mitchell G Springer
- Department of Neurobiology and Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | |
Collapse
|
29
|
Jiang CY, Fujita T, Kumamoto E. Synaptic modulation and inward current produced by oxytocin in substantia gelatinosa neurons of adult rat spinal cord slices. J Neurophysiol 2014; 111:991-1007. [DOI: 10.1152/jn.00609.2013] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cellular mechanisms for antinociception produced by oxytocin in the spinal dorsal horn have not yet been investigated thoroughly. We examined how oxytocin affects synaptic transmission in substantia gelatinosa neurons, which play a pivotal role in regulating nociceptive transmission, by applying the whole-cell patch-clamp technique to the substantia gelatinosa neurons of adult rat spinal cord slices. Bath-applied oxytocin did not affect glutamatergic spontaneous, monosynaptically-evoked primary-afferent Aδ-fiber and C-fiber excitatory transmissions. On the other hand, oxytocin produced an inward current at −70 mV and enhanced GABAergic and glycinergic spontaneous inhibitory transmissions. These activities were repeated with a slow recovery from desensitization, concentration-dependent and mimicked by oxytocin-receptor agonist. The oxytocin current was inhibited by oxytocin-receptor antagonist, intracellular GDPβS, U-73122, 2-aminoethoxydiphenyl borate, but not dantrolene, chelerythrine, dibutyryl cyclic-AMP, CNQX, Ca2+-free and tetrodotoxin, while the spontaneous inhibitory transmission enhancements were depressed by tetrodotoxin. Current-voltage relation for the oxytocin current reversed at negative potentials more than the equilibrium potential for K+, or around 0 mV. The oxytocin current was depressed in high-K+, low-Na+ or Ba2+-containing solution. Vasopressin V1A-receptor antagonist inhibited the oxytocin current, but there was no correlation in amplitude between a vasopressin-receptor agonist [Arg8]vasopressin and oxytocin responses. It is concluded that oxytocin produces a membrane depolarization mediated by oxytocin but not vasopressin-V1A receptors, which increases neuronal activity, resulting in the enhancement of inhibitory transmission, a possible mechanism for antinociception. This depolarization is due to a change in membrane permeabilities to K+ and/or Na+, which is possibly mediated by phospholipase C and inositol 1,4,5-triphosphate-induced Ca2+-release.
Collapse
Affiliation(s)
- Chang-Yu Jiang
- Department of Physiology, Saga Medical School, Saga, Japan
| | - Tsugumi Fujita
- Department of Physiology, Saga Medical School, Saga, Japan
| | | |
Collapse
|
30
|
Márquez BT, Krahe R, Chacron MJ. Neuromodulation of early electrosensory processing in gymnotiform weakly electric fish. ACTA ACUST UNITED AC 2014; 216:2442-50. [PMID: 23761469 DOI: 10.1242/jeb.082370] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sensory neurons continually adapt their processing properties in response to changes in the sensory environment or the brain's internal state. Neuromodulators are thought to mediate such adaptation through a variety of receptors and their action has been implicated in processes such as attention, learning and memory, aggression, reproductive behaviour and state-dependent mechanisms. Here, we review recent work on neuromodulation of electrosensory processing by acetylcholine and serotonin in the weakly electric fish Apteronotus leptorhynchus. Specifically, our review focuses on how experimental application of these neuromodulators alters excitability and responses to sensory input of pyramidal cells within the hindbrain electrosensory lateral line lobe. We then discuss current hypotheses on the functional roles of these two neuromodulatory pathways in regulating electrosensory processing at the organismal level and the need for identifying the natural behavioural conditions that activate these pathways.
Collapse
Affiliation(s)
- Brenda Toscano Márquez
- Department of Biology, McGill University, 1205 Docteur Penfield, Montreal, QC, Canada, H3A 1B1
| | | | | |
Collapse
|
31
|
Ladenbauer J, Augustin M, Obermayer K. How adaptation currents change threshold, gain, and variability of neuronal spiking. J Neurophysiol 2013; 111:939-53. [PMID: 24174646 DOI: 10.1152/jn.00586.2013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Many types of neurons exhibit spike rate adaptation, mediated by intrinsic slow K(+) currents, which effectively inhibit neuronal responses. How these adaptation currents change the relationship between in vivo like fluctuating synaptic input, spike rate output, and the spike train statistics, however, is not well understood. In this computational study we show that an adaptation current that primarily depends on the subthreshold membrane voltage changes the neuronal input-output relationship (I-O curve) subtractively, thereby increasing the response threshold, and decreases its slope (response gain) for low spike rates. A spike-dependent adaptation current alters the I-O curve divisively, thus reducing the response gain. Both types of an adaptation current naturally increase the mean interspike interval (ISI), but they can affect ISI variability in opposite ways. A subthreshold current always causes an increase of variability while a spike-triggered current decreases high variability caused by fluctuation-dominated inputs and increases low variability when the average input is large. The effects on I-O curves match those caused by synaptic inhibition in networks with asynchronous irregular activity, for which we find subtractive and divisive changes caused by external and recurrent inhibition, respectively. Synaptic inhibition, however, always increases the ISI variability. We analytically derive expressions for the I-O curve and ISI variability, which demonstrate the robustness of our results. Furthermore, we show how the biophysical parameters of slow K(+) conductances contribute to the two different types of an adaptation current and find that Ca(2+)-activated K(+) currents are effectively captured by a simple spike-dependent description, while muscarine-sensitive or Na(+)-activated K(+) currents show a dominant subthreshold component.
Collapse
Affiliation(s)
- Josef Ladenbauer
- Neural Information Processing Group, Technische Universität Berlin, Berlin, Germany; and
| | | | | |
Collapse
|
32
|
Gonzalez JC, Lignani G, Maroto M, Baldelli P, Hernandez-Guijo JM. Presynaptic Muscarinic Receptors Reduce Synaptic Depression and Facilitate its Recovery at Hippocampal GABAergic Synapses. Cereb Cortex 2013; 24:1818-31. [DOI: 10.1093/cercor/bht032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
33
|
Telezhkin V, Thomas AM, Harmer SC, Tinker A, Brown DA. A basic residue in the proximal C-terminus is necessary for efficient activation of the M-channel subunit Kv7.2 by PI(4,5)P₂. Pflugers Arch 2013; 465:945-53. [PMID: 23291709 PMCID: PMC3696465 DOI: 10.1007/s00424-012-1199-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 12/03/2012] [Accepted: 12/03/2012] [Indexed: 12/01/2022]
Abstract
All Kv7 potassium channels require membrane phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) for their normal function and hence can be physiologically regulated by neurotransmitters and hormones that stimulate phosphoinositide hydrolysis. Recent mutational analysis indicates that a cluster of basic residues in the proximal C-terminus (K354/K358/R360/K362) is crucial for PI(4,5)P2 activation of cardiac Kv7.1 channels. Since this cluster is largely conserved in all Kv7 subunits, we tested whether homologous residues are also required for activation of Kv7.2 (a subunit of neuronal M-channels). We found that the mutation Kv7.2 (R325A) (corresponding to R360 in Kv7.1) reduced Kv7.2 current amplitude by ∼60 % (P < 0.02) without change in voltage sensitivity and reduced the sensitivity of Kv7.2 channels to dioctanoyl-phosphatidylinositol-4,5-bisphosphate by ∼eightfold (P < 0.001). Taking into account previous experiments (Zhang et al., Neuron 37:963-75, 2003) implicating Kv7.2 (H328), and since R325 and H328 are conserved in homologous positions in all other Kv7 channels, we suggest that this proximal C-terminal domain adjacent to the last transmembrane domain that contains R325 and H328 (in Kv7.2) might play a major role in the activation of all members of the Kv7 channel family by PI(4,5)P2.
Collapse
Affiliation(s)
- Vsevolod Telezhkin
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | | | | | | | | |
Collapse
|
34
|
Filippov AK, Brown DA. A mechanism for nerve cell excitation by norepinephrine via α-1 adrenoceptors: inhibition of potassium M-current. Cell Mol Neurobiol 2012; 33:1-4. [PMID: 22872321 PMCID: PMC3529170 DOI: 10.1007/s10571-012-9870-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 07/25/2012] [Indexed: 11/02/2022]
Abstract
Some of the excitatory effects of norepinephrine on central neurons are mediated by alpha-1 (α1) adrenoceptors. These receptors are coupled to the Gq family of G proteins, and hence stimulate hydrolysis of the membrane phospholipid phosphatidylinositol-4,5-bisphosphate. Other receptors of this type can excite neurons by inhibiting the subthreshold voltage-gated potassium M-current. We tested this possibility using rat sympathetic neurons transformed to express α1a receptors. The α1 agonist phenylephrine strongly inhibited the M-current recorded under voltage-clamp by 72 ± 11 % (n = 4) and in an unclamped neuron dramatically increased the number of action potentials produced by a 2 s depolarizing current step from 2 to 40, without effect on control neurons devoid of α1 receptors. We suggest that this might be a potential cause of the increased excitability produced by norepinephrine in some central neurons.
Collapse
Affiliation(s)
- Alexander K Filippov
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, UK
| | | |
Collapse
|
35
|
Deemyad T, Kroeger J, Chacron MJ. Sub- and suprathreshold adaptation currents have opposite effects on frequency tuning. J Physiol 2012; 590:4839-58. [PMID: 22733663 DOI: 10.1113/jphysiol.2012.234401] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Natural stimuli are often characterized by statistics that can vary over orders of magnitude. Experiments have shown that sensory neurons continuously adapt their responses to changes in these statistics, thereby optimizing information transmission. However, such adaptation can also alter the neuronal transfer function by attenuating if not eliminating responses to the low frequency components of time varying stimuli,which can create ambiguity in the neural code. We recorded from electrosensory pyramidal neurons before and after pharmacological inactivation of either calcium-activated (I(AHP)) or KCNQ voltage-gated potassium currents (I(M)). We found that blocking each current decreased adaptation in a similar fashion but led to opposite changes in the neuronal transfer function. Indeed, blocking I(AHP) increased while blocking I(M) instead decreased the response to low temporal frequencies. To understand this surprising result, we built a mathematical model incorporating each channel type. This model predicted that these differential effects could be accounted for by differential activation properties. Our results show that the mechanisms that mediate adaptation can either increase or decrease the response to low frequency stimuli. As such, they suggest that the nervous system resolves ambiguity resulting from adaptation through independent control of adaptation and the neuronal transfer function.
Collapse
Affiliation(s)
- Tara Deemyad
- Department of Physiology, McGill University, 3655 Sir William Osler, room 1137, Montreal, QC, H3G 1Y6, Canada
| | | | | |
Collapse
|
36
|
Passmore GM, Reilly JM, Thakur M, Keasberry VN, Marsh SJ, Dickenson AH, Brown DA. Functional significance of M-type potassium channels in nociceptive cutaneous sensory endings. Front Mol Neurosci 2012; 5:63. [PMID: 22593734 PMCID: PMC3351001 DOI: 10.3389/fnmol.2012.00063] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 04/24/2012] [Indexed: 11/13/2022] Open
Abstract
M-channels carry slowly activating potassium currents that regulate excitability in a variety of central and peripheral neurons. Functional M-channels and their Kv7 channel correlates are expressed throughout the somatosensory nervous system where they may play an important role in controlling sensory nerve activity. Here we show that Kv7.2 immunoreactivity is expressed in the peripheral terminals of nociceptive primary afferents. Electrophysiological recordings from single afferents in vitro showed that block of M-channels by 3 μM XE991 sensitized Aδ- but not C-fibers to noxious heat stimulation and induced spontaneous, ongoing activity at 32°C in many Aδ-fibers. These observations were extended in vivo: intraplantar injection of XE991 selectively enhanced the response of deep dorsal horn (DH) neurons to peripheral mid-range mechanical and higher range thermal stimuli, consistent with a selective effect on Aδ-fiber peripheral terminals. These results demonstrate an important physiological role of M-channels in controlling nociceptive Aδ-fiber responses and provide a rationale for the nocifensive behaviors that arise following intraplantar injection of the M-channel blocker XE991.
Collapse
Affiliation(s)
- Gayle M. Passmore
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondon, UK
| | - Joanne M. Reilly
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondon, UK
| | - Matthew Thakur
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondon, UK
| | - Vanessa N. Keasberry
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondon, UK
- Department of Cell Physiology and Pharmacology, University of LeicesterLeicester, UK
| | - Stephen J. Marsh
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondon, UK
| | - Anthony H. Dickenson
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondon, UK
| | - David A. Brown
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondon, UK
| |
Collapse
|
37
|
Cembrowski MS, Logan SM, Tian M, Jia L, Li W, Kath WL, Riecke H, Singer JH. The mechanisms of repetitive spike generation in an axonless retinal interneuron. Cell Rep 2012; 1:155-66. [PMID: 22832164 DOI: 10.1016/j.celrep.2011.12.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 12/14/2011] [Accepted: 12/21/2011] [Indexed: 11/19/2022] Open
Abstract
Several types of retinal interneurons exhibit spikes but lack axons. One such neuron is the AII amacrine cell, in which spikes recorded at the soma exhibit small amplitudes (<10 mV) and broad time courses (>5 ms). Here, we used electrophysiological recordings and computational analysis to examine the mechanisms underlying this atypical spiking. We found that somatic spikes likely represent large, brief action potential-like events initiated in a single, electrotonically distal dendritic compartment. In this same compartment, spiking undergoes slow modulation, likely by an M-type K conductance. The structural correlate of this compartment is a thin neurite that extends from the primary dendritic tree: local application of TTX to this neurite, or excision of it, eliminates spiking. Thus, the physiology of the axonless AII is much more complex than would be anticipated from morphological descriptions and somatic recordings; in particular, the AII possesses a single dendritic structure that controls its firing pattern.
Collapse
Affiliation(s)
- Mark S Cembrowski
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208, USA.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Lechner SG, Boehm S. Regulation of neuronal ion channels via P2Y receptors. Purinergic Signal 2011; 1:31-41. [PMID: 18404398 PMCID: PMC2096562 DOI: 10.1007/s11302-004-4746-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Revised: 10/11/2004] [Accepted: 10/12/2004] [Indexed: 11/25/2022] Open
Abstract
Within the last 15 years, at least 8 different G protein-coupled P2Y receptors have been characterized. These mediate slow metabotropic effects of nucleotides in neurons as well as non-neural cells, as opposed to the fast ionotropic effects which are mediated by P2X receptors. One class of effector systems regulated by various G protein-coupled receptors are voltage-gated and ligand-gated ion channels. This review summarizes the current knowledge about the modulation of such neuronal ion channels via P2Y receptors. The regulated proteins include voltage-gated Ca2+ and K+ channels, as well as N-methyl-d-aspartate, vanilloid, and P2X receptors, and the regulating entities include most of the known P2Y receptor subtypes. The functional consequences of the modulation of ion channels by nucleotides acting at pre- or postsynaptic P2Y receptors are changes in the strength of synaptic transmission. Accordingly, ATP and related nucleotides may act not only as fast transmitters (via P2X receptors) in the nervous system, but also as neuromodulators (via P2Y receptors). Hence, nucleotides are as universal transmitters as, for instance, acetylcholine, glutamate, or γ-aminobutyric acid.
Collapse
Affiliation(s)
- Stefan G Lechner
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
39
|
Sanchez G, Rodriguez MJ, Pomata P, Rela L, Murer MG. Reduction of an afterhyperpolarization current increases excitability in striatal cholinergic interneurons in rat parkinsonism. J Neurosci 2011; 31:6553-64. [PMID: 21525296 PMCID: PMC6622669 DOI: 10.1523/jneurosci.6345-10.2011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 02/23/2011] [Accepted: 03/08/2011] [Indexed: 01/22/2023] Open
Abstract
Striatal cholinergic interneurons show tonic spiking activity in the intact and sliced brain, which stems from intrinsic mechanisms. Because of it, they are also known as "tonically active neurons" (TANs). Another hallmark of TAN electrophysiology is a pause response to appetitive and aversive events and to environmental cues that have predicted these events during learning. Notably, the pause response is lost after the degeneration of dopaminergic neurons in animal models of Parkinson's disease. Moreover, Parkinson's disease patients are in a hypercholinergic state and find some clinical benefit in anticholinergic drugs. Current theories propose that excitatory thalamic inputs conveying information about salient sensory stimuli trigger an intrinsic hyperpolarizing response in the striatal cholinergic interneurons. Moreover, it has been postulated that the loss of the pause response in Parkinson's disease is related to a diminution of I(sAHP), a slow outward current that mediates an afterhyperpolarization following a train of action potentials. Here we report that I(sAHP) induces a marked spike-frequency adaptation in adult rat striatal cholinergic interneurons, inducing an abrupt end of firing during sustained excitation. Chronic loss of dopaminergic neurons markedly reduces I(sAHP) and spike-frequency adaptation in cholinergic interneurons, allowing them to fire continuously and at higher rates during sustained excitation. These findings provide a plausible explanation for the hypercholinergic state in Parkinson's disease. Moreover, a reduction of I(sAHP) may alter synchronization of cholinergic interneurons with afferent inputs, thus contributing to the loss of the pause response in Parkinson's disease.
Collapse
Affiliation(s)
- Gonzalo Sanchez
- Systems Neuroscience Section, Department of Physiology and Biophysics, School of Medicine, University of Buenos Aires, Buenos Aires C1121ABG, Argentina.
| | | | | | | | | |
Collapse
|
40
|
|
41
|
Han SK, Lee K, Bhattarai JP, Herbison AE. Gonadotrophin-releasing hormone (GnRH) exerts stimulatory effects on GnRH neurons in intact adult male and female mice. J Neuroendocrinol 2010; 22:188-95. [PMID: 20041983 DOI: 10.1111/j.1365-2826.2009.01950.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
There is substantial evidence for a role of the neuropeptide gonadotrophin-releasing hormone (GnRH) in the regulation of GnRH neurone secretion but how this is achieved is not understood. We examined here the effects of GnRH on the electrical excitability and intracellular calcium concentration ([Ca2+](i)) of GnRH neurones in intact adult male and female mice. Perforated-patch electrophysiological recordings from GnRH-green fluorescent protein-tagged GnRH neurones revealed that 3 nm-3 mum GnRH evoked gradual approximately 3 mV depolarisations in membrane potential from up to 50% of GnRH neurones in male and female mice. The depolarising effect of GnRH was observed on approximately 50% of GnRH neurones throughout the oestrous cycle. However, at pro-oestrus alone, GnRH was also found to transiently hyperpolarise approximately 30% of GnRH neurones. Both hyperpolarising and depolarising responses were maintained in the presence of tetrodotoxin. Calcium imaging studies undertaken in transgenic GnRH-pericam mice showed that GnRH suppressed [Ca2+](i) in approximately 50% of GnRH neurones in dioestrous and oestrous mice. At pro-oestrus, 25% of GnRH neurones exhibited a suppressive [Ca2+](i) response to GnRH, whereas 17% were stimulated. These results demonstrate that nm to mum concentrations of GnRH exert depolarising actions on approximately 50% of GnRH neurones in males and females throughout the oestrous cycle. This is associated with a reduction in [Ca2+](i). At pro-oestrus, however, a further population of GnRH neurones exhibit a hyperpolarising response to GnRH. Taken together, these studies indicate that GnRH acts predominantly as a neuromodulator at the level of the GnRH cell bodies to exert a predominant excitatory influence upon GnRH neurones in intact adult male and female mice.
Collapse
Affiliation(s)
- S-K Han
- Department of Oral Physiology and Institute of Oral Bioscience, School of Dentistry and BK21 program, Chonbuk National University, Jeonju, South Korea
| | | | | | | |
Collapse
|
42
|
Kullmann PHM, Horn JP. Homeostatic regulation of M-current modulates synaptic integration in secretomotor, but not vasomotor, sympathetic neurons in the bullfrog. J Physiol 2010; 588:923-38. [PMID: 20100739 DOI: 10.1113/jphysiol.2009.182873] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We compared how vasomotor C neurons and secretomotor B neurons integrated identical patterns of virtual synaptic activity using dynamic clamp, perforated-patch recordings from dissociated bullfrog sympathetic ganglion cells. The synaptic template modelled one strong nicotinic synapse and nine weak synapses, each firing randomly at 5 Hz, with strength normalized to each cell. B neurons initially fired at 12 Hz, but this declined within seconds, decreasing 27% after 40 s and recovering slowly as evidenced by the threshold synaptic conductance for firing (tau(recovery) = 136 + or - 23 s). C neurons gave an identical initial response that remained steady, declining only 6% after 40 s. The difference resulted from an activity-dependent 379 + or - 65% increase in M-current (I(M)) in B cells (tau(recovery) = 153 + or - 22 s), which was absent in C cells. In addition, action potential afterhyperpolarizations were 2-fold longer in B cells, but this did not produce the differential response to synaptic stimulation. Activity-dependent increases in I(M) were sensitive to 100 microm Cd(2+) and 2.5 microm oxotremorine M (oxo-M), a muscarinic agonist, and fully blocked by zero Ca(2+), 10 microm oxo-M and 2.5 microm oxo-M plus 50 microm wortmannin, a PIP(2) synthesis inhibitor. A leftward shift in voltage-dependent activation could not fully account for the I(M) increase. Firing at 0.5 Hz was sufficient to modulate I(M). Opposing influences of activity and muscarinic excitation thus produce homeostatic I(M) regulation, to stabilize excitability and postsynaptic output in secretomotor sympathetic neurons. Absence of this regulation in vasomotor neurons suggests a different integrative function, where synaptic gain increases in proportion to presynaptic activity.
Collapse
Affiliation(s)
- Paul H M Kullmann
- Department of Neurobiology, E 1440 Starzl Biomedical Science Tower, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
43
|
Rivera-Arconada I, Roza C, Lopez-Garcia JA. Enhancing m currents: a way out for neuropathic pain? Front Mol Neurosci 2009; 2:10. [PMID: 19680469 PMCID: PMC2726036 DOI: 10.3389/neuro.02.010.2009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 07/23/2009] [Indexed: 12/19/2022] Open
Abstract
Almost three decades ago, the M current was identified and characterized in frog sympathetic neurons (Brown and Adams, 1980). The years following this discovery have seen a huge progress in the understanding of the function and the pharmacology of this current as well as on the structure of the underlying ion channels. Therapies for a number of syndromes involving abnormal levels of excitability in neurons are benefiting from research on M currents. At present, the potential of M current openers as analgesics for neuropathic pain is under discussion. Here we offer a critical view of existing data on the involvement of M currents in pain processing. We believe that enhancement of M currents at the site of injury may become a powerful strategy to alleviate pain in some peripheral neuropathies.
Collapse
Affiliation(s)
- Ivan Rivera-Arconada
- Departamento de Fisiología, Edificio de Medicina, Universidad de Alcala Madrid, Spain
| | | | | |
Collapse
|
44
|
Lamas JA, Romero M, Reboreda A, Sánchez E, Ribeiro SJ. A riluzole- and valproate-sensitive persistent sodium current contributes to the resting membrane potential and increases the excitability of sympathetic neurones. Pflugers Arch 2009; 458:589-99. [PMID: 19234716 DOI: 10.1007/s00424-009-0648-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 01/12/2009] [Accepted: 02/06/2009] [Indexed: 11/24/2022]
Abstract
Non-adapting superior cervical ganglion (SCG) neurones with a clustering activity and sub-threshold membrane potential oscillations were occasionally recorded, suggesting the presence of a persistent sodium current (I(NaP)). The perforated-patch technique was used to establish its properties and physiological role. Voltage-clamp experiments demonstrated that all SCG cells have a TTX-sensitive I(NaP) activating at about -60 mV and with half-maximal activation at about -40 mV. The mean maximum I(NaP) amplitude was around -40 pA at -20 mV. Similar results were achieved when voltage steps or voltage ramps were used to construct the current-voltage relationships, and the general I(NaP) properties were comparable in mouse and rat SCG neurons. I(NaP) was inhibited by riluzole and valproate with an IC(50) of 2.7 and 3.8 microM, respectively, while both drugs inhibited the transient sodium current (I (NaT)) with a corresponding IC(50) of 34 and 150 microM. It is worth noting that 30 microM valproate inhibited the I(NaP) by 70% without affecting the I(NaT). In current clamp, valproate (30 microM) hyperpolarised resting SCG membranes by about 2 mV and increased the injected current necessary to evoke an action potential by about 20 pA. Together, these results demonstrate for the first time that a persistent sodium current exists in the membrane of SCG sympathetic neurones which could allow them to oscillate in the sub-threshold range. This current also contributes to the resting membrane potential and increases cellular excitability, so that it is likely to play an important role in neuronal behaviour.
Collapse
Affiliation(s)
- J Antonio Lamas
- Department of Functional Biology, Faculty of Biology, Section of Physiology, University of Vigo, Lagoas-Marcosende, Vigo, Spain.
| | | | | | | | | |
Collapse
|
45
|
Wu WW, Chan CS, Surmeier DJ, Disterhoft JF. Coupling of L-type Ca2+ channels to KV7/KCNQ channels creates a novel, activity-dependent, homeostatic intrinsic plasticity. J Neurophysiol 2008; 100:1897-908. [PMID: 18715900 DOI: 10.1152/jn.90346.2008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Experience-dependent modification in the electrical properties of central neurons is a form of intrinsic plasticity that occurs during development and has been observed following behavioral learning. We report a novel form of intrinsic plasticity in hippocampal CA1 pyramidal neurons mediated by the KV7/KCNQ and CaV1/L-type Ca2+ channels. Enhancing Ca2+ influx with a conditioning spike train (30 Hz, 3 s) potentiated the KV7/KCNQ channel function and led to a long-lasting, activity-dependent increase in spike frequency adaptation-a gradual reduction in the firing frequency in response to sustained excitation. These effects were abolished by specific blockers for CaV1/L-type Ca2+ channels, KV7/KCNQ channels, and protein kinase A (PKA). Considering the widespread expression of these two channel types, the influence of Ca2+ influx and subsequent activation of PKA on KV7/KCNQ channels may represent a generalized principle in fine tuning the output of central neurons that promotes stability in firing-an example of homeostatic regulation of intrinsic membrane excitability.
Collapse
Affiliation(s)
- Wendy W Wu
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | | | | | | |
Collapse
|
46
|
Mackie AR, Byron KL. Cardiovascular KCNQ (Kv7) potassium channels: physiological regulators and new targets for therapeutic intervention. Mol Pharmacol 2008; 74:1171-9. [PMID: 18684841 DOI: 10.1124/mol.108.049825] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Potassium channels play an important role in electrical signaling of excitable cells such as neurons, cardiac myocytes, and vascular smooth muscle cells (VSMCs). In particular, the KCNQ (Kv7) family of voltage-activated K(+) channels functions to stabilize negative resting membrane potentials and thereby opposes electrical excitability. Of the five known members of the mammalian Kv7 family, Kv7.1 was originally recognized for its role in cardiac myocytes, where it contributes to repolarization of the cardiac action potential. Kv7.2 to Kv7.5 were first discovered in neurons, in which they play a well characterized role in neurotransmitter-stimulated action potential firing. Over the past 5 years, important new roles for Kv7 channels have been identified. Kv7 channels have been found to be expressed in VSMCs from several vascular beds where they contribute to the regulation of vascular tone. There is evidence that Kv7.5 channels in VSMCs are targeted by the hormone vasopressin to mediate its physiological vasoconstrictor actions and evidence that neuronal Kv7 channels in the baroreceptors of the aortic arch adjust the sensitivity of the mechanosensitive neurons to changes in arterial blood pressure. These newly identified physiological roles for Kv7 channels in the cardiovascular system warrant increased attention because pharmacological modulators of this family of channels are being used clinically to treat a variety of neurological disorders. This raises questions about the cardiovascular side effects associated with existing therapies, but there is also obvious potential to capitalize on the established and evolving pharmacology of these channels to develop new therapies for cardiovascular diseases.
Collapse
Affiliation(s)
- Alexander R Mackie
- Loyola University Medical Center, 2160 S. First Avenue, Maywood, IL 60153, USA
| | | |
Collapse
|
47
|
Gribkoff VK. The therapeutic potential of neuronal K V 7 (KCNQ) channel modulators: an update. Expert Opin Ther Targets 2008; 12:565-81. [PMID: 18410240 DOI: 10.1517/14728222.12.5.565] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Neuronal KCNQ channels (K(V)7.2-5) represent attractive targets for the development of therapeutics for chronic and neuropathic pain, migraine, epilepsy and other neuronal hyperexcitability disorders, although there has been only modest progress in translating this potential into useful therapeutics. OBJECTIVE Compelling evidence of the importance of K(V)7 channels as neuronal regulatory elements, readily amenable to pharmacological modulation, has sustained widespread interest in these channels as drug targets. This review will update readers on key aspects of the characterization of these important ion channel targets, and will discuss possible current barriers to their exploitation for CNS therapeutics. METHODS This article is based on a review of recent literature, with a focus on data pertaining to the roles of these channels in neurophysiology. In addition, I review some of the regulatory elements that influence the channels and how these may relate to channel pharmacology, and present a review of recent advances in neuronal K(V)7 channel pharmacology. CONCLUSIONS These channels continue to be valid and approachable targets for CNS therapeutics. However, we may need to understand more about the roles of neuronal K(V)7 channels during the development of disease states, as well as to pay more attention to a detailed analysis of the molecular pharmacology of the different channel subfamily members and the modes of interaction of individual modulators, in order to successfully target these channels for therapeutic development.
Collapse
Affiliation(s)
- Valentin K Gribkoff
- Knopp Neurosciences, Inc., 2100 Wharton Street, Suite 615, Pittsburgh, PA 15203, USA.
| |
Collapse
|
48
|
Zaika O, Tolstykh GP, Jaffe DB, Shapiro MS. Inositol triphosphate-mediated Ca2+ signals direct purinergic P2Y receptor regulation of neuronal ion channels. J Neurosci 2007; 27:8914-26. [PMID: 17699673 PMCID: PMC6672180 DOI: 10.1523/jneurosci.1739-07.2007] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Purinergic P2Y receptors are one of four types of G(q/11)-coupled receptors in rat superior cervical ganglia (SCG) sympathetic neurons. In cultured SCG neurons, purinergic and bradykinin suppression of I(M) were similar in magnitude and somewhat less than that by muscarinic agonists. The effects of the P2Y receptor agonist UTP on neuronal excitability and discharge properties were studied. Under current clamp, UTP increased action potential (AP) firing in response to depolarizing current steps, depolarized the resting potential, decreased the threshold current required to fire an AP, and decreased spike-frequency adaptation. These effects were very similar to those resulting from bradykinin stimulation and not as profound as from muscarinic stimulation or full M-current blockade. We then examined the P2Y mechanism of action. Like bradykinin, but unlike muscarinic, purinergic stimulation induced rises in intracellular [Ca(2+)](i). Tests using expression of IP(3)"sponge" or IP(3) phosphatase constructs implicated IP(3) accumulation as necessary for purinergic suppression of I(M). Overexpression of wild-type or dominant-negative calmodulin (CaM) implicated Ca(2+)/CaM in the purinergic action. Both sets of results were similar to bradykinin, and opposite to muscarinic, suppression. We also examined modulation of Ca(2+) channels. As for bradykinin, purinergic stimulation did not suppress I(Ca), unless neuronal calcium sensor-1 (NCS-1) activity was blocked by a dominant-negative NCS-1 construct. Our results indicate that P2Y receptors modulate M-type channels in SCG cells via IP(3)-mediated [Ca(2+)](i) signals in concert with CaM and not by depletion of phosphatidylinositol-4, 5-biphosphate. We group purinergic P2Y and bradykinin B(2) receptors together as having a common mode of action.
Collapse
Affiliation(s)
- Oleg Zaika
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, and
| | - Gleb P. Tolstykh
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, and
| | - David B. Jaffe
- Department of Biology, Division of Life Sciences, The University of Texas at San Antonio, San Antonio, Texas 78249
| | - Mark S. Shapiro
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, and
| |
Collapse
|
49
|
Yoshida M, Alonso A. Cell-type specific modulation of intrinsic firing properties and subthreshold membrane oscillations by the M(Kv7)-current in neurons of the entorhinal cortex. J Neurophysiol 2007; 98:2779-94. [PMID: 17728392 DOI: 10.1152/jn.00033.2007] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The M-current (current through Kv7 channels) is a low-threshold noninactivating potassium current that is suppressed by muscarinic agonists. Recent studies have shown its role in spike burst generation and intrinsic subthreshold theta resonance, both of which are important for memory function. However, little is known about its role in principal cells of the entorhinal cortex (EC). In this study, using whole cell patch recording techniques in a rat EC slice preparation, we have examined the effects of the M-current blockers linopirdine and XE991 on the membrane dynamics of principal cells in the EC. When the M-current was blocked, layer II nonstellate cells (non-SCs) and layer III cells switched from tonic discharge to intermittent firing mode, during which layer II non-SCs showed high-frequency short-duration spike bursts due to increased fast spike afterdepolarization (ADP). When three spikes were elicited at 50 Hz, these two types of cells reacted with a slow ADP that drove delayed firing. In contrast, layer II stellate cells (SCs) and layer V cells never displayed intermittent firing, bursting behavior, or delayed firing. Under the M-current block, intrinsic excitability increased significantly in layer III and layer V cells but not in layer II SCs and non-SCs. The M-current block also had contrasting effects on the subthreshold excitability, greatly suppressing the subthreshold membrane potential oscillations in layer V cells but not in layer II SCs. Modulation of the M-current thus shifts the firing behavior, intrinsic excitability, and subthreshold membrane potential oscillations of EC principal cells in a cell-type-dependent manner.
Collapse
Affiliation(s)
- Motoharu Yoshida
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| | | |
Collapse
|
50
|
Hughes S, Marsh SJ, Tinker A, Brown DA. PIP(2)-dependent inhibition of M-type (Kv7.2/7.3) potassium channels: direct on-line assessment of PIP(2) depletion by Gq-coupled receptors in single living neurons. Pflugers Arch 2007; 455:115-24. [PMID: 17447081 DOI: 10.1007/s00424-007-0259-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Accepted: 03/20/2007] [Indexed: 01/22/2023]
Abstract
The open state of M(Kv7.2/7.3) potassium channels is maintained by membrane phosphatidylinositol-4,5-bisphosphate (PI(4,5)P(2)). They can be closed on stimulating receptors that induce PI(4,5)P(2) hydrolysis. In sympathetic neurons, closure induced by stimulating M1-muscarinic acetylcholine receptors (mAChRs) has been attributed to depletion of PI(4,5)P(2), whereas closure by bradykinin B(2)-receptors (B2-BKRs) appears to result from formation of IP(3) and release of Ca(2+), implying that BKR stimulation does not deplete PI(4,5)P(2). We have used a fluorescently tagged PI(4,5)P(2)-binding construct, the C-domain of the protein tubby, mutated to increase sensitivity to PI(4,5)P(2) changes (tubby-R332H-cYFP), to provide an on-line read-out of PI(4,5)P(2) changes in single living sympathetic neurons after receptor stimulation. We find that the mAChR agonist, oxotremorine-M (oxo-M), produces a near-complete translocation of tubby-R332H-cYFP into the cytoplasm, whereas bradykinin (BK) produced about one third as much translocation. However, translocation by BK was increased to equal that produced by oxo-M when synthesis of PI(4,5)P(2) was inhibited by wortmannin. Further, wortmannin 'rescued' M-current inhibition by BK after Ca(2+)-dependent inhibition was reduced by thapsigargin. These results provide the first direct support for the view that BK accelerates PI(4,5)P(2) synthesis in these neurons, and show that the mechanism of BKR-induced inhibition can be switched from Ca(2+) dependent to PI(4,5)P(2) dependent when PI(4,5)P(2) synthesis is inhibited.
Collapse
Affiliation(s)
- Simon Hughes
- Department of Pharmacology, University College London, London, WC1E 6BT, UK
| | | | | | | |
Collapse
|