1
|
Mfouo-Tynga IS, Mouinga-Ondeme AG. Photodynamic Therapy: A Prospective Therapeutic Approach for Viral Infections and Induced Neoplasia. Pharmaceuticals (Basel) 2022; 15:ph15101273. [PMID: 36297385 PMCID: PMC9608479 DOI: 10.3390/ph15101273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022] Open
Abstract
The recent COVID-19 pandemic outbreak and arising complications during treatments have highlighted and demonstrated again the evolving ability of microorganisms, especially viral resistance to treatment as they develop into new and strong strains. The search for novel and effective treatments to counter the effects of ever-changing viruses is undergoing. Although it is an approved procedure for treating cancer, photodynamic therapy (PDT) was first used against bacteria and has now shown potential against viruses and certain induced diseases. PDT is a multi-stage process and uses photosensitizing molecules (PSs) that accumulate in diseased tissues and eradicates them after being light-activated in the presence of oxygen. In this review, studies describing viruses and their roles in disrupting cell regulation mechanisms and signaling pathways and facilitating tumorigenesis were described. With the development of innovative “or smart” PSs through the use of nanoparticles and two-photon excitation, among other strategies, PDT can boost immune responses, inactivate viral infections, and eradicate neoplastic cells. Visualization and monitoring of biological processes can be achieved in real-time with nanomedicines and better tissue penetration strategies. After photodynamic inactivation of viruses, signaling pathways seem to be restored but the underlying mechanisms are still to be elucidated. Light-mediated treatments are suitable to manage both oncogenic viral infections and induced neoplasia.
Collapse
|
2
|
Lemercier CE, Krieger P. Reducing Merkel cell activity in the whisker follicle disrupts cortical encoding of whisker movement amplitude and velocity. IBRO Neurosci Rep 2022; 13:356-363. [PMID: 36281438 PMCID: PMC9586890 DOI: 10.1016/j.ibneur.2022.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/26/2022] [Indexed: 11/26/2022] Open
Abstract
Merkel cells (MCs) and associated primary sensory afferents of the whisker follicle-sinus complex, accurately code whisker self-movement, angle, and whisk phase during whisking. However, little is known about their roles played in cortical encoding of whisker movement. To this end, the spiking activity of primary somatosensory barrel cortex (wS1) neurons was measured in response to varying the whisker deflection amplitude and velocity in transgenic mice with previously established reduced mechanoelectrical coupling at MC-associated afferents. Under reduced MC activity, wS1 neurons exhibited increased sensitivity to whisker deflection. This appeared to arise from a lack of variation in response magnitude to varying the whisker deflection amplitude and velocity. This latter effect was further indicated by weaker variation in the temporal profile of the evoked spiking activity when either whisker deflection amplitude or velocity was varied. Nevertheless, under reduced MC activity, wS1 neurons retained the ability to differentiate stimulus features based on the timing of their first post-stimulus spike. Collectively, results from this study suggest that MCs contribute to cortical encoding of both whisker amplitude and velocity, predominantly by tuning wS1 response magnitude, and by patterning the evoked spiking activity, rather than by tuning wS1 response latency. The role of Merkel cells (MCs) in cortical encoding of whisker deflection amplitude and velocity was investigated. Reducing MC synaptic activity increased barrel cortex neurons response sensitivity to whisker deflection. This effect occurred from a lack of variation in response magnitude to varying whisker deflection amplitude and velocity. However, stimuli differentiation through changes in cortical response latency was preserved. MCs are thus suggested to play a predominant role in tuning the cortical response magnitude over the response latency.
Collapse
|
3
|
Tactile sensitivity in the rat: a correlation between receptor structure and function. Exp Brain Res 2021; 239:3457-3469. [PMID: 34519842 PMCID: PMC8599332 DOI: 10.1007/s00221-021-06193-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/11/2021] [Indexed: 11/04/2022]
Abstract
Single cutaneous fibers were recorded in the median nerve of the deeply anesthetized rat and the receptor morphology in the forelimb glabrous skin was analyzed to establish a probable correlation between receptor anatomy and physiology. Receptor complexes in the glabrous skin of the rat forelimb were stained immunologically with antibodies NF-200 and PGP-9.5, confirming the presence of Meissner corpuscles and Merkel complexes within the dermal papilla similar to other mammals including primates. Both the Meissner corpuscles and Merkel cell complexes were sparse and located in the pyramidal-shaped palmer pads and the apex of the digit extremities. They were almost totally absent elsewhere in the glabrous skin. No Ruffini receptors or Pacinian corpuscles were found in our samples. A total of 92 cutaneous fibers were retained long enough for analysis. Thirty-five (38%) were characterized as rapidly adapting fibers (RA) and 57 (62%) were slowly adapting afferents (SA). Despite the very limited number of receptors at the tip of the digit, RA receptors outnumbered SA fibers 3.2/1.0. In contrast, SA fibers on the thenar pad outnumbered RA receptors by a ratio of 3–1. Despite the very limited number of low threshold mechanoreceptors in the glabrous skin of the rat forelimb, the prevalence of SA afferents in the palm and more frequent occurrence of RA afferents in the digit extremity suggest differences in functionality both for locomotion and object manipulation.
Collapse
|
4
|
Gu JG. Molecular Mechanisms of the Sense of Touch: An Overview of Mechanical Transduction and Transmission in Merkel Discs of Whisker Hair Follicles and Some Clinical Perspectives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1099:1-12. [PMID: 30306510 DOI: 10.1007/978-981-13-1756-9_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The Merkel disc is a main type of tactile end organs for sensing gentle touch and is essential for sophisticated sensory tasks including social interaction, environmental exploration, and tactile discrimination. Recent studies have shown that Merkel cells are primary sites of mechanotransduction using Piezo2 channels as a molecular transducer in Merkel discs. Furthermore, tactile stimuli trigger serotonin release from Merkel cells to excite their associated whisker Aβ-afferent endings and transmit tactile signals. The tactile transduction and transmission at Merkel discs may have important clinical implications in sensory dysfunctions such as the loss of tactile sensitivity and tactile allodynia seen in patients who have diabetes and inflammatory diseases and undergo chemotherapy.
Collapse
Affiliation(s)
- Jianguo G Gu
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
5
|
Higashikawa A, Kimura M, Shimada M, Ohyama S, Ofusa W, Tazaki M, Shibukawa Y. Merkel Cells Release Glutamate Following Mechanical Stimulation: Implication of Glutamate in the Merkel Cell-Neurite Complex. Front Cell Neurosci 2019; 13:255. [PMID: 31244612 PMCID: PMC6580182 DOI: 10.3389/fncel.2019.00255] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/21/2019] [Indexed: 01/14/2023] Open
Abstract
Merkel cells (MCs) have been proposed to form a part of the MC-neurite complex with sensory neurons through synaptic contact. However, the detailed mechanisms for intercellular communication between MCs and neurons have yet to be clarified. The present study examined the increases in intracellular free Ca2+ concentration ([Ca2+]i) induced by direct mechanical stimulation of MCs. We also measured [Ca2+]i in the trigeminal ganglion neurons (TGs) following direct mechanical stimulation to the MCs in an MC-TGs coculture. The MCs were isolated from hamster buccal mucosa, while TGs were isolated from neonatal Wistar rats. Both cell populations showed depolarization-induced [Ca2+]i. Direct mechanical stimulation to MCs increased [Ca2+]i, showing stimulation strength dependence. In the MC-TGs coculture, the application of direct mechanical stimulation to MCs resulted in increased [Ca2+]i in the TGs. These changes were significantly suppressed by antagonists of glutamate-permeable anion channels (4,4′-diisothiocyanato-2,2′-stilbenedisulfonic acid; DIDS), and non-competitive antagonist of the N-methyl-D-aspartate (NMDA) receptors (MK801). Apyrase, an ATP-degrading enzyme, and suramin, a non-selective P2 purinergic receptor antagonist, did not exert inhibitory effects on these [Ca2+]i increases in the TGs following MC stimulation. These results indicated that MCs are capable of releasing glutamate, but not ATP, in response to cellular deformation by direct mechanical stimulation. The released glutamate activates the NMDA receptors on TGs. We suggest that MCs act as mechanoelectrical transducers and establish synaptic transmission with neurons, through the MC-neurite complex, to mediate mechanosensory transduction.
Collapse
Affiliation(s)
| | - Maki Kimura
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Miyuki Shimada
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Sadao Ohyama
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Wataru Ofusa
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Masakazu Tazaki
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | | |
Collapse
|
6
|
Loss of Aβ-nerve endings associated with the Merkel cell-neurite complex in the lesional oral mucosa epithelium of lichen planus and hyperkeratosis. Int J Oral Sci 2016; 8:32-8. [PMID: 27025263 PMCID: PMC4822177 DOI: 10.1038/ijos.2015.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2015] [Indexed: 11/27/2022] Open
Abstract
The Merkel cell-neurite complex initiates the perception of touch and mediates Aβ slowly adapting type I responses. Lichen planus is a chronic inflammatory autoimmune disease with T-cell-mediated inflammation, whereas hyperkeratosis is characterized with or without epithelial dysplasia in the oral mucosa. To determine the effects of lichen planus and hyperkeratosis on the Merkel cell-neurite complex, healthy oral mucosal epithelium and lesional oral mucosal epithelium of lichen planus and hyperkeratosis patients were stained by immunohistochemistry (the avidin-biotin-peroxidase complex and double immunofluorescence methods) using pan cytokeratin, cytokeratin 20 (K20, a Merkel cell marker), and neurofilament 200 (NF200, a myelinated Aβ- and Aδ-nerve fibre marker) antibodies. NF200-immunoreactive (ir) nerve fibres in healthy tissues and in the lesional oral mucosa epithelium of lichen planus and hyperkeratosis were counted and statistically analysed. In the healthy oral mucosa, K20-positive Merkel cells with and without close association to the intraepithelial NF200-ir nerve fibres were detected. In the lesional oral mucosa of lichen planus and hyperkeratosis patients, extremely rare NF200-ir nerve fibres were detected only in the lamina propria. Compared with healthy tissues, lichen planus and hyperkeratosis tissues had significantly decreased numbers of NF200-ir nerve fibres in the oral mucosal epithelium. Lichen planus and hyperkeratosis were associated with the absence of Aβ-nerve endings in the oral mucosal epithelium. Thus, we conclude that mechanosensation mediated by the Merkel cell-neurite complex in the oral mucosal epithelium is impaired in lichen planus and hyperkeratosis.
Collapse
|
7
|
Woo SH, Lumpkin EA, Patapoutian A. Merkel cells and neurons keep in touch. Trends Cell Biol 2014; 25:74-81. [PMID: 25480024 DOI: 10.1016/j.tcb.2014.10.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 10/20/2014] [Accepted: 10/24/2014] [Indexed: 11/18/2022]
Abstract
The Merkel cell-neurite complex is a unique vertebrate touch receptor comprising two distinct cell types in the skin. Its presence in touch-sensitive skin areas was recognized more than a century ago, but the functions of each cell type in sensory transduction have been unclear. Three recent studies demonstrate that Merkel cells are mechanosensitive cells that function in touch transduction via Piezo2. One study concludes that Merkel cells, rather than sensory neurons, are principal sites of mechanotransduction, whereas two other studies report that both Merkel cells and neurons encode mechanical inputs. Together, these studies settle a long-standing debate on whether or not Merkel cells are mechanosensory cells, and enable future investigations of how these skin cells communicate with neurons.
Collapse
Affiliation(s)
- Seung-Hyun Woo
- Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ellen A Lumpkin
- Departments of Dermatology & Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA.
| | - Ardem Patapoutian
- Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
8
|
Nakatani M, Maksimovic S, Baba Y, Lumpkin EA. Mechanotransduction in epidermal Merkel cells. Pflugers Arch 2014; 467:101-8. [PMID: 25053537 DOI: 10.1007/s00424-014-1569-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 06/27/2014] [Indexed: 12/24/2022]
Abstract
The cellular and molecular basis of vertebrate touch reception remains least understood among the traditional five senses. Somatosensory afferents that innervate the skin encode distinct tactile qualities, such as flutter, slip, and pressure. Gentle touch is thought to be transduced by somatosensory afferents whose tactile end organs selectively filter mechanical stimuli. These tactile end organs comprise afferent terminals in association with non-neuronal cell types such as Merkel cells, keratinocytes, and Schwann cells. An open question is whether these non-neuronal cells serve primarily as passive mechanical filters or whether they actively participate in mechanosensory transduction. This question has been most extensively studied in Merkel cells, which are epidermal cells that complex with sensory afferents in regions of high tactile acuity such as fingertips, whisker follicles, and touch domes. Merkel cell-neurite complexes mediate slowly adapting type I (SAI) responses, which encode sustained pressure and represent object features with high fidelity. How Merkel cells contribute to unique SAI firing patterns has been debated for decades; however, three recent studies in rodent models provide some direct answers. First, whole-cell recordings demonstrate that Merkel cells are touch-sensitive cells with fast, mechanically activated currents that require Piezo2. Second, optogenetics and intact recordings show that Merkel cells mediate sustained SAI firing. Finally, loss-of-function studies in transgenic mouse models reveal that SAI afferents are also touch sensitive. Together, these studies identify molecular mechanisms of mechanotransduction in Merkel cells, reveal unexpected functions for these cells in touch, and support a revised, two-receptor site model of mechanosensory transduction.
Collapse
Affiliation(s)
- Masashi Nakatani
- Department of Dermatology, Columbia University, 1150 St. Nicholas Avenue, room 302B, New York, NY, 10032, USA
| | | | | | | |
Collapse
|
9
|
Owens DM, Lumpkin EA. Diversification and specialization of touch receptors in skin. Cold Spring Harb Perspect Med 2014; 4:4/6/a013656. [PMID: 24890830 DOI: 10.1101/cshperspect.a013656] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Our skin is the furthest outpost of the nervous system and a primary sensor for harmful and innocuous external stimuli. As a multifunctional sensory organ, the skin manifests a diverse and highly specialized array of mechanosensitive neurons with complex terminals, or end organs, which are able to discriminate different sensory stimuli and encode this information for appropriate central processing. Historically, the basis for this diversity of sensory specializations has been poorly understood. In addition, the relationship between cutaneous mechanosensory afferents and resident skin cells, including keratinocytes, Merkel cells, and Schwann cells, during the development and function of tactile receptors has been poorly defined. In this article, we will discuss conserved tactile end organs in the epidermis and hair follicles, with a focus on recent advances in our understanding that have emerged from studies of mouse hairy skin.
Collapse
Affiliation(s)
- David M Owens
- Department of Dermatology, Columbia University College of Physicians and Surgeons, New York, New York 10032 Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Ellen A Lumpkin
- Department of Dermatology, Columbia University College of Physicians and Surgeons, New York, New York 10032 Department of Physiology and Cellular Biophysics, Columbia University College of Physicians and Surgeons, New York, New York 10032
| |
Collapse
|
10
|
Merkel cells transduce and encode tactile stimuli to drive Aβ-afferent impulses. Cell 2014; 157:664-75. [PMID: 24746027 DOI: 10.1016/j.cell.2014.02.026] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 01/13/2014] [Accepted: 02/11/2014] [Indexed: 11/22/2022]
Abstract
Sensory systems for detecting tactile stimuli have evolved from touch-sensing nerves in invertebrates to complicated tactile end organs in mammals. Merkel discs are tactile end organs consisting of Merkel cells and Aβ-afferent nerve endings and are localized in fingertips, whisker hair follicles, and other touch-sensitive spots. Merkel discs transduce touch into slowly adapting impulses to enable tactile discrimination, but their transduction and encoding mechanisms remain unknown. Using rat whisker hair follicles, we show that Merkel cells rather than Aβ-afferent nerve endings are primary sites of tactile transduction and identify the Piezo2 ion channel as the Merkel cell mechanical transducer. Piezo2 transduces tactile stimuli into Ca(2+)-action potentials in Merkel cells, which drive Aβ-afferent nerve endings to fire slowly adapting impulses. We further demonstrate that Piezo2 and Ca(2+)-action potentials in Merkel cells are required for behavioral tactile responses. Our findings provide insights into how tactile end-organs function and have clinical implications for tactile dysfunctions.
Collapse
|
11
|
Piezo2 is required for Merkel-cell mechanotransduction. Nature 2014; 509:622-6. [PMID: 24717433 PMCID: PMC4039622 DOI: 10.1038/nature13251] [Citation(s) in RCA: 514] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 03/14/2014] [Indexed: 01/29/2023]
Abstract
How we sense touch remains fundamentally unknown1,2. The Merkel cell-neurite complex is a gentle touch receptor in the skin that mediates slowly-adapting (SA) responses of Aβ sensory fibers to encode fine details of objects3-6. This mechanoreceptor complex was recognized to play an essential role in sensing gentle touch nearly 50 years ago3,4. However, whether Merkel cells or afferent fibers themselves sense mechanical force is still debated, and the molecular mechanism of mechanotransduction is unknown1,2,7-12. Interestingly, synapse-like junctions are observed between Merkel cells and associated afferents6,13-15, and yet it is unclear if Merkel cells are inherently mechanosensitive or whether they can rapidly transmit such information to the neighboring nerve1,2,16,17. Here we show for the first time that Merkel cells produce touch-sensitive currents in vitro. Piezo2, a mechanically-activated (MA) cation channel, is expressed in Merkel cells. We engineered mice deficient in Piezo2 in the skin, but not in sensory neurons, and show that Merkel cell mechanosensitivity completely depends on Piezo2. In these mice, Merkel cell-neurite complex-mediated SA responses in vivo show reduced static firing rates, and moreover, they display moderately decreased behavioral responses to gentle touch. Our results indicate that Piezo2 is the Merkel cell mechanotransduction channel and provide the first line of evidence that Piezos play a physiological role in mechanosensation in mammals. Furthermore, our data present evidence for a two-receptor site model, where both Merkel cells and innervating afferents act in concert as mechanosensors. The two-receptor system could provide this mechanoreceptor complex with a tuning mechanism to achieve highly sophisticated responses to a given mechanical stimulus15,18,19.
Collapse
|
12
|
Soya M, Sato M, Sobhan U, Tsumura M, Ichinohe T, Tazaki M, Shibukawa Y. Plasma membrane stretch activates transient receptor potential vanilloid and ankyrin channels in Merkel cells from hamster buccal mucosa. Cell Calcium 2014; 55:208-18. [PMID: 24642224 DOI: 10.1016/j.ceca.2014.02.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 02/05/2014] [Accepted: 02/20/2014] [Indexed: 01/03/2023]
Abstract
Merkel cells (MCs) have been proposed to form a part of the MC-neurite complex with sensory neurons. Many transient receptor potential (TRP) channels have been identified in mammals; however, the activation properties of these channels in oral mucosal MCs remain to be clarified. We investigated the biophysical and pharmacological properties of TRP vanilloid (TRPV)-1, TRPV2, TRPV4, TRP ankyrin (TRPA)-1, and TRP melastatin (TRPM)-8 channels, which are sensitive to osmotic and mechanical stimuli by measurement of intracellular free Ca(2+) concentration ([Ca(2+)]i) using fura-2. We also analyzed their localization patterns through immunofluorescence. MCs showed immunoreaction for TRPV1, TRPV2, TRPV4, TRPA1, and TRPM8 channels. In the presence of extracellular Ca(2+), the hypotonic test solution evoked Ca(2+) influx. The [Ca(2+)]i increases were inhibited by TRPV1, TRPV2, TRPV4, or TRPA1 channel antagonists, but not by the TRPM8 channel antagonist. Application of TRPV1, TRPV2, TRPV4, TRPA1, or TRPM8 channel selective agonists elicited transient increases in [Ca(2+)]i only in the presence of extracellular Ca(2+). The results indicate that membrane stretching in MCs activates TRPV1, TRPV2, TRPV4, and TRPA1 channels, that it may be involved in synaptic transmission to sensory neurons, and that MCs could contribute to the mechanosensory transduction sequence.
Collapse
Affiliation(s)
- Manabu Soya
- Department of Dental Anesthesiology, Tokyo Dental College, Chiba 261-8502, Japan
| | - Masaki Sato
- Department of Physiology, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Ubaidus Sobhan
- Department of Physiology, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Maki Tsumura
- Department of Physiology, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Tatsuya Ichinohe
- Department of Dental Anesthesiology, Tokyo Dental College, Chiba 261-8502, Japan
| | - Masakazu Tazaki
- Department of Physiology, Tokyo Dental College, Tokyo 101-0061, Japan
| | | |
Collapse
|
13
|
Halata Z, Grim M, Baumann KI. Current understanding of Merkel cells, touch reception and the skin. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/edm.09.70] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Abstract
The somatosensory system decodes a wide range of tactile stimuli and thus endows us with a remarkable capacity for object recognition, texture discrimination, sensory-motor feedback and social exchange. The first step leading to perception of innocuous touch is activation of cutaneous sensory neurons called low-threshold mechanoreceptors (LTMRs). Here, we review the properties and functions of LTMRs, emphasizing the unique tuning properties of LTMR subtypes and the organizational logic of their peripheral and central axonal projections. We discuss the spinal cord neurophysiological representation of complex mechanical forces acting upon the skin and current views of how tactile information is processed and conveyed from the spinal cord to the brain. An integrative model in which ensembles of impulses arising from physiologically distinct LTMRs are integrated and processed in somatotopically aligned mechanosensory columns of the spinal cord dorsal horn underlies the nervous system's enormous capacity for perceiving the richness of the tactile world.
Collapse
Affiliation(s)
- Victoria E Abraira
- The Solomon H. Snyder Department of Neuroscience, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
15
|
Fleming MS, Luo W. The anatomy, function, and development of mammalian Aβ low-threshold mechanoreceptors. ACTA ACUST UNITED AC 2013; 8. [PMID: 24376457 DOI: 10.1007/s11515-013-1271-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Touch sensation is critical for our social and environmental interactions. In mammals, most discriminative light touch sensation is mediated by the Aβ low-threshold mechanoreceptors. Cell bodies of Aβ low-threshold mechanoreceptors are located in the dorsal root ganglia and trigeminal ganglia, which extend a central projection innervating the spinal cord and brain stem and a peripheral projection innervating the specialized mechanosensory end organs. These specialized mechanosensory end organs include Meissner's corpuscles, Pacinian corpuscles, lanceolate endings, Merkel cells, and Ruffini corpuscles. The morphologies and physiological properties of these mechanosensory end organs and their innervating neurons have been investigated for over a century. In addition, recent advances in mouse genetics have enabled the identification of molecular mechanisms underlying the development of Aβ low-threshold mechanoreceptors, which highlight the crucial roles of neurotrophic factor signaling and transcription factor activity in this process. Here, we will review the anatomy, physiological properties, and development of mammalian low-threshold Aβ mechanoreceptors.
Collapse
Affiliation(s)
- Michael S Fleming
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Wenqin Luo
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19014, USA
| |
Collapse
|
16
|
Maksimovic S, Baba Y, Lumpkin EA. Neurotransmitters and synaptic components in the Merkel cell-neurite complex, a gentle-touch receptor. Ann N Y Acad Sci 2013; 1279:13-21. [PMID: 23530998 DOI: 10.1111/nyas.12057] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Merkel cells are an enigmatic group of rare cells found in the skin of vertebrates. Most make contacts with somatosensory afferents to form Merkel cell-neurite complexes, which are gentle-touch receptors that initiate slowly adapting type I responses. The function of Merkel cells within the complex remains debated despite decades of research. Numerous anatomical studies demonstrate that Merkel cells form synaptic-like contacts with sensory afferent terminals. Moreover, recent molecular analysis reveals that Merkel cells express dozens of presynaptic molecules that are essential for synaptic vesicle release in neurons. Merkel cells also produce a host of neuroactive substances that can act as fast excitatory neurotransmitters or neuromodulators. Here, we review the major neurotransmitters found in Merkel cells and discuss these findings in relation to the potential function of Merkel cells in touch reception.
Collapse
Affiliation(s)
- Srdjan Maksimovic
- Department of Dermatology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | |
Collapse
|
17
|
Roudaut Y, Lonigro A, Coste B, Hao J, Delmas P, Crest M. Touch sense: functional organization and molecular determinants of mechanosensitive receptors. Channels (Austin) 2013; 6:234-45. [PMID: 23146937 DOI: 10.4161/chan.22213] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cutaneous mechanoreceptors are localized in the various layers of the skin where they detect a wide range of mechanical stimuli, including light brush, stretch, vibration and noxious pressure. This variety of stimuli is matched by a diverse array of specialized mechanoreceptors that respond to cutaneous deformation in a specific way and relay these stimuli to higher brain structures. Studies across mechanoreceptors and genetically tractable sensory nerve endings are beginning to uncover touch sensation mechanisms. Work in this field has provided researchers with a more thorough understanding of the circuit organization underlying the perception of touch. Novel ion channels have emerged as candidates for transduction molecules and properties of mechanically gated currents improved our understanding of the mechanisms of adaptation to tactile stimuli. This review highlights the progress made in characterizing functional properties of mechanoreceptors in hairy and glabrous skin and ion channels that detect mechanical inputs and shape mechanoreceptor adaptation.
Collapse
Affiliation(s)
- Yann Roudaut
- Aix-Marseille Université, CNRS, Marseille, France
| | | | | | | | | | | |
Collapse
|
18
|
Cha M, Ling J, Xu GY, Gu JG. Shear mechanical force induces an increase of intracellular Ca2+ in cultured Merkel cells prepared from rat vibrissal hair follicles. J Neurophysiol 2011; 106:460-9. [PMID: 21562195 DOI: 10.1152/jn.00274.2011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Merkel cells have been proposed to play a role in mechanical transduction of light touch in mammals. In the present study, Merkel cells were prepared from upper segments of rat vibrissal hair follicles and maintained in culture. Reponses of these cells to shear mechanical forces were examined by Ca(2+) imaging technique. Shear forces of ≥ 0.8 dyn/cm(2) that were delivered to the cells by the application of normal bath solution significantly increased intracellular Ca(2+) levels ([Ca(2+)](i)) in some of these cells, and up to 30% cells responded to 1.6 dyn/cm(2) shear force applied for 20 s. Gd(3+) (100 μM), a compound widely used to inhibit mechanically activated channels, abolished shear force-induced increases of [Ca(2+)](i) in these cells. Reduction of extracellular Ca(2+) concentration from 2 mM to 0.2 mM also abolished shear force-induced increases of [Ca(2+)](i) in these cells. In addition to shear force, we found that many shear force-responding cells also responded to hypotonic solution. However, the response to hypotonic solution was not abolished by Gd(3+) (100 μM). We also found that all shear force-responding cells responded to ATP (100 μM) with large increases of [Ca(2+)](i). The responses to ATP remained in the presence of Gd(3+). Taken together, our results suggest that Merkel cells in culture are sensitive to shear force stress, osmotic, and chemical stimuli and that shear force-induced increases of [Ca(2+)](i) may be mediated by the activation of mechanically activated channels.
Collapse
Affiliation(s)
- Myeounghoon Cha
- Department of Anesthesiology and Graduate Program in Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0531, USA
| | | | | | | |
Collapse
|
19
|
Abstract
The sense of touch detects forces that bombard the body's surface. In metazoans, an assortment of morphologically and functionally distinct mechanosensory cell types are tuned to selectively respond to diverse mechanical stimuli, such as vibration, stretch, and pressure. A comparative evolutionary approach across mechanosensory cell types and genetically tractable species is beginning to uncover the cellular logic of touch reception.
Collapse
Affiliation(s)
- Ellen A Lumpkin
- Department of Dermatology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
| | | | | |
Collapse
|
20
|
Van Keymeulen A, Mascre G, Youseff KK, Harel I, Michaux C, De Geest N, Szpalski C, Achouri Y, Bloch W, Hassan BA, Blanpain C. Epidermal progenitors give rise to Merkel cells during embryonic development and adult homeostasis. ACTA ACUST UNITED AC 2009; 187:91-100. [PMID: 19786578 PMCID: PMC2762088 DOI: 10.1083/jcb.200907080] [Citation(s) in RCA: 188] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lineage-tracing experiments show that the origin of specialized mechanosensory Merkel cells in the skin is epidermal progenitors, not the neural crest. Merkel cells (MCs) are located in the touch-sensitive area of the epidermis and mediate mechanotransduction in the skin. Whether MCs originate from embryonic epidermal or neural crest progenitors has been a matter of intense controversy since their discovery >130 yr ago. In addition, how MCs are maintained during adulthood is currently unknown. In this study, using lineage-tracing experiments, we show that MCs arise through the differentiation of epidermal progenitors during embryonic development. In adults, MCs undergo slow turnover and are replaced by cells originating from epidermal stem cells, not through the proliferation of differentiated MCs. Conditional deletion of the Atoh1/Math1 transcription factor in epidermal progenitors results in the absence of MCs in all body locations, including the whisker region. Our study demonstrates that MCs arise from the epidermis by an Atoh1-dependent mechanism and opens new avenues for study of MC functions in sensory perception, neuroendocrine signaling, and MC carcinoma.
Collapse
Affiliation(s)
- Alexandra Van Keymeulen
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels B-1070, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Yorozu S, Wong A, Fischer BJ, Dankert H, Kernan MJ, Kamikouchi A, Ito K, Anderson DJ. Distinct sensory representations of wind and near-field sound in the Drosophila brain. Nature 2009; 458:201-5. [PMID: 19279637 PMCID: PMC2755041 DOI: 10.1038/nature07843] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 01/29/2009] [Indexed: 11/10/2022]
Abstract
Behavioral responses to wind are thought to play a critical role in controlling the dispersal and population genetics of wild Drosophila species1,2, as well as their navigation in flight3, but their underlying neurobiological basis is unknown. We show that Drosophila melanogaster, like wild-caught Drosophila strains4, exhibits robust wind-induced suppression of locomotion (WISL), in response to air currents delivered at speeds normally encountered in nature1,2. Here we identify wind-sensitive neurons in Johnston’s Organ (JO), an antennal mechanosensory structure previously implicated in near-field sound detection (reviewed in5,6). Using Gal4 lines targeted to different subsets of JO neurons7, and a genetically encoded calcium indicator8, we show that wind and near-field sound (courtship song) activate distinct populations of JO neurons, which project to different regions of the antennal and mechanosensory motor center (AMMC) in the central brain. Selective genetic ablation of wind-sensitive JO neurons in the antenna abolishes WISL behavior, without impairing hearing. Different neuronal subsets within the wind-sensitive population, moreover, respond to different directions of arista deflection caused by airflow and project to different regions of the AMMC, providing a rudimentary map of wind-direction in the brain. Importantly, sound- and wind-sensitive JO neurons exhibit different intrinsic response properties: the former are phasically activated by small, bi-directional, displacements of the aristae, while the latter are tonically activated by unidirectional, static deflections of larger magnitude. These different intrinsic properties are well suited to the detection of oscillatory pulses of near-field sound and laminar airflow, respectively. These data identify wind-sensitive neurons in JO, a structure that has been primarily associated with hearing, and reveal how the brain can distinguish different types of air particle movements, using a common sensory organ.
Collapse
Affiliation(s)
- Suzuko Yorozu
- Division of Biology 216-76, California Institute of Technology, Pasadena, California 91125, USA.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Merkel cells are rare epidermal cells whose function in the skin is still debated. These cells localize to highly touch-sensitive areas of vertebrate epithelia, including palatine ridges, touch domes and finger tips. In most cases, Merkel cells complex with somatosensory afferents to form slowly adapting touch receptors; it is unclear, however, whether mechanosensory transduction occurs in the Merkel cell, the somatosensory afferent or both. Classic anatomical results suggests that Merkel cells are sensory cells that transduce mechanical stimuli and then communicate with sensory afferents via neurotransmission. This model is supported by recent molecular, immunohistochemical and physiological studies of Merkel cells in vitro and in intact tissues. For example, Merkel cells express essential components of presynaptic machinery, including molecules required for release of the excitatory neurotransmitter glutamate. Moreover, Merkel cells in vitro and in vivo are activated by mechanical stimuli, including hypotonic-induced cell swelling. Although these findings support the hypothesis that Merkel cells are sensory receptor cells, a definitive demonstration that Merkel cells are necessary and sufficient to transduce touch awaits future studies.
Collapse
Affiliation(s)
- Henry Haeberle
- Neuroscience Graduate Program, UCSF, Baylor College of Medicine, Houston TX 77030
| | | |
Collapse
|
23
|
Woodbury CJ, Koerber HR. Central and peripheral anatomy of slowly adapting type I low-threshold mechanoreceptors innervating trunk skin of neonatal mice. J Comp Neurol 2008; 505:547-61. [PMID: 17924532 DOI: 10.1002/cne.21517] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Despite intensive study, our understanding of the neuronal structures responsible for transducing the broad spectrum of environmental energies that impinge upon the skin has rested on inference and conjecture. This major shortcoming motivated the development of ex vivo somatosensory system preparations in neonatal mice in the hope that their small size might allow the peripheral terminals of physiologically identified sensory neurons to be labeled intracellularly for direct study. The present report describes the first such study of the peripheral terminals of four slowly adapting type I low-threshold mechanoreceptors (SAIs) that innervated the back skin of neonatal mice. In addition, this report includes information on the central anatomy of the same SAI afferents that were identified peripherally with both physiological and anatomical means, providing an essentially complete view of the central and peripheral morphology of individual SAI afferents in situ. Our findings reveal that SAIs in neonates are strikingly adult-like in all major respects. Afferents were exquisitely sensitive to mechanical stimuli and exhibited a distinctly irregular, slowly adapting discharge to stimulation of 1-4 punctate receptive fields in the skin. Their central collaterals formed transversely oriented and largely nonoverlapping arborizations limited to regions of the dorsal horn corresponding to laminae III-V. Their peripheral arborizations were restricted entirely within miniaturized touch domes, where they gave rise to expanded disc-like endings in close apposition to putative Merkel cells in basal epidermis. These findings therefore provide the first direct confirmation of the functional morphology of this physiologically unique afferent class.
Collapse
Affiliation(s)
- C Jeffery Woodbury
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15281, USA
| | | |
Collapse
|
24
|
Haeberle H, Bryan LA, Vadakkan TJ, Dickinson ME, Lumpkin EA. Swelling-activated Ca2+ channels trigger Ca2+ signals in Merkel cells. PLoS One 2008; 3:e1750. [PMID: 18454189 PMCID: PMC2365925 DOI: 10.1371/journal.pone.0001750] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Accepted: 02/08/2008] [Indexed: 01/26/2023] Open
Abstract
Merkel cell-neurite complexes are highly sensitive touch receptors comprising epidermal Merkel cells and sensory afferents. Based on morphological and molecular studies, Merkel cells are proposed to be mechanosensory cells that signal afferents via neurotransmission; however, functional studies testing this hypothesis in intact skin have produced conflicting results. To test this model in a simplified system, we asked whether purified Merkel cells are directly activated by mechanical stimulation. Cell shape was manipulated with anisotonic solution changes and responses were monitored by Ca2+ imaging with fura-2. We found that hypotonic-induced cell swelling, but not hypertonic solutions, triggered cytoplasmic Ca2+ transients. Several lines of evidence indicate that these signals arise from swelling-activated Ca2+-permeable ion channels. First, transients were reversibly abolished by chelating extracellular Ca2+, demonstrating a requirement for Ca2+ influx across the plasma membrane. Second, Ca2+ transients were initially observed near the plasma membrane in cytoplasmic processes. Third, voltage-activated Ca2+ channel (VACC) antagonists reduced transients by half, suggesting that swelling-activated channels depolarize plasma membranes to activate VACCs. Finally, emptying internal Ca2+ stores attenuated transients by 80%, suggesting Ca2+ release from stores augments swelling-activated Ca2+ signals. To identify candidate mechanotransduction channels, we used RT-PCR to amplify ion-channel transcripts whose pharmacological profiles matched those of hypotonic-evoked Ca2+ signals in Merkel cells. We found 11 amplicons, including PKD1, PKD2, and TRPC1, channels previously implicated in mechanotransduction in other cells. Collectively, these results directly demonstrate that Merkel cells are activated by hypotonic-evoked swelling, identify cellular signaling mechanisms that mediate these responses, and support the hypothesis that Merkel cells contribute to touch reception in the Merkel cell-neurite complex.
Collapse
Affiliation(s)
- Henry Haeberle
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, California, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| | - Leigh A. Bryan
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| | - Tegy J. Vadakkan
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Mary E. Dickinson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ellen A. Lumpkin
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
25
|
Boulais N, Misery L. Merkel cells. J Am Acad Dermatol 2007; 57:147-65. [PMID: 17412453 DOI: 10.1016/j.jaad.2007.02.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Revised: 01/16/2007] [Accepted: 02/18/2007] [Indexed: 12/17/2022]
Abstract
Merkel cells are post-mitotic cells scattered throughout the epidermis of vertebrates. They are particularly interesting because of the close connections that they develop with sensory nerve endings and the number of peptides they can secrete. These features suggest that they may make an important contribution to skin homeostasis and cutaneous nerve development. However, these cells remain mysterious because they are difficult to study. They have not been successfully cultured and cannot be isolated, severely hampering molecular biology and functional analysis. Merkel cells probably originate in the neural crest of avians and mammalians, and their "spontaneous" appearance in the epidermis may be caused by a neuron-independent epidermal differentiation process. Their functions are still unclear: they take part in mechanoreception or at least interact with neurons, but little is known about their interactions with other epidermal cells. This review provides a new look at these least-known cells of the skin. The numerous peptides they synthesize and release may allow them to communicate with many cells other than neurons, and it is plausible that Merkel cells play a key role in skin physiology and physiopathology.
Collapse
Affiliation(s)
- Nicholas Boulais
- Unité de Physiologie Comparée et Intégrative, Université de Bretagne Occidentale, Brest, France
| | | |
Collapse
|
26
|
Haeberle H, Fujiwara M, Chuang J, Medina MM, Panditrao MV, Bechstedt S, Howard J, Lumpkin EA. Molecular profiling reveals synaptic release machinery in Merkel cells. Proc Natl Acad Sci U S A 2004; 101:14503-8. [PMID: 15448211 PMCID: PMC521975 DOI: 10.1073/pnas.0406308101] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Merkel cell-neurite complexes are somatosensory receptors that initiate the perception of gentle touch. The role of epidermal Merkel cells within these complexes is disputed. To ask whether Merkel cells are genetically programmed to be excitable cells that may participate in touch reception, we purified Merkel cells from touch domes and used DNA microarrays to compare gene expression in Merkel cells and other epidermal cells. We identified 362 Merkel-cell-enriched transcripts, including neuronal transcription factors, presynaptic molecules, and ion-channel subunits. Antibody staining of skin sections showed that Merkel cells are immunoreactive for presynaptic proteins, including piccolo, Rab3C, vesicular glutamate transporter 2, and cholecystokinin 26-33. These data indicate that Merkel cells are poised to release glutamate and neuropeptides. Finally, by using Ca(2+) imaging, we discovered that Merkel cells have L- and P/Q-type voltage-gated Ca(2+) channels, which have been shown to trigger vesicle release at synapses. These results demonstrate that Merkel cells are excitable cells and suggest that they release neurotransmitters to shape touch sensitivity.
Collapse
Affiliation(s)
- Henry Haeberle
- Department of Physiology, University of California-San Francisco, 600 16th Street, San Francisco, CA 94143-2280, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Krimm RF, Davis BM, Woodbury CJ, Albers KM. NT3 expressed in skin causes enhancement of SA1 sensory neurons that leads to postnatal enhancement of Merkel cells. J Comp Neurol 2004; 471:352-60. [PMID: 14991566 DOI: 10.1002/cne.20041] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To determine the role of NT3 in the postnatal maturation of Merkel cell (MC) sensory neurite complexes (touch domes), we examined the development of their neural and end-organ components in wild-type and transgenic mice that overexpress NT3 (NT3-OE). Touch domes are sensory complexes of the skin that contain specialized MCs innervated by slowly adapting type 1 (SA1) neurons. Touch domes are dependent on NT3 and, though formed in newborn mice that lack NT3, are severely depleted during postnatal maturation. Mice that overexpress NT3 in the skin have larger touch domes characterized by enhanced neural innervation and MC number. In this study, we asked how this NT3-mediated enhancement occurs, whether through stimulatory effects of NT3 on the SA1 neuron, or the MC, or both. The innervation density and number of MCs associated with each touch dome were measured in wild-type and transgenic animals at postnatal times. In newborn NT3-OE mice, touch dome innervation was enhanced. Surprisingly, however, the number of MCs was lower in newborn NT3-OE animals than in wild-type littermates, and equivalent numbers were not reached until postnatal day 8 (PN8). Not until the PN12 and PN16 time points did MCs increase in NT3-OE mice. To examine the neural dependence of MCs in NT3-OE mice, touch domes were chronically denervated by resecting dorsal cutaneous nerves. Both wild-type and NT3-OE animals showed similar depletion in the number of MCs associated with touch domes. These data indicate that NT3 is not a survival factor for MCs and that the NT3-mediated enhancement of MC number is indirect and neurally dependent.
Collapse
Affiliation(s)
- Robin F Krimm
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40292, USA
| | | | | | | |
Collapse
|
28
|
Abstract
The molecular mechanisms for the transduction of light and chemical signals in animals are fairly well understood. In contrast, the processes by which the senses of touch, balance, hearing, and proprioception are transduced are still largely unknown. Biochemical approaches to identify transduction components are difficult to use with mechanosensory systems, but genetic approaches are proving more successful. Genetic research in several organisms has demonstrated the importance of cytoskeletal, extracellular, and membrane components for sensory mechanotransduction. In particular, researchers have identified channel proteins in the DEG/ENaC and TRP families that are necessary for signaling in a variety of mechanosensory cells. Proof that these proteins are components of the transduction channel, however, is incomplete.
Collapse
Affiliation(s)
- Glen G Ernstrom
- Department of Biological Sciences, 1012 Fairchild Center, Columbia University, 1212 Amsterdam Avenue, New York, NY 10027, USA.
| | | |
Collapse
|
29
|
Abstract
We describe a novel mechanism for vital fluorescent dye entry into sensory cells and neurons: permeation through ion channels. In addition to the slow conventional uptake of styryl dyes by endocytosis, small styryl dyes such as FM1-43 rapidly and specifically label hair cells in the inner ear by entering through open mechanotransduction channels. This labeling can be blocked by pharmacological or mechanical closing of the channels. This phenomenon is not limited to hair cell transduction channels, because human embryonic kidney 293T cells expressing the vanilloid receptor (TRPV1) or a purinergic receptor (P2X2) rapidly take up FM1-43 when those receptor channels are opened and not when they are pharmacologically blocked. This channel permeation mechanism can also be used to label many sensory cell types in vivo. A single subcutaneous injection of FM1-43 (3 mg/kg body weight) in mice brightly labels hair cells, Merkel cells, muscle spindles, taste buds, enteric neurons, and primary sensory neurons within the cranial and dorsal root ganglia, persisting for several weeks. The pattern of labeling is specific; nonsensory cells and neurons remain unlabeled. The labeling of the sensory neurons requires dye entry through the sensory terminal, consistent with permeation through the sensory channels. This suggests that organic cationic dyes are able to pass through a number of different sensory channels. The bright and specific labeling with styryl dyes provides a novel way to study sensory cells and neurons in vivo and in vitro, and it offers new opportunities for visually assaying sensory channel function.
Collapse
|
30
|
Meyers JR, MacDonald RB, Duggan A, Lenzi D, Standaert DG, Corwin JT, Corey DP. Lighting up the senses: FM1-43 loading of sensory cells through nonselective ion channels. J Neurosci 2003; 23:4054-65. [PMID: 12764092 PMCID: PMC6741082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
We describe a novel mechanism for vital fluorescent dye entry into sensory cells and neurons: permeation through ion channels. In addition to the slow conventional uptake of styryl dyes by endocytosis, small styryl dyes such as FM1-43 rapidly and specifically label hair cells in the inner ear by entering through open mechanotransduction channels. This labeling can be blocked by pharmacological or mechanical closing of the channels. This phenomenon is not limited to hair cell transduction channels, because human embryonic kidney 293T cells expressing the vanilloid receptor (TRPV1) or a purinergic receptor (P2X2) rapidly take up FM1-43 when those receptor channels are opened and not when they are pharmacologically blocked. This channel permeation mechanism can also be used to label many sensory cell types in vivo. A single subcutaneous injection of FM1-43 (3 mg/kg body weight) in mice brightly labels hair cells, Merkel cells, muscle spindles, taste buds, enteric neurons, and primary sensory neurons within the cranial and dorsal root ganglia, persisting for several weeks. The pattern of labeling is specific; nonsensory cells and neurons remain unlabeled. The labeling of the sensory neurons requires dye entry through the sensory terminal, consistent with permeation through the sensory channels. This suggests that organic cationic dyes are able to pass through a number of different sensory channels. The bright and specific labeling with styryl dyes provides a novel way to study sensory cells and neurons in vivo and in vitro, and it offers new opportunities for visually assaying sensory channel function.
Collapse
MESH Headings
- Animals
- Cell Line
- Cochlea/cytology
- Cochlea/metabolism
- Diffusion Chambers, Culture
- Endocytosis/physiology
- Hair Cells, Auditory, Inner/metabolism
- Humans
- Injections, Subcutaneous
- Ion Channels/metabolism
- Kidney/cytology
- Kidney/embryology
- Kidney/metabolism
- Mechanoreceptors/metabolism
- Mice
- Mice, Inbred C3H
- Microscopy, Confocal/methods
- Neurons, Afferent/metabolism
- Pyridinium Compounds/administration & dosage
- Pyridinium Compounds/metabolism
- Quaternary Ammonium Compounds/administration & dosage
- Quaternary Ammonium Compounds/metabolism
- Rana catesbeiana
- Receptors, Drug/metabolism
- Receptors, Purinergic P2/metabolism
- Receptors, Purinergic P2X2
- Saccule and Utricle/cytology
- Saccule and Utricle/metabolism
- TRPV Cation Channels
- Trigeminal Nerve/metabolism
- Trigeminal Nerve/physiology
Collapse
Affiliation(s)
- Jason R Meyers
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia 22908, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Halata Z, Grim M, Bauman KI. Friedrich Sigmund Merkel and his "Merkel cell", morphology, development, and physiology: review and new results. THE ANATOMICAL RECORD. PART A, DISCOVERIES IN MOLECULAR, CELLULAR, AND EVOLUTIONARY BIOLOGY 2003; 271:225-39. [PMID: 12552639 DOI: 10.1002/ar.a.10029] [Citation(s) in RCA: 205] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Merkel nerve endings are mechanoreceptors in the mammalian skin. They consist of large, pale cells with lobulated nuclei forming synapse-like contacts with enlarged terminal endings of myelinated nerve fibers. They were first described by F.S. Merkel in 1875. They are found in the skin and in those parts of the mucosa derived from the ectoderm. In mammals (apart from man), the largest accumulation of Merkel nerve endings is found in whiskers. In all vertebrates, Merkel nerve endings are located in the basal layer of the epidermis, apart from birds, where they are located in the dermis. Cytoskeletal filaments consisting of cytokeratins and osmiophilic granules containing a variety of neuropeptides are found in Merkel cells. In anseriform birds, groups of cells resembling Merkel cells, with discoid nerve terminals between cells, form Grandry corpuscles. There has been controversy over the origin of Merkel cells. Results from chick/quail chimeras show that, in birds, Merkel cells are a subpopulation of cells derived from the neural crest, which thus excludes their development from the epidermis. Most recently, also in mammals, conclusive evidence for a neural crest origin of Merkel cells has been obtained. Merkel cells and nerve terminals form mechanoreceptors. Calcium ions enter Merkel cells in response to mechanical stimuli, a process which triggers the release of calcium from intracellular stores resulting in exocytosis of neurotransmitter or neuromodulator. Recent results suggest that there may be glutamatergic transmission between Merkel cell and nerve terminal, which appears to be essential for the characteristic slowly adapting response of these receptors during maintained mechanical stimuli. Thus, we are convinced that Merkel cells with associated nerve terminals function as mechanoreceptor cells. Cells in the skin with a similar appearance as Merkel cells, but without contact to nerve terminals, are probably part of a diffuse neuroendocrine system and do not function as mechanoreceptors. Probably these cells, rather than those acting as mechanoreceptors, are the origin of a highly malignant skin cancer called Merkel cell carcinoma.
Collapse
Affiliation(s)
- Zdenek Halata
- Department of Functional Anatomy, University of Hamburg, Hamburg, Germany.
| | | | | |
Collapse
|
32
|
Price MP, McIlwrath SL, Xie J, Cheng C, Qiao J, Tarr DE, Sluka KA, Brennan TJ, Lewin GR, Welsh MJ. The DRASIC cation channel contributes to the detection of cutaneous touch and acid stimuli in mice. Neuron 2001; 32:1071-83. [PMID: 11754838 DOI: 10.1016/s0896-6273(01)00547-5] [Citation(s) in RCA: 458] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cation channels in the DEG/ENaC family are proposed to detect cutaneous stimuli in mammals. We localized one such channel, DRASIC, in several different specialized sensory nerve endings of skin, suggesting it might participate in mechanosensation and/or acid-evoked nociception. Disrupting the mouse DRASIC gene altered sensory transduction in specific and distinct ways. Loss of DRASIC increased the sensitivity of mechanoreceptors detecting light touch, but it reduced the sensitivity of a mechanoreceptor responding to noxious pinch and decreased the response of acid- and noxious heat-sensitive nociceptors. The data suggest that DRASIC subunits participate in heteromultimeric channel complexes in sensory neurons. Moreover, in different cellular contexts, DRASIC may respond to mechanical stimuli or to low pH to mediate normal touch and pain sensation.
Collapse
Affiliation(s)
- M P Price
- Howard Hughes Medical Institute, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Drummond HA, Abboud FM, Welsh MJ. Localization of beta and gamma subunits of ENaC in sensory nerve endings in the rat foot pad. Brain Res 2000; 884:1-12. [PMID: 11082481 DOI: 10.1016/s0006-8993(00)02831-6] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The molecular mechanisms underlying mechanoelectrical transduction and the receptors that detect light touch remain uncertain. Studies in Caenorhabditis elegans suggest that members of the DEG/ENaC cation channel family may be mechanoreceptors. Therefore, we tested the hypothesis that subunits of the mammalian epithelial Na(+) channel (ENaC) family are expressed in touch receptors in rat hairless skin. We detected betaENaC and gammaENaC, but not alphaENaC transcripts in cervical and lumbar dorsal root ganglia (DRG). Using immunofluorescence, we found betaENaC and gammaENaC expressed in medium to large lumbar DRG neurons. Moreover, we detected these two subunits in Merkel cell-neurite complexes, Meissner-like corpuscles, and small lamellated corpuscles, specialized mechanosensory structures of the skin. Within these structures, betaENaC and gammaENaC were localized in the nerve fibers believed to contain the sensors responsive to mechanical stress. Thus beta and gammaENaC subunits are good candidates as components of the molecular sensor that detects touch.
Collapse
Affiliation(s)
- H A Drummond
- Howard Hughes Medical Institute, University of Iowa College of Medicine, 500 EMRB, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
34
|
Leung MS, Wong CC. Expressions of putative neurotransmitters and neuronal growth related genes in Merkel cell-neurite complexes of the rats. Life Sci 2000; 66:1481-90. [PMID: 10794495 DOI: 10.1016/s0024-3205(00)00465-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Reverse transcription-polymerase chain reaction using 32P-labeled dCTP with specific primers for putative neurotransmitters related and neuronal growth-related genes (GAP-43, NGF and BDNF) were used to search for evidence of such substances in the Merkel cell. Merkel cell samples were made from sinus hairs in the facial skin of rats. The relative amount of mRNA in a tissue sample concentrated in Merkel cells was compared semiquantitatively to that from nearby tissue without Merkel cells. mRNAs for VIP, tyrosine hydroxylase, substance P were found in higher concentration in Merkel cells than in control tissues. mRNA for genes encoding pro-enkephalin, GAP-43, CGRP, NGF and BDNF were detected in the Merkel cell samples at concentration statistically equivalent to those found in the control tissues. It was concluded that the relative concentration of mRNAs for VIP, tyrosine hydroxylase and substance P is consistent with the possibility that Merkel cell acts as a possible transduction element in mechanical excitation of sense organs in which Merkel cells are present.
Collapse
Affiliation(s)
- M S Leung
- Department of Physiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT.
| | | |
Collapse
|
35
|
Kinkelin I, Stucky CL, Koltzenburg M. Postnatal loss of Merkel cells, but not of slowly adapting mechanoreceptors in mice lacking the neurotrophin receptor p75. Eur J Neurosci 1999; 11:3963-9. [PMID: 10583485 DOI: 10.1046/j.1460-9568.1999.00822.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Merkel cells are specialized epidermal cells which are abundantly found in touch-sensitive areas and which are innervated by slowly adapting mechanosensitive afferent fibres with large myelinated (Abeta) axons. The role of Merkel cells in mechanosensation, their developmental regulation and their influence on sensory neuron function are, however, incompletely understood. Here, we used mice lacking the neurotrophin receptor p75 which is expressed on Merkel cells to investigate their postnatal development and that of their innervating sensory neurons. Using morphological studies we now show that Merkel cells develop normally in both hairy and glabrous skin in these animals until 2 weeks old, but are progressively lost thereafter and have almost completely disappeared 2 months after birth. Using standard extracellular electrophysiological recording techniques we find that despite the profound loss of Merkel cells there is no corresponding reduction in the number of myelinated slowly adapting afferent fibres. Moreover, the mean mechanical threshold of these neurons and their average stimulus response function to suprathreshold mechanical stimuli does not change during the time period when more than 99% of Merkel cells are lost. We conclude that Merkel cells require p75 during the late postnatal development. However, neither the survival nor the mechanical sensitivity of slowly adapting mechanoreceptive Abeta-fibres depends on the presence of Merkel cells.
Collapse
Affiliation(s)
- I Kinkelin
- Department of Neurology, University of Würzburg, Josef-Schneider- Str. 11, D-97080 Würzburg, Germany
| | | | | |
Collapse
|
36
|
García-Caballero A, Gallego R, García-Caballero T, Fraga M, Blanco M, Fernández-Redondo V, Beiras A. Cellular and subcellular distribution of 7B2 in porcine Merkel cells. Anat Rec (Hoboken) 1997; 248:159-63. [PMID: 9185981 DOI: 10.1002/(sici)1097-0185(199706)248:2<159::aid-ar2>3.0.co;2-o] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Merkel cells are neuroendocrine cells located in the skin and oral mucosa of various mammalian species. These cells express multiple peptides as well as serotonin. Although the precise function of Merkel cells is still unknown, different studies support its role as mechano-electric transducer. 7B2 granin (secretogranin V) is a polypeptide isolated from the pituitary gland and present in the dense-cored granules of neuronal and paraneuronal cells. METHODS The expression of the 7B2 in Merkel cells of pig snout skin was analysed by immunohistochemical techniques. The streptavidin-biotin peroxidase complex procedure was employed for light microscopy. A postembedding method using immunoglobulin-colloidal gold complexes was employed for the ultrastructural studies. RESULTS Immunoreactivity for 7B2 was observed in virtually all Merkel cells, both in epidermis and vibrissae. The immunostaining was shown in the basal side of cytoplasms where neuroendocrine granules were accumulated. Immunoelectron microscopy allowed us to demonstrate that 7B2 labelling was located on the electrondense granules. Nuclei and epidermal nerve terminals associated with merkel cells did not show immunoreactivity. CONCLUSIONS The polypeptide 7B2 is present in the dense-cored granules of Merkel cells. This result is consistent with the possible role for 7B2 in secretory granules' processing. To our knowledge this is the first evidence of 7B2 protein in Merkel cells.
Collapse
Affiliation(s)
- A García-Caballero
- Department of Morphological Sciences, School of Medicine-Hospital General de Galicia, University of Santiago, Santiago de Compostela, Spain
| | | | | | | | | | | | | |
Collapse
|
37
|
Senok SS, Baumann KI. Functional evidence for calcium-induced calcium release in isolated rat vibrissal Merkel cell mechanoreceptors. J Physiol 1997; 500 ( Pt 1):29-37. [PMID: 9097930 PMCID: PMC1159356 DOI: 10.1113/jphysiol.1997.sp021996] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
1. Single unit recordings were made from Merkel cell (sinus hair type I; St I) and sinus hair type II (St II) mechanoreceptors in isolated rat vibrissae. Responses were determined as the number of spikes evoked by controlled mechanical displacement of the hair shaft for 5 s every 30 s. 2. Superfusion of caffeine (10 mM) increased the responses of Merkel cell receptors by 50-180% of control (mean +/- S.E.M., 64 +/- 12.6%, n = 6, P < 0.001). Similar concentrations of caffeine inhibited St II receptor responses by 20-60% (mean +/- S.E.M., 35 +/- 8%, n = 5, P < 0.01). In both receptor types, caffeine induced a low-frequency increase in spontaneous firing. 3. When Merkel cell receptor responses were completely blocked by superfusion of high Mg2+-containing solution (to competitively block Ca2+ influx) caffeine had no effect when added after complete inhibition, but when added during partial inhibition of responses, the Mg2+-induced inhibition was transiently reversed or halted. This suggests that Ca2+ influx was a prerequisite for the action of caffeine. 4. Ryanodine (1 microM) increased the responses of Merkel cell receptors to mechanical stimulation by 7-60% (mean +/- S.E.M., 32 +/- 10.9 %, n = 5, P < 0.05) but had no effect on St II receptor responses. 5. The Ca2+-induced Ca2+ release (CICR) inhibitor procaine inhibited St I receptor responses in a concentration-dependent manner. Near-maximal inhibition was attained with 100 microM procaine. In four St I units, mean responses were depressed to 25% of control values. When both procaine (100 microM) and caffeine (10 mM) were introduced together, no net effect was seen. The responses of St II receptors were little affected by up to 100 microM procaine superfusion. 6. It is concluded that the mechano-electrical transduction process in St I receptors (but not St II) includes a CICR pathway. Taken with previous findings on the role of Merkel cells, it is likely that CICR is occurring in the Merkel cells.
Collapse
Affiliation(s)
- S S Senok
- Department of Physiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin.
| | | |
Collapse
|
38
|
Senok SS, Halata Z, Baumann KI. Chloroquine specifically impairs Merkel cell mechanoreceptor function in isolated rat sinus hairs. Neurosci Lett 1996; 214:167-70. [PMID: 8878110 DOI: 10.1016/0304-3940(96)12906-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The function of Merkel cells in mechanotransduction has remained controversial Single unit recordings were made from Merkel cell receptors (sinus hair type I, St I) and another slowly adapting mechanoreceptor (sinus hair type II, St II) in isolated rat sinus hairs by applying controlled mechanical displacements to the hair shaft. Chloroquine (50-300 microM) caused a concentration dependent inhibition of Merkel cell receptor responses to mechanical stimulation. In contrast, both stimulated and spontaneous spike activity of St II receptors was increased by the same concentrations of chloroquine. Ultrastructural examination of chloroquine treated sinus hairs revealed swollen Merkel cells with multiple vacuoles and randomly distributed granules while other neural and surrounding structures showed no striking morphological changes. These results suggest that the Merkel cell plays a mechanotransducer role in Merkel cell receptors.
Collapse
Affiliation(s)
- S S Senok
- Department of Physiology, Faculty of Medicine, Chinese University of Hong Kong, Shatin, N.T., Hong Kong.
| | | | | |
Collapse
|
39
|
Senok SS, Baumann KI, Halata Z. Selective phototoxic destruction of quinacrine-loaded Merkel cells is neither selective nor complete. Exp Brain Res 1996; 110:325-34. [PMID: 8871092 DOI: 10.1007/bf00229133] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Experiments were performed on slowly adapting type I mechanoreceptors in an isolated rat skin-nerve preparation (SA I receptors) and in an isolated rat sinus hair preparation (St I receptors). Merkel cells were stained in vitro with the fluorescent dye quinacrine and irradiated with ultraviolet (UV) light (2 mW for up to 1 h) while recording receptor responses to standard mechanical stimuli every 30 s. In addition, thresholds for electrically evoked action potentials were tested by applying electrical stimuli to the skin through the same stylus used for mechanical stimulation. UV irradiation resulted in abrupt failure to respond to mechanical stimuli in 73% of the SA I receptors examined (n = 37) within less than 1 h. This confirms previous reports of phototoxic destruction of Merkel cells. However, several minutes after the receptors failed to respond to mechanical stimulation, thresholds for electrical stimuli applied to the receptive field increased sharply. About 40% of the St I receptors (n = 13) irradiated with UV light following quinacrine staining stopped responding to bending of the hair within 1 h. In contrast, none of the seven St II receptors treated in the same way showed significant changes in the responses. Electron microscopic examination of sinus hairs after quinacrine staining alone showed slight changes in the appearance of Merkel cells, and in particular enlargement of the perinuclear space. These changes did not affect receptor responses. Electron microscopic studies of sinus hairs with receptors that had maintained normal responses to mechanical stimuli after quinacrine staining and 1 h of UV irradiation revealed that a substantial number of Merkel cells still had a normal ultrastructure while adjacent nerve terminals were severely swollen and partially compressing the Merkel cells. No changes were observed in lanceolate nerve terminals forming the morphological substrate of St II receptors. These results demonstrate that sensitivity to phototoxic destruction following quinacrine staining varies greatly among Merkel cells, with some maintaining normal function and ultrastructural appearance even after 1 h of UV irradiation. On the other hand there is clear evidence that the phototoxic damage affects the nerve terminals as well. Such experiments can therefore not provide conclusive proof about the role of Merkel cells in these mechanoreceptors.
Collapse
Affiliation(s)
- S S Senok
- Department of Physiology, Faculty of Medicine, Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | | | | |
Collapse
|
40
|
Abstract
Merkel cells (MCs) are abundant at the basal layer of various skin in vertebrates, and make synaptic contacts with nerve endings to form the Merkel cell-neurite complex (MCN-complex). It has been established that the MCN-complex is involved in slowly adapting mechanoreception, cutaneous afferents of which are called SAI units in mammals or Ft-I units in frogs. However, the MC function has been the focus of attention, and some hypotheses propose that the site of mechanoreception is at the nerve terminals but not at the MC. In the present review, the possibility that MCs are the mechanoreceptors was focused on recent findings. Irradiation of quinacrine-loaded MCs in the rat hairy skin using excitation light degenerates the MCs selectively with the nerve terminals left intact. Correspondingly, SAI units decrease tonic discharges rapidly, but phasic responses remain intact. Blocking synaptic transmission in the MCN-complexes by divalent or alkyl Ca antagonists in mammals or frogs heavily decreases the tonic mechanical responses of the afferent units, but the phasic responses are rather resistant. Application of anodal current on the Ft-I receptive spots produces tonic discharges as in hair cells or taste cells, while the threshold to elicit the first spike is lower with cathodal than anodal stimulation, in contrast with other secondary sensory cells. These findings indicate that MCs are mechanoreceptors to yield tonic responses, while the nerve terminals may transduce the transient phase. Further studies, particularly on mechanically-gated ionic channels in the MC membrane and on transmitters between the MCs and nerve terminal, are necessary to establish the MC as mechanoreceptors.
Collapse
Affiliation(s)
- H Ogawa
- Department of Physiology, Kumamoto University School of Medicine, Japan
| |
Collapse
|
41
|
Abstract
1. This is a review of the literature on the subject of the effects of cholinesters and their agonists on sensory nerve endings. 2. The present-day view is that acetylcholine (ACh) has an excitatory action on some cutaneous receptors. Responses appear to be limited to receptors served by small myelinated and un-myelinated axons where responsiveness is multimodal; that is, the receptors are activated by noxious thermal and mechanical stimulation. 3. The possible role played by acetylcholine in sensory transduction processes is discussed, as are other explanations for the presence of nicotinic cholinergic receptors on the terminals of cutaneous receptors. 4. The excitatory action of ACh and succinylcholine (SCh) on muscle spindles is described. Two possible mechanisms are considered: a direct depolarizing action on the nerve terminals and indirect excitation, brought about by a contracture of the intrafusal fibres on which the sensory endings lie. 5. The technique of using SCh in combination with fusimotor stimulation is described. This has provided new information about the internal workings of muscle spindles. Brief mention is also made of the action of SCh on tendon organs and joint receptors. 6. It is concluded that a direct action by cholinesters is restricted to receptors served by small axons with multimodal functions. The precise role of such an action remains the subject of speculation. Possible clinical significance is discussed.
Collapse
Affiliation(s)
- R W Carr
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | | |
Collapse
|
42
|
Hamann W. Mammalian cutaneous mechanoreceptors. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1995; 64:81-104. [PMID: 8868524 DOI: 10.1016/0079-6107(95)00011-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- W Hamann
- Anaesthetics Department, UMDS Guy's Hospital, London, U.K
| |
Collapse
|