1
|
Multiscale modeling of presynaptic dynamics from molecular to mesoscale. PLoS Comput Biol 2022; 18:e1010068. [PMID: 35533198 PMCID: PMC9119629 DOI: 10.1371/journal.pcbi.1010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 05/19/2022] [Accepted: 03/29/2022] [Indexed: 12/02/2022] Open
Abstract
Chemical synapses exhibit a diverse array of internal mechanisms that affect the dynamics of transmission efficacy. Many of these processes, such as release of neurotransmitter and vesicle recycling, depend strongly on activity-dependent influx and accumulation of Ca2+. To model how each of these processes may affect the processing of information in neural circuits, and how their dysfunction may lead to disease states, requires a computationally efficient modelling framework, capable of generating accurate phenomenology without incurring a heavy computational cost per synapse. Constructing a phenomenologically realistic model requires the precise characterization of the timing and probability of neurotransmitter release. Difficulties arise in that functional forms of instantaneous release rate can be difficult to extract from noisy data without running many thousands of trials, and in biophysical synapses, facilitation of per-vesicle release probability is confounded by depletion. To overcome this, we obtained traces of free Ca2+ concentration in response to various action potential stimulus trains from a molecular MCell model of a hippocampal Schaffer collateral axon. Ca2+ sensors were placed at varying distance from a voltage-dependent calcium channel (VDCC) cluster, and Ca2+ was buffered by calbindin. Then, using the calcium traces to drive deterministic state vector models of synaptotagmin 1 and 7 (Syt-1/7), which respectively mediate synchronous and asynchronous release in excitatory hippocampal synapses, we obtained high-resolution profiles of instantaneous release rate, to which we applied functional fits. Synchronous vesicle release occurred predominantly within half a micron of the source of spike-evoked Ca2+ influx, while asynchronous release occurred more consistently at all distances. Both fast and slow mechanisms exhibited multi-exponential release rate curves, whose magnitudes decayed exponentially with distance from the Ca2+ source. Profile parameters facilitate on different time scales according to a single, general facilitation function. These functional descriptions lay the groundwork for efficient mesoscale modelling of vesicular release dynamics. Most information transmission between neurons in the brain occurs via release of neurotransmitter from synaptic vesicles. In response to a presynaptic spike, calcium influx at the active zone of a synapse can trigger the release of neurotransmitter with a certain probability. These stochastic release events may occur immediately after a spike or with some delay. As calcium accumulates from one spike to the next, the probability of release may increase (facilitate) for subsequent spikes. This process, known as short-term plasticity, transforms the spiking code to a release code, underlying much of the brain’s information processing. In this paper, we use an accurate, detailed model of presynaptic molecular physiology to characterize these processes at high precision in response to various spike trains. We then apply model reduction to the results to obtain a phenomenological model of release timing, probability, and facilitation, which can perform as accurately as the molecular model but with far less computational cost. This mesoscale model of spike-evoked release and facilitation helps to bridge the gap between microscale molecular dynamics and macroscale information processing in neural circuits. It can thus benefit large scale modelling of neural circuits, biologically inspired machine learning models, and the design of neuromorphic chips.
Collapse
|
2
|
Velázquez-Marrero C, Custer EE, Marrero H, Ortiz-Miranda S, Lemos JR. Voltage-induced Ca 2+ release by ryanodine receptors causes neuropeptide secretion from nerve terminals. J Neuroendocrinol 2020; 32:e12840. [PMID: 32227430 DOI: 10.1111/jne.12840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 11/28/2022]
Abstract
Depolarisation-secretion coupling is assumed to be dependent only on extracellular calcium ([Ca2+ ]o ). Ryanodine receptor (RyR)-sensitive stores in hypothalamic neurohypophysial system (HNS) terminals produce sparks of intracellular calcium ([Ca2+ ]i ) that are voltage-dependent. We hypothesised that voltage-elicited increases in intraterminal calcium are crucial for neuropeptide secretion from presynaptic terminals, whether from influx through voltage-gated calcium channels and/or from such voltage-sensitive ryanodine-mediated calcium stores. Increases in [Ca2+ ]i upon depolarisation in the presence of voltage-gated calcium channel blockers, or in the absence of [Ca2+ ]o , still give rise to neuropeptide secretion from HNS terminals. Even in 0 [Ca2+ ]o , there was nonetheless an increase in capacitance suggesting exocytosis upon depolarisation. This was blocked by antagonist concentrations of ryanodine, as was peptide secretion elicited by high K+ in 0 [Ca2+ ]o . Furthermore, such depolarisations lead to increases in [Ca2+ ]i . Pre-incubation with BAPTA-AM resulted in > 50% inhibition of peptide secretion elicited by high K+ in 0 [Ca2+ ]o . Nifedipine but not nicardipine inhibited both the high K+ response for neuropeptide secretion and intraterminal calcium, suggesting the involvement of CaV1.1 type channels as sensors in voltage-induced calcium release. Importantly, RyR antagonists also modulate neuropeptide release under normal physiological conditions. In conclusion, our results indicate that depolarisation-induced neuropeptide secretion is present in the absence of external calcium, and calcium release from ryanodine-sensitive internal stores is a significant physiological contributor to neuropeptide secretion from HNS terminals.
Collapse
Affiliation(s)
| | - Edward E Custer
- Departments of Microbiology and Physiological Systems, Neurobiology & Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA, USA
| | - Héctor Marrero
- Institute of Neurobiology, University of Puerto Rico, San Juan, PR, USA
| | - Sonia Ortiz-Miranda
- Departments of Microbiology and Physiological Systems, Neurobiology & Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA, USA
| | - José R Lemos
- Departments of Microbiology and Physiological Systems, Neurobiology & Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
3
|
McMahon SM, Chang CW, Jackson MB. Multiple cytosolic calcium buffers in posterior pituitary nerve terminals. ACTA ACUST UNITED AC 2016; 147:243-54. [PMID: 26880753 PMCID: PMC4772375 DOI: 10.1085/jgp.201511525] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/06/2016] [Indexed: 01/03/2023]
Abstract
Researchers have measured the ability of nerve terminals to buffer Ca2+ entering in response to electrical activity to better understand plasticity of hormone release. Cytosolic Ca2+ buffers bind to a large fraction of Ca2+ as it enters a cell, shaping Ca2+ signals both spatially and temporally. In this way, cytosolic Ca2+ buffers regulate excitation-secretion coupling and short-term plasticity of release. The posterior pituitary is composed of peptidergic nerve terminals, which release oxytocin and vasopressin in response to Ca2+ entry. Secretion of these hormones exhibits a complex dependence on the frequency and pattern of electrical activity, and the role of cytosolic Ca2+ buffers in controlling pituitary Ca2+ signaling is poorly understood. Here, cytosolic Ca2+ buffers were studied with two-photon imaging in patch-clamped nerve terminals of the rat posterior pituitary. Fluorescence of the Ca2+ indicator fluo-8 revealed stepwise increases in free Ca2+ after a series of brief depolarizing pulses in rapid succession. These Ca2+ increments grew larger as free Ca2+ rose to saturate the cytosolic buffers and reduce the availability of Ca2+ binding sites. These titration data revealed two endogenous buffers. All nerve terminals contained a buffer with a Kd of 1.5–4.7 µM, and approximately half contained an additional higher-affinity buffer with a Kd of 340 nM. Western blots identified calretinin and calbindin D28K in the posterior pituitary, and their in vitro binding properties correspond well with our fluorometric analysis. The high-affinity buffer washed out, but at a rate much slower than expected from diffusion; washout of the low-affinity buffer could not be detected. This work has revealed the functional impact of cytosolic Ca2+ buffers in situ in nerve terminals at a new level of detail. The saturation of these cytosolic buffers will amplify Ca2+ signals and may contribute to use-dependent facilitation of release. A difference in the buffer compositions of oxytocin and vasopressin nerve terminals could contribute to the differences in release plasticity of these two hormones.
Collapse
Affiliation(s)
- Shane M McMahon
- Biophysics PhD Program, Department of Neuroscience, and Physiology PhD Program, University of Wisconsin, Madison, WI 53705
| | - Che-Wei Chang
- Biophysics PhD Program, Department of Neuroscience, and Physiology PhD Program, University of Wisconsin, Madison, WI 53705 Biophysics PhD Program, Department of Neuroscience, and Physiology PhD Program, University of Wisconsin, Madison, WI 53705
| | - Meyer B Jackson
- Biophysics PhD Program, Department of Neuroscience, and Physiology PhD Program, University of Wisconsin, Madison, WI 53705
| |
Collapse
|
4
|
In situ Ca2+ titration in the fluorometric study of intracellular Ca2+ binding. Cell Calcium 2014; 56:504-12. [PMID: 25465896 DOI: 10.1016/j.ceca.2014.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/15/2014] [Accepted: 10/20/2014] [Indexed: 12/15/2022]
Abstract
Imaging with Ca(2+)-sensitive fluorescent dye has provided a wealth of insight into the dynamics of cellular Ca(2+) signaling. The spatiotemporal evolution of intracellular free Ca(2+) observed in imaging experiments is shaped by binding and unbinding to cytoplasmic Ca(2+) buffers, as well as the fluorescent indicator used for imaging. These factors must be taken into account in the interpretation of Ca(2+) imaging data, and can be exploited to investigate endogenous Ca(2+) buffer properties. Here we extended the use of Ca(2+) fluorometry in the characterization of Ca(2+) binding molecules within cells, building on a method of titration of intracellular Ca(2+) binding sites in situ with measured amounts of Ca(2+) entering through voltage-gated Ca(2+) channels. We developed a systematic procedure for fitting fluorescence data acquired during a series of voltage steps to models with multiple Ca(2+) binding sites. The method was tested on simulated data, and then applied to 2-photon fluorescence imaging data from rat posterior pituitary nerve terminals patch clamp-loaded with the Ca(2+) indicator fluo-8. Focusing on data sets well described by a single endogenous Ca(2+) buffer and dye, this method yielded estimates of the endogenous buffer concentration and Kd, the dye Kd, and the fraction of Ca(2+) inaccessible cellular volume. The in situ Kd of fluo-8 thus obtained was indistinguishable from that measured in vitro. This method of calibrating Ca(2+)-sensitive fluorescent dyes in situ has significant advantages over previous methods. Our analysis of Ca(2+) titration fluorometric data makes more effective use of the experimental data, and provides a rigorous treatment of multivariate errors and multiple Ca(2+) binding species. This method offers a versatile approach to the study of endogenous Ca(2+) binding molecules in their physiological milieu.
Collapse
|
5
|
Meng L, Xing G, Cui C, Han J. WITHDRAWN: Enkephalin- and dynorphin-release produced by electrical stimulation of different frequencies in rat brain slices. Brain Res 2014:S0006-8993(14)00071-7. [PMID: 24462938 DOI: 10.1016/j.brainres.2014.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 12/30/2013] [Accepted: 01/15/2014] [Indexed: 10/25/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Li Meng
- Neuroscience Research Institute, School of Basic Medical Science, Peking University, 38 Xue-Yuan Road, Beijing 100191, China
| | - Guogang Xing
- Neuroscience Research Institute, School of Basic Medical Science, Peking University, 38 Xue-Yuan Road, Beijing 100191, China
| | - Cailian Cui
- Neuroscience Research Institute, School of Basic Medical Science, Peking University, 38 Xue-Yuan Road, Beijing 100191, China
| | - Jisheng Han
- Neuroscience Research Institute, School of Basic Medical Science, Peking University, 38 Xue-Yuan Road, Beijing 100191, China
| |
Collapse
|
6
|
Segregation of calcium signalling mechanisms in magnocellular neurones and terminals. Cell Calcium 2012; 51:293-9. [DOI: 10.1016/j.ceca.2012.02.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 02/03/2012] [Indexed: 11/22/2022]
|
7
|
He T, Lnenicka GA. Ca²+ buffering at a drosophila larval synaptic terminal. Synapse 2011; 65:687-93. [PMID: 21218450 DOI: 10.1002/syn.20909] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 12/23/2010] [Indexed: 11/12/2022]
Abstract
A quantitative analysis of Ca²+ dynamics requires knowledge of the Ca²+-binding ratio (κ(S) ); this has not been measured at Drosophila synaptic terminals or any invertebrate synaptic terminal. We measured κ(S) at a Ib motor terminal in Drosophila larvae comparing single-AP Ca²+ transients in synaptic terminals that contained varying concentrations of the Ca²+ indicator, Oregon Green 488 BAPTA-1 (OGB-1). Using a linear single-compartment model, κ(S) was calculated based upon the effect of [OGB-1] on the time constant (τ(decay) ) for the decay of intracellular free Ca²+ concentration ([Ca²+](i)). This gave a κ(S) of 77 indicating that nearly 99% of entering Ca²+ is immediately bound by endogenous fast Ca²+ buffers. Extrapolation to zero [OGB-1] gave a τ(decay) of 46 ms and a Ca²+-removal rate constant of 1641 s⁻¹ for single APs. We calculated that a single AP produced an increase in [Ca²+](i) of 196 nM and an increase in the total intracellular [Ca²+](free + bound) of 15.3 μM for measurements made in 1.0 mM external Ca²+. The increase in [Ca²+](i) for AP trains was 185 nM/ 10 Hz; this gave a Ca²+ extrusion rate constant of 827 s⁻¹, which likely reflects the activity of the plasma membrane Ca²+ ATPase. Experiments were performed to examine the effect of altering external Ca²+ or Mg²+ on Ca²+ influx at these terminals.
Collapse
Affiliation(s)
- Tao He
- Department of Biological Sciences, University at Albany, Suny, Albany, New York 12222, USA
| | | |
Collapse
|
8
|
Komori Y, Tanaka M, Kuba M, Ishii M, Abe M, Kitamura N, Verkhratsky A, Shibuya I, Dayanithi G. Ca(2+) homeostasis, Ca(2+) signalling and somatodendritic vasopressin release in adult rat supraoptic nucleus neurones. Cell Calcium 2010; 48:324-32. [PMID: 21047683 DOI: 10.1016/j.ceca.2010.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 09/29/2010] [Accepted: 10/01/2010] [Indexed: 10/18/2022]
Abstract
Multiple mechanisms that maintain Ca(2+) homeostasis and provide for Ca(2+) signalling operate in the somatas and neurohypophysial nerve terminals of supraoptic nucleus (SON) neurones. Here, we examined the Ca(2+) clearance mechanisms of SON neurones from adult rats by monitoring the effects of the selective inhibition of different Ca(2+) homeostatic molecules on cytosolic Ca(2+) ([Ca(2+)](i)) transients in isolated SON neurones. In addition, we measured somatodendritic vasopressin (AVP) release from intact SON tissue in an attempt to correlate it with [Ca(2+)](i) dynamics. When bathing the cells in a Na(+)-free extracellular solution, thapsigargin, cyclopiazonic acid (CPA), carbonyl cyanide 3-chlorophenylhydrazone (CCCP), and the inhibitor of plasma membrane Ca(2+)-ATPase (PMCA), La(3+), all significantly slowed down the recovery of depolarisation (50 mM KCl)-induced [Ca(2+)](i) transients. The release of AVP was stimulated by 50 mM KCl, and the decline in the peptide release was slowed by Ca(2+) transport inhibitors. In contrast to previous reports, our results show that in the fully mature adult rats: (i) all four Ca(2+) homeostatic pathways, the Na(+)/Ca(2+) exchanger, the endoplasmic reticulum Ca(2+) pump, the plasmalemmal Ca(2+) pump and mitochondria, are complementary in actively clearing Ca(2+) from SON neurones; (ii) somatodendritic AVP release closely correlates with intracellular [Ca(2+)](i) dynamics; (iii) there is (are) Ca(2+) clearance mechanism(s) distinct from the four outlined above; and (iv) Ca(2+) homeostatic systems in the somatas of SON neurones differ from those expressed in their terminals.
Collapse
Affiliation(s)
- Yoko Komori
- University of Occupational and Environmental Health School of Medicine, Kitakyushu 807-8555, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Calcium clearance and its energy requirements in cerebellar neurons. Cell Calcium 2010; 47:507-13. [PMID: 20510449 DOI: 10.1016/j.ceca.2010.04.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 04/21/2010] [Indexed: 11/22/2022]
Abstract
Quick cytosolic calcium clearance is essential for the effective modulation of various cellular functions. An excess of cytosolic calcium after influx is largely removed via ATP-dependent mechanisms located in the plasma membrane and the endoplasmic reticulum. Therefore, calcium clearance depends critically on the adequate supply of ATP, which may come from either glycolysis or mitochondria, or both. However, it presently remains unknown the degree to which individual ATP generating pathways - glycolysis and mitochondria power ATP-dependent calcium as well as other vital ion clearance mechanisms in neurons. In this study, we explored the relationship between the energy generating pathways and ion clearance mechanisms in neurons by characterizing the effects of glycolytic and mitochondrial inhibitors of ATP synthesis on calcium clearance kinetics in the soma, dendrites and spines. Stimulation of cultured cerebellar granule cells by brief pulses of 60mM potassium ACSF, and electrical stimulation of purkinje cells in acutely prepared slices led to a transient calcium influx, whose clearance was largely mediated by the plasma membrane Ca(2+)-ATPase pump. Inhibition of glycolysis by deoxyglucose or iodoacetic acid resulted in a marked slowing in calcium clearance in the soma, dendrites, and spines with the spines affected the most. However, inhibition of the mitochondrial citric acid cycle with fluoroacetate and arsenite, or mitochondrial ATP synthase with oligomycin did not produce any immediate effects on calcium clearance kinetics in any of those neuronal regions. Although cytosolic calcium clearance was not affected by the inhibition of mitochondria, the magnitude of the calcium clearance delay induced by glycolytic inhibitors in different neuronal compartments was related to their mitochondrial density. Conversely, the endoplasmic reticulum Ca(2+)-ATPase pump activity is fuelled by both glycolytic and mitochondrial ATP, as evidenced by a minimal change in the endoplasmic reticulum calcium contents in cells treated with either deoxyglucose supplemented with lactate or arsenite. Taken together, these data suggest that calcium clearance in cerebellar granule and purkinje cells relies on the plasma membrane Ca(2+)-ATPase, and is powered by glycolysis.
Collapse
|
10
|
Foehring RC, Zhang XF, Lee JCF, Callaway JC. Endogenous calcium buffering capacity of substantia nigral dopamine neurons. J Neurophysiol 2009; 102:2326-33. [PMID: 19675297 DOI: 10.1152/jn.00038.2009] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Dopamine (DA)-containing cells from the substantia nigra pars compacta (SNc) play a major role in the initiation of movement. Loss of these cells results in Parkinson's disease (PD). Changes in intracellular calcium ion concentration ([Ca(2+)](i)) elicit several events in DA cells, including spike afterhyperpolarizations (AHPs) and subthreshold oscillations underlying autonomous firing. Continuous Ca(2+) load due to Ca(2+)-dependent rhythmicity has been proposed to cause the death of DA cells in PD and normal aging. Because of the physiological and pathophysiological importance of [Ca(2+)](i) in DA cells, we characterized their intrinsic Ca(2+)-buffering capacity (K(S)) in brain slices. We introduced a fluorescent Ca(2+)-sensitive exogenous buffer (200 microM fura-2) and cells were tracked from break-in until steady state by stimulating with a single action potential (AP) every 30 s and measuring the Ca(2+) transient from the proximal dendrite. DA neurons filled exponentially with a tau of about 5-6 min. [Ca(2+)](i) was assumed to equilibrate between the endogenous Ca(2+) buffer and the exogenous Ca(2+) indicator buffer. Intrinsic buffering was estimated by extrapolating from the linear relationships between the amplitude or time constant of the Ca(2+) transients versus [fura-2]. Extrapolated Ca(2+)-transients in the absence of fura-2 had mean peak amplitudes of 293.7 +/- 65.3 nM and tau = 124 +/- 13 ms (postnatal day 13 [P13] to P17 animals). Intrinsic buffering increased with age in DA neurons. For cells from animals P13-P17, K(S) was estimated to be about 110 (n = 20). In older animals (P25-P32), the estimate was about 179 (n = 10). These relatively low values may reflect the need for rapid Ca(2+) signaling, e.g., to allow activation of sK channels, which shape autonomous oscillations and burst firing. Low intrinsic buffering may also make DA cells vulnerable to Ca(2+)-dependent pathology.
Collapse
Affiliation(s)
- R C Foehring
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, University of Tennessee, Memphis, Tennessee 38163, USA.
| | | | | | | |
Collapse
|
11
|
Pippow A, Husch A, Pouzat C, Kloppenburg P. Differences of Ca2+ handling properties in identified central olfactory neurons of the antennal lobe. Cell Calcium 2009; 46:87-98. [PMID: 19545897 DOI: 10.1016/j.ceca.2009.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 05/15/2009] [Accepted: 05/19/2009] [Indexed: 11/15/2022]
Abstract
Information processing in neurons depends on highly localized Ca2+ signals. The spatial and temporal dynamics of these signals are determined by a variety of cellular parameters including the calcium influx, calcium buffering and calcium extrusion. Our long-term goal is to better understand how intracellular Ca2+ dynamics are controlled and contribute to information processing in defined interneurons of the insect olfactory system. The latter has served as an excellent model to study general mechanisms of olfaction. Using patch-clamp recordings and fast optical imaging in combination with the 'added buffer approach', we analyzed the Ca2+ handling properties of different identified neuron types in Periplaneta americana's olfactory system. Our focus was on two types of local interneurons (LNs) with significant differences in intrinsic electrophysiological properties: (1) spiking LNs that generate 'normal' Na+ driven action potentials and (2) non-spiking LNs that do not express voltage-activated Na+ channels. We found that the distinct electrophysiological properties from different types of central olfactory interneurons are strongly correlated with their cell specific calcium handling properties: non-spiking LNs, in which Ca2+ is the only cation that enters the cell to contribute to membrane depolarization, had the highest endogenous Ca2+ binding ratio and Ca2+ extrusion rate.
Collapse
Affiliation(s)
- Andreas Pippow
- Institute of Zoology and Physiology, Center for Molecular Medicine Cologne and Cologne Excellence Cluster in Aging Associated Diseases, University of Cologne, Weyertal 119, Cologne 50931, Germany
| | | | | | | |
Collapse
|
12
|
The Psi(m) depolarization that accompanies mitochondrial Ca2+ uptake is greater in mutant SOD1 than in wild-type mouse motor terminals. Proc Natl Acad Sci U S A 2009; 106:2007-11. [PMID: 19174508 DOI: 10.1073/pnas.0810934106] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The electrical gradient across the mitochondrial inner membrane (Psi(m)) is established by electron transport chain (ETC) activity and permits mitochondrial Ca(2+) sequestration. Using rhodamine-123, we determined how repetitive nerve stimulation (100 Hz) affects Psi(m) in motor terminals innervating mouse levator auris muscles. Stimulation-induced Psi(m) depolarizations in wild-type (WT) terminals were small (<5 mV at 30 degrees C) and reversible. These depolarizations depended on Ca(2+) influx into motor terminals, as they were inhibited when P/Q-type Ca(2+) channels were blocked with omega-agatoxin. Stimulation-induced Psi(m) depolarization and elevation of cytosolic [Ca(2+)] both increased when complex I of the ETC was partially inhibited by low concentrations of rotenone (25-50 nmol/l). This finding is consistent with the hypothesis that acceleration of ETC proton extrusion normally limits the magnitude of Psi(m) depolarization during mitochondrial Ca(2+) uptake, thereby permitting continued Ca(2+) uptake. Compared with WT, stimulation-induced increases in rhodamine-123 fluorescence were approximately 5 times larger in motor terminals from presymptomatic mice expressing mutations of human superoxide dismutase I (SOD1) that cause familial amyotrophic lateral sclerosis (SOD1-G85R, which lacks dismutase activity; SOD1-G93A, which retains dismutase activity). Psi(m) depolarizations were not significantly altered by expression of WT human SOD1 or knockout of SOD1 or by inhibiting opening of the mitochondrial permeability transition pore with cyclosporin A. We suggest that an early functional consequence of the association of SOD1-G85R or SOD1-G93A with motoneuronal mitochondria is reduced capacity of the ETC to limit Ca(2+)-induced Psi(m) depolarization, and that this impairment contributes to disease progression in mutant SOD1 motor terminals.
Collapse
|
13
|
Modeling of quantal neurotransmitter release kinetics in the presence of fixed and mobile calcium buffers. J Comput Neurosci 2008; 25:296-307. [PMID: 18427967 DOI: 10.1007/s10827-008-0079-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2007] [Revised: 12/21/2007] [Accepted: 01/17/2008] [Indexed: 10/22/2022]
Abstract
The local calcium concentration in the active zone of secretion determines the number and kinetics of neurotransmitter quanta released after the arrival of a nerve action potential in chemical synapses. The small size of mammalian neuromuscular junctions does not allow direct measurement of the correlation between calcium influx, the state of endogenous calcium buffers determining the local concentration of calcium and the time course of quanta exocytosis. In this work, we used computer modeling of quanta release kinetics with various levels of calcium influx and in the presence of endogenous calcium buffers with varying mobilities. The results of this modeling revealed the desynchronization of quanta release under low calcium influx in the presence of an endogenous fixed calcium buffer, with a diffusion coefficient much smaller than that of free Ca(2+), and synchronization occurred upon adding a mobile buffer. This corresponds to changes in secretion time course parameters found experimentally (Samigullin et al., Physiol Res 54:129-132, 2005; Bukharaeva et al., J Neurochem 100:939-949, 2007).
Collapse
|
14
|
Bolaños P, Guillen A, Rojas H, Boncompagni S, Caputo C. The use of CalciumOrange-5N as a specific marker of mitochondrial Ca2+ in mouse skeletal muscle fibers. Pflugers Arch 2007; 455:721-31. [PMID: 17705046 DOI: 10.1007/s00424-007-0312-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2007] [Accepted: 06/20/2007] [Indexed: 10/22/2022]
Abstract
We report the use of the fluorescent dye CalciumOrange-5N (CaOr-5N) as a specific mitochondria Ca(2+) marker in enzymatically dissociated mouse FBD muscle fibers. Using laser scanning confocal microscopy and the dyes Mitotracker Green (MTG), di-8-ANEPPS and endoplasmic reticulum tracker green (ERTG), we determined the relative position of mitochondria, transverse tubules and sarcoplasmic reticulum in the sarcomere. Comparison with electron micrographies showed that mitochondria are mostly present at both sides of Z lines and near the triads located at the A-I band border. CaOr-5N fluorescence was mainly distributed in mitochondria, highly co-localised with MTG and basically excluded from the A band space. ERTG localised mostly between the two t-tubules present in each sarcomere. We studied the effect of the protonophore FCCP using CaOr-5N to measure mitochondrial Ca(2+) and JC-1 dye to measure mitochondria inner membrane potential (DeltaPsi(m)). After FCCP treatment, the CaOr-5N fluorescence diminished by about 33% in 80 s, while JC-1 fluorescence diminished by 36% in 200 s. Our results show the loss of Ca(2+) from mitochondria when DeltaPsi(m) is depolarised and demonstrate the usefulness of CaOr-5N to mark mitochondrial [Ca(2+)](m).
Collapse
Affiliation(s)
- Pura Bolaños
- Laboratorio de Fisiología Celular, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas IVIC, Apartado 21827, Caracas 1020A, Venezuela
| | | | | | | | | |
Collapse
|
15
|
Lee SH, Kim MH, Lee JY, Lee SH, Lee D, Park KH, Ho WK. Na+/Ca2+ exchange and Ca2+ homeostasis in axon terminals of mammalian central neurons. Ann N Y Acad Sci 2007; 1099:396-412. [PMID: 17446480 DOI: 10.1196/annals.1387.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We investigated Ca2+ clearance mechanisms (CCMs) at the axon terminals of mammalian central neurons: neurohypophysial (NHP) axon terminals and calyces of Held. Ca2+ transients were evoked by applying a short depolarization pulse via a patch pipette containing Ca2+ indicator dye. Quantitative analysis of the Ca2+ decay phases revealed that Na+/Ca2+ exchange (Na/CaX) is a major CCM at both axon terminals. In contrast, no Na/CaX activity was found in the somata of NHP axon terminals (supraoptic magnocellular neurons), indicating that the distribution of Na+/Ca2+ exchangers is polarized. Intracellular dialysis of axon terminals with a K+-free pipette solution attenuated the Na/CaX activities by 90% in the NHP axon terminals and by 60% at the calyx of Held, indicating that K+-dependent Na+/Ca2+ exchangers are involved. Studying the effects of specific inhibitors of smooth endoplasmic reticulum Ca2+-ATPase (SERCA) and plasma membrane Ca2+-ATPase (PMCA) on the Ca2+ decay rate revealed that PMCA contributed 23% of total Ca2+ clearance, but that SERCA made no contribution at the calyx of Held. The contribution of mitochondria was negligible for small Ca2+ transients, but became apparent at peak Ca2+ levels higher than 2.5 microM. When mitochondrial function was inhibited, the dependence of CCMs on [Ca2+]i at the calyx of Held showed saturation kinetics with K(1/2) = 1.7 microM, suggesting that the Na/CaX activity is saturated at high [Ca2+]i. The presynaptic Na+/Ca2+ exchanger activity, which competes for cytosolic Ca2+ with mitochondria, may contribute to nonplastic synaptic transmission at these axon terminals.
Collapse
Affiliation(s)
- Suk-Ho Lee
- National Research Laboratory for Cell Physiology, Department of Physiology, Seoul National University College of Medicine, Chongno-Ku, Seoul 110-799, South Korea.
| | | | | | | | | | | | | |
Collapse
|
16
|
García-Chacón LE, Nguyen KT, David G, Barrett EF. Extrusion of Ca2+ from mouse motor terminal mitochondria via a Na+-Ca2+ exchanger increases post-tetanic evoked release. J Physiol 2006; 574:663-75. [PMID: 16613870 PMCID: PMC1817729 DOI: 10.1113/jphysiol.2006.110841] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Mitochondria sequester much of the Ca2+ that enters motor nerve terminals during repetitive stimulation at frequencies exceeding 10-20 Hz. We studied the post-stimulation extrusion of Ca2+ from mitochondria by measuring changes in matrix [Ca2+] with fluorescent indicators loaded into motor terminal mitochondria in the mouse levator auris longus muscle. Trains of action potentials at 50 Hz produced a rapid increase in mitochondrial [Ca2+] followed by a plateau, which was usually maintained after the end of the stimulus train and then slowly decayed back to baseline. Increasing the Ca2+ load delivered to the terminal by increasing the number of stimuli (from 500 to 2000) or the stimulation frequency (from 50 to 100 Hz), by increasing bath [Ca2+], or by prolonging the action potential with 3,4-diaminopyridine (100 microM) prolonged the post-stimulation decay of mitochondrial [Ca2+] without increasing the amplitude of the plateau during stimulation. Inhibiting the opening of the mitochondrial permeability transition pore with cyclosporin A (5 microM) had no significant effect on the decay of mitochondrial [Ca2+]. Inhibition of the mitochondrial Na+-Ca2+ exchanger with CGP-37157 (50 microM) dramatically prolonged the post-stimulation decay of mitochondrial [Ca2+], reduced post-stimulation residual cytosolic [Ca2+], and reduced the amplitude of endplate potentials evoked after the end of a stimulus train in the presence of both low and normal bath [Ca2+]. These findings suggest that Ca2+ extrusion from motor terminal mitochondria occurs primarily via the mitochondrial Na+-Ca2+ exchanger and helps to sustain post-tetanic transmitter release at mouse neuromuscular junctions.
Collapse
Affiliation(s)
- Luis E García-Chacón
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| | | | | | | |
Collapse
|
17
|
Torrealba F, Carrasco MA. A review on electron microscopy and neurotransmitter systems. ACTA ACUST UNITED AC 2005; 47:5-17. [PMID: 15572159 DOI: 10.1016/j.brainresrev.2004.06.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2004] [Indexed: 10/26/2022]
Abstract
The purpose of this article is to review the contributions of transmission electron microscopy studies to the understanding of brain circuits and neurotransmitter systems. Our views on the microstructure of connections between neurons have gradually changed, and now we recognize that the classical mental image we had on a chemical synapse is no longer applicable to every neuronal connection. We highlight studies that converge to point out that, while the most prevalent fast transmitters in the brain, glutamate and GABA, are stored in small, clear synaptic vesicles (SSV) and released at synapses, neuropeptides are exclusively stored in large dense core vesicles (LDCV) and released extrasynaptically. Amine transmitters are preferentially, but not exclusively, accumulated in LDCV and may be released at synaptic or extrasynaptic sites. We discuss evidence suggesting that axon terminals from pyramidal cortical neurons and dorsal thalamic neurons lack LDCV and therefore could not use neuropeptides as transmitters. This idea fits with the fast, high temporal resolution information processing that characterizes cortical and thalamic function.
Collapse
Affiliation(s)
- Fernando Torrealba
- Departamento de Ciencias Fisiológicas, Fac. Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile.
| | | |
Collapse
|
18
|
Sasaki N, Dayanithi G, Shibuya I. Ca2+ clearance mechanisms in neurohypophysial terminals of the rat. Cell Calcium 2005; 37:45-56. [PMID: 15541463 DOI: 10.1016/j.ceca.2004.06.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2004] [Revised: 06/14/2004] [Accepted: 06/22/2004] [Indexed: 11/21/2022]
Abstract
The importance of intracellular calcium ([Ca2+]i) in the release of vasopressin (AVP) and oxytocin from the central nervous system neurohypopyhysial nerve terminals has been well-documented. To date, there is no clear understanding of Ca2+ clearance mechanisms and their interplay with transmembrane Ca2+ entry, intracellular [Ca2+]i transients, cytoplasmic Ca2+ stores and hence the release of AVP at the level of a single nerve terminal. Here, we studied the mechanism of Ca2+ clearance in freshly isolated nerve terminals of the rat neurohypophysis using Fura-2 Ca2+ imaging and measured the release of AVP by radioimmuno assay. An increase in the K+ concentration in the perfusion solution from 5 to 50 mM caused a rapid increase in [Ca2+]i and AVP release. Returning K+ concentration to 5 mM led to rapid restoration of both responses to basal level. The K+-evoked [Ca2+]i and AVP increase was concentration-dependent, reliable, and remained of constant amplitude and time course upon successive applications. Extracellular Ca2+ removal completely abolished the K+-evoked responses. The recovery phase was not affected upon replacement of NaCl with sucrose or drugs known to act on intracellular Ca2+ stores such as thapsigargin, cyclopiazonic acid, caffeine or a combination of caffeine and ryanodine did not affect either resting or K+-evoked [Ca2+]i or AVP release. By contrast, the plasma membrane Ca2+ pump inhibitor, La3+, markedly slowed down the recovery phase. The mitochondrial respiration uncoupler, carbonyl cyanide 3-chlorophenylhydrazone (CCCP), slightly but significantly increased the basal [Ca2+]i, and also slowed down the recovery phase of both [Ca2+]i and release responses. In conclusion, we show in nerve terminals that (i) Ca2+ extrusion through the Ca2+ pump in the plasma membrane plays a major role in the Ca2+ clearance mechanisms of (ii) Ca2+ uptake by mitochondria also contributes to the Ca2+ clearance and (iii) neither Na+/Ca2+ exchangers nor Ca2+ stores are involved in the Ca2+ clearance or in the maintenance of basal [Ca2+]i or release of AVP.
Collapse
Affiliation(s)
- Naoko Sasaki
- Department of Physiology, University of Occupational and Environmental Health School of Medicine, Kitakyushu 807-8555, Japan
| | | | | |
Collapse
|
19
|
Gall D, Roussel C, Nieus T, Cheron G, Servais L, D'Angelo E, Schiffmann SN. Role of calcium binding proteins in the control of cerebellar granule cell neuronal excitability: experimental and modeling studies. PROGRESS IN BRAIN RESEARCH 2005; 148:321-8. [PMID: 15661200 DOI: 10.1016/s0079-6123(04)48025-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Calcium binding proteins, such as calretinin, are abundantly expressed in distinctive patterns in the central nervous system but their physiological function remains poorly understood. Calretinin is expressed in cerebellar granule cells which provide the major excitatory input to Purkinje cells through parallel fibers. Calretinin deficient mice exhibit dramatic alterations in motor coordination and in Purkinje cell firing recorded in vivo through unknown mechanisms. In the present paper, we review the results obtained with the patch clamp recording techniques in acute slice preparation. This data allow us to investigate the effect of a null mutation of the calretinin gene on the intrinsic electroresponsiveness of cerebellar granule cells at a mature developmental stage. Calretinin deficient granule cells exhibit faster action potentials and generate repetitive spike discharge showing an enhanced frequency increase with injected currents. These alterations disappear when 0.15 mM of the exogenous fast calcium buffer BAPTA is infused in the cytosol to restore the calcium buffering capacity. Furthermore, we propose a mathematical model demonstrating that the observed alterations of granule cell excitability can be explained by a decreased cytosolic calcium buffering capacity due to the absence of calretinin. We suggest that calcium binding proteins modulate intrinsic neuronal excitability and may therefore play a role in the information processing in the central nervous system.
Collapse
Affiliation(s)
- D Gall
- Laboratoire de Neurophysiologie (CP601), Faculté de Médecine, Université Libre de Bruxelles, Route de Lennik 808, B-1070 Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
20
|
Murchison D, Zawieja DC, Griffith WH. Reduced mitochondrial buffering of voltage-gated calcium influx in aged rat basal forebrain neurons. Cell Calcium 2004; 36:61-75. [PMID: 15126057 DOI: 10.1016/j.ceca.2003.11.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2003] [Revised: 10/12/2003] [Accepted: 11/12/2003] [Indexed: 10/26/2022]
Abstract
Alterations of neuronal Ca(2+) homeostatic mechanisms could be responsible for many of the cognitive deficits associated with aging in mammals. Mitochondrial participation in Ca(2+) signaling is now recognized as a prominent feature in neuronal physiology. We combined voltage-clamp electrophysiology with Ca(2+)-sensitive ratiometric microfluorimetry and laser scanning confocal microscopy to investigate the participation in Ca(2+) buffering of in situ mitochondria in acutely dissociated basal forebrain neurons from young and aged F344 rats. By pharmacologically blocking mitochondrial Ca(2+) uptake, we determined that mitochondria were not involved in rapid buffering of small Ca(2+) influx through voltage-gated Ca(2+) channels (VGCCs) in the somatic compartment. For larger Ca(2+) influx, aged mitochondria showed a significant buffering deficit. Evidence obtained with the potentiometric indicator, JC-1, suggests a significantly reduced mitochondrial membrane potential in aged neurons. These results support the interpretation that there is a fundamental difference in the way young and aged neurons buffer Ca(2+), and a corresponding difference in the quality of the Ca(2+) signal experienced by young and aged neurons for different intensities of cytoplasmic Ca(2+) influx.
Collapse
Affiliation(s)
- David Murchison
- Department of Medical Pharmacology and Toxicology, College of Medicine, Texas A&M University System Health Science Center, College Station, TX 77843-1114, USA
| | | | | |
Collapse
|
21
|
Tully K, Treistman SN. Distinct Intracellular Calcium Profiles Following Influx Through N- Versus L-Type Calcium Channels: Role of Ca2+-Induced Ca2+Release. J Neurophysiol 2004; 92:135-43. [PMID: 14999048 DOI: 10.1152/jn.01004.2003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Selective activation of neuronal functions by Ca2+is determined by the kinetic profile of the intracellular calcium ([Ca2+]i) signal in addition to its amplitude. Concurrent electrophysiology and ratiometric calcium imaging were used to measure transmembrane Ca2+current and the resulting rise and decay of [Ca2+]iin differentiated pheochromocytoma (PC12) cells. We show that equal amounts of Ca2+entering through N-type and L-type voltage-gated Ca2+channels result in significantly different [Ca2+]itemporal profiles. When the contribution of N-type channels was reduced by ω-conotoxin MVIIA treatment, a faster [Ca2+]idecay was observed. Conversely, when the contribution of L-type channels was reduced by nifedipine treatment, [Ca2+]idecay was slower. Potentiating L-type current with BayK8644, or inactivating N-type channels by shifting the holding potential to −40 mV, both resulted in a more rapid decay of [Ca2+]i. Channel-specific differences in [Ca2+]idecay rates were abolished by depleting intracellular Ca2+stores with thapsigargin or by blocking ryanodine receptors with ryanodine, suggesting the involvement of Ca2+-induced Ca2+release (CICR). Further support for involvement of CICR is provided by the demonstration that caffeine slowed [Ca2+]idecay while ryanodine at high concentrations increased the rate of [Ca2+]idecay. We conclude that Ca2+entering through N-type channels is amplified by ryanodine receptor mediated CICR. Channel-specific activation of CICR provides a mechanism whereby the kinetics of intracellular Ca2+leaves a fingerprint of the route of entry, potentially encoding the selective activation of a subset of Ca2+-sensitive processes within the neuron.
Collapse
Affiliation(s)
- Keith Tully
- Program of Neuroscience, Department of Neuobiology, University of Massachusetts Medical School, Worcester 01605, USA
| | | |
Collapse
|
22
|
De Crescenzo V, ZhuGe R, Velázquez-Marrero C, Lifshitz LM, Custer E, Carmichael J, Lai FA, Tuft RA, Fogarty KE, Lemos JR, Walsh JV. Ca2+ syntillas, miniature Ca2+ release events in terminals of hypothalamic neurons, are increased in frequency by depolarization in the absence of Ca2+ influx. J Neurosci 2004; 24:1226-35. [PMID: 14762141 PMCID: PMC6793580 DOI: 10.1523/jneurosci.4286-03.2004] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2003] [Revised: 12/09/2003] [Accepted: 12/11/2003] [Indexed: 11/21/2022] Open
Abstract
Localized, brief Ca2+ transients (Ca2+ syntillas) caused by release from intracellular stores were found in isolated nerve terminals from magnocellular hypothalamic neurons and examined quantitatively using a signal mass approach to Ca2+ imaging. Ca2+ syntillas (scintilla, L., spark, from a synaptic structure, a nerve terminal) are caused by release of approximately 250,000 Ca ions on average by a Ca2+ flux lasting on the order of tens of milliseconds and occur spontaneously at a membrane potential of -80 mV. Syntillas are unaffected by removal of extracellular Ca2+, are mediated by ryanodine receptors (RyRs) and are increased in frequency, in the absence of extracellular Ca2+, by physiological levels of depolarization. This represents the first direct demonstration of mobilization of Ca2+ from intracellular stores in neurons by depolarization without Ca2+ influx. The regulation of syntillas by depolarization provides a new link between neuronal activity and cytosolic [Ca2+] in nerve terminals.
Collapse
Affiliation(s)
- Valérie De Crescenzo
- Department of Physiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The neurotoxin alpha-latrotoxin elicits spontaneous exocytosis of neurotransmitter from neurons and peptide hormones from endocrine cells. While the mechanism of action is not fully understood, both Ca(2+)-dependent and Ca(2+)-independent pathways participate in the facilitation of release, with the relative contribution of the pathways differing among neuronal and endocrine cell types. Here, we investigate the actions of alpha-latrotoxin on neuroendocrine nerve endings that emanate from central nervous system neurons and, therefore, are unique in that they possess properties of central nerve endings and endocrine cells. Using intracellular [Ca(2+)] measurements both calcium-independent receptors for latrotoxin (CIRL or latrophilin) and neurexin 1 alpha receptors were found to be functionally present. Interaction of alpha-latrotoxin with these receptors stimulated secretion of vasopressin and oxytocin neuropeptide. The secretory response was entirely dependent upon toxin-mediated extracellular Ca(2+) influx, although alpha-latrotoxin also consistently triggered mobilization of Ca(2+) from an intracellular store. The mobilization of intracellular Ca(2+) relied on alpha-latrotoxin-mediated Na(+) influx and was blocked by the protonophore FCCP, thereby implicating mitochondria as the Ca(2+) store being mobilized. Using the whole cell recording configuration of the patch clamp, we report that alpha-latrotoxin interaction with the CIRL receptor on these nerve endings resulted in ionic pore formation, generating unitary inward current steps of 20 pA and a channel conductance of approximately 220 pS in Ca(2+)-free saline. Thus, alpha-latrotoxin stimulates Ca(2+)-dependent exocytosis in neurohypophysial nerve endings through receptor interaction and insertion of Ca(2+) permeable membrane pores. While alpha-latrotoxin mobilizes intracellular Ca(2+) stores the elevation in [Ca(2+)] reached is insufficient to trigger measurable exocytosis.
Collapse
Affiliation(s)
- Michael Hlubek
- Department of Molecular and Integrative Physiology, 7807 Medical Sciences II Building, University of Michigan, Ann Arbor, MI 48109-0622, USA
| | | | | |
Collapse
|
24
|
Distribution of K+-dependent Na+/Ca2+ exchangers in the rat supraoptic magnocellular neuron is polarized to axon terminals. J Neurosci 2004. [PMID: 14684869 DOI: 10.1523/jneurosci.23-37-11673.2003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neurons are polarized into compartments such as the soma, dendrites, and axon terminals, each of which has highly specialized functions. To test whether Ca2+ is differently handled in different compartments of a neuron, we investigated Ca2+ clearance mechanisms in somata of supraoptic magnocellular neurosecretory cells (MNCs) and in their axon terminals located in neurohypophyses. Using patch-clamp and microfluorometry techniques, Ca2+ transients were evoked by depolarizing pulses. Endogenous Ca2+ binding ratios (kappaS) and Ca2+ clearance rates were calculated from the decay phases of Ca2+ transients according to the single compartment model. Mean values of kappaS were 79 +/- 2.6 in somata of MNCs and 187 +/- 19 in axon terminals. Ca2+ clearance rate in axon terminals, which were calculated from time derivative of Ca2+ decay and the kappaS values, were approximately threefold higher than in somata. In response to external Na+ reduction, Ca2+ clearance rates were reduced by 65% in axon terminals, but did not change in somata. Immunohistochemical assays confirmed that K+-dependent Na+/Ca2+ exchanger (NCKX2) was specifically localized to neurohypophysial axon terminals and was not found in somata. In somata, inhibition of sarcoendoplasmic reticulum Ca2+-ATPase (SERCA) pumps, mitochondrial Ca2+-uniporter, and plasma membrane Ca2+-ATPase (PMCA) pumps decreased Ca2+ clearance rate by 48, 27, and 21%, respectively. These results suggest that neurohypophysial axon terminals have greater Ca2+ clearance power than somata because of the specific localization of NCKX2, and that Ca2+ clearance in somata of MNCs is mediated by SERCA pumps, mitochondrial uniporter, and PMCA pumps.
Collapse
|
25
|
Activity-dependent depression of excitability and calcium transients in the neurohypophysis suggests a model of "stuttering conduction". J Neurosci 2004. [PMID: 14672999 DOI: 10.1523/jneurosci.23-36-11352.2003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Using millisecond time-resolved optical recordings of transmembrane voltage and intraterminal calcium, we have determined how activity-dependent changes in the population action potential are related to a concurrent modulation of calcium transients in the neurohypophysis. We find that repetitive stimulation dramatically alters the amplitude of the population action potential and significantly increases its temporal dispersion. The population action potentials and the calcium transients exhibit well correlated frequency-dependent amplitude depression, with broadening of the action potential playing only a limited role. High-speed camera recordings indicate that the magnitude of the spike modulation is uniform throughout the neurohypophysis, thereby excluding propagation failure as the underlying mechanism. In contrast, temporal dispersion and latency of the population spike do increase with distance from the stimulation site. This increase is enhanced during repeated stimulation and by raising the stimulation frequency. Changes in Ca influx directly affect the decline in population spike amplitude, consistent with electrophysiological measurements of the local loss of excitability in nerve terminals and varicosities, mediated by a Ca-activated K conductance. Our observations suggest a model of "stuttering conduction": repeated action potential stimulation causes excitability failures limited to nerve terminals and varicosities, which account for the rapid decline in the population spike amplitude. These failures, however, do not block action potential propagation but generate the cumulative increases in spike latency.
Collapse
|
26
|
Yang F, He XP, Russell J, Lu B. Ca2+ influx-independent synaptic potentiation mediated by mitochondrial Na(+)-Ca2+ exchanger and protein kinase C. ACTA ACUST UNITED AC 2004; 163:511-23. [PMID: 14610054 PMCID: PMC2173636 DOI: 10.1083/jcb.200307027] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Activity-dependent modulation of synaptic transmission is an essential mechanism underlying many brain functions. Here we report an unusual form of synaptic modulation that depends on Na+ influx and mitochondrial Na+-Ca2+ exchanger, but not on Ca2+ influx. In Ca2+-free medium, tetanic stimulation of Xenopus motoneurons induced a striking potentiation of transmitter release at neuromuscular synapses. Inhibition of either Na+ influx or the rise of Ca2+ concentrations ([Ca2+]i) at nerve terminals prevented the tetanus-induced synaptic potentiation (TISP). Blockade of Ca2+ release from mitochondrial Na+-Ca2+ exchanger, but not from ER Ca2+ stores, also inhibited TISP. Tetanic stimulation in Ca2+-free medium elicited an increase in [Ca2+]i, which was prevented by inhibition of Na+ influx or mitochondrial Ca2+ release. Inhibition of PKC blocked the TISP as well as mitochondrial Ca2+ release. These results reveal a novel form of synaptic plasticity and suggest a role of PKC in mitochondrial Ca2+ release during synaptic transmission.
Collapse
Affiliation(s)
- Feng Yang
- Section on Neural Development and Plasticity, Laboratory of Cellular and Synaptic Neurophysiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-4480, USA
| | | | | | | |
Collapse
|
27
|
Kim MH, Lee SH, Park KH, Ho WK, Lee SH. Distribution of K+-dependent Na+/Ca2+ exchangers in the rat supraoptic magnocellular neuron is polarized to axon terminals. J Neurosci 2003; 23:11673-80. [PMID: 14684869 PMCID: PMC6740958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023] Open
Abstract
Neurons are polarized into compartments such as the soma, dendrites, and axon terminals, each of which has highly specialized functions. To test whether Ca2+ is differently handled in different compartments of a neuron, we investigated Ca2+ clearance mechanisms in somata of supraoptic magnocellular neurosecretory cells (MNCs) and in their axon terminals located in neurohypophyses. Using patch-clamp and microfluorometry techniques, Ca2+ transients were evoked by depolarizing pulses. Endogenous Ca2+ binding ratios (kappaS) and Ca2+ clearance rates were calculated from the decay phases of Ca2+ transients according to the single compartment model. Mean values of kappaS were 79 +/- 2.6 in somata of MNCs and 187 +/- 19 in axon terminals. Ca2+ clearance rate in axon terminals, which were calculated from time derivative of Ca2+ decay and the kappaS values, were approximately threefold higher than in somata. In response to external Na+ reduction, Ca2+ clearance rates were reduced by 65% in axon terminals, but did not change in somata. Immunohistochemical assays confirmed that K+-dependent Na+/Ca2+ exchanger (NCKX2) was specifically localized to neurohypophysial axon terminals and was not found in somata. In somata, inhibition of sarcoendoplasmic reticulum Ca2+-ATPase (SERCA) pumps, mitochondrial Ca2+-uniporter, and plasma membrane Ca2+-ATPase (PMCA) pumps decreased Ca2+ clearance rate by 48, 27, and 21%, respectively. These results suggest that neurohypophysial axon terminals have greater Ca2+ clearance power than somata because of the specific localization of NCKX2, and that Ca2+ clearance in somata of MNCs is mediated by SERCA pumps, mitochondrial uniporter, and PMCA pumps.
Collapse
Affiliation(s)
- Myoung-Hwan Kim
- Department of Physiology, Seoul National University College of Medicine, Chongno-Ku, Seoul, 110-799, Korea
| | | | | | | | | |
Collapse
|
28
|
Muschol M, Kosterin P, Ichikawa M, Salzberg BM. Activity-dependent depression of excitability and calcium transients in the neurohypophysis suggests a model of "stuttering conduction". J Neurosci 2003; 23:11352-62. [PMID: 14672999 PMCID: PMC6740515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023] Open
Abstract
Using millisecond time-resolved optical recordings of transmembrane voltage and intraterminal calcium, we have determined how activity-dependent changes in the population action potential are related to a concurrent modulation of calcium transients in the neurohypophysis. We find that repetitive stimulation dramatically alters the amplitude of the population action potential and significantly increases its temporal dispersion. The population action potentials and the calcium transients exhibit well correlated frequency-dependent amplitude depression, with broadening of the action potential playing only a limited role. High-speed camera recordings indicate that the magnitude of the spike modulation is uniform throughout the neurohypophysis, thereby excluding propagation failure as the underlying mechanism. In contrast, temporal dispersion and latency of the population spike do increase with distance from the stimulation site. This increase is enhanced during repeated stimulation and by raising the stimulation frequency. Changes in Ca influx directly affect the decline in population spike amplitude, consistent with electrophysiological measurements of the local loss of excitability in nerve terminals and varicosities, mediated by a Ca-activated K conductance. Our observations suggest a model of "stuttering conduction": repeated action potential stimulation causes excitability failures limited to nerve terminals and varicosities, which account for the rapid decline in the population spike amplitude. These failures, however, do not block action potential propagation but generate the cumulative increases in spike latency.
Collapse
Affiliation(s)
- Martin Muschol
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6074, USA
| | | | | | | |
Collapse
|
29
|
Abstract
Calcium-binding proteins such as calretinin are abundantly expressed in distinctive patterns in the CNS, but their physiological function remains poorly understood. Calretinin is expressed in cerebellar granule cells, which provide the major excitatory input to Purkinje cells through parallel fibers. Calretinin-deficient mice exhibit dramatic alterations in motor coordination and Purkinje cell firing recorded in vivo through unknown mechanisms. In the present study, we used patch-clamp recording techniques in acute slice preparation to investigate the effect of a null mutation of the calretinin gene on the intrinsic electroresponsiveness of cerebellar granule cells at a mature developmental stage. Calretinin-deficient granule cells exhibit faster action potentials and generate repetitive spike discharge showing an enhanced frequency increase with injected currents. These alterations disappear when 0.15 mm of the exogenous fast-calcium buffer BAPTA is infused in the cytosol to restore the calcium-buffering capacity. A proposed mathematical model demonstrates that the observed alterations of granule cell excitability can be explained by a decreased cytosolic calcium-buffering capacity resulting from the absence of calretinin. This result suggests that calcium-binding proteins modulate intrinsic neuronal excitability and may therefore play a role in information processing in the CNS.
Collapse
|
30
|
Gall D, Roussel C, Susa I, D'Angelo E, Rossi P, Bearzatto B, Galas MC, Blum D, Schurmans S, Schiffmann SN. Altered neuronal excitability in cerebellar granule cells of mice lacking calretinin. J Neurosci 2003; 23:9320-7. [PMID: 14561859 PMCID: PMC6740583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023] Open
Abstract
Calcium-binding proteins such as calretinin are abundantly expressed in distinctive patterns in the CNS, but their physiological function remains poorly understood. Calretinin is expressed in cerebellar granule cells, which provide the major excitatory input to Purkinje cells through parallel fibers. Calretinin-deficient mice exhibit dramatic alterations in motor coordination and Purkinje cell firing recorded in vivo through unknown mechanisms. In the present study, we used patch-clamp recording techniques in acute slice preparation to investigate the effect of a null mutation of the calretinin gene on the intrinsic electroresponsiveness of cerebellar granule cells at a mature developmental stage. Calretinin-deficient granule cells exhibit faster action potentials and generate repetitive spike discharge showing an enhanced frequency increase with injected currents. These alterations disappear when 0.15 mm of the exogenous fast-calcium buffer BAPTA is infused in the cytosol to restore the calcium-buffering capacity. A proposed mathematical model demonstrates that the observed alterations of granule cell excitability can be explained by a decreased cytosolic calcium-buffering capacity resulting from the absence of calretinin. This result suggests that calcium-binding proteins modulate intrinsic neuronal excitability and may therefore play a role in information processing in the CNS.
Collapse
Affiliation(s)
- David Gall
- Laboratoire de Neurophysiologie (CP601), Faculté deMédecine, Université Libre de Bruxelles, B-1070 Bruxelles, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Talbot JD, David G, Barrett EF. Inhibition of mitochondrial Ca2+ uptake affects phasic release from motor terminals differently depending on external [Ca2+]. J Neurophysiol 2003; 90:491-502. [PMID: 12672777 DOI: 10.1152/jn.00012.2003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated how inhibition of mitochondrial Ca2+ uptake affects stimulation-induced increases in cytosolic [Ca2+] and phasic and asynchronous transmitter release in lizard motor terminals in 2 and 0.5 mM bath [Ca2+]. Lowering bath [Ca2+] reduced the rate of rise, but not the final amplitude, of the increase in mitochondrial [Ca2+] during 50-Hz stimulation. The amplitude of the stimulation-induced increase in cytosolic [Ca2+] was reduced in low-bath [Ca2+] and increased when mitochondrial Ca2+ uptake was inhibited by depolarizing mitochondria. In 2 mM Ca2+, end-plate potentials (epps) depressed by 53% after 10 s of 50-Hz stimulation, and this depression increased to 80% after mitochondrial depolarization. In contrast, in 0.5 mM Ca2+ the same stimulation pattern increased epps by approximately 3.4-fold, and this increase was even greater (transiently) after mitochondrial depolarization. In both 2 and 0.5 mM [Ca2+], mitochondrial depolarization increased asynchronous release during the 50-Hz train and increased the total vesicular release (phasic and asynchronous) measured by destaining of the styryl dye FM2-10. These results suggest that by limiting the stimulation-induced increase in cytosolic [Ca2+], mitochondrial Ca2+ uptake maintains a high ratio of phasic to asynchronous release, thus helping to sustain neuromuscular transmission during repetitive stimulation. Interestingly, the quantal content of the epp reached during 50-Hz stimulation stabilized at a similar level ( approximately 20 quanta) in both 2 and 0.5 mM Ca2+. A similar convergence was measured in oligomycin, which inhibits mitochondrial ATP synthesis without depolarizing mitochondria, but quantal contents fell to <20 when mitochondria were depolarized in 2 mM Ca2+.
Collapse
Affiliation(s)
- Janet D Talbot
- Department of Physiology and Biophysics, University of Miami School of Medicine, Miami, Florida 33136, USA
| | | | | |
Collapse
|
32
|
Vila L, Barrett EF, Barrett JN. Stimulation-induced mitochondrial [Ca2+] elevations in mouse motor terminals: comparison of wild-type with SOD1-G93A. J Physiol 2003; 549:719-28. [PMID: 12717010 PMCID: PMC2342997 DOI: 10.1113/jphysiol.2003.041905] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Changes in mitochondrial matrix [Ca2+] evoked by trains of action potentials were studied in levator auris longus motor terminals using Ca2+-sensitive fluorescent indicator dyes (rhod-2, rhod-5F). During a 2500 impulse 50 Hz train, mitochondrial [Ca2+] in most wild-type terminals increased within 5-10 s to a plateau level that was sustained until stimulation ended. This plateau was not due to dye saturation, but rather reflects a powerful buffering system within the mitochondrial matrix. The amplitude of this plateau was similar for stimulation frequencies in the range 15-100 Hz. Plateau amplitude was sensitive to temperature, with no detectable stimulation-induced increase in fluorescence at temperatures below 17 degrees C, and increasing magnitudes as temperature was increased to near-physiological levels (38 degrees C). When stimulation ended, mitochondrial [Ca2+] decayed slowly back to prestimulation levels over a time course of hundreds of seconds. Similar measurements were also made in motor terminals of mice expressing the G93A mutation of human superoxide dismutase 1 (SOD1-G93A). In mice > 100 days old, all of whom exhibited hindlimb paralysis, some terminals continued to show wild-type mitochondrial [Ca2+] responses, but in other terminals mitochondrial [Ca2+] did not plateau, but rather continued to increase throughout most of the stimulus train. Thus mechanism(s) that limit stimulation-induced increases in mitochondrial [Ca2+] may be compromised in some SOD1-G93A terminals.
Collapse
Affiliation(s)
- Lizette Vila
- Department of Physiology and Biophysics R-430, University of Miami School of Medicine, PO Box 016430, Miami, FL 33101, USA
| | | | | |
Collapse
|
33
|
David G, Barrett EF. Mitochondrial Ca2+ uptake prevents desynchronization of quantal release and minimizes depletion during repetitive stimulation of mouse motor nerve terminals. J Physiol 2003; 548:425-38. [PMID: 12588898 PMCID: PMC2342850 DOI: 10.1113/jphysiol.2002.035196] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2002] [Accepted: 01/21/2003] [Indexed: 11/08/2022] Open
Abstract
We investigated how inhibition of mitochondrial Ca2+ uptake affects transmitter release from mouse motor terminals during brief trains of action potentials (500 at 50 Hz) in physiological bath [Ca2+]. When mitochondrial Ca2+ uptake was inhibited by depolarizing mitochondria with antimycin A1 or carbonyl cyanide m-chlorophenyl-hydrazone, the stimulation-induced increase in cytosolic [Ca2+] was greater (> 10 microM, compared to < or = 1 microM in control solution), the quantal content of the endplate potential (EPP) depressed more rapidly (approximately 84 % depression compared to approximately 8 % in controls), and asynchronous release during the stimulus train reached higher frequencies (peak rates of approximately 6000 s-1 compared to approximately 75 s-1 in controls). These effects of mitochondrial depolarization were not accompanied by a significant change in EPP quantal content or the rate of asynchronous release during 1 Hz stimulation, and were not seen in oligomycin, which blocks mitochondrial ATP synthesis without depolarizing mitochondria. Inhibition of endoplasmic reticular Ca2+ uptake with cyclopiazonic acid also had little effect on stimulation-induced changes in cytosolic [Ca2+] or EPP amplitude. We hypothesize that the high rate of asynchronous release evoked by stimulation during mitochondrial depolarization was produced by the elevation of cytosolic [Ca2+], and contributed to the accelerated depression of phasic release by reducing the availability of releasable vesicles. During mitochondrial depolarization, the post-tetanic potentiation of the EPP observed under control conditions was replaced by a post-tetanic depression with a slow time course of recovery. Thus, mitochondrial Ca2+ uptake is essential for sustaining phasic release, and thus neuromuscular transmission, during and following tetanic stimulation.
Collapse
Affiliation(s)
- Gavriel David
- Department of Physiology and Biophysics, University of Miami School of Medicine, FL 33101, USA.
| | | |
Collapse
|
34
|
Abstract
The proteins of the mammalian neurotrophin family (nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and neurotrophin-4/5 (NT-4/5)) were originally identified as neuronal survival factors. During the last decade, evidence has accumulated implicating them (especially BDNF) in addition in the regulation of synaptic transmission and synaptogenesis in the CNS. However, a detailed understanding of the secretion of neurotrophins from neurons is required to delineate their role in regulating synaptic function. Some crucial questions that need to be addressed include the sites of neurotrophin secretion (i.e. axonal versus dendritic; synaptic versus extrasynaptic) and the neuronal and synaptic activity patterns that trigger the release of neurotrophins. In this article, we review the current knowledge in the field of neurotrophin secretion, focussing on activity-dependent synaptic release of BDNF. The modality and the site of neurotrophin secretion are dependent on the processing and subsequent targeting of the neurotrophin precursor molecules. Therefore, the available data regarding formation and trafficking of neurotrophins in the secreting neurons are critically reviewed. In addition, we discuss existing evidence that the characteristics of neurotrophin secretion are similar (but not identical) to those of other neuropeptides. Finally, since BDNF has been proposed to play a critical role as an intercellular synaptic messenger in long-term potentiation (LTP) in the hippocampus, we try to reconcile this possible role of BDNF in LTP with the recently described features of synaptic BDNF secretion.
Collapse
Affiliation(s)
- Volkmar Lessmann
- Department of Physiology and Pathophysiology, Johannes Gutenberg-University Mainz, Duesbergweg 6, Mainz 55128, Germany.
| | | | | |
Collapse
|
35
|
Calcium dynamics, buffering, and buffer saturation in the boutons of dentate granule-cell axons in the hilus. J Neurosci 2003. [PMID: 12629165 DOI: 10.1523/jneurosci.23-05-01612.2003] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The axons of dentate gyrus granule cells form synapses in the hilus. Ca(2+) signaling was investigated in the boutons of these axons using confocal fluorescence imaging. Boutons were loaded with various concentrations of the Ca(2+) indicator Oregon Green BAPTA-1 by patch-clamping the cell bodies and allowing the dye to diffuse into the axon. Resting free [Ca(2+)] started at 74 nm, rose to approximately 1 microm immediately after an action potential, and then decayed to rest with a time constant of 43 msec (all extrapolated to a dye concentration of zero). Action potential-induced [Ca(2+)] rises were smaller in larger boutons, consistent with a size-independent Ca(2+) channel density of 45/microm(2). Action potential-induced [Ca(2+)] changes varied with dye concentration in a manner consistent with kappa(E) approximately 20 for the ratio of endogenous buffer-bound Ca(2+) to free Ca(2+). During trains of action potentials, [Ca(2+)] increments summed supralinearly by more than that expected from dye saturation. The amount of endogenous Ca(2+) buffering declined as [Ca(2+)] rose, and this saturation indicated a buffer with a dissociation constant of approximately 500 nm and a concentration of approximately 130 microm. This is similar to the dissociation constant of calbindin-D28K, a Ca(2+)-binding protein that is abundant in dentate granule cells. Thus, calbindin-D28K is a good candidate for the Ca(2+) buffer revealed by these experiments. The saturation of endogenous buffer can generate short-term facilitation by amplifying [Ca(2+)] changes during repetitive activity. Buffer saturation may also be relevant to the presynaptic induction of long-term potentiation at synapses formed by dentate granule cells.
Collapse
|
36
|
Jackson MB, Redman SJ. Calcium dynamics, buffering, and buffer saturation in the boutons of dentate granule-cell axons in the hilus. J Neurosci 2003; 23:1612-21. [PMID: 12629165 PMCID: PMC6741953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2002] [Revised: 12/17/2002] [Accepted: 12/19/2002] [Indexed: 03/01/2023] Open
Abstract
The axons of dentate gyrus granule cells form synapses in the hilus. Ca(2+) signaling was investigated in the boutons of these axons using confocal fluorescence imaging. Boutons were loaded with various concentrations of the Ca(2+) indicator Oregon Green BAPTA-1 by patch-clamping the cell bodies and allowing the dye to diffuse into the axon. Resting free [Ca(2+)] started at 74 nm, rose to approximately 1 microm immediately after an action potential, and then decayed to rest with a time constant of 43 msec (all extrapolated to a dye concentration of zero). Action potential-induced [Ca(2+)] rises were smaller in larger boutons, consistent with a size-independent Ca(2+) channel density of 45/microm(2). Action potential-induced [Ca(2+)] changes varied with dye concentration in a manner consistent with kappa(E) approximately 20 for the ratio of endogenous buffer-bound Ca(2+) to free Ca(2+). During trains of action potentials, [Ca(2+)] increments summed supralinearly by more than that expected from dye saturation. The amount of endogenous Ca(2+) buffering declined as [Ca(2+)] rose, and this saturation indicated a buffer with a dissociation constant of approximately 500 nm and a concentration of approximately 130 microm. This is similar to the dissociation constant of calbindin-D28K, a Ca(2+)-binding protein that is abundant in dentate granule cells. Thus, calbindin-D28K is a good candidate for the Ca(2+) buffer revealed by these experiments. The saturation of endogenous buffer can generate short-term facilitation by amplifying [Ca(2+)] changes during repetitive activity. Buffer saturation may also be relevant to the presynaptic induction of long-term potentiation at synapses formed by dentate granule cells.
Collapse
Affiliation(s)
- Meyer B Jackson
- Division of Neuroscience, John Curtin School of Medical Research, Canberra, ACT 0200, Australia.
| | | |
Collapse
|
37
|
David G, Talbot J, Barrett EF. Quantitative estimate of mitochondrial [Ca2+] in stimulated motor nerve terminals. Cell Calcium 2003; 33:197-206. [PMID: 12600806 DOI: 10.1016/s0143-4160(02)00229-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Peak values reported for mitochondrial matrix [Ca(2+)] following stimulation have ranged from micromolar to near-millimolar in various cells. Measurements using fluorescent indicators have traditionally used high-affinity dyes such as rhod-2, whose fluorescence would be expected to saturate if matrix [Ca(2+)] approaches millimolar levels. To avoid this potential problem, we loaded lizard motor terminal mitochondria with the low-affinity indicator rhod-5N (K(d) approximately 320 microM). During trains of action potentials at 50Hz, matrix fluorescence transients (measured as F/F(rest)) increased to a plateau level that was maintained throughout the stimulus train. This plateau of matrix [Ca(2+)] occurred in spite of evidence that Ca(2+) continued to enter the terminal and continued to be sequestered by mitochondria. When the stimulation frequency was increased, or when Ca(2+) entry per action potential was increased with the K(+) channel blocker 3,4-diaminopyridine (3,4-DAP), or reduced by lowering bath [Ca(2+)], the rate of rise of matrix [Ca(2+)] changed, but the plateau amplitude remained constant. Calculations demonstrated that the F/F(rest) measured at this plateau corresponded to a matrix [Ca(2+)] of approximately 1 microM. The high K(d) of rhod-5N ensures that this value is not a result of dye saturation, but rather reflects a powerful Ca(2+) buffering mechanism within the matrix of these mitochondria.
Collapse
Affiliation(s)
- Gavriel David
- Department of Physiology and Biophysics, University of Miami School of Medicine, R-430, P.O. Box 016430, Miami, FL 33101, USA.
| | | | | |
Collapse
|
38
|
K+-dependent Na+/Ca2+ exchange is a major Ca2+ clearance mechanism in axon terminals of rat neurohypophysis. J Neurosci 2002. [PMID: 12177187 DOI: 10.1523/jneurosci.22-16-06891.2002] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Two different families of Na+/Ca2+ exchangers, K+-independent NCX and K+-dependent NCKX, are known. Exploiting the outward K+ gradient, NCKX is able to extrude Ca2+ more efficiently than NCX, even when the Na+ gradient is reduced. The NCKX, which was originally thought to be limited to the retinal photoreceptor, was shown recently to be widely distributed in the brain. We investigated the contribution of Na+/Ca2+ exchange to Ca2+ clearance mechanisms in neurohypophysial (NHP) axon terminals, using patch-clamp and microfluorometry techniques. In the presence of internal K+, Ca2+ decay was significantly slowed by the removal of external Na+, indicative of the role of Na+/Ca2+ exchange. As internal [K+] was decreased, Ca2+ decay rate and its dependence on Na+ were greatly attenuated. In the absence of internal K+, Ca2+ decay rate was little affected by Na+ removal. Quantitative analysis using Ca2+ decay rate constant indicated that >60% of Ca2+ extrusion is mediated by Na+/Ca2+ exchange when peak [Ca2+] level is higher than 500 nm, and approximately 90% of Na+/Ca2+ exchange activity is K+ dependent. In situ hybridization confirmed the expression of NCKX2 transcripts in the supraoptic nucleus in which soma of NHP axon terminals are located. To our knowledge, this is the first report to show the significant role of K+-dependent Na+/Ca2+ exchange in neuronal cells other than photoreceptors. Considering that axon terminals are subject to an invasion by high-frequency Na+ spikes, which may lower Na+ gradients, the presence of NCKX may have a functional significance in intracellular Ca2+ regulation.
Collapse
|
39
|
Suzuki S, Osanai M, Mitsumoto N, Akita T, Narita K, Kijima H, Kuba K. Ca(2+)-dependent Ca(2+) clearance via mitochondrial uptake and plasmalemmal extrusion in frog motor nerve terminals. J Neurophysiol 2002; 87:1816-23. [PMID: 11929903 DOI: 10.1152/jn.00456.2001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ca(2+) clearance in frog motor nerve terminals was studied by fluorometry of Ca(2+) indicators. Rises in intracellular Ca(2+) ([Ca(2+)](i)) in nerve terminals induced by tetanic nerve stimulation (100 Hz, 100 or 200 stimuli: Ca(2+) transient) reached a peak or plateau within 6-20 stimuli and decayed at least in three phases with the time constants of 82-87 ms (81-85%), a few seconds (11-12%), and several tens of seconds (less than a few percentage). Blocking both Na/Ca exchangers and Ca(2+) pumps at the cell membrane by external Li(+) and high external pH (9.0), respectively, increased the time constants of the initial and second decay components with no change in their magnitudes. By contrast, similar effects by Li(+) alone, but not by high alkaline alone, were seen only on 200 stimuli-induced Ca(2+) transients. Blocking Ca(2+) pumps at Ca(2+) stores by thapsigargin did not affect 100 stimuli-induced Ca(2+) transients but increased the initial decay time constant of 200 stimuli-induced Ca(2+) transients with no change in other parameters. Inhibiting mitochondrial Ca(2+) uptake by carbonyl cyanide m-chlorophenylhydrazone markedly increased the initial and second decay time constants of 100 stimuli-induced Ca(2+) transients and the amplitudes of the second and the slowest components. Plotting the slopes of the decay of 100 stimuli-induced Ca(2+) transients against [Ca(2+)](i) yielded the supralinear [Ca(2+)](i) dependence of Ca(2+) efflux out of the cytosol. Blocking Ca(2+) extrusion or mitochondrial Ca(2+) uptake significantly reduced this [Ca(2+)](i)-dependent Ca(2+) efflux. Thus Ca(2+)-dependent mitochondrial Ca(2+) uptake and plasmalemmal Ca(2+) extrusion clear out a small Ca(2+) load in frog motor nerve terminals, while thapsigargin-sensitive Ca(2+) pump boosts the clearance of a heavy Ca(2+) load. Furthermore, the activity of plasmalemmal Ca(2+) pump and Na/Ca exchanger is complementary to each other with the slight predominance of the latter.
Collapse
Affiliation(s)
- S Suzuki
- Department of Physiology, School of Medicine, Nagoya University, Nagoya 466-8550, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Klyachko VA, Ahern GP, Jackson MB. cGMP-mediated facilitation in nerve terminals by enhancement of the spike afterhyperpolarization. Neuron 2001; 31:1015-25. [PMID: 11580900 DOI: 10.1016/s0896-6273(01)00449-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
cGMP has long been suspected to play a role in synaptic plasticity, but the inaccessibility of nerve terminals to electrical recording has impeded tests of this hypothesis. In posterior pituitary nerve terminals, nitric oxide enhanced Ca(2+)-activated K+ channel activity by activating guanylate cyclase and PKG. This enhancement occurred only at depolarized potentials, so the spike threshold remained unaltered but the afterhyperpolarization became larger. During spike trains, the enhanced afterhyperpolarization promoted Na+ channel recovery from inactivation, thus reducing action potential failures and allowing more Ca(2+) to enter. Activating guanylate cyclase, either with applied nitric oxide, or with physiological stimulation to activate nitric oxide synthase, increased action potential firing. Thus, the cGMP/nitric oxide cascade generates a short-term, use-dependent enhancement of release.
Collapse
Affiliation(s)
- V A Klyachko
- Department of Physiology and Biophysics, PhD Program, University of Wisconsin-Madison, 1300 University Avenue, Madison, WI 53706, USA
| | | | | |
Collapse
|
41
|
Barrett EF. Contrasting contributions of endoplasmic reticulum and mitochondria to Ca(2)+ handling in neurons. J Gen Physiol 2001; 118:79-82. [PMID: 11429445 PMCID: PMC2233750 DOI: 10.1085/jgp.118.1.79] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- E F Barrett
- Department of Physiology and Biophysics, Neuroscience Program, Miami, FL 33101, USA
| |
Collapse
|
42
|
Stimulation-evoked increases in cytosolic [Ca(2+)] in mouse motor nerve terminals are limited by mitochondrial uptake and are temperature-dependent. J Neurosci 2001. [PMID: 11007886 DOI: 10.1523/jneurosci.20-19-07290.2000] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Increases in cytosolic [Ca(2+)] evoked by trains of action potentials (20-100 Hz) were recorded from mouse and lizard motor nerve terminals filled with a low-affinity fluorescent indicator, Oregon Green BAPTA 5N. In mouse terminals at near-physiological temperatures (30-38 degrees C), trains of action potentials at 25-100 Hz elicited increases in cytosolic [Ca(2+)] that stabilized at plateau levels that increased with stimulation frequency. Depolarization of mitochondria with carbonylcyanide m-chlorophenylhydrazone (CCCP) or antimycin A1 caused cytosolic [Ca(2+)] to rise to much higher levels during stimulation. Thus, mitochondrial Ca(2+) uptake contributes importantly to limiting the rise of cytosolic [Ca(2+)] during repetitive stimulation. In mouse terminals, the stimulation-induced increase in cytosolic [Ca(2+)] was highly temperature-dependent over the range 18-38 degrees C, with greater increases at lower temperatures. At the lower temperatures, application of CCCP continued to depolarize mitochondria but produced a much smaller increase in the cytosolic [Ca(2+)] transient evoked by repetitive stimulation. This result suggests that the larger amplitude of the stimulation-induced cytosolic [Ca(2+)] transient at lower temperatures was attributable in part to reduced mitochondrial Ca(2+) uptake. In contrast, the stimulation-induced increases in cytosolic [Ca(2+)] measured in lizard motor terminals showed little or no temperature-dependence over the range 18-33 degrees C.
Collapse
|
43
|
Dependence of transient and residual calcium dynamics on action-potential patterning during neuropeptide secretion. J Neurosci 2000. [PMID: 10995820 DOI: 10.1523/jneurosci.20-18-06773.2000] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Secretion of the neuropeptide arginine vasopressin (AVP) from the neurohypophysis is optimized by short phasic bursts of action potentials with a mean intraburst frequency around 10 Hz. Several hypotheses, most prominently action-potential broadening and buildup of residual calcium, have been proposed to explain this frequency dependence of AVP release. However, how either of these mechanisms would optimize release at any given frequency remains an open question. We have addressed this issue by correlating the frequency-dependence of intraterminal calcium dynamics and AVP release during action-potential stimulation. By monitoring the intraterminal calcium changes with low-affinity indicator dyes and millisecond time resolution, the signal could be dissected into three separate components: rapid Ca(2+) rises (Delta[Ca(2+)](tr)) related to action-potential depolarization, Ca(2+) extrusion and/or uptake, and a gradual increase in residual calcium (Delta[Ca(2+)](res)) throughout the stimulus train. Action-potential stimulation modulated all three components in a manner dependent on both the stimulation frequency and number of stimuli. Overall, the cumulative Delta[Ca(2+)](tr) amplitude initially increased with f(Stim) and then rapidly deteriorated, with a maximum around f(Stim) </= 5 Hz. Residual calcium levels, in contrast, increased monotonically with stimulation frequency. Simultaneously with the calcium measurements we determined the amount of AVP release evoked by each stimulus train. Hormone release increased with f(Stim) beyond the peak in Delta[Ca(2+)](tr) amplitudes, reaching its maximum between 5 and 10 Hz before returning to its 1 Hz level. Thus, AVP release responds to the temporal patterning of stimulation, is sensitive to both Delta[Ca(2+)](tr) and Delta[Ca(2+)](res), and is optimized at a frequency intermediate between the frequency-dependent maxima in Delta[Ca(2+)](tr) and Delta[Ca(2+)](res).
Collapse
|
44
|
David G, Barrett EF. Stimulation-evoked increases in cytosolic [Ca(2+)] in mouse motor nerve terminals are limited by mitochondrial uptake and are temperature-dependent. J Neurosci 2000; 20:7290-6. [PMID: 11007886 PMCID: PMC6772796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Increases in cytosolic [Ca(2+)] evoked by trains of action potentials (20-100 Hz) were recorded from mouse and lizard motor nerve terminals filled with a low-affinity fluorescent indicator, Oregon Green BAPTA 5N. In mouse terminals at near-physiological temperatures (30-38 degrees C), trains of action potentials at 25-100 Hz elicited increases in cytosolic [Ca(2+)] that stabilized at plateau levels that increased with stimulation frequency. Depolarization of mitochondria with carbonylcyanide m-chlorophenylhydrazone (CCCP) or antimycin A1 caused cytosolic [Ca(2+)] to rise to much higher levels during stimulation. Thus, mitochondrial Ca(2+) uptake contributes importantly to limiting the rise of cytosolic [Ca(2+)] during repetitive stimulation. In mouse terminals, the stimulation-induced increase in cytosolic [Ca(2+)] was highly temperature-dependent over the range 18-38 degrees C, with greater increases at lower temperatures. At the lower temperatures, application of CCCP continued to depolarize mitochondria but produced a much smaller increase in the cytosolic [Ca(2+)] transient evoked by repetitive stimulation. This result suggests that the larger amplitude of the stimulation-induced cytosolic [Ca(2+)] transient at lower temperatures was attributable in part to reduced mitochondrial Ca(2+) uptake. In contrast, the stimulation-induced increases in cytosolic [Ca(2+)] measured in lizard motor terminals showed little or no temperature-dependence over the range 18-33 degrees C.
Collapse
Affiliation(s)
- G David
- Department of Physiology and Biophysics, University of Miami School of Medicine, Miami, Florida 33101, USA.
| | | |
Collapse
|
45
|
Muschol M, Salzberg BM. Dependence of transient and residual calcium dynamics on action-potential patterning during neuropeptide secretion. J Neurosci 2000; 20:6773-80. [PMID: 10995820 PMCID: PMC6772822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Secretion of the neuropeptide arginine vasopressin (AVP) from the neurohypophysis is optimized by short phasic bursts of action potentials with a mean intraburst frequency around 10 Hz. Several hypotheses, most prominently action-potential broadening and buildup of residual calcium, have been proposed to explain this frequency dependence of AVP release. However, how either of these mechanisms would optimize release at any given frequency remains an open question. We have addressed this issue by correlating the frequency-dependence of intraterminal calcium dynamics and AVP release during action-potential stimulation. By monitoring the intraterminal calcium changes with low-affinity indicator dyes and millisecond time resolution, the signal could be dissected into three separate components: rapid Ca(2+) rises (Delta[Ca(2+)](tr)) related to action-potential depolarization, Ca(2+) extrusion and/or uptake, and a gradual increase in residual calcium (Delta[Ca(2+)](res)) throughout the stimulus train. Action-potential stimulation modulated all three components in a manner dependent on both the stimulation frequency and number of stimuli. Overall, the cumulative Delta[Ca(2+)](tr) amplitude initially increased with f(Stim) and then rapidly deteriorated, with a maximum around f(Stim) </= 5 Hz. Residual calcium levels, in contrast, increased monotonically with stimulation frequency. Simultaneously with the calcium measurements we determined the amount of AVP release evoked by each stimulus train. Hormone release increased with f(Stim) beyond the peak in Delta[Ca(2+)](tr) amplitudes, reaching its maximum between 5 and 10 Hz before returning to its 1 Hz level. Thus, AVP release responds to the temporal patterning of stimulation, is sensitive to both Delta[Ca(2+)](tr) and Delta[Ca(2+)](res), and is optimized at a frequency intermediate between the frequency-dependent maxima in Delta[Ca(2+)](tr) and Delta[Ca(2+)](res).
Collapse
Affiliation(s)
- M Muschol
- Departments of Neuroscience and Physiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6074, USA
| | | |
Collapse
|
46
|
Velasco I, Tapia R. Alterations of intracellular calcium homeostasis and mitochondrial function are involved in ruthenium red neurotoxicity in primary cortical cultures. J Neurosci Res 2000; 60:543-51. [PMID: 10797557 DOI: 10.1002/(sici)1097-4547(20000515)60:4<543::aid-jnr13>3.0.co;2-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Ruthenium red (RR) is a polycationic dye that induces neuronal death in vivo and in primary cultures. To characterize this neurotoxic action and to determine the mechanisms involved, we have analyzed the ultrastructural alterations induced by RR in rat cortical neuronal cultures and measured its effect on cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) and on mitochondrial function. RR produced a dose-dependent, progressive disruption of neurites and plasma membrane of neuronal somata after 8-24 hr of incubation. RR caused also an elevation of both the basal [Ca(2+)](i) and its maximal levels after K(+) depolarization. Mitochondrial oxidative function, assessed by reduction of 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide and by changes in dihydrorhodamine-123 fluorescence, was significantly diminished after treatment with RR, both in cultured neurons and in isolated brain mitochondria. La(3+) did not prevent but rather potentiated RR-induced cell death. Glutamate receptor antagonists also failed to prevent RR neurotoxicity. Apoptotic electron microscope images were not observed, and protein synthesis inhibitors did not show any protective effect. It is concluded that RR penetrates neurons and that its neurotoxic damage probably is due to intracellular Ca(2+) dishomeostasis and disruption of mitochondrial oxidative function. These results enhance our understanding of the intracellular mechanisms underlying neuronal death.
Collapse
Affiliation(s)
- I Velasco
- Departamento de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México
| | | |
Collapse
|
47
|
Hlubek MD, Stuenkel EL, Krasnoperov VG, Petrenko AG, Holz RW. Calcium-independent receptor for alpha-latrotoxin and neurexin 1alpha [corrected] facilitate toxin-induced channel formation: evidence that channel formation results from tethering of toxin to membrane. Mol Pharmacol 2000; 57:519-28. [PMID: 10692492 DOI: 10.1124/mol.57.3.519] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
alpha-Latrotoxin binding to the calcium-independent receptor for alpha-latrotoxin (CIRL-1), a putative G-protein-coupled receptor, stimulates secretion from chromaffin and PC12 cells. Using patch clamp techniques and microspectrofluorimetry, we demonstrate that the interaction of alpha-latrotoxin with CIRL-1 produces a high conductance channel that permits increases in cytosolic Ca(2+). alpha-Latrotoxin interaction with CIRL-1 transiently expressed in bovine chromaffin cells produced a 400-pS channel, which rarely closed under Ca(2+)-free conditions. The major effect of overexpressing CIRL-1 was to greatly increase the sensitivity of chromaffin cells to channel formation by alpha-latrotoxin. alpha-Latrotoxin interaction with CIRL-1 transiently overexpressed in non-neuronal human embryonic kidney 293 (HEK293) cells produced channels that were nearly identical with those observed in chromaffin cells. Channel currents were reduced by millimolar Ca(2+). At alpha-latrotoxin concentrations below 500 pM, channel formation occurred many seconds after binding of toxin to CIRL-1 indicating distinct steps in channel formation. In all cases there was a rapid, sequential addition of channels once the first channel appeared. An analysis of CIRL-1 mutants indicated that channel formation in HEK293 cells is unlikely to be transduced by a G-protein-dependent mechanism. alpha-Latrotoxin interaction with a fusion construct composed of the extracellular domain of CIRL-1 anchored to the membrane by the transmembrane domain of vesicular stomatitis virus glycoprotein, and with neurexin 1alpha, an alpha-latrotoxin receptor structurally unrelated to CIRL-1, produced channels virtually identical with those observed with wild-type CIRL-1. We propose that alpha-latrotoxin receptors recruit toxin to facilitate its insertion across the membrane and that alpha-latrotoxin itself controls the conductance properties of the channels it produces.
Collapse
Affiliation(s)
- M D Hlubek
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | | | | | | |
Collapse
|
48
|
Abstract
Mitochondria are thought to be important in clearing calcium from synaptic terminals. It is unclear, however, whether the principal role of mitochondria in pre-synaptic calcium handling is to take up Ca2+ directly or to fuel Ca2+ removal by other mechanisms. We used patch clamp techniques and fluorescence imaging to examine calcium clearance mechanisms, including mitochondrial uptake, in single synaptic terminals of retinal bipolar neurons. We found that extrusion through the ATP-dependent Ca2+ pump of the plasma membrane is the dominant form of Ca2+ removal in the synaptic terminal. Calcium uptake into mitochondria was sometimes evident with large Ca2+ loads but was consistently observed only when plasma membrane extrusion was inhibited. We conclude that mitochondria act primarily as an energy source in clearance of Ca2+ from bipolar cell synaptic terminals.
Collapse
Affiliation(s)
- D Zenisek
- Department of Neurobiology and Behavior, State University of New York, Stony Brook 11794, USA
| | | |
Collapse
|
49
|
Abstract
The present study expands the contemporary view of mitochondria as important participants in cellular Ca(2+) dynamics and provides evidence that mitochondria regulate the supply of release-competent secretory granules. Using pharmacological probes to inhibit mitochondrial Ca(2+) import, the ability of mitochondria to modulate secretory activity in single, patch-clamped bovine chromaffin cells was examined by simultaneously monitoring rapid changes in membrane surface area (DeltaC(m)) and cytosolic Ca(2+) levels ([Ca(2+)](c)). Repetitive step depolarizations or action potential waveforms were found to raise the [Ca(2+)](c) of chromaffin cells into the 1 microM to tens of micromolar range. Inhibiting mitochondria by treatment with carbonyl cyanide p-(trifuoro-methoxy)phenylhydrazone, antimycin-oligomycin, or ruthenium red revealed that mitochondria are a prominent component for the clearance of Ca(2+) that entered via voltage-activated Ca(2+) channels. Disruption of cellular Ca(2+) homeostasis by poisoning mitochondria enhanced the secretory responsiveness of chromaffin cells by increasing the amplitude of the transient rise and the time course of recovery to baseline of the evoked Delta[Ca(2+)](c). The enhancement of the secretory response was represented by significant deviation of the Ca(2+)-exocytosis relationship from a standard relationship that equates Ca(2+) influx and DeltaC(m). Thus, mitochondria would play a critical role in the control of secretory activity in chromaffin cells that undergo tonic or repetitive depolarizing activity, likely by limiting the Ca(2+)-dependent activation of specific proteins that recruit or prime secretory granules for exocytosis.
Collapse
|
50
|
Giovannucci DR, Hlubek MD, Stuenkel EL. Mitochondria regulate the Ca(2+)-exocytosis relationship of bovine adrenal chromaffin cells. J Neurosci 1999; 19:9261-70. [PMID: 10531430 PMCID: PMC6782892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
The present study expands the contemporary view of mitochondria as important participants in cellular Ca(2+) dynamics and provides evidence that mitochondria regulate the supply of release-competent secretory granules. Using pharmacological probes to inhibit mitochondrial Ca(2+) import, the ability of mitochondria to modulate secretory activity in single, patch-clamped bovine chromaffin cells was examined by simultaneously monitoring rapid changes in membrane surface area (DeltaC(m)) and cytosolic Ca(2+) levels ([Ca(2+)](c)). Repetitive step depolarizations or action potential waveforms were found to raise the [Ca(2+)](c) of chromaffin cells into the 1 microM to tens of micromolar range. Inhibiting mitochondria by treatment with carbonyl cyanide p-(trifuoro-methoxy)phenylhydrazone, antimycin-oligomycin, or ruthenium red revealed that mitochondria are a prominent component for the clearance of Ca(2+) that entered via voltage-activated Ca(2+) channels. Disruption of cellular Ca(2+) homeostasis by poisoning mitochondria enhanced the secretory responsiveness of chromaffin cells by increasing the amplitude of the transient rise and the time course of recovery to baseline of the evoked Delta[Ca(2+)](c). The enhancement of the secretory response was represented by significant deviation of the Ca(2+)-exocytosis relationship from a standard relationship that equates Ca(2+) influx and DeltaC(m). Thus, mitochondria would play a critical role in the control of secretory activity in chromaffin cells that undergo tonic or repetitive depolarizing activity, likely by limiting the Ca(2+)-dependent activation of specific proteins that recruit or prime secretory granules for exocytosis.
Collapse
Affiliation(s)
- D R Giovannucci
- Department of Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0622, USA.
| | | | | |
Collapse
|