1
|
Drotos AC, Zarb RL, Booth V, Roberts MT. GluN2C/D-containing NMDA receptors enhance temporal summation and increase sound-evoked and spontaneous firing in the inferior colliculus. J Physiol 2024:10.1113/JP286754. [PMID: 39240253 PMCID: PMC11882938 DOI: 10.1113/jp286754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/07/2024] [Indexed: 09/07/2024] Open
Abstract
Along the ascending auditory pathway, there is a broad shift from temporal coding, which is common in the lower auditory brainstem, to rate coding, which predominates in auditory cortex. This temporal-to-rate transition is particularly prominent in the inferior colliculus (IC), the midbrain hub of the auditory system, but the mechanisms that govern how individual IC neurons integrate information across time remain largely unknown. Here, we report the widespread expression of Glun2c and Glun2d mRNA in IC neurons. GluN2C/D-containing NMDA receptors are relatively insensitive to voltage-dependent Mg2+ blockade, and thus can conduct current at resting membrane potential. Using in situ hybridization and pharmacology, we show that vasoactive intestinal peptide neurons in the IC express GluN2D-containing NMDA receptors that are activatable by commissural inputs from the contralateral IC. In addition, GluN2C/D-containing receptors have much slower kinetics than other NMDA receptors, and we found that GluN2D-containing receptors facilitate temporal summation of synaptic inputs in vasoactive intestinal peptide neurons. In a model neuron, we show that a GluN2C/D-like conductance interacts with the passive membrane properties of the neuron to alter temporal and rate coding of stimulus trains. Consistent with this, we show in vivo that blocking GluN2C/D-containing receptors decreases both the spontaneous firing rate and the overall firing rate elicited by amplitude-modulated sounds in many IC neurons. These results suggest that GluN2C/D-containing NMDA receptors influence rate coding for auditory stimuli in the IC by facilitating the temporal integration of synaptic inputs. KEY POINTS: NMDA receptors are critical components of most glutamatergic circuits in the brain, and the diversity of NMDA receptor subtypes yields receptors with a variety of functions. We found that many neurons in the auditory midbrain express GluN2C and/or GluN2D NMDA receptor subunits, which are less sensitive to Mg2+ blockade than the more commonly expressed GluN2A/B subunits. We show that GluN2C/D-containing receptors conducted current at resting membrane potential and enhanced temporal summation of synaptic inputs. In a model, we show that GluN2C/D-containing receptors provide additive gain for input-output functions driven by trains of synaptic inputs. In line with this, we found that blocking GluN2C/D-containing NMDA receptors in vivo decreased both spontaneous firing rates and firing evoked by amplitude-modulated sounds.
Collapse
Affiliation(s)
- Audrey C. Drotos
- Kresge Hearing Research Institute, Department of Otolaryngology – Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan 48109
| | - Rachel L. Zarb
- Kresge Hearing Research Institute, Department of Otolaryngology – Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan 48109
| | - Victoria Booth
- Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan 48109
| | - Michael T. Roberts
- Kresge Hearing Research Institute, Department of Otolaryngology – Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan 48109
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
2
|
Kajikawa Y, Mackey CA, O’Connell MN. Laminar pattern of sensory-evoked dynamic high-frequency oscillatory activity in the macaque auditory cortex. Cereb Cortex 2024; 34:bhae338. [PMID: 39128941 PMCID: PMC11317206 DOI: 10.1093/cercor/bhae338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 08/13/2024] Open
Abstract
High-frequency (>60 Hz) neuroelectric signals likely have functional roles distinct from low-frequency (<30 Hz) signals. While high-gamma activity (>60 Hz) does not simply equate to neuronal spiking, they are highly correlated, having similar information encoding. High-gamma activity is typically considered broadband and poorly phase-locked to sensory stimuli and thus is typically analyzed after transformations into absolute amplitude or spectral power. However, those analyses discard signal polarity, compromising the interpretation of neuroelectric events that are essentially dipolar. In the spectrotemporal profiles of field potentials in auditory cortex, we show high-frequency spectral peaks not phase-locked to sound onset, which follow the broadband peak of phase-locked onset responses. Isolating the signal components comprising the high-frequency peaks reveals narrow-band high-frequency oscillatory events, whose instantaneous frequency changes rapidly from >150 to 60 Hz, which may underlie broadband high-frequency spectral peaks in previous reports. The laminar amplitude distributions of the isolated activity had two peak positions, while the laminar phase patterns showed a counterphase relationship between those peaks, indicating the formation of dipoles. Our findings suggest that nonphase-locked HGA arises in part from oscillatory or recurring activity of supragranular-layer neuronal ensembles in auditory cortex.
Collapse
Affiliation(s)
- Yoshinao Kajikawa
- Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Chase A Mackey
- Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd, Orangeburg, NY 10962, USA
| | - Monica Noelle O’Connell
- Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| |
Collapse
|
3
|
Drotos AC, Zarb RL, Booth V, Roberts MT. GluN2C/D-containing NMDA receptors enhance temporal summation and increase sound-evoked and spontaneous firing in the inferior colliculus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.27.538607. [PMID: 37162927 PMCID: PMC10168349 DOI: 10.1101/2023.04.27.538607] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Along the ascending auditory pathway, there is a broad shift from temporal coding, which is common in the lower auditory brainstem, to rate coding, which predominates in auditory cortex. This temporal-to-rate transition is particularly prominent in the inferior colliculus (IC), the midbrain hub of the auditory system, but the mechanisms that govern how individual IC neurons integrate information across time remain largely unknown. Here, we report the widespread expression of Glun2c and Glun2d mRNA in IC neurons. GluN2C/D-containing NMDA receptors are relatively insensitive to voltage-dependent Mg2+ block, and thus can conduct current at resting membrane potential. Using in situ hybridization and pharmacology, we show that VIP neurons in the IC express GluN2D-containing NMDA receptors that are activatable by commissural inputs from the contralateral IC. In addition, GluN2C/D-containing receptors have much slower kinetics than other NMDA receptors, and we found that GluN2D-containing receptors facilitate temporal summation of synaptic inputs in VIP neurons. In a model neuron, we show that a GluN2C/D-like conductance interacts with the passive membrane properties of the neuron to alter temporal and rate coding of stimulus trains. Consistent with this, we show in vivo that blocking GluN2C/D-containing receptors decreases both the spontaneous firing rate and the overall firing rate elicited by amplitude-modulated (AM) sounds in many IC neurons. These results suggest that GluN2C/D-containing NMDA receptors influence rate coding for auditory stimuli in the IC by facilitating the temporal integration of synaptic inputs.
Collapse
Affiliation(s)
- Audrey C. Drotos
- Kresge Hearing Research Institute, Department of Otolaryngology – Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan 48109
| | - Rachel L. Zarb
- Kresge Hearing Research Institute, Department of Otolaryngology – Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan 48109
| | - Victoria Booth
- Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan 48109
| | - Michael T. Roberts
- Kresge Hearing Research Institute, Department of Otolaryngology – Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan 48109
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
4
|
da Silva GN, Seiffert N, Tovote P. Cerebellar contribution to the regulation of defensive states. Front Syst Neurosci 2023; 17:1160083. [PMID: 37064160 PMCID: PMC10102664 DOI: 10.3389/fnsys.2023.1160083] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/15/2023] [Indexed: 04/03/2023] Open
Abstract
Despite fine tuning voluntary movement as the most prominently studied function of the cerebellum, early human studies suggested cerebellar involvement emotion regulation. Since, the cerebellum has been associated with various mood and anxiety-related conditions. Research in animals provided evidence for cerebellar contributions to fear memory formation and extinction. Fear and anxiety can broadly be referred to as defensive states triggered by threat and characterized by multimodal adaptations such as behavioral and cardiac responses integrated into an intricately orchestrated defense reaction. This is mediated by an evolutionary conserved, highly interconnected network of defense-related structures with functional connections to the cerebellum. Projections from the deep cerebellar nucleus interpositus to the central amygdala interfere with retention of fear memory. Several studies uncovered tight functional connections between cerebellar deep nuclei and pyramis and the midbrain periaqueductal grey. Specifically, the fastigial nucleus sends direct projections to the ventrolateral PAG to mediate fear-evoked innate and learned freezing behavior. The cerebellum also regulates cardiovascular responses such as blood pressure and heart rate-effects dependent on connections with medullary cardiac regulatory structures. Because of the integrated, multimodal nature of defensive states, their adaptive regulation has to be highly dynamic to enable responding to a moving threatening stimulus. In this, predicting threat occurrence are crucial functions of calculating adequate responses. Based on its role in prediction error generation, its connectivity to limbic regions, and previous results on a role in fear learning, this review presents the cerebellum as a regulator of integrated cardio-behavioral defensive states.
Collapse
Affiliation(s)
- Gabriela Neubert da Silva
- Defense Circuits Lab, Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Nina Seiffert
- Defense Circuits Lab, Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Philip Tovote
- Defense Circuits Lab, Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
- Center for Mental Health, University Hospital Würzburg, Würzburg, Germany
- *Correspondence: Philip Tovote,
| |
Collapse
|
5
|
Mapelli J, Boiani GM, D’Angelo E, Bigiani A, Gandolfi D. Long-Term Synaptic Plasticity Tunes the Gain of Information Channels through the Cerebellum Granular Layer. Biomedicines 2022; 10:biomedicines10123185. [PMID: 36551941 PMCID: PMC9775043 DOI: 10.3390/biomedicines10123185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
A central hypothesis on brain functioning is that long-term potentiation (LTP) and depression (LTD) regulate the signals transfer function by modifying the efficacy of synaptic transmission. In the cerebellum, granule cells have been shown to control the gain of signals transmitted through the mossy fiber pathway by exploiting synaptic inhibition in the glomeruli. However, the way LTP and LTD control signal transformation at the single-cell level in the space, time and frequency domains remains unclear. Here, the impact of LTP and LTD on incoming activity patterns was analyzed by combining patch-clamp recordings in acute cerebellar slices and mathematical modeling. LTP reduced the delay, increased the gain and broadened the frequency bandwidth of mossy fiber burst transmission, while LTD caused opposite changes. These properties, by exploiting NMDA subthreshold integration, emerged from microscopic changes in spike generation in individual granule cells such that LTP anticipated the emission of spikes and increased their number and precision, while LTD sorted the opposite effects. Thus, akin with the expansion recoding process theoretically attributed to the cerebellum granular layer, LTP and LTD could implement selective filtering lines channeling information toward the molecular and Purkinje cell layers for further processing.
Collapse
Affiliation(s)
- Jonathan Mapelli
- Department of Biomedical, Metabolic and Neural Sciences, Via Campi 287, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Centre for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Correspondence: (J.M.); (D.G.)
| | - Giulia Maria Boiani
- Department of Biomedical, Metabolic and Neural Sciences, Via Campi 287, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, Neurophysiology Unit, Via Forlanini 6, 27100 Pavia, Italy
- Brain Connectivity Center (BCC), IRCCS C. Mondino, Via Mondino 2, 27100 Pavia, Italy
| | - Albertino Bigiani
- Department of Biomedical, Metabolic and Neural Sciences, Via Campi 287, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Centre for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Daniela Gandolfi
- Department of Biomedical, Metabolic and Neural Sciences, Via Campi 287, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Department of Brain and Behavioral Sciences, Neurophysiology Unit, Via Forlanini 6, 27100 Pavia, Italy
- Correspondence: (J.M.); (D.G.)
| |
Collapse
|
6
|
Model simulations unveil the structure-function-dynamics relationship of the cerebellar cortical microcircuit. Commun Biol 2022; 5:1240. [PMCID: PMC9663576 DOI: 10.1038/s42003-022-04213-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/02/2022] [Indexed: 11/16/2022] Open
Abstract
AbstractThe cerebellar network is renowned for its regular architecture that has inspired foundational computational theories. However, the relationship between circuit structure, function and dynamics remains elusive. To tackle the issue, we developed an advanced computational modeling framework that allows us to reconstruct and simulate the structure and function of the mouse cerebellar cortex using morphologically realistic multi-compartmental neuron models. The cerebellar connectome is generated through appropriate connection rules, unifying a collection of scattered experimental data into a coherent construct and providing a new model-based ground-truth about circuit organization. Naturalistic background and sensory-burst stimulation are used for functional validation against recordings in vivo, monitoring the impact of cellular mechanisms on signal propagation, inhibitory control, and long-term synaptic plasticity. Our simulations show how mossy fibers entrain the local neuronal microcircuit, boosting the formation of columns of activity travelling from the granular to the molecular layer providing a new resource for the investigation of local microcircuit computation and of the neural correlates of behavior.
Collapse
|
7
|
Masoli S, Rizza MF, Tognolina M, Prestori F, D’Angelo E. Computational models of neurotransmission at cerebellar synapses unveil the impact on network computation. Front Comput Neurosci 2022; 16:1006989. [PMID: 36387305 PMCID: PMC9649760 DOI: 10.3389/fncom.2022.1006989] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/10/2022] [Indexed: 11/25/2022] Open
Abstract
The neuroscientific field benefits from the conjoint evolution of experimental and computational techniques, allowing for the reconstruction and simulation of complex models of neurons and synapses. Chemical synapses are characterized by presynaptic vesicle cycling, neurotransmitter diffusion, and postsynaptic receptor activation, which eventually lead to postsynaptic currents and subsequent membrane potential changes. These mechanisms have been accurately modeled for different synapses and receptor types (AMPA, NMDA, and GABA) of the cerebellar cortical network, allowing simulation of their impact on computation. Of special relevance is short-term synaptic plasticity, which generates spatiotemporal filtering in local microcircuits and controls burst transmission and information flow through the network. Here, we present how data-driven computational models recapitulate the properties of neurotransmission at cerebellar synapses. The simulation of microcircuit models is starting to reveal how diverse synaptic mechanisms shape the spatiotemporal profiles of circuit activity and computation.
Collapse
Affiliation(s)
- Stefano Masoli
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | | | | | - Francesca Prestori
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- IRCCS Mondino Foundation, Brain Connectivity Center, Pavia, Italy
| |
Collapse
|
8
|
Lu D, Wan P, Liu Y, Jin XH, Chu CP, Bing YH, Qiu DL. Facial Stimulation Induces Long-Term Potentiation of Mossy Fiber-Granule Cell Synaptic Transmission via GluN2A-Containing N-Methyl-D-Aspartate Receptor/Nitric Oxide Cascade in the Mouse Cerebellum. Front Cell Neurosci 2022; 16:863342. [PMID: 35431815 PMCID: PMC9005984 DOI: 10.3389/fncel.2022.863342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/01/2022] [Indexed: 12/21/2022] Open
Abstract
Long-term synaptic plasticity in the cerebellar cortex is a possible mechanism for motor learning. Previous studies have demonstrated the induction of mossy fiber-granule cell (MF-GrC) synaptic plasticity under in vitro and in vivo conditions, but the mechanisms underlying sensory stimulation-evoked long-term synaptic plasticity of MF-GrC in living animals are unclear. In this study, we investigated the mechanism of long-term potentiation (LTP) of MF-GrC synaptic transmission in the cerebellum induced by train of facial stimulation at 20 Hz in urethane-anesthetized mice using electrophysiological recording, immunohistochemistry techniques, and pharmacological methods. Blockade of GABAA receptor activity and repetitive facial stimulation at 20 Hz (240 pulses) induced an LTP of MF-GrC synapses in the mouse cerebellar cortical folium Crus II, accompanied with a decrease in paired-pulse ratio (N2/N1). The facial stimulation-induced MF-GrC LTP was abolished by either an N-methyl-D-aspartate (NMDA) receptor blocker, i.e., D-APV, or a specific GluNR2A subunit-containing NMDA receptor antagonist, PEAQX, but was not prevented by selective GluNR2B or GluNR2C/D subunit-containing NMDA receptor blockers. Application of GNE-0723, a selective and brain-penetrant-positive allosteric modulator of GluN2A subunit-containing NMDA receptors, produced an LTP of N1, accompanied with a decrease in N2/N1 ratio, and occluded the 20-Hz facial stimulation-induced MF-GrC LTP. Inhibition of nitric oxide synthesis (NOS) prevented the facial stimulation-induced MF-GrC LTP, while activation of NOS produced an LTP of N1, with a decrease in N2/N1 ratio, and occluded the 20-Hz facial stimulation-induced MF-GrC LTP. In addition, GluN2A-containing NMDA receptor immunoreactivity was observed in the mouse cerebellar granular layer. These results indicate that facial stimulation at 20 Hz induced LTP of MF-GrC synaptic transmission via the GluN2A-containing NMDA receptor/nitric oxide cascade in mice. The results suggest that the sensory stimulation-evoked LTP of MF-GrC synaptic transmission in the granular layer may play a critical role in cerebellar adaptation to native mossy fiber excitatory inputs and motor learning behavior in living animals.
Collapse
Affiliation(s)
- Di Lu
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China
- Department of Ophthalmology, Affiliated Hospital of Yanbian University, Yanji, China
| | - Peng Wan
- Department of Neurology, Affiliated Hospital of Yanbian University, Yanji, China
| | - Yang Liu
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China
- Department of Ophthalmology, Affiliated Hospital of Yanbian University, Yanji, China
| | - Xian-Hua Jin
- Department of Neurology, Affiliated Hospital of Yanbian University, Yanji, China
| | - Chun-Ping Chu
- Department of Physiology, College of Basic Medicine, Jilin Medical University, Jilin, China
| | - Yan-Hua Bing
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China
- *Correspondence: Yan-Hua Bing,
| | - De-Lai Qiu
- Department of Physiology, College of Basic Medicine, Jilin Medical University, Jilin, China
- *Correspondence: Yan-Hua Bing,
| |
Collapse
|
9
|
Gagliano G, Monteverdi A, Casali S, Laforenza U, Gandini Wheeler-Kingshott CAM, D’Angelo E, Mapelli L. Non-Linear Frequency Dependence of Neurovascular Coupling in the Cerebellar Cortex Implies Vasodilation-Vasoconstriction Competition. Cells 2022; 11:1047. [PMID: 35326498 PMCID: PMC8947624 DOI: 10.3390/cells11061047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/11/2022] [Accepted: 03/17/2022] [Indexed: 01/28/2023] Open
Abstract
Neurovascular coupling (NVC) is the process associating local cerebral blood flow (CBF) to neuronal activity (NA). Although NVC provides the basis for the blood oxygen level dependent (BOLD) effect used in functional MRI (fMRI), the relationship between NVC and NA is still unclear. Since recent studies reported cerebellar non-linearities in BOLD signals during motor tasks execution, we investigated the NVC/NA relationship using a range of input frequencies in acute mouse cerebellar slices of vermis and hemisphere. The capillary diameter increased in response to mossy fiber activation in the 6-300 Hz range, with a marked inflection around 50 Hz (vermis) and 100 Hz (hemisphere). The corresponding NA was recorded using high-density multi-electrode arrays and correlated to capillary dynamics through a computational model dissecting the main components of granular layer activity. Here, NVC is known to involve a balance between the NMDAR-NO pathway driving vasodilation and the mGluRs-20HETE pathway driving vasoconstriction. Simulations showed that the NMDAR-mediated component of NA was sufficient to explain the time course of the capillary dilation but not its non-linear frequency dependence, suggesting that the mGluRs-20HETE pathway plays a role at intermediate frequencies. These parallel control pathways imply a vasodilation-vasoconstriction competition hypothesis that could adapt local hemodynamics at the microscale bearing implications for fMRI signals interpretation.
Collapse
Affiliation(s)
- Giuseppe Gagliano
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (G.G.); (A.M.); (S.C.); (C.A.M.G.W.-K.)
| | - Anita Monteverdi
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (G.G.); (A.M.); (S.C.); (C.A.M.G.W.-K.)
- IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Stefano Casali
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (G.G.); (A.M.); (S.C.); (C.A.M.G.W.-K.)
| | - Umberto Laforenza
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
| | - Claudia A. M. Gandini Wheeler-Kingshott
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (G.G.); (A.M.); (S.C.); (C.A.M.G.W.-K.)
- IRCCS Mondino Foundation, 27100 Pavia, Italy
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London WC1N3 BG, UK
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (G.G.); (A.M.); (S.C.); (C.A.M.G.W.-K.)
- IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Lisa Mapelli
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (G.G.); (A.M.); (S.C.); (C.A.M.G.W.-K.)
| |
Collapse
|
10
|
Maex R. Effect of extracellular volume on the energy stored in transmembrane concentration gradients. Phys Rev E 2021; 104:044409. [PMID: 34781519 DOI: 10.1103/physreve.104.044409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/30/2021] [Indexed: 11/07/2022]
Abstract
The amount of energy that can be retrieved from a concentration gradient across a membrane separating two compartments depends on the relative size of the compartments. Having a larger low-concentration compartment is in general beneficial. It is shown here analytically that the retrieved energy further increases when the high-concentration compartment shrinks during the mixing process, and a general formula is derived for the energy when the ratio of transported solvent to solute varies. These calculations are then applied to the interstitial compartment of the brain, which is rich in Na^{+} and Cl^{-} ions and poor in K^{+}. The reported shrinkage of this compartment, and swelling of the neurons, during oxygen deprivation is shown to enhance the energy recovered from NaCl entering the neurons. The slight loss of energy on the part of K^{+} can be compensated for by the uptake of K^{+} ions by glial cells. In conclusion, the present study proposes that the reported fluctuations in the size of the interstitial compartment of the brain (expansion during sleep and contraction during oxygen deprivation) optimize the amount of energy that neurons can store in, and retrieve from, their ionic concentration gradients.
Collapse
Affiliation(s)
- Reinoud Maex
- Biocomputation Research Group, University of Hertfordshire, Hatfield AL10 9AB, United Kingdom
| |
Collapse
|
11
|
Kita K, Albergaria C, Machado AS, Carey MR, Müller M, Delvendahl I. GluA4 facilitates cerebellar expansion coding and enables associative memory formation. eLife 2021; 10:65152. [PMID: 34219651 PMCID: PMC8291978 DOI: 10.7554/elife.65152] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 07/01/2021] [Indexed: 01/17/2023] Open
Abstract
AMPA receptors (AMPARs) mediate excitatory neurotransmission in the central nervous system (CNS) and their subunit composition determines synaptic efficacy. Whereas AMPAR subunits GluA1–GluA3 have been linked to particular forms of synaptic plasticity and learning, the functional role of GluA4 remains elusive. Here, we demonstrate a crucial function of GluA4 for synaptic excitation and associative memory formation in the cerebellum. Notably, GluA4-knockout mice had ~80% reduced mossy fiber to granule cell synaptic transmission. The fidelity of granule cell spike output was markedly decreased despite attenuated tonic inhibition and increased NMDA receptor-mediated transmission. Computational network modeling incorporating these changes revealed that deletion of GluA4 impairs granule cell expansion coding, which is important for pattern separation and associative learning. On a behavioral level, while locomotor coordination was generally spared, GluA4-knockout mice failed to form associative memories during delay eyeblink conditioning. These results demonstrate an essential role for GluA4-containing AMPARs in cerebellar information processing and associative learning.
Collapse
Affiliation(s)
- Katarzyna Kita
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, Zurich, Switzerland
| | - Catarina Albergaria
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Ana S Machado
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Megan R Carey
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Martin Müller
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, Zurich, Switzerland
| | - Igor Delvendahl
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Oláh VJ, Tarcsay G, Brunner J. Small Size of Recorded Neuronal Structures Confines the Accuracy in Direct Axonal Voltage Measurements. eNeuro 2021; 8:ENEURO.0059-21.2021. [PMID: 34257077 PMCID: PMC8342265 DOI: 10.1523/eneuro.0059-21.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 12/23/2022] Open
Abstract
Patch-clamp instruments including amplifier circuits and pipettes affect the recorded voltage signals. We hypothesized that realistic and complete in silico representation of recording instruments together with detailed morphology and biophysics of small recorded structures will reveal signal distortions and provide a tool that predicts native, instrument-free electrical signals from distorted voltage recordings. Therefore, we built a model that was verified by small axonal recordings. The model accurately recreated actual action potential (AP) measurements with typical recording artefacts and predicted the native electrical behavior. The simulations verified that recording instruments substantially filter voltage recordings. Moreover, we revealed that instrumentation directly interferes with local signal generation depending on the size of the recorded structures, which complicates the interpretation of recordings from smaller structures, such as axons. However, our model offers a straightforward approach that predicts the native waveforms of fast voltage signals and the underlying conductances even from the smallest neuronal structures.
Collapse
Affiliation(s)
- Viktor János Oláh
- Laboratory of Cellular Neuropharmacology, Institute of Experimental Medicine, H-1083, Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University, H-1085, Budapest, Hungary
| | - Gergely Tarcsay
- Laboratory of Cellular Neuropharmacology, Institute of Experimental Medicine, H-1083, Budapest, Hungary
| | - János Brunner
- Laboratory of Cellular Neuropharmacology, Institute of Experimental Medicine, H-1083, Budapest, Hungary
| |
Collapse
|
13
|
Marín M, Cruz NC, Ortigosa EM, Sáez-Lara MJ, Garrido JA, Carrillo RR. On the Use of a Multimodal Optimizer for Fitting Neuron Models. Application to the Cerebellar Granule Cell. Front Neuroinform 2021; 15:663797. [PMID: 34149387 PMCID: PMC8209370 DOI: 10.3389/fninf.2021.663797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/13/2021] [Indexed: 11/19/2022] Open
Abstract
This article extends a recent methodological workflow for creating realistic and computationally efficient neuron models whilst capturing essential aspects of single-neuron dynamics. We overcome the intrinsic limitations of the extant optimization methods by proposing an alternative optimization component based on multimodal algorithms. This approach can natively explore a diverse population of neuron model configurations. In contrast to methods that focus on a single global optimum, the multimodal method allows directly obtaining a set of promising solutions for a single but complex multi-feature objective function. The final sparse population of candidate solutions has to be analyzed and evaluated according to the biological plausibility and their objective to the target features by the expert. In order to illustrate the value of this approach, we base our proposal on the optimization of cerebellar granule cell (GrC) models that replicate the essential properties of the biological cell. Our results show the emerging variability of plausible sets of values that this type of neuron can adopt underlying complex spiking characteristics. Also, the set of selected cerebellar GrC models captured spiking dynamics closer to the reference model than the single model obtained with off-the-shelf parameter optimization algorithms used in our previous article. The method hereby proposed represents a valuable strategy for adjusting a varied population of realistic and simplified neuron models. It can be applied to other kinds of neuron models and biological contexts.
Collapse
Affiliation(s)
- Milagros Marín
- Department of Biochemistry and Molecular Biology I, University of Granada, Granada, Spain
| | - Nicolás C Cruz
- Department of Informatics, University of Almería, ceiA3, Almería, Spain
| | - Eva M Ortigosa
- Department of Computer Architecture and Technology-CITIC, University of Granada, Granada, Spain
| | - María J Sáez-Lara
- Department of Biochemistry and Molecular Biology I, University of Granada, Granada, Spain
| | - Jesús A Garrido
- Department of Computer Architecture and Technology-CITIC, University of Granada, Granada, Spain
| | - Richard R Carrillo
- Department of Computer Architecture and Technology-CITIC, University of Granada, Granada, Spain
| |
Collapse
|
14
|
Rizza MF, Locatelli F, Masoli S, Sánchez-Ponce D, Muñoz A, Prestori F, D'Angelo E. Stellate cell computational modeling predicts signal filtering in the molecular layer circuit of cerebellum. Sci Rep 2021; 11:3873. [PMID: 33594118 PMCID: PMC7886897 DOI: 10.1038/s41598-021-83209-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/17/2020] [Indexed: 12/22/2022] Open
Abstract
The functional properties of cerebellar stellate cells and the way they regulate molecular layer activity are still unclear. We have measured stellate cells electroresponsiveness and their activation by parallel fiber bursts. Stellate cells showed intrinsic pacemaking, along with characteristic responses to depolarization and hyperpolarization, and showed a marked short-term facilitation during repetitive parallel fiber transmission. Spikes were emitted after a lag and only at high frequency, making stellate cells to operate as delay-high-pass filters. A detailed computational model summarizing these physiological properties allowed to explore different functional configurations of the parallel fiber-stellate cell-Purkinje cell circuit. Simulations showed that, following parallel fiber stimulation, Purkinje cells almost linearly increased their response with input frequency, but such an increase was inhibited by stellate cells, which leveled the Purkinje cell gain curve to its 4 Hz value. When reciprocal inhibitory connections between stellate cells were activated, the control of stellate cells over Purkinje cell discharge was maintained only at very high frequencies. These simulations thus predict a new role for stellate cells, which could endow the molecular layer with low-pass and band-pass filtering properties regulating Purkinje cell gain and, along with this, also burst delay and the burst-pause responses pattern.
Collapse
Affiliation(s)
- Martina Francesca Rizza
- Department of Brain and Behavioral Sciences, University of Pavia, Via Forlanini 6, 27100, Pavia, Italy
| | - Francesca Locatelli
- Department of Brain and Behavioral Sciences, University of Pavia, Via Forlanini 6, 27100, Pavia, Italy
| | - Stefano Masoli
- Department of Brain and Behavioral Sciences, University of Pavia, Via Forlanini 6, 27100, Pavia, Italy
| | - Diana Sánchez-Ponce
- Centro de Tecnología Biomédica (CTB), Technical University of Madrid, Madrid, Spain
| | - Alberto Muñoz
- Centro de Tecnología Biomédica (CTB), Technical University of Madrid, Madrid, Spain
- Departamento de Biología Celular, Complutense University of Madrid, Madrid, Spain
| | - Francesca Prestori
- Department of Brain and Behavioral Sciences, University of Pavia, Via Forlanini 6, 27100, Pavia, Italy
| | - Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Via Forlanini 6, 27100, Pavia, Italy.
- Brain Connectivity Center, IRCCS Mondino Foundation, Pavia, Italy.
| |
Collapse
|
15
|
Hartmann K, Brecht M. A Functionally and Anatomically Bipartite Vocal Pattern Generator in the Rat Brain Stem. iScience 2020; 23:101804. [PMID: 33299974 PMCID: PMC7702002 DOI: 10.1016/j.isci.2020.101804] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/04/2020] [Accepted: 11/10/2020] [Indexed: 10/29/2022] Open
Abstract
The mammalian vocal pattern generator is situated in the brainstem but its exact structure is debated. We mapped these circuits in rats by cooling and microstimulation. Local cooling disrupted call production above an anterior and a posterior brainstem position. Anterior cooling affected predominantly high-frequency calls, whereas posterior cooling affected low-frequency calls. Electrical microstimulation of the anterior part led to modulated high-frequency calls, whereas microstimulation of the posterior part led to flat, low-frequency calls. At intermediate positions cooling did not affect calls and stimulation did not elicit calls. The anterior region corresponds to a subsection of the parvicellular reticular formation that we term the vocalization parvicellular reticular formation (VoPaRt). The posterior vocalization sites coincide with the nucleus retroambiguus (NRA). VoPaRt and NRA neurons were very small and the VoPaRt was highly myelinated, suggestive of high-speed processing. Our data suggest an anatomically and functionally bipartite vocal pattern generator.
Collapse
Affiliation(s)
- Konstantin Hartmann
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115 Berlin, Germany
| | - Michael Brecht
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115 Berlin, Germany
| |
Collapse
|
16
|
Cellular-resolution mapping uncovers spatial adaptive filtering at the rat cerebellum input stage. Commun Biol 2020; 3:635. [PMID: 33128000 PMCID: PMC7599228 DOI: 10.1038/s42003-020-01360-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 10/08/2020] [Indexed: 01/08/2023] Open
Abstract
Long-term synaptic plasticity is thought to provide the substrate for adaptive computation in brain circuits but very little is known about its spatiotemporal organization. Here, we combined multi-spot two-photon laser microscopy in rat cerebellar slices with realistic modeling to map the distribution of plasticity in multi-neuronal units of the cerebellar granular layer. The units, composed by ~300 neurons activated by ~50 mossy fiber glomeruli, showed long-term potentiation concentrated in the core and long-term depression in the periphery. This plasticity was effectively accounted for by an NMDA receptor and calcium-dependent induction rule and was regulated by the inhibitory Golgi cell loops. Long-term synaptic plasticity created effective spatial filters tuning the time-delay and gain of spike retransmission at the cerebellum input stage and provided a plausible basis for the spatiotemporal recoding of input spike patterns anticipated by the motor learning theory. Casali, Tognolina et al. use two-photon laser microscopy to spatially map long-term synaptic plasticity in rat cerebellar granular cells following stimulation of mossy fibers. Their data allow them to apply realistic modeling to test hypotheses about the synaptic spiking dynamics and reveal the importance of synaptic inhibition to defining these microcircuits.
Collapse
|
17
|
Marín M, Sáez-Lara MJ, Ros E, Garrido JA. Optimization of Efficient Neuron Models With Realistic Firing Dynamics. The Case of the Cerebellar Granule Cell. Front Cell Neurosci 2020; 14:161. [PMID: 32765220 PMCID: PMC7381211 DOI: 10.3389/fncel.2020.00161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/13/2020] [Indexed: 11/17/2022] Open
Abstract
Biologically relevant large-scale computational models currently represent one of the main methods in neuroscience for studying information processing primitives of brain areas. However, biologically realistic neuron models tend to be computationally heavy and thus prevent these models from being part of brain-area models including thousands or even millions of neurons. The cerebellar input layer represents a canonical example of large scale networks. In particular, the cerebellar granule cells, the most numerous cells in the whole mammalian brain, have been proposed as playing a pivotal role in the creation of somato-sensorial information representations. Enhanced burst frequency (spiking resonance) in the granule cells has been proposed as facilitating the input signal transmission at the theta-frequency band (4–12 Hz), but the functional role of this cell feature in the operation of the granular layer remains largely unclear. This study aims to develop a methodological pipeline for creating neuron models that maintain biological realism and computational efficiency whilst capturing essential aspects of single-neuron processing. Therefore, we selected a light computational neuron model template (the adaptive-exponential integrate-and-fire model), whose parameters were progressively refined using an automatic parameter tuning with evolutionary algorithms (EAs). The resulting point-neuron models are suitable for reproducing the main firing properties of a realistic granule cell from electrophysiological measurements, including the spiking resonance at the theta-frequency band, repetitive firing according to a specified intensity-frequency (I-F) curve and delayed firing under current-pulse stimulation. Interestingly, the proposed model also reproduced some other emergent properties (namely, silent at rest, rheobase and negligible adaptation under depolarizing currents) even though these properties were not set in the EA as a target in the fitness function (FF), proving that these features are compatible even in computationally simple models. The proposed methodology represents a valuable tool for adjusting AdEx models according to a FF defined in the spiking regime and based on biological data. These models are appropriate for future research of the functional implication of bursting resonance at the theta band in large-scale granular layer network models.
Collapse
Affiliation(s)
- Milagros Marín
- Department of Computer Architecture and Technology-CITIC, University of Granada, Granada, Spain.,Department of Biochemistry and Molecular Biology I, University of Granada, Granada, Spain
| | - María José Sáez-Lara
- Department of Biochemistry and Molecular Biology I, University of Granada, Granada, Spain
| | - Eduardo Ros
- Department of Computer Architecture and Technology-CITIC, University of Granada, Granada, Spain
| | - Jesús A Garrido
- Department of Computer Architecture and Technology-CITIC, University of Granada, Granada, Spain
| |
Collapse
|
18
|
Masoli S, Tognolina M, Laforenza U, Moccia F, D'Angelo E. Parameter tuning differentiates granule cell subtypes enriching transmission properties at the cerebellum input stage. Commun Biol 2020; 3:222. [PMID: 32385389 PMCID: PMC7210112 DOI: 10.1038/s42003-020-0953-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 04/13/2020] [Indexed: 02/06/2023] Open
Abstract
The cerebellar granule cells (GrCs) are classically described as a homogeneous neuronal population discharging regularly without adaptation. We show that GrCs in fact generate diverse response patterns to current injection and synaptic activation, ranging from adaptation to acceleration of firing. Adaptation was predicted by parameter optimization in detailed computational models based on available knowledge on GrC ionic channels. The models also predicted that acceleration required additional mechanisms. We found that yet unrecognized TRPM4 currents specifically accounted for firing acceleration and that adapting GrCs outperformed accelerating GrCs in transmitting high-frequency mossy fiber (MF) bursts over a background discharge. This implied that GrC subtypes identified by their electroresponsiveness corresponded to specific neurotransmitter release probability values. Simulations showed that fine-tuning of pre- and post-synaptic parameters generated effective MF-GrC transmission channels, which could enrich the processing of input spike patterns and enhance spatio-temporal recoding at the cerebellar input stage.
Collapse
Affiliation(s)
- Stefano Masoli
- Department of Brain and Behavioral Sciences, University of Pavia, Via Forlanini 6, 27100, Pavia, Italy
| | - Marialuisa Tognolina
- Department of Brain and Behavioral Sciences, University of Pavia, Via Forlanini 6, 27100, Pavia, Italy
| | - Umberto Laforenza
- Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100, Pavia, Italy
| | - Francesco Moccia
- Department of Biology and Biotechnology, University of Pavia, Via Forlanini 6, 27100, Pavia, Italy
| | - Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Via Forlanini 6, 27100, Pavia, Italy. .,Brain Connectivity Center, IRCCS Mondino Foundation, Via Mondino 2, 27100, Pavia, Italy.
| |
Collapse
|
19
|
Tapella L, Soda T, Mapelli L, Bortolotto V, Bondi H, Ruffinatti FA, Dematteis G, Stevano A, Dionisi M, Ummarino S, Di Ruscio A, Distasi C, Grilli M, Genazzani AA, D'Angelo E, Moccia F, Lim D. Deletion of calcineurin from GFAP-expressing astrocytes impairs excitability of cerebellar and hippocampal neurons through astroglial Na + /K + ATPase. Glia 2020; 68:543-560. [PMID: 31626368 DOI: 10.1002/glia.23737] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 10/02/2019] [Accepted: 10/04/2019] [Indexed: 01/29/2023]
Abstract
Astrocytes perform important housekeeping functions in the nervous system including maintenance of adequate neuronal excitability, although the regulatory mechanisms are currently poorly understood. The astrocytic Ca2+ /calmodulin-activated phosphatase calcineurin (CaN) is implicated in the development of reactive gliosis and neuroinflammation, but its roles, including the control of neuronal excitability, in healthy brain is unknown. We have generated a mouse line with conditional knockout (KO) of CaN B1 (CaNB1) in glial fibrillary acidic protein-expressing astrocytes (astroglial calcineurin KO [ACN-KO]). Here, we report that postnatal and astrocyte-specific ablation of CaNB1 did not alter normal growth and development as well as adult neurogenesis. Yet, we found that specific deletion of astrocytic CaN selectively impairs intrinsic neuronal excitability in hippocampal CA1 pyramidal neurons and cerebellar granule cells (CGCs). This impairment was associated with a decrease in after hyperpolarization in CGC, while passive properties were unchanged, suggesting impairment of K+ homeostasis. Indeed, blockade of Na+ /K+ -ATPase (NKA) with ouabain phenocopied the electrophysiological alterations observed in ACN-KO CGCs. In addition, NKA activity was significantly lower in cerebellar and hippocampal lysates and in pure astrocytic cultures from ACN-KO mice. While no changes were found in protein levels, NKA activity was inhibited by the specific CaN inhibitor FK506 in both cerebellar lysates and primary astroglia from control mice, suggesting that CaN directly modulates NKA activity and in this manner controls neuronal excitability. In summary, our data provide formal evidence for the notion that astroglia is fundamental for controlling basic neuronal functions and place CaN center-stage as an astrocytic Ca2+ -sensitive switch.
Collapse
Affiliation(s)
- Laura Tapella
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | - Teresa Soda
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Lisa Mapelli
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Valeria Bortolotto
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | - Heather Bondi
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | - Federico A Ruffinatti
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | - Giulia Dematteis
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | - Alessio Stevano
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | - Marianna Dionisi
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | - Simone Ummarino
- Center of Life Science, Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, Massachusetts
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Annalisa Di Ruscio
- Center of Life Science, Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, Massachusetts
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Carla Distasi
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | - Mariagrazia Grilli
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | - Armando A Genazzani
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | - Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- IRCCS Mondino Foundation, Pavia, Italy
| | - Francesco Moccia
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| |
Collapse
|
20
|
Gazan A, Rial D, Schiffmann SN. Ablation of striatal somatostatin interneurons affects MSN morphology and electrophysiological properties, and increases cocaine‐induced hyperlocomotion in mice. Eur J Neurosci 2020; 51:1388-1402. [DOI: 10.1111/ejn.14581] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Adeline Gazan
- Laboratory of Neurophysiology ULB Neuroscience Institute Université Libre de Bruxelles (ULB) Brussels Belgium
| | - Daniel Rial
- Laboratory of Neurophysiology ULB Neuroscience Institute Université Libre de Bruxelles (ULB) Brussels Belgium
| | - Serge N. Schiffmann
- Laboratory of Neurophysiology ULB Neuroscience Institute Université Libre de Bruxelles (ULB) Brussels Belgium
| |
Collapse
|
21
|
Prestori F, Mapelli L, D'Angelo E. Diverse Neuron Properties and Complex Network Dynamics in the Cerebellar Cortical Inhibitory Circuit. Front Mol Neurosci 2019; 12:267. [PMID: 31787879 PMCID: PMC6854908 DOI: 10.3389/fnmol.2019.00267] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/17/2019] [Indexed: 12/12/2022] Open
Abstract
Neuronal inhibition can be defined as a spatiotemporal restriction or suppression of local microcircuit activity. The importance of inhibition relies in its fundamental role in shaping signal processing in single neurons and neuronal circuits. In this context, the activity of inhibitory interneurons proved the key to endow networks with complex computational and dynamic properties. In the last 50 years, the prevailing view on the functional role of cerebellar cortical inhibitory circuits was that excitatory and inhibitory inputs sum spatially and temporally in order to determine the motor output through Purkinje cells (PCs). Consequently, cerebellar inhibition has traditionally been conceived in terms of restricting or blocking excitation. This assumption has been challenged, in particular in the cerebellar cortex where all neurons except granule cells (and unipolar brush cells in specific lobules) are inhibitory and fire spontaneously at high rates. Recently, a combination of electrophysiological recordings in vitro and in vivo, imaging, optogenetics and computational modeling, has revealed that inhibitory interneurons play a much more complex role in regulating cerebellar microcircuit functions: inhibition shapes neuronal response dynamics in the whole circuit and eventually regulate the PC output. This review elaborates current knowledge on cerebellar inhibitory interneurons [Golgi cells, Lugaro cells (LCs), basket cells (BCs) and stellate cells (SCs)], starting from their ontogenesis and moving up to their morphological, physiological and plastic properties, and integrates this knowledge with that on the more renown granule cells and PCs. We will focus on the circuit loops in which these interneurons are involved and on the way they generate feed-forward, feedback and lateral inhibition along with complex spatio-temporal response dynamics. In this perspective, inhibitory interneurons emerge as the real controllers of cerebellar functioning.
Collapse
Affiliation(s)
- Francesca Prestori
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Lisa Mapelli
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
22
|
GPRIN3 Controls Neuronal Excitability, Morphology, and Striatal-Dependent Behaviors in the Indirect Pathway of the Striatum. J Neurosci 2019; 39:7513-7528. [PMID: 31363062 DOI: 10.1523/jneurosci.2454-18.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 07/16/2019] [Accepted: 07/19/2019] [Indexed: 12/15/2022] Open
Abstract
The regulation of the striatum by the GPCR signaling through neuromodulators is essential for its physiology and physiopathology, so it is necessary to know all the compounds of these pathways. In this study, we identified a new important partner of the dopaminergic pathway: GPRIN3 (a member of the GPRIN family). GPRIN3 is highly expressed in the striatum but with undefined function. Cell sorting of medium spiny neurons (MSNs) in indirect MSNs and direct MSNs indicated the presence of the GPRIN3 gene in both populations with a preferential expression in indirect MSNs. This led us to generate GPRIN3 KO mice by CRISPR/Cas9 and test male animals to access possible alterations in morphological, electrophysiological, and behavioral parameters following its absence. 3D reconstruction analysis of MSNs revealed increased neuronal arborization in GPRIN3 KO and modified passive and active electrophysiological properties. These cellular alterations were coupled with increased motivation and cocaine-induced hyperlocomotion. Additionally, using a specific indirect MSN knockdown, we showed a preferential role for GPRIN3 in indirect MSNs related to the D2R signaling. Together, these results show that GPRIN3 is a mediator of D2R function in the striatum playing a major role in striatal physiology.SIGNIFICANCE STATEMENT The striatum is the main input of the basal ganglia processing information from different brain regions through the combined actions of direct pathway neurons and indirect pathway neurons. Both neuronal populations are defined by the expression of dopamine D1R or D2R GPCRs, respectively. How these neurons signal to the respective G-protein is still debatable. Here we identified GPRIN3 as a putative selective controller of D2R function in the striatum playing a critical role in striatal-associated behaviors and cellular functions. This study represents the identification of a new target to tackle striatal dysfunction associated with the D2R, such as schizophrenia, Parkinson's disease, and drug addiction.
Collapse
|
23
|
Bareš M, Apps R, Avanzino L, Breska A, D'Angelo E, Filip P, Gerwig M, Ivry RB, Lawrenson CL, Louis ED, Lusk NA, Manto M, Meck WH, Mitoma H, Petter EA. Consensus paper: Decoding the Contributions of the Cerebellum as a Time Machine. From Neurons to Clinical Applications. CEREBELLUM (LONDON, ENGLAND) 2019; 18:266-286. [PMID: 30259343 DOI: 10.1007/s12311-018-0979-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Time perception is an essential element of conscious and subconscious experience, coordinating our perception and interaction with the surrounding environment. In recent years, major technological advances in the field of neuroscience have helped foster new insights into the processing of temporal information, including extending our knowledge of the role of the cerebellum as one of the key nodes in the brain for this function. This consensus paper provides a state-of-the-art picture from the experts in the field of the cerebellar research on a variety of crucial issues related to temporal processing, drawing on recent anatomical, neurophysiological, behavioral, and clinical research.The cerebellar granular layer appears especially well-suited for timing operations required to confer millisecond precision for cerebellar computations. This may be most evident in the manner the cerebellum controls the duration of the timing of agonist-antagonist EMG bursts associated with fast goal-directed voluntary movements. In concert with adaptive processes, interactions within the cerebellar cortex are sufficient to support sub-second timing. However, supra-second timing seems to require cortical and basal ganglia networks, perhaps operating in concert with cerebellum. Additionally, sensory information such as an unexpected stimulus can be forwarded to the cerebellum via the climbing fiber system, providing a temporally constrained mechanism to adjust ongoing behavior and modify future processing. Patients with cerebellar disorders exhibit impairments on a range of tasks that require precise timing, and recent evidence suggest that timing problems observed in other neurological conditions such as Parkinson's disease, essential tremor, and dystonia may reflect disrupted interactions between the basal ganglia and cerebellum.The complex concepts emerging from this consensus paper should provide a foundation for further discussion, helping identify basic research questions required to understand how the brain represents and utilizes time, as well as delineating ways in which this knowledge can help improve the lives of those with neurological conditions that disrupt this most elemental sense. The panel of experts agrees that timing control in the brain is a complex concept in whom cerebellar circuitry is deeply involved. The concept of a timing machine has now expanded to clinical disorders.
Collapse
Affiliation(s)
- Martin Bareš
- First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic.
- Department of Neurology, School of Medicine, University of Minnesota, Minneapolis, USA.
| | - Richard Apps
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Laura Avanzino
- Department of Experimental Medicine, Section of Human Physiology and Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy
- Centre for Parkinson's Disease and Movement Disorders, Ospedale Policlinico San Martino, Genoa, Italy
| | - Assaf Breska
- Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, USA
| | - Egidio D'Angelo
- Neurophysiology Unit, Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Brain Connectivity Center, Fondazione Istituto Neurologico Nazionale Casimiro Mondino (IRCCS), Pavia, Italy
| | - Pavel Filip
- First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marcus Gerwig
- Department of Neurology, University of Duisburg-Essen, Duisburg, Germany
| | - Richard B Ivry
- Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, USA
| | - Charlotte L Lawrenson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Elan D Louis
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT, USA
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Nicholas A Lusk
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Mario Manto
- Department of Neurology, CHU-Charleroi, Charleroi, Belgium -Service des Neurosciences, UMons, Mons, Belgium
| | - Warren H Meck
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Hiroshi Mitoma
- Medical Education Promotion Center, Tokyo Medical University, Tokyo, Japan
| | - Elijah A Petter
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| |
Collapse
|
24
|
McLaughlin C, Clements J, Oprişoreanu AM, Sylantyev S. The role of tonic glycinergic conductance in cerebellar granule cell signalling and the effect of gain-of-function mutation. J Physiol 2019; 597:2457-2481. [PMID: 30875431 DOI: 10.1113/jp277626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 03/14/2019] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS A T258F mutation of the glycine receptor increases the receptor affinity to endogenous agonists, modifies single-channel conductance and shapes response decay kinetics. Glycine receptors of cerebellar granule cells play their functional role not continuously, but when the granule cell layer starts receiving a high amount of excitatory inputs. Despite their relative scarcity, tonically active glycine receptors of cerebellar granule cells make a significant impact on action potential generation and inter-neuronal crosstalk, and modulate synaptic plasticity in neural networks; extracellular glycine increases probability of postsynaptic response occurrence acting at NMDA receptors and decreases this probability acting at glycine receptors. Tonic conductance through glycine receptors of cerebellar granule cells is a yet undiscovered element of the biphasic mechanism that regulates processing of sensory inputs in the cerebellum. A T258F point mutation disrupts this biphasic mechanism, thus illustrating the possible role of the gain-of-function mutations of the glycine receptor in development of neural pathologies. ABSTRACT Functional glycine receptors (GlyRs) have been repeatedly detected in cerebellar granule cells (CGCs), where they deliver exclusively tonic inhibitory signals. The functional role of this signalling, however, remains unclear. Apart from that, there is accumulating evidence of the important role of GlyRs in cerebellar structures in development of neural pathologies such as hyperekplexia, which can be triggered by GlyR gain-of-function mutations. In this research we initially tested functional properties of GlyRs, carrying the yet understudied T258F gain-of-function mutation, and found that this mutation makes significant modifications in GlyR response to endogenous agonists. Next, we clarified the role of tonic GlyR conductance in neuronal signalling generated by single CGCs and by neural networks in cell cultures and in living cerebellar tissue of C57Bl-6J mice. We found that GlyRs of CGCs deliver a significant amount of tonic inhibition not continuously, but when the cerebellar granule layer starts receiving substantial excitatory input. Under these conditions tonically active GlyRs become a part of neural signalling machinery allowing generation of action potential (AP) bursts of limited length in response to sensory-evoked signals. GlyRs of CGCs support a biphasic modulatory mechanism which enhances AP firing when excitatory input intensity is low, but suppresses it when excitatory input rises to a certain critical level. This enables one of the key functions of the CGC layer: formation of sensory representations and their translation into motor output. Finally, we have demonstrated that the T258F mutation in CGC GlyRs modifies single-cell and neural network signalling, and breaks a biphasic modulation of the AP-generating machinery.
Collapse
Affiliation(s)
- Catherine McLaughlin
- Gene Therapy Group, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - John Clements
- The John Curtin School of Medical Research, Australian National University, 131 Garran Road, Canberra, ACT 2601, Australia
| | - Ana-Maria Oprişoreanu
- Center for Discovery Brain Sciences, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Sergiy Sylantyev
- Center for Clinical Brain Sciences, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| |
Collapse
|
25
|
Cayco-Gajic NA, Silver RA. Re-evaluating Circuit Mechanisms Underlying Pattern Separation. Neuron 2019; 101:584-602. [PMID: 30790539 PMCID: PMC7028396 DOI: 10.1016/j.neuron.2019.01.044] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/07/2019] [Accepted: 01/18/2019] [Indexed: 11/22/2022]
Abstract
When animals interact with complex environments, their neural circuits must separate overlapping patterns of activity that represent sensory and motor information. Pattern separation is thought to be a key function of several brain regions, including the cerebellar cortex, insect mushroom body, and dentate gyrus. However, recent findings have questioned long-held ideas on how these circuits perform this fundamental computation. Here, we re-evaluate the functional and structural mechanisms underlying pattern separation. We argue that the dimensionality of the space available for population codes representing sensory and motor information provides a common framework for understanding pattern separation. We then discuss how these three circuits use different strategies to separate activity patterns and facilitate associative learning in the presence of trial-to-trial variability.
Collapse
Affiliation(s)
- N Alex Cayco-Gajic
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - R Angus Silver
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
26
|
Hyperexcitability and Hyperplasticity Disrupt Cerebellar Signal Transfer in the IB2 KO Mouse Model of Autism. J Neurosci 2019; 39:2383-2397. [PMID: 30696733 DOI: 10.1523/jneurosci.1985-18.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/22/2018] [Accepted: 01/08/2019] [Indexed: 12/25/2022] Open
Abstract
Autism spectrum disorders (ASDs) are pervasive neurodevelopmental conditions that often involve mutations affecting synaptic mechanisms. Recently, the involvement of cerebellum in ASDs has been suggested, but the underlying functional alterations remained obscure. We investigated single-neuron and microcircuit properties in IB2 (Islet Brain-2) KO mice of either sex. The IB2 gene (chr22q13.3 terminal region) deletion occurs in virtually all cases of Phelan-McDermid syndrome, causing autistic symptoms and a severe delay in motor skill acquisition. IB2 KO granule cells showed a larger NMDA receptor-mediated current and enhanced intrinsic excitability, raising the excitatory/inhibitory balance. Furthermore, the spatial organization of granular layer responses to mossy fibers shifted from a "Mexican hat" to a "stovepipe hat" profile, with stronger excitation in the core and weaker inhibition in the surround. Finally, the size and extension of long-term synaptic plasticity were remarkably increased. These results show for the first time that hyperexcitability and hyperplasticity disrupt signal transfer in the granular layer of IB2 KO mice, supporting cerebellar involvement in the pathogenesis of ASD.SIGNIFICANCE STATEMENT This article shows for the first time a complex set of alterations in the cerebellum granular layer of a mouse model [IB2 (Islet Brain-2) KO] of autism spectrum disorders. The IB2 KO in mice mimics the deletion of the corresponding gene in the Phelan-McDermid syndrome in humans. The changes reported here are centered on NMDA receptor hyperactivity, hyperplasticity, and hyperexcitability. These, in turn, increase the excitatory/inhibitory balance and alter the shape of center/surround structures that emerge in the granular layer in response to mossy fiber activity. These results support recent theories suggesting the involvement of cerebellum in autism spectrum disorders.
Collapse
|
27
|
Comhair J, Devoght J, Morelli G, Harvey RJ, Briz V, Borrie SC, Bagni C, Rigo JM, Schiffmann SN, Gall D, Brône B, Molchanova SM. Alpha2-Containing Glycine Receptors Promote Neonatal Spontaneous Activity of Striatal Medium Spiny Neurons and Support Maturation of Glutamatergic Inputs. Front Mol Neurosci 2018; 11:380. [PMID: 30374290 PMCID: PMC6196267 DOI: 10.3389/fnmol.2018.00380] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/24/2018] [Indexed: 12/16/2022] Open
Abstract
Glycine receptors (GlyRs) containing the α2 subunit are highly expressed in the developing brain, where they regulate neuronal migration and maturation, promote spontaneous network activity and subsequent development of synaptic connections. Mutations in GLRA2 are associated with autism spectrum disorder, but the underlying pathophysiology is not described yet. Here, using Glra2-knockout mice, we found a GlyR-dependent effect on neonatal spontaneous activity of dorsal striatum medium spiny neurons (MSNs) and maturation of the incoming glutamatergic innervation. Our data demonstrate that functional GlyRs are highly expressed in MSNs of one-week-old mice, but they do not generate endogenous chloride-mediated tonic or phasic current. Despite of that, knocking out the Glra2 severely affects the shape of action potentials and impairs spontaneous activity and the frequency of miniature AMPA receptor-mediated currents in MSNs. This reduction in spontaneous activity and glutamatergic signaling can attribute to the observed changes in neonatal behavioral phenotypes as seen in ultrasonic vocalizations and righting reflex. In adult Glra2-knockout animals, the glutamatergic synapses in MSNs remain functionally underdeveloped. The number of glutamatergic synapses and release probability at presynaptic site remain unaffected, but the amount of postsynaptic AMPA receptors is decreased. This deficit is a consequence of impaired development of the neuronal circuitry since acute inhibition of GlyRs by strychnine in adult MSNs does not affect the properties of glutamatergic synapses. Altogether, these results demonstrate that GlyR-mediated signaling supports neonatal spontaneous MSN activity and, in consequence, promotes the functional maturation of glutamatergic synapses on MSNs. The described mechanism might shed light on the pathophysiological mechanisms in GLRA2-linked autism spectrum disorder cases.
Collapse
Affiliation(s)
- Joris Comhair
- Laboratory of Neurophysiology, ULB-Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium.,BIOMED Research Institute, University of Hasselt, Hasselt, Belgium
| | - Jens Devoght
- BIOMED Research Institute, University of Hasselt, Hasselt, Belgium
| | - Giovanni Morelli
- BIOMED Research Institute, University of Hasselt, Hasselt, Belgium
| | - Robert J Harvey
- School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, QLD, Australia.,Sunshine Coast Health Institute, Birtinya, QLD, Australia
| | - Victor Briz
- Center for Human Genetics and Leuven Research Institute for Neuroscience and Disease, KU Leuven, Leuven, Belgium.,VIB Center for the Biology of Disease, Leuven, Belgium
| | - Sarah C Borrie
- Center for Human Genetics and Leuven Research Institute for Neuroscience and Disease, KU Leuven, Leuven, Belgium.,VIB Center for the Biology of Disease, Leuven, Belgium
| | - Claudia Bagni
- Center for Human Genetics and Leuven Research Institute for Neuroscience and Disease, KU Leuven, Leuven, Belgium.,VIB Center for the Biology of Disease, Leuven, Belgium
| | - Jean-Michel Rigo
- BIOMED Research Institute, University of Hasselt, Hasselt, Belgium
| | - Serge N Schiffmann
- Laboratory of Neurophysiology, ULB-Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - David Gall
- Laboratory of Neurophysiology, ULB-Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Bert Brône
- BIOMED Research Institute, University of Hasselt, Hasselt, Belgium
| | - Svetlana M Molchanova
- Laboratory of Neurophysiology, ULB-Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
28
|
Hernandez O, Pietrajtis K, Mathieu B, Dieudonné S. Optogenetic stimulation of complex spatio-temporal activity patterns by acousto-optic light steering probes cerebellar granular layer integrative properties. Sci Rep 2018; 8:13768. [PMID: 30213968 PMCID: PMC6137064 DOI: 10.1038/s41598-018-32017-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 08/28/2018] [Indexed: 12/11/2022] Open
Abstract
Optogenetics provides tools to control afferent activity in brain microcircuits. However, this requires optical methods that can evoke asynchronous and coordinated activity within neuronal ensembles in a spatio-temporally precise way. Here we describe a light patterning method, which combines MHz acousto-optic beam steering and adjustable low numerical aperture Gaussian beams, to achieve fast 2D targeting in scattering tissue. Using mossy fiber afferents to the cerebellar cortex as a testbed, we demonstrate single fiber optogenetic stimulation with micron-scale lateral resolution, >100 µm depth-penetration and 0.1 ms spiking precision. Protracted spatio-temporal patterns of light delivered by our illumination system evoked sustained asynchronous mossy fiber activity with excellent repeatability. Combining optical and electrical stimulations, we show that the cerebellar granular layer performs nonlinear integration, whereby sustained mossy fiber activity provides a permissive context for the transmission of salient inputs, enriching combinatorial views on mossy fiber pattern separation.
Collapse
Affiliation(s)
- Oscar Hernandez
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Université, 46 rue d'Ulm, 75005, Paris, France
- Wavefront-engineering Microscopy Group, Neurophotonics Laboratory, CNRS UMR8250, Paris Descartes University, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270, Paris Cedex 06, France
- CNC Program, Stanford University, Stanford, California, 94305, USA
| | - Katarzyna Pietrajtis
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Université, 46 rue d'Ulm, 75005, Paris, France
| | - Benjamin Mathieu
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Université, 46 rue d'Ulm, 75005, Paris, France
| | - Stéphane Dieudonné
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Université, 46 rue d'Ulm, 75005, Paris, France.
| |
Collapse
|
29
|
Cerebellar Learning Properties Are Modulated by the CRF Receptor. J Neurosci 2018; 38:6751-6765. [PMID: 29934353 DOI: 10.1523/jneurosci.3106-15.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 04/17/2018] [Accepted: 04/26/2018] [Indexed: 11/21/2022] Open
Abstract
Corticotropin-releasing factor (CRF) and its type 1 receptor (CRFR1) play an important role in the responses to stressful challenges. Despite the well established expression of CRFR1 in granular cells (GrCs), its role in procedural motor performance and memory formation remains elusive. To investigate the role of CRFR1 expression in cerebellar GrCs, we used a mouse model depleted of CRFR1 in these cells. We detected changes in the cellular learning mechanisms in GrCs depleted of CRFR1 in that they showed changes in intrinsic excitability and long-term synaptic plasticity. Analysis of cerebella transcriptome obtained from KO and control mice detected prominent alterations in the expression of calcium signaling pathways components. Moreover, male mice depleted of CRFR1 specifically in GrCs showed accelerated Pavlovian associative eye-blink conditioning, but no differences in baseline motor performance, locomotion, or fear and anxiety-related behaviors. Our findings shed light on the interplay between stress-related central mechanisms and cerebellar motor conditioning, highlighting the role of the CRF system in regulating particular forms of cerebellar learning.SIGNIFICANCE STATEMENT Although it is known that the corticotropin-releasing factor type 1 receptor (CRFR1) is highly expressed in the cerebellum, little attention has been given to its role in cerebellar functions in the behaving animal. Moreover, most of the attention was directed at the effect of CRF on Purkinje cells at the cellular level and, to this date, almost no data exist on the role of this stress-related receptor in other cerebellar structures. Here, we explored the behavioral and cellular effect of granular cell-specific ablation of CRFR1 We found a profound effect on learning both at the cellular and behavioral levels without an effect on baseline motor skills.
Collapse
|
30
|
Nair M, Manchan Kannimoola J, Jayaraman B, Nair B, Diwakar S. Temporal constrained objects for modelling neuronal dynamics. PeerJ Comput Sci 2018; 4:e159. [PMID: 33816812 PMCID: PMC7924700 DOI: 10.7717/peerj-cs.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/26/2018] [Indexed: 06/12/2023]
Abstract
BACKGROUND Several new programming languages and technologies have emerged in the past few decades in order to ease the task of modelling complex systems. Modelling the dynamics of complex systems requires various levels of abstractions and reductive measures in representing the underlying behaviour. This also often requires making a trade-off between how realistic a model should be in order to address the scientific questions of interest and the computational tractability of the model. METHODS In this paper, we propose a novel programming paradigm, called temporal constrained objects, which facilitates a principled approach to modelling complex dynamical systems. Temporal constrained objects are an extension of constrained objects with a focus on the analysis and prediction of the dynamic behaviour of a system. The structural aspects of a neuronal system are represented using objects, as in object-oriented languages, while the dynamic behaviour of neurons and synapses are modelled using declarative temporal constraints. Computation in this paradigm is a process of constraint satisfaction within a time-based simulation. RESULTS We identified the feasibility and practicality in automatically mapping different kinds of neuron and synapse models to the constraints of temporal constrained objects. Simple neuronal networks were modelled by composing circuit components, implicitly satisfying the internal constraints of each component and interface constraints of the composition. Simulations show that temporal constrained objects provide significant conciseness in the formulation of these models. The underlying computational engine employed here automatically finds the solutions to the problems stated, reducing the code for modelling and simulation control. All examples reported in this paper have been programmed and successfully tested using the prototype language called TCOB. The code along with the programming environment are available at http://github.com/compneuro/TCOB_Neuron. DISCUSSION Temporal constrained objects provide powerful capabilities for modelling the structural and dynamic aspects of neural systems. Capabilities of the constraint programming paradigm, such as declarative specification, the ability to express partial information and non-directionality, and capabilities of the object-oriented paradigm especially aggregation and inheritance, make this paradigm the right candidate for complex systems and computational modelling studies. With the advent of multi-core parallel computer architectures and techniques or parallel constraint-solving, the paradigm of temporal constrained objects lends itself to highly efficient execution which is necessary for modelling and simulation of large brain circuits.
Collapse
Affiliation(s)
- Manjusha Nair
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
- Department of Computer Science and Applications, Amritapuri Campus, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| | - Jinesh Manchan Kannimoola
- Center for Cybersecurity Systems and Networks, Amritapuri Campus, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| | - Bharat Jayaraman
- Department of Computer Science & Engineering, State University of New York at Buffalo, Buffalo, NY, USA
| | - Bipin Nair
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| | - Shyam Diwakar
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| |
Collapse
|
31
|
Geminiani A, Casellato C, Antonietti A, D’Angelo E, Pedrocchi A. A Multiple-Plasticity Spiking Neural Network Embedded in a Closed-Loop Control System to Model Cerebellar Pathologies. Int J Neural Syst 2018; 28:1750017. [DOI: 10.1142/s0129065717500174] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The cerebellum plays a crucial role in sensorimotor control and cerebellar disorders compromise adaptation and learning of motor responses. However, the link between alterations at network level and cerebellar dysfunction is still unclear. In principle, this understanding would benefit of the development of an artificial system embedding the salient neuronal and plastic properties of the cerebellum and operating in closed-loop. To this aim, we have exploited a realistic spiking computational model of the cerebellum to analyze the network correlates of cerebellar impairment. The model was modified to reproduce three different damages of the cerebellar cortex: (i) a loss of the main output neurons (Purkinje Cells), (ii) a lesion to the main cerebellar afferents (Mossy Fibers), and (iii) a damage to a major mechanism of synaptic plasticity (Long Term Depression). The modified network models were challenged with an Eye-Blink Classical Conditioning test, a standard learning paradigm used to evaluate cerebellar impairment, in which the outcome was compared to reference results obtained in human or animal experiments. In all cases, the model reproduced the partial and delayed conditioning typical of the pathologies, indicating that an intact cerebellar cortex functionality is required to accelerate learning by transferring acquired information to the cerebellar nuclei. Interestingly, depending on the type of lesion, the redistribution of synaptic plasticity and response timing varied greatly generating specific adaptation patterns. Thus, not only the present work extends the generalization capabilities of the cerebellar spiking model to pathological cases, but also predicts how changes at the neuronal level are distributed across the network, making it usable to infer cerebellar circuit alterations occurring in cerebellar pathologies.
Collapse
Affiliation(s)
- Alice Geminiani
- NeuroEngineering and Medical Robotics Laboratory, Department of Electronics, Information and Bioengineering, Politecnico di Milano, P.zza Leonardo Da Vinci 32, 20133, Milano, Italy
| | - Claudia Casellato
- NeuroEngineering and Medical Robotics Laboratory, Department of Electronics, Information and Bioengineering, Politecnico di Milano, P.zza Leonardo Da Vinci 32, 20133, Milano, Italy
| | - Alberto Antonietti
- NeuroEngineering and Medical Robotics Laboratory, Department of Electronics, Information and Bioengineering, Politecnico di Milano, P.zza Leonardo Da Vinci 32, 20133, Milano, Italy
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Via Forlanini 6, I-27100 Pavia, Italy
- Brain Connectivity Center, Istituto Neurologico, IRCCS Fondazione C. Mondino Via, Mondino 2, I-27100, Pavia, Italy
| | - Alessandra Pedrocchi
- Neuroengineering and Medical Robotics Laboratory, Department of Electronics, Information and Bioengineering, Politecnico di Milano, P.zza Leonardo Da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
32
|
Computational Theory Underlying Acute Vestibulo-ocular Reflex Motor Learning with Cerebellar Long-Term Depression and Long-Term Potentiation. THE CEREBELLUM 2018; 16:827-839. [PMID: 28444617 DOI: 10.1007/s12311-017-0857-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The vestibulo-ocular reflex (VOR) can be viewed as an adaptive control system that maintains compensatory eye movements during head motion. As the cerebellar flocculus is intimately involved in this adaptive motor control of the VOR, the VOR has been a popular model system for investigating cerebellar motor learning. Long-term depression (LTD) and long-term potentiation (LTP) at the parallel fiber-Purkinje cell synapses are considered to play major roles in cerebellar motor learning. A recent study using mutant mice demonstrated cerebellar motor learning with hampered LTD; the study concluded that the parallel fiber-Purkinje cell LTD is not essential. More recently, multiple forms of plasticity have been found in the cerebellum, and they are believed to contribute to cerebellar motor learning. However, it is still unclear how synaptic plasticity modifies the signal processing that underlies motor learning in the flocculus. A computational simulation suggested that the plasticity present in mossy fiber-granule cell synapses improves VOR-related sensory-motor information transferred into granule cells, whereas the plasticity in the molecular layer stores this information as a memory under guidance from climbing fiber teaching signals. Thus, motor learning and memory are thought to be induced mainly by LTD and LTP at parallel fiber-Purkinje cell synapses and by rebound potentiation at molecular interneuron-Purkinje cell synapses among the multiple forms of plasticity in the cerebellum. In this study, we focused on the LTD and LTP at parallel fiber-Purkinje cell synapses. Based on our simulation, we propose that acute VOR motor learning accomplishes by simultaneous enhancement of eye movement signals via LTP and suppression of vestibular signals via LTD to increase VOR gain (gain-up learning). To decrease VOR gain (gain-down learning), these two signals are modified in the opposite directions; namely, LTD suppresses eye movement signals, whereas LTP enhances vestibular signals.
Collapse
|
33
|
Abstract
The cerebellum is a central brain structure deeply integrated into major loops with the cerebral cortex, brainstem, and spinal cord. The cerebellum shows a complex regional organization consisting of modules with sagittal orientation. The cerebellum takes part in motor control and its lesions cause a movement incoordination syndrome called ataxia. Recent observations also imply involvement of the cerebellum in cognition and executive control, with an impact on pathologies like dyslexia and autism. The cerebellum operates as a forward controller learning to predict the precise timing of correlated events. The physiologic mechanisms of cerebellar functioning are still the object of intense research. The signals entering the cerebellum through the mossy fibers are processed in the granular layer and transmitted to Purkinje cells, while a collateral pathway activates the deep cerebellar nuclei (DCN). Purkinje cells in turn inhibit DCN, so that the cerebellar cortex operates as a side loop controlling the DCN. Learning is now known to occur through synaptic plasticity at multiple synapses in the granular layer, molecular layer, and DCN, extending the original concept of the Motor Learning Theory that predicted a single form of plasticity at the synapse between parallel fibers and Purkinje cells under the supervision of climbing fibers deriving from the inferior olive. Coordination derives from the precise regulation of timing and gain in the different cerebellar modules. The investigation of cerebellar dynamics using advanced physiologic recordings and computational models is now providing new clues on how the cerebellar network performs its internal computations.
Collapse
Affiliation(s)
- Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.
| |
Collapse
|
34
|
Sudhakar SK, Hong S, Raikov I, Publio R, Lang C, Close T, Guo D, Negrello M, De Schutter E. Spatiotemporal network coding of physiological mossy fiber inputs by the cerebellar granular layer. PLoS Comput Biol 2017; 13:e1005754. [PMID: 28934196 PMCID: PMC5626500 DOI: 10.1371/journal.pcbi.1005754] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 10/03/2017] [Accepted: 08/31/2017] [Indexed: 11/18/2022] Open
Abstract
The granular layer, which mainly consists of granule and Golgi cells, is the first stage of the cerebellar cortex and processes spatiotemporal information transmitted by mossy fiber inputs with a wide variety of firing patterns. To study its dynamics at multiple time scales in response to inputs approximating real spatiotemporal patterns, we constructed a large-scale 3D network model of the granular layer. Patterned mossy fiber activity induces rhythmic Golgi cell activity that is synchronized by shared parallel fiber input and by gap junctions. This leads to long distance synchrony of Golgi cells along the transverse axis, powerfully regulating granule cell firing by imposing inhibition during a specific time window. The essential network mechanisms, including tunable Golgi cell oscillations, on-beam inhibition and NMDA receptors causing first winner keeps winning of granule cells, illustrate how fundamental properties of the granule layer operate in tandem to produce (1) well timed and spatially bound output, (2) a wide dynamic range of granule cell firing and (3) transient and coherent gating oscillations. These results substantially enrich our understanding of granule cell layer processing, which seems to promote spatial group selection of granule cell activity as a function of timing of mossy fiber input. The cerebellum is an organ of peculiar geometrical properties, and has been attributed the function of applying spatiotemporal transforms to sensorimotor data since Eccles. In this work we have analyzed the spatiotemporal response properties of the first part of the cerebellar circuit, the granule layer. On the basis of a biophysically plausible and large-scale model of the cerebellum, constrained by a wealth of anatomical data, we study the network dynamics and firing properties of individual cell populations in response to 'realistic' input patterns. We make specific predictions about the spatiotemporal features of granule layer processing regarding the effects of the gap junction coupled network of Golgi cells on a spatially restricted input, in an effect we denominate first-takes-all. Furthermore, we calculate that the granule cell layer has a wide dynamic range, indicating that this is a system that can transmit large variations of input intensities.
Collapse
Affiliation(s)
- Shyam Kumar Sudhakar
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Onna-son, Okinawa, Japan
- Laboratory of Theoretical Neurobiology and Neuro-engineering, University of Antwerp, Wilrijk, Belgium
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sungho Hong
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Onna-son, Okinawa, Japan
| | - Ivan Raikov
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Onna-son, Okinawa, Japan
| | - Rodrigo Publio
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Onna-son, Okinawa, Japan
| | - Claus Lang
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Onna-son, Okinawa, Japan
- Bernstein Center of Computational Neuroscience Berlin, Berlin, Germany
| | - Thomas Close
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Onna-son, Okinawa, Japan
| | - Daqing Guo
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Onna-son, Okinawa, Japan
| | - Mario Negrello
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Onna-son, Okinawa, Japan
- Laboratory of Theoretical Neurobiology and Neuro-engineering, University of Antwerp, Wilrijk, Belgium
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Erik De Schutter
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Onna-son, Okinawa, Japan
- Laboratory of Theoretical Neurobiology and Neuro-engineering, University of Antwerp, Wilrijk, Belgium
- * E-mail:
| |
Collapse
|
35
|
Masoli S, D'Angelo E. Synaptic Activation of a Detailed Purkinje Cell Model Predicts Voltage-Dependent Control of Burst-Pause Responses in Active Dendrites. Front Cell Neurosci 2017; 11:278. [PMID: 28955206 PMCID: PMC5602117 DOI: 10.3389/fncel.2017.00278] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/29/2017] [Indexed: 01/24/2023] Open
Abstract
The dendritic processing in cerebellar Purkinje cells (PCs), which integrate synaptic inputs coming from hundreds of thousands granule cells and molecular layer interneurons, is still unclear. Here we have tested a leading hypothesis maintaining that the significant PC output code is represented by burst-pause responses (BPRs), by simulating PC responses in a biophysically detailed model that allowed to systematically explore a broad range of input patterns. BPRs were generated by input bursts and were more prominent in Zebrin positive than Zebrin negative (Z+ and Z-) PCs. Different combinations of parallel fiber and molecular layer interneuron synapses explained type I, II and III responses observed in vivo. BPRs were generated intrinsically by Ca-dependent K channel activation in the somato-dendritic compartment and the pause was reinforced by molecular layer interneuron inhibition. BPRs faithfully reported the duration and intensity of synaptic inputs, such that synaptic conductance tuned the number of spikes and release probability tuned their regularity in the millisecond range. Interestingly, the burst and pause of BPRs depended on the stimulated dendritic zone reflecting the different input conductance and local engagement of voltage-dependent channels. Multiple local inputs combined their actions generating complex spatio-temporal patterns of dendritic activity and BPRs. Thus, local control of intrinsic dendritic mechanisms by synaptic inputs emerges as a fundamental PC property in activity regimens characterized by bursting inputs from granular and molecular layer neurons.
Collapse
Affiliation(s)
- Stefano Masoli
- Department of Brain and Behavioral Sciences, University of PaviaPavia, Italy
| | - Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of PaviaPavia, Italy.,Brain Connectivity Center, C. Mondino National Neurological InstitutePavia, Italy
| |
Collapse
|
36
|
Striatopallidal Neuron NMDA Receptors Control Synaptic Connectivity, Locomotor, and Goal-Directed Behaviors. J Neurosci 2017; 36:4976-92. [PMID: 27147651 DOI: 10.1523/jneurosci.2717-15.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 03/07/2016] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED The basal ganglia (BG) control action selection, motor programs, habits, and goal-directed learning. The striatum, the principal input structure of BG, is predominantly composed of medium-sized spiny neurons (MSNs). Arising from these spatially intermixed MSNs, two inhibitory outputs form two main efferent pathways, the direct and indirect pathways. Striatonigral MSNs give rise to the activating, direct pathway MSNs and striatopallidal MSNs to the inhibitory, indirect pathway (iMSNs). BG output nuclei integrate information from both pathways to fine-tune motor procedures and to acquire complex habits and skills. Therefore, balanced activity between both pathways is crucial for harmonious functions of the BG. Despite the increase in knowledge concerning the role of glutamate NMDA receptors (NMDA-Rs) in the striatum, understanding of the specific functions of NMDA-R iMSNs is still lacking. For this purpose, we generated a conditional knock-out mouse to address the functions of the NMDA-R in the indirect pathway. At the cellular level, deletion of GluN1 in iMSNs leads to a reduction in the number and strength of the excitatory corticostriatopallidal synapses. The subsequent scaling down in input integration leads to dysfunctional changes in BG output, which is seen as reduced habituation, delay in goal-directed learning, lack of associative behavior, and impairment in action selection or skill learning. The NMDA-R deletion in iMSNs causes a decrease in the synaptic strength of striatopallidal neurons, which in turn might lead to a imbalanced integration between direct and indirect MSN pathways, making mice less sensitive to environmental change. Therefore, their ability to learn and adapt to the environment-based experience was significantly affected. SIGNIFICANCE STATEMENT The striatum controls habits, locomotion, and goal-directed behaviors by coordinated activation of two antagonistic pathways. Insofar as NMDA receptors (NMDA-Rs) play a key role in synaptic plasticity essential for sustaining these behaviors, we generated a mouse model lacking NMDA-Rs specifically in striatopallidal neurons. To our knowledge, this is the first time that a specific deletion of inhibitory, indirect pathway medium-sized spiny neuron (iMSN) NMDA-Rs has been used to address the role of these receptors in the inhibitory pathway. Importantly, we found that this specific deletion led to a significant reduction in the number and strength of the cortico-iMSN synapses, which resulted in the significant impairments of behaviors orchestrated by the basal ganglia. Our findings indicate that the NMDA-Rs of the indirect pathway are essential for habituation, action selection, and goal-directed learning.
Collapse
|
37
|
Chen S, Augustine GJ, Chadderton P. Serial processing of kinematic signals by cerebellar circuitry during voluntary whisking. Nat Commun 2017; 8:232. [PMID: 28794450 PMCID: PMC5550418 DOI: 10.1038/s41467-017-00312-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 06/20/2017] [Indexed: 11/17/2022] Open
Abstract
Purkinje cells (PCs) in Crus 1 represent whisker movement via linear changes in firing rate, but the circuit mechanisms underlying this coding scheme are unknown. Here we examine the role of upstream inputs to PCs-excitatory granule cells (GCs) and inhibitory molecular layer interneurons-in processing of whisking signals. Patch clamp recordings in GCs reveal that movement is accompanied by changes in mossy fibre input rate that drive membrane potential depolarisation and high-frequency bursting activity at preferred whisker angles. Although individual GCs are narrowly tuned, GC populations provide linear excitatory drive across a wide range of movement. Molecular layer interneurons exhibit bidirectional firing rate changes during whisking, similar to PCs. Together, GC populations provide downstream PCs with linear representations of volitional movement, while inhibitory networks invert these signals. The exquisite sensitivity of neurons at each processing stage enables faithful propagation of kinematic representations through the cerebellum.Cerebellar Purkinje cells (PCs) linearly encode whisker position but the precise circuit mechanisms that generate these signals are not well understood. Here the authors use patch clamp recordings to show that selective tuning of granule cell inputs and bidirectional tuning of interneuron inputs are required to generate the kinematic representations in PCs.
Collapse
Affiliation(s)
- Susu Chen
- Department of Bioengineering and Centre for Neurotechnology, Imperial College London, London, SW7 2AZ, UK
| | - George J Augustine
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore.,Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Paul Chadderton
- Department of Bioengineering and Centre for Neurotechnology, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
38
|
Gandolfi D, Cerri S, Mapelli J, Polimeni M, Tritto S, Fuzzati-Armentero MT, Bigiani A, Blandini F, Mapelli L, D'Angelo E. Activation of the CREB/ c-Fos Pathway during Long-Term Synaptic Plasticity in the Cerebellum Granular Layer. Front Cell Neurosci 2017; 11:184. [PMID: 28701927 PMCID: PMC5487453 DOI: 10.3389/fncel.2017.00184] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/16/2017] [Indexed: 12/22/2022] Open
Abstract
The induction of long-term potentiation and depression (LTP and LTD) is thought to trigger gene expression and protein synthesis, leading to consolidation of synaptic and neuronal changes. However, while LTP and LTD have been proposed to play important roles for sensori-motor learning in the cerebellum granular layer, their association with these mechanisms remained unclear. Here, we have investigated phosphorylation of the cAMP-responsive element binding protein (CREB) and activation of the immediate early gene c-Fos pathway following the induction of synaptic plasticity by theta-burst stimulation (TBS) in acute cerebellar slices. LTP and LTD were localized using voltage-sensitive dye imaging (VSDi). At two time points following TBS (15 min and 120 min), corresponding to the early and late phases of plasticity, slices were fixed and processed to evaluate CREB phosphorylation (P-CREB) and c-FOS protein levels, as well as Creb and c-Fos mRNA expression. High levels of P-CREB and Creb/c-Fos were detected before those of c-FOS, as expected if CREB phosphorylation triggered gene expression followed by protein synthesis. No differences between control slices and slices stimulated with TBS were observed in the presence of an N-methyl-D-aspartate receptor (NMDAR) antagonist. Interestingly, activation of the CREB/c-Fos system showed a relevant degree of colocalization with long-term synaptic plasticity. These results show that NMDAR-dependent plasticity at the cerebellum input stage bears about transcriptional and post-transcriptional processes potentially contributing to cerebellar learning and memory consolidation.
Collapse
Affiliation(s)
- Daniela Gandolfi
- Neurophysiology Unit, Department of Brain and Behavioral Sciences, University of PaviaPavia, Italy.,Brain Connectivity Center, Fondazione Istituto Neurologico Nazionale Casimiro Mondino (IRCCS)Pavia, Italy
| | - Silvia Cerri
- Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, Fondazione Istituto Neurologico Nazionale Casimiro Mondino (IRCCS)Pavia, Italy
| | - Jonathan Mapelli
- Neurophysiology Unit, Department of Brain and Behavioral Sciences, University of PaviaPavia, Italy.,Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio EmiliaModena, Italy
| | - Mariarosa Polimeni
- Department of Public Health, Experimental and Forensic Medicine, Human Anatomy Unit, University of PaviaPavia Italy
| | - Simona Tritto
- Neurophysiology Unit, Department of Brain and Behavioral Sciences, University of PaviaPavia, Italy
| | - Marie-Therese Fuzzati-Armentero
- Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, Fondazione Istituto Neurologico Nazionale Casimiro Mondino (IRCCS)Pavia, Italy
| | - Albertino Bigiani
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio EmiliaModena, Italy
| | - Fabio Blandini
- Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, Fondazione Istituto Neurologico Nazionale Casimiro Mondino (IRCCS)Pavia, Italy
| | - Lisa Mapelli
- Neurophysiology Unit, Department of Brain and Behavioral Sciences, University of PaviaPavia, Italy.,Museo Storico Della Fisica e Centro Studi e Ricerche Enrico FermiRome, Italy
| | - Egidio D'Angelo
- Neurophysiology Unit, Department of Brain and Behavioral Sciences, University of PaviaPavia, Italy.,Brain Connectivity Center, Fondazione Istituto Neurologico Nazionale Casimiro Mondino (IRCCS)Pavia, Italy
| |
Collapse
|
39
|
Colnaghi S, Colagiorgio P, Versino M, Koch G, D'Angelo E, Ramat S. A role for NMDAR-dependent cerebellar plasticity in adaptive control of saccades in humans. Brain Stimul 2017; 10:817-827. [PMID: 28501325 DOI: 10.1016/j.brs.2017.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Saccade pulse amplitude adaptation is mediated by the dorsal cerebellar vermis and fastigial nucleus. Long-term depression at the parallel fibre-Purkinjie cell synapses has been suggested to provide a cellular mechanism for the corresponding learning process. The mechanisms and sites of this plasticity, however, are still debated. OBJECTIVE To test the role of cerebellar plasticity phenomena on adaptive saccade control. METHODS We evaluated the effect of continuous theta burst stimulation (cTBS) over the posterior vermis on saccade amplitude adaptation and spontaneous recovery of the initial response. To further identify the substrate of synaptic plasticity responsible for the observed adaptation impairment, subjects were pre-treated with memantine, an N-methyl-d-aspartate receptor (NMDAR) antagonist. RESULTS Amplitude adaptation was altered by cTBS, suggesting that cTBS interferes with cerebellar plasticity involved in saccade adaptation. Amplitude adaptation and spontaneous recovery were not affected by cTBS when recordings were preceded by memantine administration. CONCLUSION The effects of cTBS are NMDAR-dependent and are likely to involve long-term potentiation or long-term depression at specific synaptic connections of the granular and molecular layer, which could effectively take part in cerebellar motor learning.
Collapse
Affiliation(s)
- S Colnaghi
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Via Forlanini 2, 27100 Pavia, Italy; Laboratory of Neuro-otology and Neuro-ophtalmology, C. Mondino National Neurological Institute, via Mondino 2, 27100 Pavia, Italy.
| | - P Colagiorgio
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, via Ferrata 5, 27100 Pavia, Italy
| | - M Versino
- Laboratory of Neuro-otology and Neuro-ophtalmology, C. Mondino National Neurological Institute, via Mondino 2, 27100 Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, via Forlanini 6, 27100 Pavia, Italy
| | - G Koch
- Laboratorio di Neurologia Clinica e Comportamentale, Fondazione S. Lucia IRCCS, via Ardeatina 306, 00179 Rome, Italy; Dipartimento di Neurologia, Policlinico Tor Vergata, viale Oxford 81, 00133 Rome, Italy
| | - E D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, via Forlanini 6, 27100 Pavia, Italy; Brain Connectivity Center, C. Mondino National Neurological Institute, via Mondino 2, 27100 Pavia, Italy
| | - S Ramat
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, via Ferrata 5, 27100 Pavia, Italy
| |
Collapse
|
40
|
Sensorimotor Representations in Cerebellar Granule Cells in Larval Zebrafish Are Dense, Spatially Organized, and Non-temporally Patterned. Curr Biol 2017; 27:1288-1302. [DOI: 10.1016/j.cub.2017.03.029] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/24/2017] [Accepted: 03/14/2017] [Indexed: 01/25/2023]
|
41
|
Masoli S, Rizza MF, Sgritta M, Van Geit W, Schürmann F, D'Angelo E. Single Neuron Optimization as a Basis for Accurate Biophysical Modeling: The Case of Cerebellar Granule Cells. Front Cell Neurosci 2017; 11:71. [PMID: 28360841 PMCID: PMC5350144 DOI: 10.3389/fncel.2017.00071] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/27/2017] [Indexed: 01/30/2023] Open
Abstract
In realistic neuronal modeling, once the ionic channel complement has been defined, the maximum ionic conductance (Gi-max) values need to be tuned in order to match the firing pattern revealed by electrophysiological recordings. Recently, selection/mutation genetic algorithms have been proposed to efficiently and automatically tune these parameters. Nonetheless, since similar firing patterns can be achieved through different combinations of Gi-max values, it is not clear how well these algorithms approximate the corresponding properties of real cells. Here we have evaluated the issue by exploiting a unique opportunity offered by the cerebellar granule cell (GrC), which is electrotonically compact and has therefore allowed the direct experimental measurement of ionic currents. Previous models were constructed using empirical tuning of Gi-max values to match the original data set. Here, by using repetitive discharge patterns as a template, the optimization procedure yielded models that closely approximated the experimental Gi-max values. These models, in addition to repetitive firing, captured additional features, including inward rectification, near-threshold oscillations, and resonance, which were not used as features. Thus, parameter optimization using genetic algorithms provided an efficient modeling strategy for reconstructing the biophysical properties of neurons and for the subsequent reconstruction of large-scale neuronal network models.
Collapse
Affiliation(s)
- Stefano Masoli
- Department of Brain and Behavioral Sciences, University of Pavia Pavia, Italy
| | - Martina F Rizza
- Department of Brain and Behavioral Sciences, University of PaviaPavia, Italy; Dipartimento di Informatica, Sistemistica e Comunicazione, Università degli Studi di Milano-BicoccaMilan, Italy
| | - Martina Sgritta
- Department of Brain and Behavioral Sciences, University of PaviaPavia, Italy; Memory and Brain Research Center, Department of Neuroscience, Baylor College of MedicineHouston, TX, USA
| | - Werner Van Geit
- Blue Brain Project, École Polytechnique Fédérale de Lausanne Geneva, Switzerland
| | - Felix Schürmann
- Blue Brain Project, École Polytechnique Fédérale de Lausanne Geneva, Switzerland
| | - Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of PaviaPavia, Italy; Brain Connectivity Center, C. Mondino National Neurological InstitutePavia, Italy
| |
Collapse
|
42
|
Hebbian Spike-Timing Dependent Plasticity at the Cerebellar Input Stage. J Neurosci 2017; 37:2809-2823. [PMID: 28188217 DOI: 10.1523/jneurosci.2079-16.2016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 11/10/2016] [Accepted: 12/28/2016] [Indexed: 11/21/2022] Open
Abstract
Spike-timing-dependent plasticity (STDP) is a form of long-term synaptic plasticity exploiting the time relationship between postsynaptic action potentials (APs) and EPSPs. Surprisingly enough, very little was known about STDP in the cerebellum, although it is thought to play a critical role for learning appropriate timing of actions. We speculated that low-frequency oscillations observed in the granular layer may provide a reference for repetitive EPSP/AP phase coupling. Here we show that EPSP-spike pairing at 6 Hz can optimally induce STDP at the mossy fiber-granule cell synapse in rats. Spike timing-dependent long-term potentiation and depression (st-LTP and st-LTD) were confined to a ±25 ms time-window. Because EPSPs led APs in st-LTP while APs led EPSPs in st-LTD, STDP was Hebbian in nature. STDP occurred at 6-10 Hz but vanished >50 Hz or <1 Hz (where only LTP or LTD occurred). STDP disappeared with randomized EPSP/AP pairing or high intracellular Ca2+ buffering, and its sign was inverted by GABA-A receptor activation. Both st-LTP and st-LTD required NMDA receptors, but st-LTP also required reinforcing signals mediated by mGluRs and intracellular calcium stores. Importantly, st-LTP and st-LTD were significantly larger than LTP and LTD obtained by modulating the frequency and duration of mossy fiber bursts, probably because STDP expression involved postsynaptic in addition to presynaptic mechanisms. These results thus show that a Hebbian form of STDP occurs at the cerebellum input stage, providing the substrate for phase-dependent binding of mossy fiber spikes to repetitive theta-frequency cycles of granule cell activity.SIGNIFICANCE STATEMENT Long-term synaptic plasticity is a fundamental property of the brain, causing persistent modifications of neuronal communication thought to provide the cellular basis of learning and memory. The cerebellum is critical for learning the appropriate timing of sensorimotor behaviors, but whether and how appropriate spike patterns could drive long-term synaptic plasticity remained unknown. Here, we show that this can actually occur through a form of spike-timing-dependent plasticity (STDP) at the cerebellar inputs stage. Pairing presynaptic and postsynaptic spikes at 6-10 Hz reliably induced STDP at the mossy fiber-granule cell synapse, with potentiation and depression symmetrically distributed within a ±25 ms time window. Thus, STDP can bind plasticity to the mossy fiber burst phase with high temporal precision.
Collapse
|
43
|
Granular Layer Neurons Control Cerebellar Neurovascular Coupling Through an NMDA Receptor/NO-Dependent System. J Neurosci 2016; 37:1340-1351. [PMID: 28039371 DOI: 10.1523/jneurosci.2025-16.2016] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 11/28/2016] [Accepted: 12/03/2016] [Indexed: 01/14/2023] Open
Abstract
Neurovascular coupling (NVC) is the process whereby neuronal activity controls blood vessel diameter. In the cerebellum, the molecular layer is regarded as the main NVC determinant. However, the granular layer is a region with variable metabolic demand caused by large activity fluctuations that shows a prominent expression of NMDA receptors (NMDARs) and nitric oxide synthase (NOS) and is therefore much more suitable for effective NVC. Here, we show, in the granular layer of acute rat cerebellar slices, that capillary diameter changes rapidly after mossy fiber stimulation. Vasodilation required neuronal NMDARs and NOS stimulation and subsequent guanylyl cyclase activation that probably occurred in pericytes. Vasoconstriction required metabotropic glutamate receptors and CYP ω-hydroxylase, the enzyme regulating 20-hydroxyeicosatetraenoic acid production. Therefore, granular layer capillaries are controlled by the balance between vasodilating and vasoconstricting systems that could finely tune local blood flow depending on neuronal activity changes at the cerebellar input stage. SIGNIFICANCE STATEMENT The neuronal circuitry and the biochemical pathways that control local blood flow supply in the cerebellum are unclear. This is surprising given the emerging role played by this brain structure, not only in motor behavior, but also in cognitive functions. Although previous studies focused on the molecular layer, here, we shift attention onto the mossy fiber granule cell (GrC) relay. We demonstrate that GrC activity causes a robust vasodilation in nearby capillaries via the NMDA receptors-neuronal nitric oxide synthase signaling pathway. At the same time, metabotropic glutamate receptors mediate 20-hydroxyeicosatetraenoic acid-dependent vasoconstriction. These results reveal a complex signaling network that hints for the first time at the granular layer as a major determinant of cerebellar blood-oxygen-level-dependent signals.
Collapse
|
44
|
Delvendahl I, Hallermann S. The Cerebellar Mossy Fiber Synapse as a Model for High-Frequency Transmission in the Mammalian CNS. Trends Neurosci 2016; 39:722-737. [DOI: 10.1016/j.tins.2016.09.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/17/2016] [Accepted: 09/20/2016] [Indexed: 10/20/2022]
|
45
|
Dover K, Marra C, Solinas S, Popovic M, Subramaniyam S, Zecevic D, D'Angelo E, Goldfarb M. FHF-independent conduction of action potentials along the leak-resistant cerebellar granule cell axon. Nat Commun 2016; 7:12895. [PMID: 27666389 PMCID: PMC5052690 DOI: 10.1038/ncomms12895] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 08/11/2016] [Indexed: 12/31/2022] Open
Abstract
Neurons in vertebrate central nervous systems initiate and conduct sodium action potentials in distinct subcellular compartments that differ architecturally and electrically. Here, we report several unanticipated passive and active properties of the cerebellar granule cell's unmyelinated axon. Whereas spike initiation at the axon initial segment relies on sodium channel (Nav)-associated fibroblast growth factor homologous factor (FHF) proteins to delay Nav inactivation, distal axonal Navs show little FHF association or FHF requirement for high-frequency transmission, velocity and waveforms of conducting action potentials. In addition, leak conductance density along the distal axon is estimated as <1% that of somatodendritic membrane. The faster inactivation rate of FHF-free Navs together with very low axonal leak conductance serves to minimize ionic fluxes and energetic demand during repetitive spike conduction and at rest. The absence of FHFs from Navs at nodes of Ranvier in the central nervous system suggests a similar mechanism of current flux minimization along myelinated axons. FHFs are known to regulate voltage-gated sodium channels (NaVs). Here, the authors compare the role of FHFs in cerebellar granule cell propagation, and find NaVs in the distal axon function independently of FHFs, allowing for faster inactivation rates and reducing energy demands during repetitive spiking.
Collapse
Affiliation(s)
- Katarzyna Dover
- Department of Biological Sciences, Hunter College of City University, 695 Park Avenue, New York, New York 10065, USA.,Graduate Center of City University, Molecular, Cellular and Developmental Biology Subprogram, 365 Fifth Avenue, New York, New York 10016, USA
| | - Christopher Marra
- Department of Biological Sciences, Hunter College of City University, 695 Park Avenue, New York, New York 10065, USA.,Graduate Center of City University, Neuroscience Subprogram, 365 Fifth Avenue, New York, New York 10016, USA
| | - Sergio Solinas
- Brain Connectivity Center, C. Mondino National Neurological Institute, Via Forlanini 6, Pavia 27100, Italy
| | - Marko Popovic
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
| | - Sathyaa Subramaniyam
- Department of Brain and Behavioral Science, University of Pavia, Via Forlanini 6, Pavia 27100, Italy
| | - Dejan Zecevic
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
| | - Egidio D'Angelo
- Brain Connectivity Center, C. Mondino National Neurological Institute, Via Forlanini 6, Pavia 27100, Italy.,Department of Brain and Behavioral Science, University of Pavia, Via Forlanini 6, Pavia 27100, Italy
| | - Mitchell Goldfarb
- Department of Biological Sciences, Hunter College of City University, 695 Park Avenue, New York, New York 10065, USA.,Graduate Center of City University, Neuroscience Subprogram, 365 Fifth Avenue, New York, New York 10016, USA
| |
Collapse
|
46
|
Brandalise F, Lujan R, Leone R, Lodola F, Cesaroni V, Romano C, Gerber U, Rossi P. Distinct expression patterns of inwardly rectifying potassium currents in developing cerebellar granule cells of the hemispheres and the vermis. Eur J Neurosci 2016; 43:1460-73. [DOI: 10.1111/ejn.13219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 02/14/2016] [Accepted: 02/23/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Federico Brandalise
- Department of Biology and Biotechnology; University of Pavia; via Ferrata 9 27100 Pavia Italy
- Brain Research Institute; University of Zurich; Zurich Switzerland
| | - Rafael Lujan
- Instituto de Investigación en Discapacidades Neurológicas (IDINE); Department of Ciencias Médicas; Facultad de Medicina; Universidad Castilla-La Mancha; Albacete Spain
| | - Roberta Leone
- Brain Research Institute; University of Zurich; Zurich Switzerland
| | - Francesco Lodola
- Molecular Cardiology; IRCCS Fondazione Salvatore Maugeri; Pavia Italy
| | - Valentina Cesaroni
- Department of Biology and Biotechnology; University of Pavia; via Ferrata 9 27100 Pavia Italy
| | - Chiara Romano
- Department of Biology and Biotechnology; University of Pavia; via Ferrata 9 27100 Pavia Italy
| | - Urs Gerber
- Brain Research Institute; University of Zurich; Zurich Switzerland
| | - Paola Rossi
- Department of Biology and Biotechnology; University of Pavia; via Ferrata 9 27100 Pavia Italy
| |
Collapse
|
47
|
Electrophysiological and Immunohistochemical Evidence for an Increase in GABAergic Inputs and HCN Channels in Purkinje Cells that Survive Developmental Ethanol Exposure. THE CEREBELLUM 2016; 14:398-412. [PMID: 25667035 DOI: 10.1007/s12311-015-0651-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Ethanol exposures during the early postnatal period of the rat result in significant death of Purkinje cells (PCs). The magnitude, time-course, and lobular specificity of PC death have been well characterized in several studies. Additionally, significant reduction of climbing fiber inputs to the surviving PCs has been characterized. This study investigates whether further alterations to the cerebellar cortical circuits might occur as a result of developmental ethanol exposures. We first examined the firing pattern of PCs in acute slice preparations on postnatal days 13-15. While the basic firing frequency was not significantly altered, PCs from rat pups treated with ethanol on postnatal days 4-6 showed a significantly increased number of inhibitory postsynaptic potentials (IPSCs) and a larger Ih current. We conducted immunofluorescent studies to identify the probable cause of the increased IPSCs. We found a significant 21 % increase in the number of basket cells per PC and a near doubling of the volume of co-localized basket cell axonal membrane with PC. In addition, we identified a significant (~147 %) increase in HCN1 channel volume co-localized to PC volume. Therefore, the cerebellar cortex that survives targeted postnatal ethanol exposure is dramatically altered in development subsequent to PC death. The cerebellar cortical circuit that results is one that operates under a significant degree of increased resting inhibition. The alterations in the development of cerebellar circuitry following ethanol exposure, and the significant loss of PCs, could result in modifications of the structure and function of other brain regions that receive cerebellar inputs.
Collapse
|
48
|
Baade C, Byczkowicz N, Hallermann S. NMDA receptors amplify mossy fiber synaptic inputs at frequencies up to at least 750 Hz in cerebellar granule cells. Synapse 2016; 70:269-76. [DOI: 10.1002/syn.21898] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 02/10/2016] [Accepted: 02/12/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Carolin Baade
- Carl-Ludwig-Institute for Physiology, Medical Faculty, University of Leipzig; Liebigstr. 27 Leipzig 04103 Germany
| | - Niklas Byczkowicz
- Carl-Ludwig-Institute for Physiology, Medical Faculty, University of Leipzig; Liebigstr. 27 Leipzig 04103 Germany
| | - Stefan Hallermann
- Carl-Ludwig-Institute for Physiology, Medical Faculty, University of Leipzig; Liebigstr. 27 Leipzig 04103 Germany
| |
Collapse
|
49
|
Takayasu Y, Shino M, Nikkuni O, Yoshida Y, Furuya N, Chikamatsu K. Oxygen-glucose deprivation increases firing of unipolar brush cells and enhances spontaneous EPSCs in Purkinje cells in the vestibulo-cerebellum. Neurosci Res 2015; 106:1-11. [PMID: 26535811 DOI: 10.1016/j.neures.2015.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/26/2015] [Accepted: 10/23/2015] [Indexed: 11/19/2022]
Abstract
Unipolar brush cells (UBCs) are excitatory interneurons in the granular layer of the cerebellar cortex, which are predominantly distributed in the vestibulo-cerebellar region. The unique firing properties and synaptic connections of UBCs may underlie lobular heterogeneity of excitability in the granular layer and the susceptibility to ischemia-induced excitotoxicity. In this study, we investigated the effects of oxygen-glucose deprivation (OGD) on the firing properties of UBCs and granule cells and spontaneous excitatory postsynaptic currents (sEPSCs) of Purkinje cells using whole-cell recordings. Short-term OGD induced increases in spontaneous firing of UBCs by causing membrane depolarization via the activation of NMDA receptors. UBC firing indirectly affected Purkinje cells by altering parallel fiber inputs of a subset granule cells, resulting in a marked increase in sEPSCs in Purkinje cells in vestibulo-cerebellar lobules IX-X, but not in lobules IV-VI, which have fewer UBCs. Similarly, the frequency and amplitude of sEPSCs in Purkinje cells were significantly greater in lobules IX-X than in IV-VI, even in control conditions. These results reveal that UBCs play key roles in regulating local excitability in the granular layer, resulting in lobular heterogeneity in the susceptibility to ischemic insult in the cerebellum.
Collapse
Affiliation(s)
- Yukihiro Takayasu
- Department of Otolaryngology-Head and Neck Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan.
| | - Masato Shino
- Department of Otolaryngology-Head and Neck Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Osamu Nikkuni
- Department of Otolaryngology-Head and Neck Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Yukari Yoshida
- Gunma University Heavy Ion Medical Center, Maebashi, Gunma 371-8511, Japan
| | - Nobuhiko Furuya
- Department of Otolaryngology-Head and Neck Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Kazuaki Chikamatsu
- Department of Otolaryngology-Head and Neck Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
50
|
Long-Term Spatiotemporal Reconfiguration of Neuronal Activity Revealed by Voltage-Sensitive Dye Imaging in the Cerebellar Granular Layer. Neural Plast 2015; 2015:284986. [PMID: 26294979 PMCID: PMC4532947 DOI: 10.1155/2015/284986] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/21/2015] [Accepted: 07/01/2015] [Indexed: 11/18/2022] Open
Abstract
Understanding the spatiotemporal organization of long-term synaptic plasticity in neuronal networks demands techniques capable of monitoring changes in synaptic responsiveness over extended multineuronal structures. Among these techniques, voltage-sensitive dye imaging (VSD imaging) is of particular interest due to its good spatial resolution. However, improvements of the technique are needed in order to overcome limits imposed by its low signal-to-noise ratio. Here, we show that VSD imaging can detect long-term potentiation (LTP) and long-term depression (LTD) in acute cerebellar slices. Combined VSD imaging and patch-clamp recordings revealed that the most excited regions were predominantly associated with granule cells (GrCs) generating EPSP-spike complexes, while poorly responding regions were associated with GrCs generating EPSPs only. The correspondence with cellular changes occurring during LTP and LTD was highlighted by a vector representation obtained by combining amplitude with time-to-peak of VSD signals. This showed that LTP occurred in the most excited regions lying in the core of activated areas and increased the number of EPSP-spike complexes, while LTD occurred in the less excited regions lying in the surround. VSD imaging appears to be an efficient tool for investigating how synaptic plasticity contributes to the reorganization of multineuronal activity in neuronal circuits.
Collapse
|