1
|
Nakajima M. Carpometacarpal Osteoarthritis Pain of the Thumb Can Be Relieved by Commercial Beverage Carbonated Water. Case Rep Anesthesiol 2024; 2024:6238171. [PMID: 38435126 PMCID: PMC10908569 DOI: 10.1155/2024/6238171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
Thumb carpometacarpal (CMC) arthropathy pain is treated using carbonated water-a commercially available beverage. The right hand (affected side) was bathed once daily in carbonated beverage water (37°C) for 20 min. Prior to treatment, the visual analogue scale score of pain was 73 mm; 1 week after the treatment, it was 0 mm. Commercial carbonated water immersion was effective for thumb CMC arthropathy pain. Commercial carbonated water is inexpensive and easy to obtain, making it suitable for home carbonation therapy.
Collapse
Affiliation(s)
- Masaaki Nakajima
- Department of Physical Therapy, School of Health Science and Social Welfare, Kibi International University, 8 Iga-Machi, Takahashi, Okayama 716-8508, Japan
| |
Collapse
|
2
|
Zhang RJ, Yin YF, Xie XJ, Gu HF. Acid-sensing ion channels: Linking extracellular acidification with atherosclerosis. Clin Chim Acta 2019; 502:183-190. [PMID: 31901478 DOI: 10.1016/j.cca.2019.12.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 12/30/2019] [Accepted: 12/30/2019] [Indexed: 01/02/2023]
Abstract
Extracellular acidification in atherosclerosis-prone regions of arterial walls is considered pro-atherosclerotic by exerting detrimental effect on macrophages, endothelial cells (ECs) and vascular smooth muscle cells (VSMCs). Acid-sensing ion channels (ASICs), a family of extracellular H+ (proton)-gated cation channels, are present extensively in the nervous system and other tissues, implying physiologic as well as pathophysiologic importance. Aberrant activation of ASICs is thought to be associated in EC dysfunction, macrophage phenotypic switch, and VSMC migration and proliferation. Although in vitro evidence acknowledges the contribution of ASIC activation in atherosclerosis, no direct evidence confirms their pro-atherosclerotic roles in vivo. In this review, the effect of extracellular acidity on three major contributors, ECs, macrophages, and VSMCs, is discussed focusing on the potential roles of ASICs in atherosclerotic development and underlying pathology. A more comprehensive understanding of ASICs in these processes may provide promising new therapeutic targets for treatment and prevention of atherosclerotic diseases.
Collapse
Affiliation(s)
- Rong-Jie Zhang
- Department of Physiology & Institute of Neuroscience, University of South China, Hengyang, People's Republic of China
| | - Yu-Fang Yin
- Department of Neuroscience and Pharmacology, School of Medicine, Southern Illinois University Springfield, Illinois, United States
| | - Xue-Jiao Xie
- Department of Zhongjing' Theory, College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, People's Republic of China.
| | - Hong-Feng Gu
- Department of Physiology & Institute of Neuroscience, University of South China, Hengyang, People's Republic of China.
| |
Collapse
|
3
|
Prendergast C, Wray S. Human myometrial artery function and endothelial cell calcium signalling are reduced by obesity: Can this contribute to poor labour outcomes? Acta Physiol (Oxf) 2019; 227:e13341. [PMID: 31299139 DOI: 10.1111/apha.13341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 06/17/2019] [Accepted: 07/07/2019] [Indexed: 12/15/2022]
Abstract
AIMS Determining how obesity affects function in human myometrial arteries, to help understand why childbirth has poor outcomes in obese women. METHODS Myometrial arteries were studied from 84 biopsies. Contraction (vasopressin and U-46619) and relaxation (carbachol, bradykinin, SNAP) was assessed using wire myography. eNOS activity was assessed using L-NAME. Cholesterol was reduced using methyl-β-cyclodextrin to determine whether it altered responses. Differences in endothelial cell intracellular Ca2+ signalling were assessed using confocal microscopy. RESULTS The effects of BMI on relaxation were agonist specific and very marked; all vessels, irrespective of BMI, relaxed to bradykinin but 0% of vessels (0/13) from obese women relaxed to carbachol, compared to 59% (10/17) from normal weight women. Cholesterol-lowering drugs did not restore carbachol responses (n = 6). All vessels, irrespective of BMI, relaxed when NO was directly released by SNAP (n = 19). Inhibition of eNOS with L-NAME had a significant effect in normal but not overweight/obese vessels. Compared to bradykinin, a lower proportion of endothelial cells responded to carbachol and the amplitude of the calcium response was significantly less, in all vessels. Furthermore, a significantly lower proportion of endothelial cells responded to carbachol in the overweight/obese group compared to control. In contrast to relaxation, the effect of contractile agonists was unchanged with increasing BMI. CONCLUSIONS The ability of human myometrial arteries to relax is significantly impaired with obesity, and our data suggest this is due to a deficit in endothelial calcium signalling. This inability to recover following compression during contractions, might contribute to poor labours in obese women.
Collapse
Affiliation(s)
- Clodagh Prendergast
- Department of Molecular and Cellular Physiology, Institute of Translational Medicine University of Liverpool Liverpool UK
| | - Susan Wray
- Department of Molecular and Cellular Physiology, Institute of Translational Medicine University of Liverpool Liverpool UK
| |
Collapse
|
4
|
Almohanna AM, Wray S. Hypoxic conditioning in blood vessels and smooth muscle tissues: effects on function, mechanisms, and unknowns. Am J Physiol Heart Circ Physiol 2018; 315:H756-H770. [PMID: 29702009 DOI: 10.1152/ajpheart.00725.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hypoxic preconditioning, the protective effect of brief, intermittent hypoxic or ischemic episodes on subsequent more severe hypoxic episodes, has been known for 30 yr from studies on cardiac muscle. The concept of hypoxic preconditioning has expanded; excitingly, organs beyond the heart, including the brain, liver, and kidney, also benefit. Preconditioning of vascular and visceral smooth muscles has received less attention despite their obvious importance to health. In addition, there has been no attempt to synthesize the literature in this field. Therefore, in addition to overviewing the current understanding of hypoxic conditioning, in the present review, we consider the role of blood vessels in conditioning and explore evidence for conditioning in other smooth muscles. Where possible, we have distinguished effects on myocytes from other cell types in the visceral organs. We found evidence of a pivotal role for blood vessels in conditioning and for conditioning in other smooth muscle, including the bladder, vascular myocytes, and gastrointestinal tract, and a novel response in the uterus of a hypoxic-induced force increase, which helps maintain contractions during labor. To date, however, there are insufficient data to provide a comprehensive or unifying mechanism for smooth muscles or visceral organs and the effects of conditioning on their function. This also means that no firm conclusions can be drawn as to how differences between smooth muscles in metabolic and contractile activity may contribute to conditioning. Therefore, we have suggested what may be general mechanisms of conditioning occurring in all smooth muscles and tabulated tissue-specific mechanistic findings and suggested ideas for further progress.
Collapse
Affiliation(s)
- Asmaa M Almohanna
- Department of Molecular and Cellular Physiology, Institute of Translational Medicine University of Liverpool , Liverpool , United Kingdom.,Princess Nourah bint Abdulrahman University , Riyadh , Saudi Arabia
| | - Susan Wray
- Department of Molecular and Cellular Physiology, Institute of Translational Medicine University of Liverpool , Liverpool , United Kingdom
| |
Collapse
|
5
|
Lewis S, Little R, Baudoin F, Prehar S, Neyses L, Cartwright EJ, Austin C. Acute inhibition of PMCA4, but not global ablation, reduces blood pressure and arterial contractility via a nNOS-dependent mechanism. J Cell Mol Med 2017; 22:861-872. [PMID: 29193716 PMCID: PMC5783868 DOI: 10.1111/jcmm.13371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 07/28/2017] [Indexed: 12/30/2022] Open
Abstract
Cardiovascular disease is the world's leading cause of morbidity and mortality, with high blood pressure (BP) contributing to increased severity and number of adverse outcomes. Plasma membrane calcium ATPase 4 (PMCA4) has been previously shown to modulate systemic BP. However, published data are conflicting, with both overexpression and inhibition of PMCA4 in vivo shown to increase arterial contractility. Hence, our objective was to determine the role of PMCA4 in the regulation of BP and to further understand how PMCA4 functionally regulates BP using a novel specific inhibitor to PMCA4, aurintricarboxylic acid (ATA). Our approach assessed conscious BP and contractility of resistance arteries from PMCA4 global knockout (PMCA4KO) mice compared to wild‐type animals. Global ablation of PMCA4 had no significant effect on BP, arterial structure or isolated arterial contractility. ATA treatment significantly reduced BP and arterial contractility in wild‐type mice but had no significant effect in PMCA4KO mice. The effect of ATAin vivo and ex vivo was abolished by the neuronal nitric oxide synthase (nNOS) inhibitor Vinyl‐l‐NIO. Thus, this highlights differences in the effects of PMCA4 ablation and acute inhibition on the vasculature. Importantly, for doses here used, we show the vascular effects of ATA to be specific for PMCA4 and that ATA may be a further experimental tool for elucidating the role of PMCA4.
Collapse
Affiliation(s)
- Sophronia Lewis
- Faculty of Biology, Medicine and Health, Division of Cardiovascular Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Robert Little
- Faculty of Biology, Medicine and Health, Division of Cardiovascular Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Florence Baudoin
- Faculty of Biology, Medicine and Health, Division of Cardiovascular Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Sukhpal Prehar
- Faculty of Biology, Medicine and Health, Division of Cardiovascular Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Ludwig Neyses
- Faculty of Biology, Medicine and Health, Division of Cardiovascular Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Elizabeth J Cartwright
- Faculty of Biology, Medicine and Health, Division of Cardiovascular Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Clare Austin
- Faculty of Biology, Medicine and Health, Division of Cardiovascular Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
6
|
Little R, Zi M, Hammad SK, Nguyen L, Njegic A, Kurusamy S, Prehar S, Armesilla AL, Neyses L, Austin C, Cartwright EJ. Reduced expression of PMCA1 is associated with increased blood pressure with age which is preceded by remodelling of resistance arteries. Aging Cell 2017; 16:1104-1113. [PMID: 28795531 PMCID: PMC5595685 DOI: 10.1111/acel.12637] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2017] [Indexed: 01/11/2023] Open
Abstract
Hypertension is a well‐established risk factor for adverse cardiovascular events, and older age is a risk factor for the development of hypertension. Genomewide association studies have linked ATP2B1, the gene for the plasma membrane calcium ATPase 1 (PMCA1), to blood pressure (BP) and hypertension. Here, we present the effects of reduction in the expression of PMCA1 on BP and small artery structure and function when combined with advancing age. Heterozygous PMCA1 null mice (PMCA1Ht) were generated and conscious BP was measured at 6 to 18 months of age. Passive and active properties of isolated small mesenteric arteries were examined by pressure myography. PMCA1Ht mice exhibited normal BP at 6 and 9 months of age but developed significantly elevated BP when compared to age‐matched wild‐type controls at ≥12 months of age. Decreased lumen diameter, increased wall thickness and increased wall:lumen ratio were observed in small mesenteric arteries from animals 9 months of age and older, indicative of eutrophic remodelling. Increases in mesenteric artery intrinsic tone and global intracellular calcium were evident in animals at both 6 and 18 months of age. Thus, decreased expression of PMCA1 is associated with increased BP when combined with advancing age. Changes in arterial structure precede the elevation of BP. Pathways involving PMCA1 may be a novel target for BP regulation in the elderly.
Collapse
Affiliation(s)
- Robert Little
- Division of Cardiovascular Sciences; Manchester Academic Health Science Centre; The University of Manchester; AV Hill Building Manchester M13 9PT UK
- School of Food Science and Nutrition; The University of Leeds; Leeds LS2 9JT UK
| | - Min Zi
- Division of Cardiovascular Sciences; Manchester Academic Health Science Centre; The University of Manchester; AV Hill Building Manchester M13 9PT UK
| | - Sally K. Hammad
- Division of Cardiovascular Sciences; Manchester Academic Health Science Centre; The University of Manchester; AV Hill Building Manchester M13 9PT UK
- Department of Biochemistry; Faculty of Pharmacy; Zagazig University; Zagazig 44519 Egypt
| | - Loan Nguyen
- Division of Cardiovascular Sciences; Manchester Academic Health Science Centre; The University of Manchester; AV Hill Building Manchester M13 9PT UK
| | - Alexandra Njegic
- Division of Cardiovascular Sciences; Manchester Academic Health Science Centre; The University of Manchester; AV Hill Building Manchester M13 9PT UK
| | - Sathishkumar Kurusamy
- Research Institute in Healthcare Science; School of Pharmacy; University of Wolverhampton; Wolverhampton WV1 1LY UK
| | - Sukhpal Prehar
- Division of Cardiovascular Sciences; Manchester Academic Health Science Centre; The University of Manchester; AV Hill Building Manchester M13 9PT UK
| | - Angel L. Armesilla
- Research Institute in Healthcare Science; School of Pharmacy; University of Wolverhampton; Wolverhampton WV1 1LY UK
| | - Ludwig Neyses
- Division of Cardiovascular Sciences; Manchester Academic Health Science Centre; The University of Manchester; AV Hill Building Manchester M13 9PT UK
- University of Luxembourg; Avenue de l'Universite Esch-sur-Alzette L-4365 Luxembourg
| | - Clare Austin
- Division of Cardiovascular Sciences; Manchester Academic Health Science Centre; The University of Manchester; AV Hill Building Manchester M13 9PT UK
- Faculty of Health and Social Care; Edge Hill University; Lancashire L39 4QP UK
| | - Elizabeth J. Cartwright
- Division of Cardiovascular Sciences; Manchester Academic Health Science Centre; The University of Manchester; AV Hill Building Manchester M13 9PT UK
| |
Collapse
|
7
|
Wray S. Insights from physiology into myometrial function and dysfunction. Exp Physiol 2015; 100:1468-76. [PMID: 26289390 DOI: 10.1113/ep085131] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 08/17/2015] [Indexed: 12/12/2022]
Abstract
NEW FINDINGS What is the topic of this review? I focus on clinical aspects of uterine physiology, specifically, myometrial contractility. I bring together and contrast findings using physiological approaches and those using newer techniques, 'omics'. What advances does it highlight? Physiological studies have recently shed light on the myometrium in twin pregnancies, but there have been no 'omic' approaches. In contrast, studies of preterm delivery using newer approaches are generating new research avenues, whereas traditional approaches have not flourished. Finally, I describe significant advances in understanding of 'slow-to-progress' labours, achieved using physiological and clinical approaches. Advances in molecular, genetic and 'omic' technologies are fuelling the thirst for better understanding of the uterus and application of this information to problems in pregnancy and labour. Progress has, however, been limited while we still have an incomplete understanding of some of the basic physiology of uterine smooth muscle (myometrium). In this review and opinion piece, I explore some of the fascinating findings from selected recent studies and see how these may provide new avenues for physiological and clinical research. It is also the case, however, that there is still limited mechanistic understanding about physiological and pathophysiological processes in the myometrium. This lack of understanding limits the usefulness of some findings from genomic and allied studies. By focusing on some key recent findings and relating these to two important clinical problems in childbirth that involve myometrial activity, namely preterm delivery and difficult labours, the interplay between our physiological knowledge and the information provided by newer technologies is explored. My opinion is that physiology has provided much more new mechanistic insight into difficult births and that the newer technologies may lead to breakthroughs in preterm birth research, but that this has not yet happened.
Collapse
Affiliation(s)
- Susan Wray
- Harris/Wellbeing Centre for Preterm Birth Research, Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
8
|
Li Y, Horiuchi T, Murata T, Hongo K. Mechanism of alkalosis-induced constriction of rat cerebral penetrating arterioles. Neurosci Res 2011; 70:98-103. [PMID: 21256899 DOI: 10.1016/j.neures.2011.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Revised: 12/22/2010] [Accepted: 01/11/2011] [Indexed: 10/18/2022]
Abstract
Cerebral arterioles are in close contact with the supplied tissue and are strong regulators of cerebrovascular tone. Transient ischemia can cause brain intracellular alkalosis producing vasoconstriction. However, the mechanisms of alkalosis-induced cerebral arteriolar constriction are poorly understood. Here, we determined the vascular responses to alkalosis under different conditions by monitoring the internal diameter of pressurized penetrating arterioles isolated from the rat cerebrum with an operating microscope. The roles of Na+/H+ exchanger (NHE), Na+/Ca²+ exchanger (NCX), Na+/K+-adenosine triphosphatase (NKA), and potassium (K+) channels during alkalosis were examined using specific inhibitors. Our results indicated that the extent of constriction of the penetrating arterioles was dependent on alkaline pH. Moreover, the alkalosis-induced vasoconstriction was significantly attenuated by inhibitors of NHE, NCX, and NKA, but not K+ channel inhibitors. Therefore, we concluded that NHE, NKA, and NCX are important regulators involved in alkalosis-induced vasoconstriction of rat cerebral penetrating arterioles.
Collapse
Affiliation(s)
- Yuhui Li
- Department of Neurosurgery, Shinshu University School of Medicine, Asahi 3-1-1, Matsumoto 390-8621, Japan
| | | | | | | |
Collapse
|
9
|
Chin LMK, Heigenhauser GJF, Paterson DH, Kowalchuk JM. Pulmonary O2 uptake and leg blood flow kinetics during moderate exercise are slowed by hyperventilation-induced hypocapnic alkalosis. J Appl Physiol (1985) 2010; 108:1641-50. [PMID: 20339012 PMCID: PMC2886676 DOI: 10.1152/japplphysiol.01346.2009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 03/23/2010] [Indexed: 11/22/2022] Open
Abstract
The effect of hyperventilation-induced hypocapnic alkalosis (Hypo) on the adjustment of pulmonary O2 uptake (VO2p) and leg femoral conduit artery ("bulk") blood flow (LBF) during moderate-intensity exercise (Mod) was examined in eight young male adults. Subjects completed four to six repetitions of alternate-leg knee-extension exercise during normal breathing [Con; end-tidal partial pressure of CO2 (PetCO2) approximately 40 mmHg] and sustained hyperventilation (Hypo; PetCO2 approximately 20 mmHg). Increases in work rate were made instantaneously from baseline (3 W) to Mod (80% estimated lactate threshold). VO2p was measured breath by breath by mass spectrometry and volume turbine, and LBF (calculated from mean femoral artery blood velocity and femoral artery diameter) was measured simultaneously by Doppler ultrasound. Concentration changes of deoxy (Delta[HHb])-, oxy (Delta[O2Hb])-, and total hemoglobin-myoglobin (Delta[HbTot]) of the vastus lateralis muscle were measured continuously by near-infrared spectroscopy (NIRS). The kinetics of VO2p, LBF, and Delta[HHb] were modeled using a monoexponential equation by nonlinear regression. The time constants for the phase 2 VO2p (Hypo, 49+/-26 s; Con, 28+/-8 s) and LBF (Hypo, 46+/-16 s; Con, 23+/-6 s) were greater (P<0.05) in Hypo compared with Con. However, the mean response time for the overall Delta[HHb] response was not different between conditions (Hypo, 23+/-5 s; Con, 24+/-3 s), whereas the Delta[HHb] amplitude was greater (P<0.05) in Hypo (8.05+/-7.47 a.u.) compared with Con (6.69+/-6.31 a.u.). Combined, these results suggest that hyperventilation-induced hypocapnic alkalosis is associated with slower convective (i.e., slowed femoral artery and microvascular blood flow) and diffusive (i.e., greater fractional O2 extraction for a given DeltaVO2p) O2 delivery, which may contribute to the hyperventilation-induced slowing of VO2p (and muscle O2 utilization) kinetics.
Collapse
Affiliation(s)
- Lisa M K Chin
- Canadian Centre for Activity and Aging, School of Kinesiology, Department of Physiology and Pharmacology, Arthur and Sonia Labatt Health Sciences Bldg., Rm. 411C, The University of Western Ontario, London, ON, Canada N6A 5B9
| | | | | | | |
Collapse
|
10
|
|
11
|
|
12
|
Wray S, Burdyga T, Noble K. Calcium signalling in smooth muscle. Cell Calcium 2008; 38:397-407. [PMID: 16137762 DOI: 10.1016/j.ceca.2005.06.018] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 06/28/2005] [Indexed: 11/26/2022]
Abstract
Calcium signalling in smooth muscles is complex, but our understanding of it has increased markedly in recent years. Thus, progress has been made in relating global Ca2+ signals to changes in force in smooth muscles and understanding the biochemical and molecular mechanisms involved in Ca2+ sensitization, i.e. altering the relation between Ca2+ and force. Attention is now focussed more on the role of the internal Ca2+ store, the sarcoplasmic reticulum (SR), global Ca2+ signals and control of excitability. Modern imaging techniques have shown the elaborate SR network in smooth muscles, along with the expression of IP3 and ryanodine receptors. The role and cross-talk between these two Ca(2+) release mechanisms, as well as possible compartmentalization of the SR Ca2+ store are discussed. The close proximity between SR and surface membrane has long been known but the details of this special region to Ca2+ signalling and the role of local sub-membrane Ca2+ concentrations and membrane microdomains are only now emerging. The activation of K+ and Cl- channels by local Ca2+ signals, can have profound effects on excitability and hence contraction. We examine the evidence for both Ca2+ sparks and puffs in controlling ion channel activity, as well as a fundamental role for Ca2+ sparks in governing the period of inexcitability in smooth muscle, i.e. the refractory period. Finally, the relation between different Ca2+ signals, e.g. sparks, waves and transients, to smooth muscle activity in health and disease is becoming clearer and will be discussed.
Collapse
Affiliation(s)
- Susan Wray
- Department of Physiology, The University of Liverpool, Liverpool L69 3BX, UK.
| | | | | |
Collapse
|
13
|
Baxter KA, Laher I, Church J, Hsiang YN. Acidosis Augments Myogenic Constriction in Rat Coronary Arteries. Ann Vasc Surg 2006; 20:630-7. [PMID: 17013684 DOI: 10.1007/s10016-006-9109-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The myogenic response is a process by which blood vessels autoregulate vascular smooth muscle tone in response to changes in transmural pressure. It is characterized by vessel contraction or dilation with increased or decreased pressure, respectively. We sought to identify whether acidosis impacts the myogenic response in rat coronary resistance arteries. Ventricular septal arteries were isolated from male Sprague-Dawley rats and mounted on a pressure myograph. The myogenic response was assessed by measuring the arterial diameter at pressures of 10-120 mm Hg. The fluorescence indicators 2',7'-bis-(carboxyethyl)-5(and-6)-carboxyfluorescein and Fura-2 were utilized to measure intracellular pH (pH(i)) and intracellular free calcium concentration ([Ca(2+)](i)), respectively. A decrease in the extracellular pH (pH(o)) from 7.4 to 6.9 produced a fall in pH(i) and an increase in the myogenic response. Under nominally HCO (3) (-) /CO(2)-free conditions at a constant pH(o), blockade of the sodium-hydrogen exchanger with HOE694 also resulted in a fall in pH(i) and a similar enhancement of myogenic activity. Concentration response curves were constructed to measure the potencies of the HOE694 effects: the EC(50) was 34 microM for the pH(i) change and 19 microM for vessel constriction. Apparent [Ca(2+)](i) remained unchanged during HOE694-induced intracellular acidification. Furthermore, in the presence of HCO (3) (-) , HOE694 did not markedly affect pH(i) and vascular tone remained unaltered. Our data demonstrate that acidosis augments myogenic constriction of rat coronary arteries. These effects are due to a fall in pH(i) consequent upon the reduction in pH(o) and may reflect an increased myofilament [Ca(2+)](i) sensitivity within vascular smooth muscle cells.
Collapse
Affiliation(s)
- Keith A Baxter
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
14
|
Abstract
PURPOSE To study the effect of normocapnic (NA) and hypercapnic acidosis (HA) on the tone, the intracellular calcium level ([Ca(2 +)](i)), and the membrane potential of smooth muscle cells in porcine retinal arterioles. METHODS Twenty-four porcine retinal arterioles were mounted in a wire myograph for isometric recording of the wall tension. The vessels were precontracted with 0.3 microM U46619 and were exposed to NA (pH = 7.0) and HA (pH = 7.0). Intracellular calcium was measured using the fluorophore Fura-2AM (n = 12). In six vessels, 0.1 mM NG-nitroarginine methyl ester (L-NAME) was added to block NO synthesis. The membrane potential of smooth muscles cells was measured in situ with sharp glass electrodes (n = 12). RESULTS NA and HA induced both a decrease in wall tension from 1.04 +/- 0.06 N/m to 0.65 +/- 0.1 N/m (p < 0.01) (NA) and 0.56 +/- 0.1 N/m (p < 0.01) (HA) and a decrease in [Ca(2 +)](i) as evidenced from the change in the Fura-2 fluorescence emission ratio from 0.66 +/- 0.03 to 0.57 +/- 0.05 (p = 0.005) (NA) and 0.56 +/- 0.05 (p = 0.002) (HA). These results were unaffected by inhibition of NO-synthesis. NA and HA also both induced hyperpolarization of the smooth muscle membrane from -18 +/- 0.7 mV during precontraction to -26 +/- 1.9 mV (p = 0.002) (NA) and -24 +/- 2.6 mV (p = 0.02) (HA). CONCLUSIONS Acidosis-induced relaxation of the tone in preconstricted isolated porcine retinal arterioles is associated with a decrease in intracellular calcium and a hyperpolarization of the smooth muscle cells. The acidosis-induced relaxation is independent of CO(2) and is not mediated through NO.
Collapse
Affiliation(s)
- Anders Hessellund
- Department of Ophthalmology, Aarhus University Hospital, 8000 Aarhus C, Denmark.
| | | | | |
Collapse
|
15
|
Bruce J, Taggart M, Austin C. Contractile responses of isolated rat mesenteric arteries to acute episodes of severe hypoxia and subsequent reoxygenation. Microvasc Res 2005; 68:303-12. [PMID: 15501250 DOI: 10.1016/j.mvr.2004.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Indexed: 10/26/2022]
Abstract
This study further investigates the mechanisms responsible for the effects of acute and severe hypoxia, and subsequent reoxygenation, on the contractility of isolated rat mesenteric arteries. In noradrenaline (NA)-contracted arteries, hypoxia caused a relaxation to near baseline levels. Reoxygenation resulted in an immediate transient contraction before tension returned more slowly to prehypoxia levels. Similar responses to hypoxia were observed in tissues precontracted by addition of KCl (60 mM) or U46619 (10 microM); however, the transient contraction upon reoxygenation was absent (KCl) or reduced (U46619). Responses to hypoxia were independent of changes in intracellular calcium ([Ca2+]i), while those to reoxygenation were accompanied by corresponding changes in [Ca2+]i and were completely abolished by ryanodine. In NA-contracted tissues, all responses were unaffected by endothelial removal or by inhibitors of nitric oxide synthase and cyclooxygenase. The K+ channel blockers triethylamine (TEA), glibenclamide, and 4-aminopyridine (4-AP) had no effect on the responses to hypoxia. The transient contractile response to reoxygenation was, however, significantly reduced in the presence of 4-AP. The response to reoxygenation, but not that to hypoxia, was inhibited by the antioxidant dithiothreitol (DTT) and the NAD(P)H-oxidase inhibitor diphenyliodonium (DPI). These data suggest that hypoxic vasodilation occurs independently of reductions in [Ca2+]i. Alternatively, transient contractions on reoxygenation are dependent upon the generation of reactive oxygen species and the release of stored Ca2+.
Collapse
Affiliation(s)
- Jason Bruce
- School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | | | | |
Collapse
|
16
|
Abstract
Effects of pH on vascular tone and L-type Ca2+ channels were investigated using Mulvany myograph and voltage-clamp technique in rabbit basilar arteries. In rabbit basilar arteries, high K+ produced tonic contractions by 11+/-0.6 mN (mean+/-S.E.,n=19). When extracellular pH (pHo) was changed from control 7.4 to 7.9 ([alkalosis]o), K+-induced contraction was increased to 128+/-2.1% of the control (n=13). However, K+-induced contraction was decreased to 73+/-1.3% of the control at pHo 6.8 ([acidosis] o, n=4). Histamine (10 microM) also produced tonic contraction by 11+/-0.6 mN (n=17), which was blocked by post-application of nicardipine (1 microM). [alkalosis]o and [acidosis]o increased or decreased histamine-induced contraction to 134+/-5.7% and 27+/-7.6% of the control (n=4, 6). Since high K+- and histamine-induced tonic contractions were affected by nicardipine and pHo, the effect of pHo on voltage-dependent L-type Ca2+ channel (VDCCL) was studied. VDCCL was modulated by pHo: the peak value of Ca2+ channel current (IBa) at a holding of 0 mV decreased in [acidosis]o by 41+/-8.8%, whereas that increased in [alkalosis]o by 35+/-2.1% (n=3). These results suggested that the external pH regulates vascular tone partly via the modulation of VDCC in rabbit basilar arteries.
Collapse
Affiliation(s)
- Young Chul Kim
- Department of Physiology, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Sang Jin Lee
- Department of Physiology, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Ki Whan Kim
- Department of Physiology and Biophysics, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
17
|
Shaw L, O'Neill S, Jones CJP, Austin C, Taggart MJ. Comparison of U46619-, endothelin-1- or phenylephrine-induced changes in cellular Ca2+ profiles and Ca2+ sensitisation of constriction of pressurised rat resistance arteries. Br J Pharmacol 2004; 141:678-88. [PMID: 14744813 PMCID: PMC1574231 DOI: 10.1038/sj.bjp.0705647] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
1. In pressurised rat mesenteric small arteries (50 mmHg), we examined the effects of stimulation with U46619, endothelin-1 (ET-1) or phenylephrine (PE) on changes in vessel diameter, global [Ca(2+)](i), individual smooth muscle cell [Ca(2+)](i) and Ca(2+)-sensitisation of contraction. 2. U46619 or ET-1 gave tonic diameter reductions, whereas PE-stimulated vessels gave tonic contractions or initial vasoconstrictions followed by diameter oscillations. Global [Ca(2+)](i) changes were transient for each agonist, with tonic constrictions being accompanied by maintained submaximal global [Ca(2+)](i) levels. 3. U46619, ET-1 or PE tonic constrictions were accompanied by apparently asynchronous [Ca(2+)](i) waves in individual smooth muscle cells of the vessel wall, as examined by confocal fluorescent microscopy. In vessels exhibiting vasomotion to PE, some apparent synchrony of activation of individual cells was evident; however, this was incomplete with many cells responding out of phase with their neighbours. 4. In alpha-toxin-permeabilised preparations, agonist-induced Ca(2+)-sensitisation of constriction at submaximal Ca(2+) (pCa6.7) in the presence of GTP was greater with U46619 or ET than PE. 5. We conclude that, in pressurised mesenteric arteries, (i) a general feature of receptor-coupled constriction is the generation of periodic smooth muscle [Ca(2+)](i) waves; (ii) complete synchrony of Ca(2+) oscillations between smooth muscle cells is not a prerequisite for receptor-coupled vasomotion; (iii) varied Ca(2+)-sensitising actions of agonists may partly determine tonic or phasic vessel responses to different stimuli.
Collapse
Affiliation(s)
- Linda Shaw
- Smooth Muscle Physiology Group, Cardiovascular Research, University of Manchester, Manchester
| | - Stephen O'Neill
- Unit of Cardiac Physiology, Cardiovascular Research, University of Manchester, Manchester
| | - Carolyn J P Jones
- Maternal and Fetal Health Research Centre, University of Manchester, Manchester
| | - Clare Austin
- Smooth Muscle Physiology Group, Cardiovascular Research, University of Manchester, Manchester
| | - Michael J Taggart
- Smooth Muscle Physiology Group, Cardiovascular Research, University of Manchester, Manchester
- Maternal and Fetal Health Research Centre, University of Manchester, Manchester
- Author for correspondence:
| |
Collapse
|
18
|
Weirich J, Dumont L, Fleckenstein-Grün G. Contribution of store-operated Ca2+ entry to pHo-dependent changes in vascular tone of porcine coronary smooth muscle. Cell Calcium 2004; 35:9-20. [PMID: 14670367 DOI: 10.1016/s0143-4160(03)00156-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vascular smooth muscle contracts on increases of extracellular pH (pH(o)) and relaxes on pH(o) decreases possibly resulting from changes in transsarcolemmal Ca(2+) influx. Therefore, we studied store-operated Ca(2+) entry (SOCE; i.e. capacitative Ca(2+) entry (CCE)) during acidification (pH(o)=6.5) and alkalinization (pH(o)=8.0) in isolated porcine coronary smooth muscle cells (SMCs) by monitoring cytoplasmic Ca(2+) ([Ca(2+)](i)) and divalent cation entry (Mn(2+) quench) with fura-2/AM-fluorometry. Additionally, we evaluated the contribution of SOCE to pH(o)-dependent changes in isometric tension of porcine coronary smooth muscle strips. SOCE elicited in SMCs by the SERCA inhibitor BHQ was strongly modulated by pH(o) showing a decrease upon acidification and vice versa an increase upon alkalinization. BHQ-mediated tension of smooth muscle strips also revealed strong pH(o) dependence. In contrast, L-VOC-dependent tension ([K(+)](o)=20 and 40 mmol l(-1)) was remarkably less affected by pH(o) changes. Moreover, refilling of depleted Ca(2+) stores after repeated M(3)-cholinergic receptor stimulation could be almost completely inhibited by SKF 96365 and was markedly reduced by acidification and considerably enhanced by alkalinization pointing to a major role of SOCE in refilling. We conclude that vascular tone particularly responds to alterations in pH(o) whenever SOCE substantially contributes to the amount of activator Ca(2+) for contraction.
Collapse
Affiliation(s)
- Jörg Weirich
- Department of Physiology, University of Freiburg i. Br., Hermann-Herder-Strasse 7, D-79104 Freiburg, Germany
| | | | | |
Collapse
|
19
|
Eto W, Hirano K, Hirano M, Nishimura J, Kanaide H. Intracellular alkalinization induces Ca2+ influx via non-voltage-operated Ca2+ channels in rat aortic smooth muscle cells. Cell Calcium 2003; 34:477-84. [PMID: 14572806 DOI: 10.1016/s0143-4160(03)00151-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In smooth muscle, the cytosolic Ca2+ concentration ([Ca2+](i)) is the primary determinant of contraction, and the intracellular pH (pH(i)) modulates contractility. Using fura-2 and 2',7'-biscarboxyethyl-5(6) carboxyfluorescein (BCECF) fluorometry and rat aortic smooth muscle cells in primary culture, we investigated the effect of the increase in pH(i) on [Ca2+](i). The application of the NH(4)Cl induced concentration-dependent increases in both pH(i) and [Ca2+](i). The extent of [Ca2+](i) elevation induced by 20mM NH(4)Cl was approximately 50% of that obtained with 100mM K(+)-depolarization. The NH(4)Cl-induced elevation of [Ca2+](i) was completely abolished by the removal of extracellular Ca2+ or the addition of extracellular Ni2+. The 100mM K(+)-induced [Ca2+](i) elevation was markedly inhibited by a voltage-operated Ca2+ channel blocker, diltiazem, and partly inhibited by a non-voltage-operated Ca2+ channel blocker, SKF96365. On the other hand, the NH(4)Cl-induced [Ca2+](i) elevation was resistant to diltiazem, but was markedly inhibited by SKF96365. It is thus concluded that intracellular alkalinization activates the Ca2+ influx via non-voltage-operated Ca2+ channels and thereby increases [Ca2+](i) in the vascular smooth muscle cells. The alkalinization-induced Ca2+ influx may therefore contribute to the enhancement of contraction.
Collapse
Affiliation(s)
- Wakako Eto
- Division of Molecular Cardiology, Research Institute of Angiocardiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | |
Collapse
|
20
|
Monir-Bishty E, Pierce S, Kupittayanant S, Shmygol A, Wray S. The effects of metabolic inhibition on intracellular calcium and contractility of human myometrium. BJOG 2003. [DOI: 10.1111/j.1471-0528.2003.03103.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
21
|
Pierce SJ, Kupittayanant S, Shmygol T, Wray S. The effects of pH change on Ca(++) signaling and force in pregnant human myometrium. Am J Obstet Gynecol 2003; 188:1031-8. [PMID: 12712106 DOI: 10.1067/mob.2003.229] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE This study was designed to determine the effects of both intracellular and extracellular pH change on contractile activity and intracellular Ca(++) during spontaneous contractions, oxytocin, and depolarization-induced stimulation of human myometrium. STUDY DESIGN Human myometrial tissue was obtained at elective caesarean delivery at term (37-41 completed weeks of gestation). Longitudinal strips were dissected and loaded with the calcium sensitive indicator Indo-1. Statistical significance was tested with the Student t test. RESULTS Both intracellular and extracellular acidification significantly reduces or even abolishes phasic activity, whether it arises spontaneously or in the presence of oxytocin. These contractile changes can be accounted for by the changes in intracellular Ca(++). Alkalinization produced the opposite effects. However, baseline or maintained tension changes could not be accounted for by changes in intracellular Ca(++). CONCLUSION We suggest that the effects on phasic activity are due to the inhibition of L-type calcium entry and that, during maintained or baseline activity, pH-sensitive Ca(++) release, possibly from the sarcoplasmic reticulum occurs; but it is insufficient to overcome the inhibitory effects at the myofilaments. We conclude that alterations of pH significantly affect calcium signaling and force production in the human myometrium and may contribute to dysfunction in labor.
Collapse
Affiliation(s)
- S Joanne Pierce
- Department of Physiology, University of Liverpool, United Kingdom.
| | | | | | | |
Collapse
|
22
|
Yoon S, Zuccarello M, Rapoport RM. Repeated constriction to respiration-induced hypocapnia is not mimicked by isocapnic alkaline solution in rabbit basilar artery in situ. Vascul Pharmacol 2003; 40:7-11. [PMID: 12646404 DOI: 10.1016/s1537-1891(02)00316-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The purpose of this study was to test whether constriction of the cerebral vasculature in response to respiration-induced hypocapnia was mimicked by isocapnic alkaline solution. Since the regulation of the cerebral vasculature by hypocapnia necessitates vessels to constrict repeatedly in response to hypocapnic challenge, we tested whether repeated challenge with isocapnic alkaline solution was also associated with constriction. In contrast to our previous demonstration that repeated hypocapnic challenge elicited constrictions of similar magnitudes in rabbit basilar artery in situ, repeated challenge with isocapnic alkaline solution resulted in reduced constriction. Constriction to hypocapnia was also reduced following isocapnic alkaline solution. Since we previously demonstrated that constrictions to hypocapnia and isocapnic alkaline solution were endothelin-1 dependent, we tested whether the inhibition of hypocapnia- and isocapnic alkaline solution-induced constrictions following isocapnic alkaline solution was due to reduced endothelin-1 constriction. Endothelin-1 constriction was not reduced following isocapnic alkaline solution. Thus, constriction to isocapnic alkaline solution does not mimic constriction to hypocapnia. The results further suggest that the decreased constriction to isocapnic alkaline solution is due to blockade of endothelin-1 release, and that both hypocapnia and isocapnic alkaline solution share a common step in their endothelin-1 release pathways that can be inhibited by isocapnic alkaline solution.
Collapse
Affiliation(s)
- SeongHun Yoon
- Research Service, Veterans Affairs Medical Center, Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, P.O. Box 670575, OH 45267-0575, USA
| | | | | |
Collapse
|
23
|
Smith RD, Eisner DA, Wray S. PH-induced changes in calcium: functional consequences and mechanisms of action in guinea pig portal vein. Am J Physiol Heart Circ Physiol 2002; 283:H2518-26. [PMID: 12427597 DOI: 10.1152/ajpheart.01102.2001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of changing extracellular (pH(o)) and intracellular pH (pH(i)) on force and the mechanisms involved in the guinea pig portal vein were investigated to better understand the control of tone in this vessel. When pH(o) was altered, the effects on force and calcium were the same irrespective of whether force had been produced spontaneously by high-K depolarization or by norepinephrine; alkalinization increased tone, and acidification reduced it. Because pH(o) changes also lead to changes in pH(i), we determined whether the effects on force could be explained by these induced pH(i) changes. It was found, however, that only with spontaneous activity did intracellular alkalinization increase force. In depolarized preparations, force was decreased, and, with norepinephrine, force was initially decreased and then increased. Thus the effects of pH(o) cannot be explained solely by changes in pH(i). The role of the sarcoplasmic reticulum (SR) and surface membrane Ca(2+)-ATPase on the mechanism were investigated and shown not to be involved. Therefore, it is concluded that both pH(o) and pH(i) can have powerful modulatory effects on portal vein tone, that these effects are not identical, and that they are likely to be due to effects of pH on ion channels rather than the SR or plasma membrane Ca(2+)-ATPase.
Collapse
Affiliation(s)
- R D Smith
- Department of Physiology, The University of Liverpool, United Kingdom.
| | | | | |
Collapse
|
24
|
Yartsev VN, Karachentseva OV, Dvoretsky DP. Effect of pH changes on reactivity of rat mesenteric artery segments at different magnitude of stretch. ACTA PHYSIOLOGICA SCANDINAVICA 2002; 174:1-7. [PMID: 11851591 DOI: 10.1046/j.1365-201x.2002.00923.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The reaction to noradrenaline (NA) (10 microM) and electrical field stimulation (EFS) was studied in rat mesenteric artery segments at different magnitude of stretch and the solution pH. Alkaline solution (pH 7.8) potentiated and acidic solution (pH 7.0 or 6.6) inhibited the EFS-evoked response of segments stretched to values corresponding to arterial pressure of 5-200 mmHg. These pH changes failed to alter resting tension at any magnitude of stretch. Acedic solution of pH 6.6 caused 2-fold decrease in noradrenaline- and 5-15-fold decrease in the EFS-evoked response of segments stretched to values corresponding to arterial pressure of 50, 125, and 200 mmHg. In segments pre-contracted with noradrenaline (10 microM) acidification caused the decrease of the dilation and appearance of the constriction induced by the EFS. The effect of acidosis on the EFS-evoked response was diminished and the effect on noradrenaline-evoked response was abolished in the presence of nitric oxide synthase blocker, NG-nitro-L-arginine (100 microM). These results suggest that acidosis effectively impairs reactivity of the rat mesenteric artery in a wide range of its stretch, and the inhibition of the response to noradrenaline occurs completely, while to EFS only partially due to nitric oxide (NO) release, presumably by the endothelium. In addition, it was shown that acidosis is able to act not only as the commonly known dilator agent, but also as an agent potentiating constriction in case of the high noradrenaline-induced tone.
Collapse
Affiliation(s)
- V N Yartsev
- Laboratory of Circulation, Pavlov Institute of Physiology, Nab. Makarova 6, St Petersburg, 199034, Russia
| | | | | |
Collapse
|
25
|
Yoon SH, Zuccarello M, Rapoport RM. Reversal of hypercapnia induces KATP channel and NO-independent constriction of basilar artery in rabbits with acute metabolic alkalosis. GENERAL PHARMACOLOGY 2000; 35:325-32. [PMID: 11922963 DOI: 10.1016/s0306-3623(02)00111-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The mechanism of hypocapnic constriction of the cerebral vasculature under conditions of altered acid-base balance has not been investigated. As K(ATP) channels and NO have been implicated in hypocapnic constriction, this study investigated their roles in the constriction due to lowered pCO(2) in hypercapnic rabbits with acute metabolic alkalosis. Metabolic alkalosis was induced acutely following ketamine/xylazine injection. Lowering blood pCO(2) from initial baseline hypercapnic levels to near normocapnic and hypocapnic levels constricted basilar artery by 10.2+/-0.8% (4) and 16.2+/-0.6% (44), respectively (means+/-S.E., n), as determined in an in situ cranial window preparation. The constrictions were maintained for 4-5 h and return of pCO(2) to hypercapnic levels relaxed the constriction. Changing the suffusate pH to either the pH of the cerebral spinal fluid observed during initial baseline hypercapnia or following lowered pCO(2) did not alter the magnitude of constriction due to lowered pCO(2). Neither 0.3 mM N(G)-monomethyl-L-arginine monoacetate, an NO synthase inhibitor, nor 10 microM glibenclamide, a K(ATP) channel blocker, altered the magnitude of hypocapnic constriction. These results demonstrated that under conditions of acute metabolic alkalosis and accompanying compensatory hypercapnia, subsequent pCO(2) reduction induces prolonged constriction of the basilar artery that is independent of (1) cerebral spinal fluid pH over a physiologic range, and (2) NO and K(ATP) channels.
Collapse
Affiliation(s)
- S H Yoon
- Research Service, Veterans Affairs Medical Center, Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, PO Box 670575, Cincinnati, OH 45267-0575, USA
| | | | | |
Collapse
|
26
|
Ralevic V. Effect of a decrease in pH on responses mediated by P2 receptors in the rat mesenteric arterial bed. Eur J Pharmacol 2000; 406:99-107. [PMID: 11011040 DOI: 10.1016/s0014-2999(00)00631-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The present study investigated the effect of acidosis (reduction in pH of the Krebs' solution from 7.4 to 6.9) on responses to vasoconstrictors and vasodilators, with a focus on purines, in the rat isolated perfused mesenteric arterial bed. alpha,beta-Methylene ATP (alpha,beta-meATP) (10 microM), a selective P2X receptor agonist, elicited a desensitizing vasocontraction, which was not significantly affected by a reduction in pH to 6.9. Contractions to ATP were also not significantly different at pH 6.9 compared to pH 7.4. In contrast, contractile responses to noradrenaline, methoxamine, and vasopressin were greatly attenuated at pH 6.9 (by 48-83%; P<0.01). At raised tone, vasorelaxations to ADP at P2Y receptors, and to calcitonin gene-related peptide (CGRP), were not different at pH 7.4 and pH 6.9. These data indicate that a reduction in pH (to 6.9) differentially affects responses to vasoconstrictors in the rat mesenteric arterial bed. There is no effect on contractions mediated via P2X receptors, but contractions to noradrenaline, methoxamine and vasopressin are greatly attenuated.
Collapse
Affiliation(s)
- V Ralevic
- School of Biomedical Sciences, Queen's Medical Centre, The University of Nottingham, NG7 2UH, Nottingham, UK.
| |
Collapse
|
27
|
Nazarov V, Aquino-DeJesus J, Apkon M. Extracellular pH, Ca(2+) influx, and response of vascular smooth muscle cells to 5-hydroxytryptamine. Stroke 2000; 31:2500-7. [PMID: 11022085 DOI: 10.1161/01.str.31.10.2500] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Cerebral vascular smooth muscle cells (VSMCs) contract on extracellular pH (pH(o)) increases and relax on pH(o) decreases. These changes in tone are believed to result from changes in [Ca(2+)](i), although the responsible mechanisms are not fully understood. VSMCs also contract in response to 5-hydroxytryptamine (5-HT), which increases [Ca(2+)](i) via both Ca(2+) release and influx. We hypothesized that examining effects of pH(o) decreases on 5-HT-induced [Ca(2+)](i) changes would allow us to identify mechanisms whereby pH(o) influences tone. Accordingly, we compared [Ca(2+)](i) increases in cerebral VSMCs, evoked by 5-HT, with increases evoked by increased pH(o) and examined 5-HT-dependent [Ca(2+)](i) increases at normal and decreased pH(o). METHODS We monitored [Ca(2+)](i,), using the Ca(2+)-sensitive dye fura 2, in cultured rat cerebral VSMCs obtained by enzymatic digestion of middle cerebral arteries and their branches (passages 1 to 3) grown on glass coverslips and superfused with physiological saline. RESULTS Increasing pH(o) from 7.3 to 7.8 increased [Ca(2+)](i), and these increases were prevented in Ca(2+)-free solutions. Decreasing pH(o) from 7.3 to 6.9 did not alter [Ca(2+)](i) unless [Ca(2+)](i) was first raised by treatment with 5-HT (10 micromol/L). 5-HT resulted in biphasic [Ca(2+)](i) increases characterized by transient peaks blocked by the Ca(2+)-ATPase inhibitor thapsigargin (10 nmol/L) and prolonged plateaus blocked by the Ca(2+) channel blocker Ni(2+) (1 mmol/L). Acidification did not alter the transient peaks but significantly reduced 5-HT-induced Ca(2+) influx. CONCLUSIONS We conclude that increasing pH(o) induces Ca(2+) influx in rat cerebral VSMCs and decreasing pH(o) inhibits 5-HT-stimulated Ca(2+) entry but not intracellular Ca(2+) release.
Collapse
Affiliation(s)
- V Nazarov
- Departments of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | |
Collapse
|
28
|
Abstract
Ca(2+) and H(+) ions can profoundly alter vascular tone. In many physiological and pathological processes, changes in the concentration of both ions occur. Thus, to understand the processes and mechanisms that modify force, it is necessary to understand what changes occur in these ions and, importantly, how they interact with each other. In this minireview, we highlight the quantitatively important mechanisms involved in the contractile responses of vascular tissues to pH change and discuss the cellular and molecular reasons underlying these responses.
Collapse
Affiliation(s)
- C Austin
- Department of Medicine, Manchester Royal Infirmary, Manchester, UK.
| | | |
Collapse
|
29
|
Zuccarello M, Lee BH, Rapoport RM. Endothelin-1 mediates hypocapnic constriction of the rabbit basilar artery in-vitro. J Pharm Pharmacol 2000; 52:225-6. [PMID: 10714954 DOI: 10.1211/0022357001773733] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
30
|
Parkington HC, Tonta MA, Davies NK, Brennecke SP, Coleman HA. Hyperpolarization and slowing of the rate of contraction in human uterus in pregnancy by prostaglandins E2 and f2alpha: involvement of the Na+ pump. J Physiol 1999; 514 ( Pt 1):229-43. [PMID: 9831729 PMCID: PMC2269046 DOI: 10.1111/j.1469-7793.1999.229af.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
1. The effects of prostaglandins E2 (PGE) and F2alpha (PGF) on membrane potential and isometric tension and cytoplasmic free calcium concentration ([Ca2+]i) and tension were studied in strips of uterine smooth muscle obtained from women undergoing Caesarean delivery at term and during established labour. 2. Prostaglandins (PGs) evoked a biphasic response. The excitatory component consisted of depolarization of the membrane, which initiated spike action potentials, an increase in [Ca2+]i and tension development. The membrane remained depolarized at -19 +/- 1 mV for about 2 min, then repolarized abruptly, [Ca2+]i promptly returned to basal levels, and tension development ceased. 3. This component of the response to PGE or PGF was followed by a slow hyperpolarization which reached -85 +/- 2 mV (n = 22) at term and -70 +/- 2 mV (n = 9) during labour, and during which spontaneous action potentials and tension development did not occur. 4. Nifedipine (10-6 M) abolished spontaneous activity, abolished PG-induced action potentials and reduced the increase in [Ca2+]i (9 +/- 3 %, n = 6), the depolarization (10 +/- 1 mV, n = 14), the tension (2 +/- 1 %, n = 14) and the hyperpolarization (9 +/- 1 mV, n = 14, at term). 5. A variety of K+ channel blockers were without effect on the peak amplitude of the PG-induced hyperpolarization but the latter did not occur in the presence of ouabain (10-6 M) or in K+-free or low-Na+ solutions, suggesting an involvement of the Na+-K+-ATPase pump. 6. In conclusion, a substantial dependence on Ca2+ influx through voltage-operated Ca2+ channels accounts for the importance of membrane potential in regulating contractions in human uterine smooth muscle. The classical excitatory effect of PGE and PGF is followed by hyperpolarization involving the Na+-K+-ATPase pump. The hyperpolarization restricts the response to a single contraction and decreases the frequency of subsequent contractions. The amplitude of the hyperpolarization decreases during labour, allowing contraction frequency to increase. Its persistence at this time ensures complete relaxation between each single robust contraction, preventing spasm of the uterus that would restrict blood flow to the fetus during delivery.
Collapse
Affiliation(s)
- H C Parkington
- Department of Physiology, Monash University, Clayton, Victoria 3168 and Department of Perinatal Medicine, Royal Women's Hospital, Carlton, Victoria 3053, Australia.
| | | | | | | | | |
Collapse
|
31
|
Peng HL, Ivarsen A, Nilsson H, Aalkjaer C. On the cellular mechanism for the effect of acidosis on vascular tone. ACTA PHYSIOLOGICA SCANDINAVICA 1998; 164:517-25. [PMID: 9887974 DOI: 10.1111/j.1365-201x.1998.tb10701.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The role of smooth muscle [Ca2+]i and membrane potential for the relaxation to hypercapnic (increased CO2) and normocapnic (unchanged CO2) acidosis is not complete understood. It is often stated that membrane hyperpolarization plays an important role but this has not been vigorously tested. In this study we investigated isolated rat cerebral small arteries under isobaric conditions. Lumen diameter was measured simultaneously with either [Ca2+]i or membrane potential, and acidosis was induced by increasing PCO2 or reducing HCO3- of the bathing solution or by adding HCI to a nominally bicarbonate-free solution. Confocal microscopy verified loading of smooth muscle cells with fluorescent dyes. Acidosis always reduced myogenic tone at transmural pressures between 20 and 120 mmHg. Acidification at a transmural pressure of 40 mmHg caused an increase in diameter and a decrease in [Ca2+]i. This was also seen in the presence of L-NNA and after depolarization with 50 mM K+. The response to hypercapnic and normocapnic acidosis was similar. However, while hypercapnic acidosis caused hyperpolarization, normocapnic acidosis caused depolarization. Dilatation, decrease of [Ca2+]i and depolarization, was also seen with reduction of pH in bicarbonate-free solution. We conclude that the isobaric relaxation to both hypercapnic and normocapnic acidosis is most likely mediated by a reduction of [Ca2+]i. Membrane potential may on the other hand not play a major role for this reduction of [Ca2+]i and it is possible that molecular CO2 has an effect on the membrane potential.
Collapse
Affiliation(s)
- H L Peng
- Department of Pharmacology, University of Aarhus, Aarhus C, Denmark
| | | | | | | |
Collapse
|
32
|
Sweeney M, Beddy D, Honner V, Sinnott B, O'Regan RG, McLoughlin P. Effects of changes in pH and CO2 on pulmonary arterial wall tension are not endothelium dependent. J Appl Physiol (1985) 1998; 85:2040-6. [PMID: 9843524 DOI: 10.1152/jappl.1998.85.6.2040] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined the changes in isolated pulmonary artery (PA) wall tension on switching from control conditions (pH 7.38 +/- 0.01, PCO2 32.9 +/- 0.4 Torr) to isohydric hypercapnia (pH change 0.00 +/- 0.01, PCO2 change 24.9 +/- 1.1 Torr) or normocapnic acidosis (pH change -0.28 +/- 0.01, PCO2 change -0.3 +/- 0.04 Torr) and the role of the endothelium in these responses. In rat PA, submaximally contracted with phenylephrine, isohydric hypercapnia did not cause a significant change in mean (+/- SE) tension [3.0 +/- 1.8% maximal phenylephrine-induced tension (Po)]. Endothelial removal did not alter this response. In aortic preparations, isohydric hypercapnia caused significant (P < 0.01) relaxation (-27.4 +/- 3.2% Po), which was largely endothelium dependent. Normocapnic acidosis caused relaxation of PA (-20.2 +/- 2.6% Po), which was less (P < 0.01) than that observed in aortic preparations (-35.7 +/- 3.4% Po). Endothelial removal left the pulmonary response unchanged while increasing (P < 0.01) the aortic relaxation (-53.1 +/- 4.4% Po). These data show that isohydric hypercapnia does not alter PA tone. Reduction of PA tone in normocapnic acidosis is endothelium independent and substantially less than that of systemic vessels.
Collapse
MESH Headings
- Acetylcholine/pharmacology
- Acidosis/physiopathology
- Animals
- Carbon Dioxide/blood
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/physiology
- Endothelium, Vascular/physiopathology
- Enzyme Inhibitors/pharmacology
- Hydrogen-Ion Concentration
- Hypercapnia/physiopathology
- In Vitro Techniques
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Muscle, Smooth, Vascular/physiopathology
- NG-Nitroarginine Methyl Ester/pharmacology
- Nitric Oxide Synthase/antagonists & inhibitors
- Phenylephrine/pharmacology
- Pulmonary Artery/drug effects
- Pulmonary Artery/physiology
- Pulmonary Artery/physiopathology
- Rats
- Rats, Sprague-Dawley
- Vasoconstriction/drug effects
- Vasoconstriction/physiology
Collapse
Affiliation(s)
- M Sweeney
- Department of Human Anatomy and Physiology, University College, Dublin 2, Ireland
| | | | | | | | | | | |
Collapse
|
33
|
Peng HL, Jensen PE, Nilsson H, Aalkjaer C. Effect of acidosis on tension and [Ca2+]i in rat cerebral arteries: is there a role for membrane potential? THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:H655-62. [PMID: 9486271 DOI: 10.1152/ajpheart.1998.274.2.h655] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cellular mechanism responsible for the reduction of tension in cerebral small arteries to acidosis is not known. In this study the role of smooth muscle intracellular Ca2+ concentration ([Ca2+]i) and membrane potential for the relaxation to acidosis was investigated in isolated rat cerebral small arteries. Isometric force was measured simultaneously with [Ca2+]i (fura 2) or with membrane potential (intracellular microelectrodes), and acidosis was induced by increasing PCO2 or reducing HCO3- of the bathing solution. Both hypercapnic and normocapnic acidosis were associated with a reduction of intracellular pH [measured with 2',7'-bis-(carboxyethyl)-5 (and -6)-carboxyfluorescein], caused relaxation, and reduced [Ca2+]i. However, whereas hypercapnic acidosis caused hyperpolarization, normocapnic acidosis was associated with depolarization. It is concluded that a reduction of [Ca2+]i is in part responsible for the direct effect of the acidosis on the vascular smooth muscle both during normo- and hypercapnia. The mechanism responsible for the reduction of [Ca2+]i differs between the hypercapnic and normocapnic acidosis, being partly explained by hyperpolarization during hypercapnic acidosis, whereas it is seen despite depolarization during normocapnic acidosis.
Collapse
Affiliation(s)
- H L Peng
- Department of Pharmacology, University of Aarhus, Denmark
| | | | | | | |
Collapse
|
34
|
Naderali EK, Buttell N, Taggart MJ, Bullock AJ, Eisner DA, Wray S. The role of the sarcolemmal Ca(2+)-ATPase in the pH transients associated with contraction in rat smooth muscle. J Physiol 1997; 505 ( Pt 2):329-36. [PMID: 9423176 PMCID: PMC1160067 DOI: 10.1111/j.1469-7793.1997.329bb.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
1. We have investigated the origin of the intracellular acid pH transients that accompany myometrial contraction. Intra- and extracellular pH were measured with SNARF and intracellular Ca2+ concentration ([Ca2+]i) with indo-1. 2. An intracellular acidification accompanied spontaneous contractions and those elicited by KCl depolarization or the addition of the agonists carbachol or prostaglandin F2 alpha. The size of the acidification increased with the magnitude of the contraction. 3. The intracellular acidification was accompanied by an extracellular alkalinization, showing that it results from proton movement across the surface membrane. Furthermore, it was decreased either by addition of Cd2+ (20 nM, an inhibitor of the sarcolemmal Ca(2+)-ATPase) or by elevating [Ca2+]o. 4. Extracellular alkalinization increased the magnitude of the rise of [Ca2+]i and force produced by KCl. 5. An intracellular acidification was also associated with contraction in the portal vein and ureter. 6. We conclude that the sarcolemmal Ca(2+)-ATPase produces a significant intracellular acidification while removing Ca2+. Both the acidification and decrease of [Ca2+]i will promote relaxation. Since Ca2+ and protons have opposite effects on many cellular processes, this dual regulation by these two ions may be of general importance.
Collapse
Affiliation(s)
- E K Naderali
- Physiological Laboratory, University of Liverpool, UK
| | | | | | | | | | | |
Collapse
|
35
|
Taggart MJ, Sheader EA, Walker SD, Naderali EK, Moore S, Wray S. External alkalinization decreases intracellular Ca++ and spontaneous contractions in pregnant rat myometrium. Am J Obstet Gynecol 1997; 177:959-63. [PMID: 9369852 DOI: 10.1016/s0002-9378(97)70301-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVES As plasma pH rises during pregnancy, the effect of raising external pH on spontaneous contractions in pregnant rat myometrium was investigated to test the hypothesis that elevated external pH depresses contraction. STUDY DESIGN Strips of longitudinal myometrium were loaded with SNARF (seminaphthorhodafluor) or Indo-1 for simultaneous intracellular pH or Ca++ and force measurements. Results were obtained from a minimum of five animals in each group, and significant differences were tested for by paired Student t tests. RESULTS Raising the external pH significantly reduced spontaneous force and calcium transient in the pregnant uterus. Raising the external pH led to a slow rise in intracellular pH, but this could not account for the functional effect. K+ rubidium 86-labeled efflux rates were unaffected by external pH, suggesting no hyperpolarization. The Ca++ channel agonist Bay K8644 (5 mumol/L) restored contractions abolished by raised external pH. CONCLUSIONS Raised external pH reduces spontaneous contractions in the pregnant rat uterus, probably by an external effect on Ca++ entry. This effect may contribute to uterine quiescence before term.
Collapse
Affiliation(s)
- M J Taggart
- Physiological Laboratory, University of Liverpool, United Kingdom
| | | | | | | | | | | |
Collapse
|
36
|
Iwasawa K, Nakajima T, Hazama H, Goto A, Shin WS, Toyo-oka T, Omata M. Effects of extracellular pH on receptor-mediated Ca2+ influx in A7r5 rat smooth muscle cells: involvement of two different types of channel. J Physiol 1997; 503 ( Pt 2):237-51. [PMID: 9306269 PMCID: PMC1159859 DOI: 10.1111/j.1469-7793.1997.237bh.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
1. The effects of extracellular pH (pHo) on receptor (vasopressin or endothelin-1)-mediated Ca2- entry and Ca(2+)-permeable channels were investigated in aortic smooth muscle cells (A7r5) from rat embryonic thoracic aorta. Intracellular Ca2+ ([Ca2+]i) was measured using fura-2 AM and whole-cell voltage clamp techniques were employed. 2. Vasopressin and endothelin-1 (100 nM) in the presence of nicardipine (10 microM) evoked a sustained rise in [Ca2+]i due to calcium entry. Extracellular acidosis decreased receptor (vasopressin or endothelin-1)-mediated Ca2+ entry, while extracellular alkalosis potentiated it. 3. Depletion of intracellular Ca2+ stores with thapsigargin (1 microM) also evoked Ca2+ entry activated by emptying of intracellular Ca2+ stores (capacitative Ca2+ entry). Extracellular acidosis decreased this capacitative Ca2+ entry, while extracellular alkalosis potentiated it. 4. Under voltage-clamp conditions with Ca+ internal solution, vasopressin and endothelin-1 activated non-selective cation currents (ICAT). Ba2+ or Ca2+ were also charge carriers of ICAT. Reducing the pHo inhibited ICAT, while increasing pHo potentiated it in a reversible manner. 5. Intracellular pH (pHi) changes did not cause the same marked effects as pHo changes, and a high concentration of Hepes (50 mM) in the patch pipette did not inhibit the effects of pHo on ICAT. 6. Similar results were obtained when ICAT was activated by GTP gamma S (1 mM) applied through the patch pipette, even in the absence of agonists, probably because of direct activation of GTP-binding proteins coupled to the receptors. 7. In cells treated with thapsigargin, addition of Ca2+ to the bath solution induced Ca(2+)-dependent K+ currents activated by capacitative Ca2+ entry. However, no measurable ionic currents activated by capacitative Ca2+ entry (ICRAC) were observed under conditions with Cs+ internal solution and EGTA (5 mM), although vasopressin still activated ICAT. 8. These results suggest that the contractile agonists vasopressin and endothelin-1 evoked Ca2+ entry through two different types of Ca(2+)-permeable channel (ICAT and ICRAC) and pHo affects these channels, which may modulate receptor-mediated Ca2+ influx in A7r5 cells. Thus, pH-induced changes of these channels may play a pathophysiological role in the control of receptor-mediated contractions.
Collapse
Affiliation(s)
- K Iwasawa
- Second Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Effect of acidosis on the membrane potential of intact guinea pig aortic endothelial cells. NEUROPHYSIOLOGY+ 1997. [DOI: 10.1007/bf02463223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
38
|
Taggart MJ, Menice CB, Morgan KG, Wray S. Effect of metabolic inhibition on intracellular Ca2+, phosphorylation of myosin regulatory light chain and force in rat smooth muscle. J Physiol 1997; 499 ( Pt 2):485-96. [PMID: 9080376 PMCID: PMC1159321 DOI: 10.1113/jphysiol.1997.sp021943] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
1. The effect of the inhibition of oxidative phosphorylation on intracellular calcium concentration ([Ca2+]i), phosphorylation of the 20 kDa regulatory light chain of myosin (MLC20) and contractility was investigated in isolated longitudinal smooth muscle from rat uteri. 2. Cyanide (2 mM) application to normally polarized preparations resulted in an elevation of basal [Ca2+]i but an inhibition of [Ca2+]i transients and the accompanying contractions. 3. Depolarization with high-K+ solution (40 mM KCI) resulted in elevation of [Ca2+]i and maintained force production. Phosphorylation of MLC20 was transiently increased followed by a steady-state augmentation above resting levels. 4. Carbachol (100 microM) produced a transient elevation of [Ca2+]i and force of depolarized tissues followed by a steady-state augmentation of both parameters. PGF2 alpha (1 microM) did not significantly potentiate [Ca2+]i or force in depolarized preparations. Both carbachol and PGF2 alpha potentiated phosphorylation of MLC20 in depolarized tissues. 5. Addition of cyanide to depolarized preparations, in the presence or absence of carbachol or PGF2 alpha, resulted in significant attenuation of force under each condition. The magnitude and normalized rates of force inhibition by cyanide were not significantly different for each stimulus condition. MLC20 phosphorylation levels were unaltered by cyanide treatment. However, cyanide increased the maintained level of [Ca2+]i under each experimental protocol. 6. It is concluded that the inhibition of oxidative phosphorylation with cyanide results in dissociation of both the [Ca2+]i-force and MLC20 phosphorylation-force relationships in rat uterine smooth muscle.
Collapse
Affiliation(s)
- M J Taggart
- Physiological Laboratory, University of Liverpool, UK.
| | | | | | | |
Collapse
|
39
|
Taggart MJ, Burdyga T, Heaton R, Wray S. Stimulus-dependent modulation of smooth muscle intracellular calcium and force by altered intracellular pH. Pflugers Arch 1996; 432:803-11. [PMID: 8772130 DOI: 10.1007/s004240050202] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Measurements of simultaneous force and intracellular Ca2+ concentration ([Ca2+]i) in rat uterine smooth muscle have been made to elucidate the mechanisms involved when force produced spontaneously, by high-K+ depolarization or carbachol is altered by a change of intracellular pH (pHi). Rises in force and [Ca2+]i were closely correlated for all forms of contraction, with the Ca2+ transient peaking before force. In spontaneously active preparations, alkalinization significantly increased, and acidification decreased, force and [Ca2+]i. Inhibition of the sarcoplasmic reticulum ATPase (cyclopiazonic acid) did not affect these changes, whereas removal of external Ca2+ abolished both responses, suggesting that the effect of pHi is on Ca2+ entry. Alkalinization caused a prolongation of the action potential complex, associated with a potentiation of contractile activity. Acidification produced hyperpolarization and abolition of action potentials and spontaneous activity, but did not prevent brief applications of carbachol or high-K+ from producing depolarization and increasing force, suggesting no impairment of the mechanism of generation of the action potential. For depolarized preparations, acidification increased tonic force and [Ca2+]i; the increase in the calcium signal persisted in zero-external calcium. In the presence of carbachol, acidification transiently increased force and [Ca2+]i, followed by a reduction in both. It is concluded that changes in pHi act at more than one step in excitation-contraction coupling and that changes in [Ca2+]i can account for most of the changes in uterine force.
Collapse
Affiliation(s)
- M J Taggart
- Physiological Laboratory, Crown Street, The University of Liverpool, PO Box 147, Liverpool L69 3BX, UK
| | | | | | | |
Collapse
|