1
|
Chauhdri AF, Bruss P, Tran A. Brugada Phenotype Following a Cocaine Overdose. Cureus 2024; 16:e63861. [PMID: 39099899 PMCID: PMC11297651 DOI: 10.7759/cureus.63861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2024] [Indexed: 08/06/2024] Open
Abstract
Brugada syndrome is a rare cardiac condition characterized by distinctive electrocardiogram patterns, predisposing individuals to fatal arrhythmias. While primarily linked to a loss-of-function mutation in the SCN5A gene, acquired forms of the syndrome have been associated with various factors, including drug use. We present a case of a 31-year-old female who presented to the emergency department unresponsive following cocaine use and developed type 1 Brugada ECG patterns alongside an incomplete right bundle branch block in V1-V3, ST elevations with biphasic waves, and diffuse repolarization abnormalities with J point deviations while in the intensive care unit. This study aimed to discuss the complexity of managing drug-induced Brugada-like findings and highlights the need for further research into the mechanisms underlying cocaine-induced cardiac effects. We aimed to discuss potential mechanisms for the impact of cocaine as its role as a sodium channel blocker and its potential effects on connexin 43 in the context of Brugada syndrome. This study also reinforced the importance of differentiating between true Brugada syndrome and other similar ECG changes for appropriate care management.
Collapse
Affiliation(s)
- Ammar F Chauhdri
- Emergency Medicine, ProMedica Monroe Regional Hospital, Monroe, USA
- Medicine, University of Michigan, Ann Arbor, USA
| | - Patrick Bruss
- Emergency Medicine, ProMedica Monroe Regional Hospital, Monroe, USA
| | - Alvin Tran
- Emergency Medicine, ProMedica Monroe Regional Hospital, Monroe, USA
| |
Collapse
|
2
|
Simon M, Kaplan S, Muschler K, Hoyte C, Brent J. The role of QRS complex prolongation in predicting severe toxicity in single-xenobiotic overdose. Clin Toxicol (Phila) 2024; 62:32-38. [PMID: 38329803 DOI: 10.1080/15563650.2024.2307356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024]
Abstract
OBJECTIVE The QRS complex duration is commonly used to prognosticate severity, predict outcomes, and indicate treatment in overdose. However, literature to support this practice is mixed in tricyclic antidepressant overdoses and absent in non-tricyclic antidepressant overdoses. Our objective was to assess the validity of QRS complex duration as a prognostic marker in overdose. METHODS This was a secondary analysis of cases reported to the Toxicology Investigators Consortium between January 1, 2010, and December 31, 2022. Cases were assessed to determine the six xenobiotics most associated with QRS complex prolongation. All cases involving these six xenobiotics, regardless of QRS complex duration, constituted the study cohort. Inclusion criteria were cases of patients older than 12 years old with single-xenobiotic exposures. Clinical outcomes evaluated were seizure, ventricular dysrhythmia, metabolic acidosis, and death. RESULTS Of 94,939 total cases, diphenhydramine, amitriptyline, bupropion, quetiapine, nortriptyline, and cocaine were most associated with QRS complex prolongation. Inclusion criteria were met by 4,655 cases of exposure to these xenobiotics. QRS complex prolongation was associated with increased odds ratio of seizure in all included xenobiotics, of ventricular dysrhythmia in all included xenobiotics except nortriptyline, and of metabolic acidosis or death in all included xenobiotics except nortriptyline and quetiapine. A normal QRS complex duration had a negative predictive value of greater than or equal to 93.0 percent of developing metabolic acidosis and 98.0 percent of developing a ventricular dysrhythmia or death from the xenobiotics studied. DISCUSSION This study demonstrates that patients with QRS complex prolongation from all six xenobiotics studied had an increased prevalence and odds of developing severe outcomes. Furthermore, patients who did not develop QRS complex prolongation were unlikely to develop a ventricular dysrhythmia, metabolic acidosis, or death. These findings were noted in six xenobiotics that mechanistically can cause QRS complex prolongation through sodium channel or gap junction inhibition. CONCLUSION Identification of patients at risk for severe outcomes after overdose can be aided by measuring the QRS complex duration. If prospectively validated, these outcomes have implications on risk stratification, disposition level of care, and appropriateness of treatments.
Collapse
Affiliation(s)
- Mark Simon
- Rocky Mountain Poison and Drug Safety, Denver Health and Hospital Authority, Denver, CO, USA
- Department of Emergency Medicine, Denver Health and Hospital Authority, Denver, CO, USA
| | - Sabrina Kaplan
- Rocky Mountain Poison and Drug Safety, Denver Health and Hospital Authority, Denver, CO, USA
- Department of Emergency Medicine, Denver Health and Hospital Authority, Denver, CO, USA
| | - Karen Muschler
- Rocky Mountain Poison and Drug Safety, Denver Health and Hospital Authority, Denver, CO, USA
| | - Christopher Hoyte
- Rocky Mountain Poison and Drug Safety, Denver Health and Hospital Authority, Denver, CO, USA
- Department of Emergency Medicine, University of CO, Aurora, CO, USA
| | - Jeffrey Brent
- Department of Emergency Medicine, University of CO, Aurora, CO, USA
| |
Collapse
|
3
|
Ovalle-Ramos JA, Díez-López C, Patel S, Jorde U, Rochlani Y. Challenges With Donor Selection: Inherited Channelopathy Unmasked by Drug Overdose. Can J Cardiol 2023; 39:1617-1619. [PMID: 37634648 DOI: 10.1016/j.cjca.2023.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/29/2023] Open
Affiliation(s)
- Julio A Ovalle-Ramos
- Division of Cardiology, Montefiore Medical Center, Albert Einstein College of Medicine, New York, New York, USA
| | - Carles Díez-López
- Division of Cardiology, Montefiore Medical Center, Albert Einstein College of Medicine, New York, New York, USA
| | - Snehal Patel
- Division of Cardiology, Montefiore Medical Center, Albert Einstein College of Medicine, New York, New York, USA
| | - Ulrich Jorde
- Division of Cardiology, Montefiore Medical Center, Albert Einstein College of Medicine, New York, New York, USA
| | - Yogita Rochlani
- Division of Cardiology, Montefiore Medical Center, Albert Einstein College of Medicine, New York, New York, USA.
| |
Collapse
|
4
|
Dominic P, Ahmad J, Awwab H, Bhuiyan MS, Kevil CG, Goeders NE, Murnane KS, Patterson JC, Sandau KE, Gopinathannair R, Olshansky B. Stimulant Drugs of Abuse and Cardiac Arrhythmias. Circ Arrhythm Electrophysiol 2022; 15:e010273. [PMID: 34961335 PMCID: PMC8766923 DOI: 10.1161/circep.121.010273] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Nonmedical use of prescription and nonprescription drugs is a worldwide epidemic, rapidly growing in magnitude with deaths because of overdose and chronic use. A vast majority of these drugs are stimulants that have various effects on the cardiovascular system including the cardiac rhythm. Drugs, like cocaine and methamphetamine, have measured effects on the conduction system and through several direct and indirect pathways, utilizing multiple second messenger systems, change the structural and electrical substrate of the heart, thereby promoting cardiac dysrhythmias. Substituted amphetamines and cocaine affect the expression and activation kinetics of multiple ion channels and calcium signaling proteins resulting in EKG changes, and atrial and ventricular brady and tachyarrhythmias. Preexisting conditions cause substrate changes in the heart, which decrease the threshold for such drug-induced cardiac arrhythmias. The treatment of cardiac arrhythmias in patients who take drugs of abuse may be specialized and will require an understanding of the unique underlying mechanisms and necessitates a multidisciplinary approach. The use of primary or secondary prevention defibrillators in drug abusers with chronic systolic heart failure is both sensitive and controversial. This review provides a broad overview of cardiac arrhythmias associated with stimulant substance abuse and their management.
Collapse
Affiliation(s)
- Paari Dominic
- Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, LA, Department of Medicine, Louisiana State University Health Sciences Center-Shreveport, LA
| | - Javaria Ahmad
- Department of Medicine, Louisiana State University Health Sciences Center-Shreveport, LA
| | - Hajra Awwab
- Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, LA, Department of Medicine, Louisiana State University Health Sciences Center-Shreveport, LA
| | - Md. Shenuarin Bhuiyan
- Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, LA, Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, Department of Molecular and Cellular Physiology Louisiana State University Health Sciences Center, Shreveport, LA
| | - Christopher G. Kevil
- Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, LA, Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, Department of Molecular and Cellular Physiology Louisiana State University Health Sciences Center, Shreveport, LA, Department of Cellular Biology and Anatomy Louisiana State University Health Sciences Center, Shreveport, LA
| | - Nicholas E. Goeders
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-Shreveport, LA
| | - Kevin S. Murnane
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-Shreveport, LA, Department of Psychiatry, Louisiana State University Health Sciences Center, Shreveport, LA
| | - James C. Patterson
- Department of Psychiatry, Louisiana State University Health Sciences Center, Shreveport, LA
| | | | - Rakesh Gopinathannair
- The Kansas City Heart Rhythm Institute (KCHRI) & Research Foundation, Overland Park Regional Medical Center, Overland Park, KS
| | - Brian Olshansky
- University of Iowa Carver College of Medicine, Iowa City, IA
| |
Collapse
|
5
|
Sun Z, Huai Z, He Q, Liu Z. A General Picture of Cucurbit[8]uril Host-Guest Binding. J Chem Inf Model 2021; 61:6107-6134. [PMID: 34818004 DOI: 10.1021/acs.jcim.1c01208] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Describing, understanding, and designing complex interaction networks within macromolecular systems remain challenging in modern chemical research. Host-guest systems, despite their relative simplicity in both the structural feature and interaction patterns, still pose problems in theoretical modeling. The barrel-shaped supramolecular container cucurbit[8]uril (CB8) shows promising functionalities in various areas, e.g., catalysis and molecular recognition. It can stably coordinate a series of structurally diverse guests with high affinities. In this work, we examine the binding of seven commonly abused drugs to the CB8 host, aiming at providing a general picture of CB8-guest binding. Extensive sampling of the configurational space of these host-guest systems is performed, and the binding pathway and interaction patterns of CB8-guest complexes are investigated. A thorough comparison of widely used fixed-charge models for drug-like molecules is presented. Iterative refitting of the atomic charges suggests significant conformation dependence of charge generation. The initial model generated at the original conformation could be inaccurate for new conformations explored during conformational search, and the newly fitted charge set improves the prediction-experiment correlation significantly. Our investigations of the configurational space of CB8-drug complexes suggest that the host-guest interactions are more complex than expected. Despite the structural simplicities of these molecules, the conformational fluctuations of the host and the guest molecules and orientations of functional groups lead to the existence of an ensemble of binding modes. The insights of the binding thermodynamics, performance of fixed-charge models, and binding patterns of the CB8-guest systems are useful for studying and elucidating the binding mechanism of other host-guest complexes.
Collapse
Affiliation(s)
- Zhaoxi Sun
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhe Huai
- XtalPi-AI Research Center (XARC), 9F, Tower A, Dongsheng Building, No. 8, Zhongguancun East Road, Haidian District, Beijing 100083, P.R. China
| | - Qiaole He
- AI Department of Enzymaster (Ningbo) Bio-Engineering Co., Ltd., North Century Avenue 333, Ningbo 315100, China
| | - Zhirong Liu
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
6
|
Zhorov BS. Structure of Sodium and Calcium Channels
with Ligands. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021020150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Inhibition of Fast Nerve Conduction Produced by Analgesics and Analgesic Adjuvants-Possible Involvement in Pain Alleviation. Pharmaceuticals (Basel) 2020; 13:ph13040062. [PMID: 32260535 PMCID: PMC7243109 DOI: 10.3390/ph13040062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023] Open
Abstract
Nociceptive information is transmitted from the periphery to the cerebral cortex mainly by action potential (AP) conduction in nerve fibers and chemical transmission at synapses. Although this nociceptive transmission is largely inhibited at synapses by analgesics and their adjuvants, it is possible that the antinociceptive drugs inhibit nerve AP conduction, contributing to their antinociceptive effects. Many of the drugs are reported to inhibit the nerve conduction of AP and voltage-gated Na+ and K+ channels involved in its production. Compound action potential (CAP) is a useful measure to know whether drugs act on nerve AP conduction. Clinically-used analgesics and analgesic adjuvants (opioids, non-steroidal anti-inflammatory drugs, 2-adrenoceptor agonists, antiepileptics, antidepressants and local anesthetics) were found to inhibit fast-conducting CAPs recorded from the frog sciatic nerve by using the air-gap method. Similar actions were produced by antinociceptive plant-derived chemicals. Their inhibitory actions depended on the concentrations and chemical structures of the drugs. This review article will mention the inhibitory actions of the antinociceptive compounds on CAPs in frog and mammalian peripheral (particularly, sciatic) nerves and on voltage-gated Na+ and K+ channels involved in AP production. Nerve AP conduction inhibition produced by analgesics and analgesic adjuvants is suggested to contribute to at least a part of their antinociceptive effects.
Collapse
|
8
|
Soriani O, Kourrich S. The Sigma-1 Receptor: When Adaptive Regulation of Cell Electrical Activity Contributes to Stimulant Addiction and Cancer. Front Neurosci 2019; 13:1186. [PMID: 31780884 PMCID: PMC6861184 DOI: 10.3389/fnins.2019.01186] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/21/2019] [Indexed: 12/17/2022] Open
Abstract
The sigma-1 receptor (σ1R) is an endoplasmic reticulum (ER)-resident chaperone protein that acts like an inter-organelle signaling modulator. Among its several functions such as ER lipid metabolisms/transports and indirect regulation of genes transcription, one of its most intriguing feature is the ability to regulate the function and trafficking of a variety of functional proteins. To date, and directly relevant to the present review, σ1R has been found to regulate both voltage-gated ion channels (VGICs) belonging to distinct superfamilies (i.e., sodium, Na+; potassium, K+; and calcium, Ca2+ channels) and non-voltage-gated ion channels. This regulatory function endows σ1R with a powerful capability to fine tune cells’ electrical activity and calcium homeostasis—a regulatory power that appears to favor cell survival in pathological contexts such as stroke or neurodegenerative diseases. In this review, we present the current state of knowledge on σ1R’s role in the regulation of cellular electrical activity, and how this seemingly adaptive function can shift cell homeostasis and contribute to the development of very distinct chronic pathologies such as psychostimulant abuse and tumor cell growth in cancers.
Collapse
Affiliation(s)
| | - Saïd Kourrich
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC, Canada.,Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois, Université du Québec à Montréal, Montréal, QC, Canada.,Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
9
|
Zhu W, Wang H, Wei J, Sartor GC, Bao MM, Pierce CT, Wahlestedt CR, Dykxhoorn DM, Dong C. Cocaine Exposure Increases Blood Pressure and Aortic Stiffness via the miR-30c-5p-Malic Enzyme 1-Reactive Oxygen Species Pathway. Hypertension 2018; 71:752-760. [PMID: 29483230 DOI: 10.1161/hypertensionaha.117.10213] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 08/28/2017] [Accepted: 12/14/2017] [Indexed: 02/07/2023]
Abstract
Cocaine abuse increases the risk of cardiovascular mortality and morbidity; however, the underlying molecular mechanisms remain elusive. By using a mouse model for cocaine abuse/use, we found that repeated cocaine injection led to increased blood pressure and aortic stiffness in mice associated with elevated levels of reactive oxygen species (ROS) in the aortas, a phenomenon similar to that observed in hypertensive humans. This ROS elevation was correlated with downregulation of Me1 (malic enzyme 1), an important redox molecule that counteracts ROS generation, and upregulation of microRNA (miR)-30c-5p that targets Me1 expression by directly binding to its 3'UTR (untranslated region). Remarkably, lentivirus-mediated overexpression of miR-30c-5p in aortic smooth muscle cells recapitulated the effect of cocaine on Me1 suppression, which in turn led to ROS elevation. Moreover, in vivo silencing of miR-30c-5p in smooth muscle cells resulted in Me1 upregulation, ROS reduction, and significantly suppressed cocaine-induced increases in blood pressure and aortic stiffness-a similar effect to that produced by treatment with the antioxidant N-acetyl cysteine. Discovery of this novel cocaine-↑miR-30c-5p-↓Me1-↑ROS pathway provides a potential new therapeutic avenue for treatment of cocaine abuse-related cardiovascular disease.
Collapse
Affiliation(s)
- Wei Zhu
- From the Interdisciplinary Stem Cell Institute (W.Z., H.W., J.W., M.M.B., C.T.P., C.D.), Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences (G.C.S., C.R.W.), and Department of Human Genetics, John P. Hussman Institute for Human Genomics (D.M.D.), University of Miami Miller School of Medicine, FL
| | - Huilan Wang
- From the Interdisciplinary Stem Cell Institute (W.Z., H.W., J.W., M.M.B., C.T.P., C.D.), Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences (G.C.S., C.R.W.), and Department of Human Genetics, John P. Hussman Institute for Human Genomics (D.M.D.), University of Miami Miller School of Medicine, FL
| | - Jianqin Wei
- From the Interdisciplinary Stem Cell Institute (W.Z., H.W., J.W., M.M.B., C.T.P., C.D.), Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences (G.C.S., C.R.W.), and Department of Human Genetics, John P. Hussman Institute for Human Genomics (D.M.D.), University of Miami Miller School of Medicine, FL
| | - Gregory C Sartor
- From the Interdisciplinary Stem Cell Institute (W.Z., H.W., J.W., M.M.B., C.T.P., C.D.), Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences (G.C.S., C.R.W.), and Department of Human Genetics, John P. Hussman Institute for Human Genomics (D.M.D.), University of Miami Miller School of Medicine, FL
| | - Michelle Meiqi Bao
- From the Interdisciplinary Stem Cell Institute (W.Z., H.W., J.W., M.M.B., C.T.P., C.D.), Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences (G.C.S., C.R.W.), and Department of Human Genetics, John P. Hussman Institute for Human Genomics (D.M.D.), University of Miami Miller School of Medicine, FL
| | - Clay T Pierce
- From the Interdisciplinary Stem Cell Institute (W.Z., H.W., J.W., M.M.B., C.T.P., C.D.), Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences (G.C.S., C.R.W.), and Department of Human Genetics, John P. Hussman Institute for Human Genomics (D.M.D.), University of Miami Miller School of Medicine, FL
| | - Claes R Wahlestedt
- From the Interdisciplinary Stem Cell Institute (W.Z., H.W., J.W., M.M.B., C.T.P., C.D.), Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences (G.C.S., C.R.W.), and Department of Human Genetics, John P. Hussman Institute for Human Genomics (D.M.D.), University of Miami Miller School of Medicine, FL
| | - Derek M Dykxhoorn
- From the Interdisciplinary Stem Cell Institute (W.Z., H.W., J.W., M.M.B., C.T.P., C.D.), Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences (G.C.S., C.R.W.), and Department of Human Genetics, John P. Hussman Institute for Human Genomics (D.M.D.), University of Miami Miller School of Medicine, FL
| | - Chunming Dong
- From the Interdisciplinary Stem Cell Institute (W.Z., H.W., J.W., M.M.B., C.T.P., C.D.), Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences (G.C.S., C.R.W.), and Department of Human Genetics, John P. Hussman Institute for Human Genomics (D.M.D.), University of Miami Miller School of Medicine, FL.
| |
Collapse
|
10
|
Abstract
Voltage-gated sodium (Na+) channels are expressed in virtually all electrically excitable tissues and are essential for muscle contraction and the conduction of impulses within the peripheral and central nervous systems. Genetic disorders that disrupt the function of these channels produce an array of Na+ channelopathies resulting in neuronal impairment, chronic pain, neuromuscular pathologies, and cardiac arrhythmias. Because of their importance to the conduction of electrical signals, Na+ channels are the target of a wide variety of local anesthetic, antiarrhythmic, anticonvulsant, and antidepressant drugs. The voltage-gated family of Na+ channels is composed of α-subunits that encode for the voltage sensor domains and the Na+-selective permeation pore. In vivo, Na+ channel α-subunits are associated with one or more accessory β-subunits (β1-β4) that regulate gating properties, trafficking, and cell-surface expression of the channels. The permeation pore of Na+ channels is divided in two parts: the outer mouth of the pore is the site of the ion selectivity filter, while the inner cytoplasmic pore serves as the channel activation gate. The cytoplasmic lining of the permeation pore is formed by the S6 segments that include highly conserved aromatic amino acids important for drug binding. These residues are believed to undergo voltage-dependent conformational changes that alter drug binding as the channels cycle through the closed, open, and inactivated states. The purpose of this chapter is to broadly review the mechanisms of Na+ channel gating and the models used to describe drug binding and Na+ channel inhibition.
Collapse
Affiliation(s)
- M E O'Leary
- Cooper Medical School of Rowan University, Camden, NJ, USA
| | - M Chahine
- CERVO Brain Research Center, Institut universitaire en santé mentale de Québec, Quebec City, QC, Canada.
- Department of Medicine, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
11
|
Abstract
The pore domain of human voltage-dependent cardiac sodium channel Nav1.5 (hNav1.5) is the crucial binding targets for anti-arrhythmics drugs and some local anesthetic drugs but its three-dimensional structure is still lacking. This has affected the detailed studies of the binding features and mechanism of these drugs. In this paper, we present a structural model for open-state pore domain of hNav1.5 built using single template ROSETTA-membrane homology modeling with the crystal structure of NavMs. The assembled structural models are evaluated by rosettaMP energy and locations of binding sites. The modeled structures of the pore domain of hNav1.5 in open state will be helpful to explore molecular mechanism of a state-dependent drug binding and help designing new drugs.
Collapse
Affiliation(s)
- Xiaofeng Ji
- a School of Physics and Key Laboratory of Molecular Biophysics of the Ministry of Education , Huazhong University of Science and Technology , Wuhan , Hubei 430074 , China.,b Yellow Sea Fisheries Research Institute , Chinese Academy of Fishery Sciences , Qingdao , Shandong 266071 , China
| | - Yi Xiao
- a School of Physics and Key Laboratory of Molecular Biophysics of the Ministry of Education , Huazhong University of Science and Technology , Wuhan , Hubei 430074 , China
| | - Shiyong Liu
- a School of Physics and Key Laboratory of Molecular Biophysics of the Ministry of Education , Huazhong University of Science and Technology , Wuhan , Hubei 430074 , China
| |
Collapse
|
12
|
Tikhonov DB, Zhorov BS. Mechanism of sodium channel block by local anesthetics, antiarrhythmics, and anticonvulsants. J Gen Physiol 2017; 149:465-481. [PMID: 28258204 PMCID: PMC5379917 DOI: 10.1085/jgp.201611668] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/08/2016] [Accepted: 02/03/2017] [Indexed: 11/20/2022] Open
Abstract
Local anesthetics, antiarrhythmics, and anticonvulsants include both charged and electroneutral compounds that block voltage-gated sodium channels. Prior studies have revealed a common drug-binding region within the pore, but details about the binding sites and mechanism of block remain unclear. Here, we use the x-ray structure of a prokaryotic sodium channel, NavMs, to model a eukaryotic channel and dock representative ligands. These include lidocaine, QX-314, cocaine, quinidine, lamotrigine, carbamazepine (CMZ), phenytoin, lacosamide, sipatrigine, and bisphenol A. Preliminary calculations demonstrated that a sodium ion near the selectivity filter attracts electroneutral CMZ but repels cationic lidocaine. Therefore, we further docked electroneutral and cationic drugs with and without a sodium ion, respectively. In our models, all the drugs interact with a phenylalanine in helix IVS6. Electroneutral drugs trap a sodium ion in the proximity of the selectivity filter, and this same site attracts the charged group of cationic ligands. At this position, even small drugs can block the permeation pathway by an electrostatic or steric mechanism. Our study proposes a common pharmacophore for these diverse drugs. It includes a cationic moiety and an aromatic moiety, which are usually linked by four bonds.
Collapse
Affiliation(s)
- Denis B Tikhonov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S4L8, Canada
| | - Boris S Zhorov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S4L8, Canada
| |
Collapse
|
13
|
Föhr KJ, Knippschild U, Herkommer A, Fauler M, Peifer C, Georgieff M, Adolph O. State-dependent block of voltage-gated sodium channels by the casein-kinase 1 inhibitor IC261. Invest New Drugs 2017; 35:277-289. [PMID: 28164251 DOI: 10.1007/s10637-017-0429-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 01/12/2017] [Indexed: 12/13/2022]
Abstract
Background and Purpose IC261 (3-[(2,4,6-trimethoxyphenyl)methylidenyl]-indolin-2-one) has previously been introduced as an isoform specific inhibitor of casein kinase 1 (CK1) causing cell cycle arrest or cell death of established tumor cell lines. However, it is reasonable to assume that not all antitumor activities of IC261 are mediated by the inhibition of CK1. Meanwhile there is growing evidence that functional voltage-gated sodium channels are also implicated in the progression of tumors as their blockage suppresses tumor migration and invasion of different tumor cell lines. Thus, we asked whether IC261 functionally inhibits voltage-gated sodium channels. Experimental Approach Electrophysiological experiments were performed using the patch-clamp technique at human heart muscle sodium channels heterologously expressed in human TsA cells. Key Results IC261 inhibits sodium channels in a state-dependent manner. IC261 does not interact with the open channel and has only a low affinity for the resting state of the hNav1.5 (human voltage-gated sodium channel; Kr: 120 μM). The efficacy of IC261 strongly increases with membrane depolarisation, indicating that the inactivated state is an important target. The results of different experimental approaches finally revealed an affinity of IC261 to the inactivated state between 1 and 2 μM. Conclusion and Implications IC261 inhibits sodium channels at a similar concentration necessary to reduce CK1δ/ε activity by 50% (IC50 value 1 μM). Thus, inhibition of sodium channels might contribute to the antitumor activity of IC261.
Collapse
Affiliation(s)
- Karl J Föhr
- Department of Anesthesiology, University Hospital of Ulm, Albert-Einstein-Allee 23, D-89075, Ulm, Germany.
| | - Uwe Knippschild
- Department of General and Visceral Surgery, University Hospital of Ulm, Albert-Einstein-Allee 23, D-89081, Ulm, Germany
| | - Anna Herkommer
- Department of Anesthesiology, University Hospital of Ulm, Albert-Einstein-Allee 23, D-89081, Ulm, Germany
| | - Michael Fauler
- Institute of General Physiology, University of Ulm, Albert-Einstein-Allee 11, D-89081, Ulm, Germany
| | - Christian Peifer
- Institute of Pharmacy, University of Kiel, Gutenbergstr. 76, D-24118, Kiel, Germany
| | - Michael Georgieff
- Department of Anesthesiology, University Hospital of Ulm, Albert-Einstein-Allee 23, D-89075, Ulm, Germany
| | - Oliver Adolph
- Department of Anesthesiology, University Hospital of Ulm, Albert-Einstein-Allee 23, D-89075, Ulm, Germany
| |
Collapse
|
14
|
Abstract
Sodium bicarbonate is a well-known antidote for tricyclic antidepressant (TCA) poisoning. It has been used for over half a century to treat toxin-induced sodium channel blockade as evidenced by QRS widening on the electrocardiogram (ECG). The purpose of this review is to describe the literature regarding electrophysiological mechanisms and clinical use of this antidote after poisoning by tricyclic antidepressants and other agents. This article will also address the literature supporting an increased serum sodium concentration, alkalemia, or the combination of both as the responsible mechanism(s) for sodium bicarbonate's antidotal properties. While sodium bicarbonate has been used as a treatment for cardiac sodium channel blockade for multiple other agents including citalopram, cocaine, flecainide, diphenhydramine, propoxyphene, and lamotrigine, it has uncertain efficacy with bupropion, propranolol, and taxine-containing plants.
Collapse
|
15
|
Jang EY, Ryu YH, Lee BH, Chang SC, Yeo MJ, Kim SH, Folsom RJ, Schilaty ND, Kim KJ, Yang CH, Steffensen SC, Kim HY. Involvement of reactive oxygen species in cocaine-taking behaviors in rats. Addict Biol 2015; 20:663-75. [PMID: 24975938 DOI: 10.1111/adb.12159] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Reactive oxygen species (ROS) have been implicated in the development of behavioral sensitization following repeated cocaine exposure. We hypothesized that increased ROS following cocaine exposure would act as signaling molecules in the mesolimbic dopamine (DA) system, which might play an important role in mediating the reinforcing effects of cocaine. The aim of this study was to evaluate cocaine enhancement of brain metabolic activity and the effects of ROS scavengers on cocaine self-administration behavior, cocaine-induced ROS production in the nucleus accumbens (NAc) and cocaine enhancement of DA release in the NAc. Metabolic neural activity monitored by temperature and oxidative stress were increased in NAc following cocaine exposure. Systemic administration of the ROS scavenger N-tert-butyl-α-phenylnitrone (PBN) or 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL), either pre- or post-treatment, significantly decreased cocaine self-administration without affecting food intake. Infusion of TEMPOL into the NAc inhibited cocaine self-administration. Increased oxidative stress was found mainly on neurons, but not astrocytes, microglia or oligodendrocytes, in NAc of rats self-administering cocaine. TEMPOL significantly attenuated cocaine-induced enhancement of DA release in the NAc, compared to saline controls. TEMPOL had no effect on the enhancement of DA release produced by the DA transporter inhibitor GBR12909. Taken together, these findings suggest that enhancement of ROS production in NAc neurons contributes to the reinforcing effect of cocaine.
Collapse
Affiliation(s)
- Eun Young Jang
- College of Korean Medicine; Daegu Haany University; South Korea
- Department of Psychology; Center for Neuroscience; Brigham Young University; Provo UT USA
| | - Yeon-Hee Ryu
- Acupuncture, Moxibustion & Meridian Research Center; Division of Standard Research; Korea Institute of Oriental Medicine; South Korea
| | - Bong Hyo Lee
- College of Korean Medicine; Daegu Haany University; South Korea
| | - Su-Chan Chang
- College of Korean Medicine; Daegu Haany University; South Korea
| | - Mi Jin Yeo
- College of Korean Medicine; Daegu Haany University; South Korea
| | - Sang Hyun Kim
- College of Korean Medicine; Daegu Haany University; South Korea
| | - Ryan J. Folsom
- Department of Psychology; Center for Neuroscience; Brigham Young University; Provo UT USA
| | - Nathan D. Schilaty
- Department of Psychology; Center for Neuroscience; Brigham Young University; Provo UT USA
| | - Kwang Joong Kim
- College of Korean Medicine; Daegu Haany University; South Korea
| | - Chae Ha Yang
- College of Korean Medicine; Daegu Haany University; South Korea
| | - Scott C. Steffensen
- Department of Psychology; Center for Neuroscience; Brigham Young University; Provo UT USA
| | - Hee Young Kim
- College of Korean Medicine; Daegu Haany University; South Korea
| |
Collapse
|
16
|
O'Leary ME, Chahine M. MTSET modification of D4S6 cysteines stabilize the fast inactivated state of Nav1.5 sodium channels. Front Pharmacol 2015; 6:118. [PMID: 26150789 PMCID: PMC4472985 DOI: 10.3389/fphar.2015.00118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 05/20/2015] [Indexed: 11/30/2022] Open
Abstract
The transmembrane S6 segments of Na+ sodium channels form the cytoplasmic entrance of the channel and line the internal aspects of the aqueous pore. This region of the channel has been implicated in Na+ channel permeation, gating, and pharmacology. In this study we utilized cysteine substitutions and methanethiosulfonate reagent (MTSET) to investigate the role of the S6 segment of homologous domain 4 (D4S6) in the gating of the cardiac (Nav1.5) channel. D4S6 cysteine mutants were heterologously expressed in tsA201 cells and currents recorded using whole-cell patch clamp. Internal MTSET reduced the peak Na+ currents, induced hyperpolarizing shifts in steady-state inactivation and slowed the recovery of mutant channels with cysteines inserted near the middle (F1760C, V1763C) and C-terminus (Y1767C) of the D4S6. These findings suggested a link between the MTSET inhibition and fast inactivation. This was confirmed by expressing the V1763C and Y1767C mutations in non-inactivating Nav1.5 channels. Removing inactivation abolished the MTSET inhibition of the V1763C and Y1767C mutants. The data indicate that the MTSET-induced reduction in current primarily results from slower recovery from inactivation that produces hyperpolarizing shifts in fast inactivation and decreases the steady-state availability of the channels. This contrasted with a cysteine inserted near the C-terminus of the D4S6 (I1770C) where MTSET increased the persistent Na+ current at depolarized voltages consistent with impaired fast inactivation. Covalent modification of D4S6 cysteines with MTSET adduct appears to reduce the mobility of the D4S6 segment and stabilize the channels in the fast inactivated state. These findings indicate that residues located near the middle and C-terminus of the D4S6 play an important role in fast inactivation.
Collapse
Affiliation(s)
- Michael E O'Leary
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ USA
| | - Mohamed Chahine
- Department of Medicine, Research Centre, Institute Universitaire en Santé Mentale de Québec, Laval University Québec, QC, Canada
| |
Collapse
|
17
|
Wang GK, Russell G, Wang SY. Persistent human cardiac Na+ currents in stably transfected mammalian cells: Robust expression and distinct open-channel selectivity among Class 1 antiarrhythmics. Channels (Austin) 2015; 7:263-74. [PMID: 23695971 DOI: 10.4161/chan.25056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Miniature persistent late Na(+) currents in cardiomyocytes have been linked to arrhythmias and sudden death. The goals of this study are to establish a stable cell line expressing robust persistent cardiac Na(+) currents and to test Class 1 antiarrhythmic drugs for selective action against resting and open states. After transient transfection of an inactivation-deficient human cardiac Na(+) channel clone (hNav1.5-CW with L409C/A410W double mutations), transfected mammalian HEK293 cells were treated with 1 mg/ml G-418. Individual G-418-resistant colonies were isolated using glass cylinders. One colony with high expression of persistent Na(+) currents was subjected to a second colony selection. Cells from this colony remained stable in expressing robust peak Na(+) currents of 996 ± 173 pA/pF at +50 mV (n = 20). Persistent late Na(+) currents in these cells were clearly visible during a 4-second depolarizing pulse albeit decayed slowly. This slow decay is likely due to slow inactivation of Na(+) channels and could be largely eliminated by 5 μM batrachotoxin. Peak cardiac hNav1.5-CW Na(+) currents were blocked by tetrodotoxin with an IC(50) value of 2.27 ± 0.08 μM (n = 6). At clinic relevant concentrations, Class 1 antiarrhythmics are much more selective in blocking persistent late Na(+) currents than their peak counterparts, with a selectivity ratio ranging from 80.6 (flecainide) to 3 (disopyramide). We conclude that (1) Class 1 antiarrhythmics differ widely in their resting- vs. open-channel selectivity, and (2) stably transfected HEK293 cells expressing large persistent hNav1.5-CW Na(+) currents are suitable for studying as well as screening potent open-channel blockers.
Collapse
|
18
|
Brimblecombe KR, Cragg SJ. Ni(2+) affects dopamine uptake which limits suitability as inhibitor of T-type voltage-gated Ca(2+) channels. ACS Chem Neurosci 2015; 6:124-9. [PMID: 25434848 DOI: 10.1021/cn500274g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Neuronal T-type voltage-gated Ca(2+) channels are reported to have physiological roles that include regulation of burst firing, Ca(2+) oscillations, and neurotransmitter release. These roles are often exposed experimentally by blocking T-type channels with micromolar Ni(2+). We used Ni(2+) to explore the role of axonal T-type channels in dopamine (DA) release in mouse striatum, but identified significant off-target effects on DA uptake. Ni(2+) (100 μM) reversibly increased electrically evoked DA release and markedly extended its extracellular lifetime, detected using fast-scan cyclic voltammetry. Prior inhibition of the DA transporter (DAT) by cocaine (5 μM) occluded the facilitatory action of Ni(2+) on DA release and conversely, allowed Ni(2+) to inhibit release, presumably through T-channel inhibition. Ni(2+) further prolonged the timecourse of DA clearance suggesting further inhibition of DA uptake. In summary, Ni(2+) has major effects on DA transmission besides those due to T-channels that likely involve inhibition of the DAT.
Collapse
Affiliation(s)
- Katherine R. Brimblecombe
- Department of Physiology,
Anatomy and Genetics, and ‡Oxford Parkinson’s Disease Centre, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Stephanie J. Cragg
- Department of Physiology,
Anatomy and Genetics, and ‡Oxford Parkinson’s Disease Centre, University of Oxford, Oxford OX1 3PT, United Kingdom
| |
Collapse
|
19
|
Poulin H, Bruhova I, Timour Q, Theriault O, Beaulieu JM, Frassati D, Chahine M. Fluoxetine blocks Nav1.5 channels via a mechanism similar to that of class 1 antiarrhythmics. Mol Pharmacol 2014; 86:378-89. [PMID: 25028482 PMCID: PMC4164981 DOI: 10.1124/mol.114.093104] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/15/2014] [Indexed: 11/22/2022] Open
Abstract
The voltage-gated Nav1.5 channel is essential for the propagation of action potentials in the heart. Malfunctions of this channel are known to cause hereditary diseases. It is a prime target for class 1 antiarrhythmic drugs and a number of antidepressants. Our study investigated the Nav1.5 blocking properties of fluoxetine, a selective serotonin reuptake inhibitor. Nav1.5 channels were expressed in HEK-293 cells, and Na(+) currents were recorded using the patch-clamp technique. Dose-response curves of racemic fluoxetine (IC50 = 39 μM) and its optical isomers had a similar IC50 [40 and 47 μM for the (+) and (-) isomers, respectively]. Norfluoxetine, a fluoxetine metabolite, had a higher affinity than fluoxetine, with an IC50 of 29 μM. Fluoxetine inhibited currents in a frequency-dependent manner, shifted steady-state inactivation to more hyperpolarized potentials, and slowed the recovery of Nav1.5 from inactivation. Mutating a phenylalanine (F1760) and a tyrosine (Y1767) in the S6 segment of domain (D) IV (DIVS6) significantly reduced the affinity of fluoxetine and its frequency-dependent inhibition. We used a noninactivating Nav1.5 mutant to show that fluoxetine displays open-channel block behavior. The molecular model of fluoxetine in Nav1.5 was in agreement with mutational experiments in which F1760 and Y1767 were found to be the key residues in binding fluoxetine. We concluded that fluoxetine blocks Nav1.5 by binding to the class 1 antiarrhythmic site. The blocking of cardiac Na(+) channels should be taken into consideration when prescribing fluoxetine alone or in association with other drugs that may be cardiotoxic or for patients with conduction disorders.
Collapse
Affiliation(s)
- Hugo Poulin
- Centre de recherche, Institut universitaire en santé mentale de Québec, Quebec City, Quebec, Canada (H.P., O.T., J.-M.B., M.C.); State University of New York at Buffalo, Buffalo, New York (I.B.); Laboratoire de Pharmacologie Médicale, EA 4612 Neurocardiologie, Université Lyon 1, Lyon, France (Q.T.); Department of Psychiatry and Neuroscience, Université Laval, Quebec City, Quebec, Canada (J.-M.B.); Pôle Dapela, Département de l'autisme et des psychoses d'évolution lente de l'adulte, Centre Hospitalier Le Vinatier, Bron, France (D.F.); and Department of Medicine, Université Laval, Quebec City, Quebec, Canada (M.C.)
| | - Iva Bruhova
- Centre de recherche, Institut universitaire en santé mentale de Québec, Quebec City, Quebec, Canada (H.P., O.T., J.-M.B., M.C.); State University of New York at Buffalo, Buffalo, New York (I.B.); Laboratoire de Pharmacologie Médicale, EA 4612 Neurocardiologie, Université Lyon 1, Lyon, France (Q.T.); Department of Psychiatry and Neuroscience, Université Laval, Quebec City, Quebec, Canada (J.-M.B.); Pôle Dapela, Département de l'autisme et des psychoses d'évolution lente de l'adulte, Centre Hospitalier Le Vinatier, Bron, France (D.F.); and Department of Medicine, Université Laval, Quebec City, Quebec, Canada (M.C.)
| | - Quadiri Timour
- Centre de recherche, Institut universitaire en santé mentale de Québec, Quebec City, Quebec, Canada (H.P., O.T., J.-M.B., M.C.); State University of New York at Buffalo, Buffalo, New York (I.B.); Laboratoire de Pharmacologie Médicale, EA 4612 Neurocardiologie, Université Lyon 1, Lyon, France (Q.T.); Department of Psychiatry and Neuroscience, Université Laval, Quebec City, Quebec, Canada (J.-M.B.); Pôle Dapela, Département de l'autisme et des psychoses d'évolution lente de l'adulte, Centre Hospitalier Le Vinatier, Bron, France (D.F.); and Department of Medicine, Université Laval, Quebec City, Quebec, Canada (M.C.)
| | - Olivier Theriault
- Centre de recherche, Institut universitaire en santé mentale de Québec, Quebec City, Quebec, Canada (H.P., O.T., J.-M.B., M.C.); State University of New York at Buffalo, Buffalo, New York (I.B.); Laboratoire de Pharmacologie Médicale, EA 4612 Neurocardiologie, Université Lyon 1, Lyon, France (Q.T.); Department of Psychiatry and Neuroscience, Université Laval, Quebec City, Quebec, Canada (J.-M.B.); Pôle Dapela, Département de l'autisme et des psychoses d'évolution lente de l'adulte, Centre Hospitalier Le Vinatier, Bron, France (D.F.); and Department of Medicine, Université Laval, Quebec City, Quebec, Canada (M.C.)
| | - Jean-Martin Beaulieu
- Centre de recherche, Institut universitaire en santé mentale de Québec, Quebec City, Quebec, Canada (H.P., O.T., J.-M.B., M.C.); State University of New York at Buffalo, Buffalo, New York (I.B.); Laboratoire de Pharmacologie Médicale, EA 4612 Neurocardiologie, Université Lyon 1, Lyon, France (Q.T.); Department of Psychiatry and Neuroscience, Université Laval, Quebec City, Quebec, Canada (J.-M.B.); Pôle Dapela, Département de l'autisme et des psychoses d'évolution lente de l'adulte, Centre Hospitalier Le Vinatier, Bron, France (D.F.); and Department of Medicine, Université Laval, Quebec City, Quebec, Canada (M.C.)
| | - Dominique Frassati
- Centre de recherche, Institut universitaire en santé mentale de Québec, Quebec City, Quebec, Canada (H.P., O.T., J.-M.B., M.C.); State University of New York at Buffalo, Buffalo, New York (I.B.); Laboratoire de Pharmacologie Médicale, EA 4612 Neurocardiologie, Université Lyon 1, Lyon, France (Q.T.); Department of Psychiatry and Neuroscience, Université Laval, Quebec City, Quebec, Canada (J.-M.B.); Pôle Dapela, Département de l'autisme et des psychoses d'évolution lente de l'adulte, Centre Hospitalier Le Vinatier, Bron, France (D.F.); and Department of Medicine, Université Laval, Quebec City, Quebec, Canada (M.C.)
| | - Mohamed Chahine
- Centre de recherche, Institut universitaire en santé mentale de Québec, Quebec City, Quebec, Canada (H.P., O.T., J.-M.B., M.C.); State University of New York at Buffalo, Buffalo, New York (I.B.); Laboratoire de Pharmacologie Médicale, EA 4612 Neurocardiologie, Université Lyon 1, Lyon, France (Q.T.); Department of Psychiatry and Neuroscience, Université Laval, Quebec City, Quebec, Canada (J.-M.B.); Pôle Dapela, Département de l'autisme et des psychoses d'évolution lente de l'adulte, Centre Hospitalier Le Vinatier, Bron, France (D.F.); and Department of Medicine, Université Laval, Quebec City, Quebec, Canada (M.C.)
| |
Collapse
|
20
|
Acevedo-Rodriguez A, Zhang L, Zhou F, Gong S, Gu H, De Biasi M, Zhou FM, Dani JA. Cocaine inhibition of nicotinic acetylcholine receptors influences dopamine release. Front Synaptic Neurosci 2014; 6:19. [PMID: 25237305 PMCID: PMC4154440 DOI: 10.3389/fnsyn.2014.00019] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 08/18/2014] [Indexed: 11/13/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) potently regulate dopamine (DA) release in the striatum and alter cocaine's ability to reinforce behaviors. Since cocaine is a weak nAChR inhibitor, we hypothesized that cocaine may alter DA release by inhibiting the nAChRs in DA terminals in the striatum and thus contribute to cocaine's reinforcing properties primarily associated with the inhibition of DA transporters. We found that biologically relevant concentrations of cocaine can mildly inhibit nAChR-mediated currents in midbrain DA neurons and consequently alter DA release in the dorsal and ventral striatum. At very high concentrations, cocaine also inhibits voltage-gated Na channels in DA neurons. Furthermore, our results show that partial inhibition of nAChRs by cocaine reduces evoked DA release. This diminution of DA release via nAChR inhibition more strongly influences release evoked at low or tonic stimulation frequencies than at higher (phasic) stimulation frequencies, particularly in the dorsolateral striatum. This cocaine-induced shift favoring phasic DA release may contribute to the enhanced saliency and motivational value of cocaine-associated memories and behaviors.
Collapse
Affiliation(s)
| | - Lifen Zhang
- Department of Neuroscience, Baylor College of Medicine Houston, TX, USA
| | - Fuwen Zhou
- Department of Pharmacology, University of Tennessee College of Medicine Memphis, TN, USA
| | - Suzhen Gong
- Department of Pharmacology, University of Tennessee College of Medicine Memphis, TN, USA
| | - Howard Gu
- Department of Pharmacology, Ohio State University Columbus, OH, USA
| | - Mariella De Biasi
- Departments of Psychiatry, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA
| | - Fu-Ming Zhou
- Department of Pharmacology, University of Tennessee College of Medicine Memphis, TN, USA
| | - John A Dani
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|
21
|
|
22
|
Purcell RH, Papale LA, Makinson CD, Sawyer NT, Schroeder JP, Escayg A, Weinshenker D. Effects of an epilepsy-causing mutation in the SCN1A sodium channel gene on cocaine-induced seizure susceptibility in mice. Psychopharmacology (Berl) 2013; 228:263-70. [PMID: 23494229 PMCID: PMC3695079 DOI: 10.1007/s00213-013-3034-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 02/08/2013] [Indexed: 12/01/2022]
Abstract
RATIONALE High doses of cocaine can elicit seizures in humans and in laboratory animals. Several mechanisms have been proposed for the induction of seizures by cocaine, including enhanced monoaminergic signaling, blockade of ion channels, and alterations in GABA and glutamate transmission. Mutations in the SCN1A gene, which encodes the central nervous system (CNS) voltage-gated sodium channel (VGSC) Nav1.1, are responsible for several human epilepsy disorders including Dravet syndrome and genetic (generalized) epilepsy with febrile seizures plus (GEFS+). Mice heterozygous for the R1648H GEFS+ mutation (RH mice) exhibit reduced interneuron excitability, spontaneous seizures, and lower thresholds to flurothyl- and hyperthermia-induced seizures. However, it is unknown whether impaired CNS VGSC function or a genetic predisposition to epilepsy increases susceptibility to cocaine-induced seizures. OBJECTIVES Our primary goal was to determine whether Scn1a dysfunction caused by the RH mutation alters sensitivity to cocaine-induced behavioral and electrographic (EEG) seizures. We also tested novelty- and cocaine-induced locomotor activity and assessed the expression of Nav1.1 in midbrain dopaminergic neurons. RESULTS We found that RH mice had a profound increase in cocaine-induced behavioral seizure susceptibility compared to wild-type (WT) controls, which was confirmed with cortical EEG recordings. By contrast, although the RH mice were hyperactive in novel environments, cocaine-induced locomotor activity was comparable between the mutants and WT littermates. Finally, immunofluorescence experiments revealed a lack of Nav1.1 immunoreactivity in dopaminergic neurons. CONCLUSION These data indicate that a disease-causing CNS VGSC mutation confers susceptibility to the proconvulsant, but not motoric, effects of cocaine.
Collapse
Affiliation(s)
- Ryan H. Purcell
- Neuroscience Graduate Program, Emory University, Atlanta, GA 30322, USA
| | - Ligia A. Papale
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | - Christopher D. Makinson
- Neuroscience Graduate Program, Emory University, Atlanta, GA 30322, USA,Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | - Nikki T. Sawyer
- Neuroscience Graduate Program, Emory University, Atlanta, GA 30322, USA,Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | | | - Andrew Escayg
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | - David Weinshenker
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA,Address correspondence to: David Weinshenker, Ph.D., Department of Human Genetics, Emory University School of Medicine, Whitehead 301, 615 Michael St., Atlanta, GA 30322. Phone: (404) 727-3106, Fax: (404) 727-3949,
| |
Collapse
|
23
|
The competitive NMDA receptor antagonist CPP disrupts cocaine-induced conditioned place preference, but spares behavioral sensitization. Behav Brain Res 2012; 239:155-63. [PMID: 23153931 DOI: 10.1016/j.bbr.2012.10.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 10/29/2012] [Indexed: 11/22/2022]
Abstract
Recently, the notion that memory and addiction share similar neural substrates has become widely accepted. N-methyl-d-aspartate receptors (NMDAR) are the cornerstones of synaptic models of memory. The present study examined the effect of the competitive NMDAR antagonist CPP on the induction of behavioral sensitization and conditioned place preference to cocaine. Conditioned place preference is an associative memory model of drug seeking, while sensitization is a non-associative model of the transition from casual to compulsive use. There were three principal findings: (1) co-administration of CPP and cocaine altered the acute response to cocaine, suggesting a direct interaction between the two drugs; (2) NMDAR antagonism had no effect on behavioral sensitization; and (3) NMDAR antagonism abolished conditioned place preference. A review of prior evidence supporting a role for NMDARs in sensitization suggests that NMDAR antagonists directly interfere with cocaine's psychostimulant effects, and this interaction could be misinterpreted as a disruption of sensitization. Finally, we suggest that addiction recruits multiple kinds of plasticity, with sensitization recruiting NMDAR-independent mechanisms.
Collapse
|
24
|
Abstract
Cocaine (benzoylmethylecgonine), a natural alkaloid, is a powerful psychostimulant and a highly addictive drug. Unfortunately, the relationships between its behavioral and electrophysiological effects are not clear. We investigated the effects of cocaine on the firing of midbrain dopaminergic (DA) neurons, both in anesthetized and awake rats, using pre-implanted multielectrode arrays and a recently developed telemetric recording system. In anesthetized animals, cocaine (10 mg/kg, intraperitoneally) produced a general decrease of the firing rate and bursting of DA neurons, sometimes preceded by a transient increase in both parameters, as previously reported by others. In awake rats, however, injection of cocaine led to a very different pattern of changes in firing. A decrease in firing rate and bursting was observed in only 14% of DA neurons. Most of the other DA neurons underwent increases in firing rate and bursting: these changes were correlated with locomotor activity in 52% of the neurons, but were uncorrelated in 29% of them. Drug concentration measurements indicated that the observed differences between the two conditions did not have a pharmacokinetic origin. Taken together, our results demonstrate that cocaine injection differentially affects the electrical activity of DA neurons in awake and anesthetized states. The observed increases in neuronal activity may in part reflect the cocaine-induced synaptic potentiation found ex vivo in these neurons. Our observations also show that electrophysiological recordings in awake animals can uncover drug effects, which are masked by general anesthesia.
Collapse
|
25
|
Ramirez FD, Femenía F, Simpson CS, Redfearn DP, Michael KA, Baranchuk A. Electrocardiographic findings associated with cocaine use in humans: a systematic review. Expert Rev Cardiovasc Ther 2012; 10:105-27. [PMID: 22149529 DOI: 10.1586/erc.11.152] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cocaine remains highly prevalent and accessible in the general population, continues to represent one of the most commonly reported substances in drug-related presentations to emergency departments, and is frequently implicated in drug-related deaths. Fatal cardiac arrhythmias are often suspected in the latter cases. In spite of this, its complex effects on the human cardiac conduction system remain poorly elucidated. In this article we sought to systematically review the medical literature to identify the electrocardiographic findings that have been linked to cocaine use in humans in an effort to highlight what physicians can expect to encounter when managing patients using the drug. The evidence is discussed, common findings are emphasized and clinical recommendations are proposed.
Collapse
Affiliation(s)
- F Daniel Ramirez
- Cardiac Electrophysiology and Pacing, Arrhythmia Service, Kingston General Hospital, Queen's University, Kingston, ON, K7L 2V7, Canada
| | | | | | | | | | | |
Collapse
|
26
|
Desaphy JF, Dipalma A, Costanza T, Carbonara R, Dinardo MM, Catalano A, Carocci A, Lentini G, Franchini C, Camerino DC. Molecular Insights into the Local Anesthetic Receptor within Voltage-Gated Sodium Channels Using Hydroxylated Analogs of Mexiletine. Front Pharmacol 2012; 3:17. [PMID: 22403541 PMCID: PMC3279704 DOI: 10.3389/fphar.2012.00017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 01/30/2012] [Indexed: 12/26/2022] Open
Abstract
We previously showed that the β-adrenoceptor modulators, clenbuterol and propranolol, directly blocked voltage-gated sodium channels, whereas salbutamol and nadolol did not (Desaphy et al., 2003), suggesting the presence of two hydroxyl groups on the aromatic moiety of the drugs as a molecular requisite for impeding sodium channel block. To verify such an hypothesis, we synthesized five new mexiletine analogs by adding one or two hydroxyl groups to the aryloxy moiety of the sodium channel blocker and tested these compounds on hNav1.4 channels expressed in HEK293 cells. Concentration–response relationships were constructed using 25-ms-long depolarizing pulses at −30 mV applied from an holding potential of −120 mV at 0.1 Hz (tonic block) and 10 Hz (use-dependent block) stimulation frequencies. The half-maximum inhibitory concentrations (IC50) were linearly correlated to drug lipophilicity: the less lipophilic the drug, minor was the block. The same compounds were also tested on F1586C and Y1593C hNav1.4 channel mutants, to gain further information on the molecular interactions of mexiletine with its receptor within the sodium channel pore. In particular, replacement of Phe1586 and Tyr1593 by non-aromatic cysteine residues may help in the understanding of the role of π–π or π–cation interactions in mexiletine binding. Alteration of tonic block suggests that the aryloxy moiety of mexiletine may interact either directly or indirectly with Phe1586 in the closed sodium channel to produce low-affinity binding block, and that this interaction depends on the electrostatic potential of the drug aromatic tail. Alteration of use-dependent block suggests that addition of hydroxyl groups to the aryloxy moiety may modify high-affinity binding of the drug amine terminal to Phe1586 through cooperativity between the two pharmacophores, this effect being mainly related to drug lipophilicity. Mutation of Tyr1593 further impaired such cooperativity. In conclusion, these results confirm our former hypothesis by showing that the presence of hydroxyl groups to the aryloxy moiety of mexiletine greatly reduced sodium channel block, and provide molecular insights into the intimate interaction of local anesthetics with their receptor.
Collapse
Affiliation(s)
- Jean-François Desaphy
- Section of Pharmacology, Department of Pharmacobiology, Faculty of Pharmacy, University of Bari Bari, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Panigel J, Cook SP. A point mutation at F1737 of the human Nav1.7 sodium channel decreases inhibition by local anesthetics. J Neurogenet 2011; 25:134-9. [PMID: 22074404 DOI: 10.3109/01677063.2011.629702] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Voltage-gated sodium channels (VGSC) contribute to the initiation and propagation of action potentials within the nervous system. These channels are important targets for inhibition by several classes of drugs, including antiarrhythmics and local anesthetics. Structural and pharmacological studies have localized the binding of these drugs to a common site near the channel's intracellular pore region. Point mutations within this region disrupt local anesthetic inhibition of cardiac, CNS, and skeletal muscle VGSC subtypes. This study was designed to test whether a similar structural requirement for drug binding exists on the peripheral neuronal VGSC subtype; Na(v)1.7. In support of this hypothesis, an alanine substitution for phenylalanine at position 1737 (F1737A) in the pore lining S6 segment of domain IV in human Na(v)1.7 reduced both use- and state- dependent inhibition of the local anesthetics, lidocaine and tetracaine, by 8-21-fold. We also saw a 2-3-fold reduction in tonic inhibition with the F1737A mutant. The voltage dependence of both activation and inactivation were unaffected by the F1737A mutation, however, fast inactivation kinetics were impaired, such that a significant portion of inward current remained at the end of a 20-ms depolarization. These data suggest that F1737 forms a part of the high affinity binding of local anesthetics as well as mediating inactivation processes of neuronal Na(v)1.7 channels.
Collapse
Affiliation(s)
- Jacqueline Panigel
- Department of Pain/Migraine Research, Merck Research Laboratories, West Point, PA 19486, USA.
| | | |
Collapse
|
28
|
O'Leary ME, Hancox JC. Role of voltage-gated sodium, potassium and calcium channels in the development of cocaine-associated cardiac arrhythmias. Br J Clin Pharmacol 2011; 69:427-42. [PMID: 20573078 DOI: 10.1111/j.1365-2125.2010.03629.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cocaine is a highly active stimulant that alters dopamine metabolism in the central nervous system resulting in a feeling of euphoria that with time can lead to addictive behaviours. Cocaine has numerous deleterious effects in humans including seizures, vasoconstriction, ischaemia, increased heart rate and blood pressure, cardiac arrhythmias and sudden death. The cardiotoxic effects of cocaine are indirectly mediated by an increase in sympathomimetic stimulation to the heart and coronary vasculature and by a direct effect on the ion channels responsible for maintaining the electrical excitability of the heart. The direct and indirect effects of cocaine work in tandem to disrupt the co-ordinated electrical activity of the heart and have been associated with life-threatening cardiac arrhythmias. This review focuses on the direct effects of cocaine on cardiac ion channels, with particular focus on sodium, potassium and calcium channels, and on the contributions of these channels to cocaine-induced arrhythmias. Companion articles in this edition of the journal examine the epidemiology of cocaine use (Wood & Dargan) and the treatment of cocaine-associated arrhythmias (Hoffmann).
Collapse
Affiliation(s)
- Michael E O'Leary
- Department of Pathology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | |
Collapse
|
29
|
Huang H, Priori SG, Napolitano C, O'Leary ME, Chahine M. Y1767C, a novel SCN5A mutation, induces a persistent Na+ current and potentiates ranolazine inhibition of Nav1.5 channels. Am J Physiol Heart Circ Physiol 2010; 300:H288-99. [PMID: 21076026 DOI: 10.1152/ajpheart.00539.2010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Long QT syndrome type 3 (LQT3) has been traced to mutations of the cardiac Na(+) channel (Na(v)1.5) that produce persistent Na(+) currents leading to delayed ventricular repolarization and torsades de pointes. We performed mutational analyses of patients suffering from LQTS and characterized the biophysical properties of the mutations that we uncovered. One LQT3 patient carried a mutation in the SCN5A gene in which the cysteine was substituted for a highly conserved tyrosine (Y1767C) located near the cytoplasmic entrance of the Na(v)1.5 channel pore. The wild-type and mutant channels were transiently expressed in tsA201 cells, and Na(+) currents were recorded using the patch-clamp technique. The Y1767C channel produced a persistent Na(+) current, more rapid inactivation, faster recovery from inactivation, and an increased window current. The persistent Na(+) current of the Y1767C channel was blocked by ranolazine but not by many class I antiarrhythmic drugs. The incomplete inactivation, along with the persistent activation of Na(+) channels caused by an overlap of voltage-dependent activation and inactivation, known as window currents, appeared to contribute to the LQTS phenotype in this patient. The blocking effect of ranolazine on the persistent Na(+) current suggested that ranolazine may be an effective therapeutic treatment for patients with this mutation. Our data also revealed the unique role for the Y1767 residue in inactivating and forming the intracellular pore of the Na(v)1.5 channel.
Collapse
Affiliation(s)
- Hai Huang
- Centre de Recherche, Université Laval Robert-Giffard, Quebec City, Quebec, Canada
| | | | | | | | | |
Collapse
|
30
|
Desaphy JF, Dipalma A, Costanza T, Bruno C, Lentini G, Franchini C, George A, Conte Camerino D. Molecular determinants of state-dependent block of voltage-gated sodium channels by pilsicainide. Br J Pharmacol 2010; 160:1521-33. [PMID: 20590641 DOI: 10.1111/j.1476-5381.2010.00816.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Pilsicainide, an anti-arrhythmic drug used in Japan, is described as a pure sodium channel blocker. We examined the mechanisms by which it is able to block open channels, because these properties may be especially useful to reduce hyperexcitability in pathologies characterized by abnormal sodium channel opening. EXPERIMENTAL APPROACH The effects of pilsicainide on various heterologously expressed human sodium channel subtypes and mutants were investigated using the patch clamp technique. KEY RESULTS Pilsicainide exhibited tonic and use-dependent effects comparable to those of mexiletine and flecainide on hNav1.4 channels. These use-dependent effects were abolished in the mutations F1586C and Y1593C within segment 6 of domain IV, suggesting that the interaction of pilsicainide with these residues is critical for its local anaesthetic action. Its affinity constants for closed channels (K(R)) and channels inactivated from the closed state (K(I)) were high, suggesting that its use-dependent block (UDB) requires the channel to be open for it to reach a high-affinity blocking site. Accordingly, basic pH, which slightly increased the proportion of neutral drug, dramatically decreased K(R) and K(I) values. Effects of pilsicainide were similar on skeletal muscle hNav1.4, brain hNav1.1 and heart hNav1.5 channels. The myotonic R1448C and G1306E hNav1.4 mutants were more and less sensitive to pilsicainide, respectively, due to mutation-induced gating modifications. CONCLUSIONS AND IMPLICATIONS Although therapeutic concentrations of pilsicainide may have little effect on resting and closed-state inactivated channels, it induces a strong UDB due to channel opening, rendering the drug ideally suited for inhibition of high-frequency action potential firing.
Collapse
Affiliation(s)
- J-F Desaphy
- Department of Pharmacobiology, University of Bari, Bari, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Fast- or slow-inactivated state preference of Na+ channel inhibitors: a simulation and experimental study. PLoS Comput Biol 2010; 6:e1000818. [PMID: 20585544 PMCID: PMC2887460 DOI: 10.1371/journal.pcbi.1000818] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 05/14/2010] [Indexed: 12/02/2022] Open
Abstract
Sodium channels are one of the most intensively studied drug targets. Sodium channel inhibitors (e.g., local anesthetics, anticonvulsants, antiarrhythmics and analgesics) exert their effect by stabilizing an inactivated conformation of the channels. Besides the fast-inactivated conformation, sodium channels have several distinct slow-inactivated conformational states. Stabilization of a slow-inactivated state has been proposed to be advantageous for certain therapeutic applications. Special voltage protocols are used to evoke slow inactivation of sodium channels. It is assumed that efficacy of a drug in these protocols indicates slow-inactivated state preference. We tested this assumption in simulations using four prototypical drug inhibitory mechanisms (fast or slow-inactivated state preference, with either fast or slow binding kinetics) and a kinetic model for sodium channels. Unexpectedly, we found that efficacy in these protocols (e.g., a shift of the “steady-state slow inactivation curve”), was not a reliable indicator of slow-inactivated state preference. Slowly associating fast-inactivated state-preferring drugs were indistinguishable from slow-inactivated state-preferring drugs. On the other hand, fast- and slow-inactivated state-preferring drugs tended to preferentially affect onset and recovery, respectively. The robustness of these observations was verified: i) by performing a Monte Carlo study on the effects of randomly modifying model parameters, ii) by testing the same drugs in a fundamentally different model and iii) by an analysis of the effect of systematically changing drug-specific parameters. In patch clamp electrophysiology experiments we tested five sodium channel inhibitor drugs on native sodium channels of cultured hippocampal neurons. For lidocaine, phenytoin and carbamazepine our data indicate a preference for the fast-inactivated state, while the results for fluoxetine and desipramine are inconclusive. We suggest that conclusions based on voltage protocols that are used to detect slow-inactivated state preference are unreliable and should be re-evaluated. Sodium channels are the key proteins for action potential firing in most excitable cells. Inhibitor drugs prevent excitation (local anesthetics), regulate excitability (antiarrhythmics), or prevent overexcitation (antiepileptic, antispastic and neuroprotective drugs) by binding to the channel and keeping it in one of the inactivated channel conformations. Sodium channels have one fast- and several slow-inactivated conformations (states). The specific stabilization of slow-inactivated states have been proposed to be advantageous in certain therapeutic applications. The question of whether individual drugs stabilize the fast or the slow-inactivated state is studied using specific voltage protocols. We tested the reliability of conclusions based on these protocols in simulation experiments using a model of sodium channels, and we found that fast- and slow-inactivated state-stabilizing drugs could not be differentiated. We suggested a method by which the state preference of at least a subset of individual drugs could be determined and tried the method in electrophysiology experiments with five individual drugs. Three of the drugs (lidocaine, phenytoin and carbamazepine) were classified as fast-inactivated state-stabilizers, while the state preference of fluoxetine and desipramine was found to be undeterminable by this method.
Collapse
|
32
|
Steffensen SC, Taylor SR, Horton ML, Barber EN, Lyle LT, Stobbs SH, Allison DW. Cocaine disinhibits dopamine neurons in the ventral tegmental area via use-dependent blockade of GABA neuron voltage-sensitive sodium channels. Eur J Neurosci 2009; 28:2028-40. [PMID: 19046384 DOI: 10.1111/j.1460-9568.2008.06479.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aim of this study was to evaluate the effects of cocaine on gamma-aminobutyric acid (GABA) and dopamine (DA) neurons in the ventral tegmental area (VTA). Utilizing single-unit recordings in vivo, microelectrophoretic administration of DA enhanced the firing rate of VTA GABA neurons via D2/D3 DA receptor activation. Lower doses of intravenous cocaine (0.25-0.5 mg/kg), or the DA transporter (DAT) blocker methamphetamine, enhanced VTA GABA neuron firing rate via D2/D3 receptor activation. Higher doses of cocaine (1.0-2.0 mg/kg) inhibited their firing rate, which was not sensitive to the D2/D3 antagonist eticlopride. The voltage-sensitive sodium channel (VSSC) blocker lidocaine inhibited the firing rate of VTA GABA neurons at all doses tested (0.25-2.0 mg/kg). Cocaine or lidocaine reduced VTA GABA neuron spike discharges induced by stimulation of the internal capsule (ICPSDs) at dose levels 0.25-2 mg/kg (IC(50) 1.2 mg/kg). There was no effect of DA or methamphetamine on ICPSDs, or of DA antagonists on cocaine inhibition of ICPSDs. In VTA GABA neurons in vitro, cocaine reduced (IC(50) 13 microm) current-evoked spikes and TTX-sensitive sodium currents in a use-dependent manner. In VTA DA neurons, cocaine reduced IPSCs (IC(50) 13 microm), increased IPSC paired-pulse facilitation and decreased spontaneous IPSC frequency, without affecting miniature IPSC frequency or amplitude. These findings suggest that cocaine acts on GABA neurons to reduce activity-dependent GABA release on DA neurons in the VTA, and that cocaine's use-dependent blockade of VTA GABA neuron VSSCs may synergize with its DAT inhibiting properties to enhance mesolimbic DA transmission implicated in cocaine reinforcement.
Collapse
Affiliation(s)
- Scott C Steffensen
- Department of Psychology, Brigham Young University, Provo, UT 84602, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Bupivacaine blocks N-type inactivating Kv channels in the open state: no allosteric effect on inactivation kinetics. Biophys J 2008; 95:5138-52. [PMID: 18790854 DOI: 10.1529/biophysj.108.130518] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Local anesthetics bind to ion channels in a state-dependent manner. For noninactivating voltage-gated K channels the binding mainly occurs in the open state, while for voltage-gated inactivating Na channels it is assumed to occur mainly in inactivated states, leading to an allosterically caused increase in the inactivation probability, reflected in a negative shift of the steady-state inactivation curve, prolonged recovery from inactivation, and a frequency-dependent block. How local anesthetics bind to N-type inactivating K channels is less explored. In this study, we have compared bupivacaine effects on inactivating (Shaker and K(v)3.4) and noninactivating (Shaker-IR and K(v)3.2) channels, expressed in Xenopus oocytes. Bupivacaine was found to block these channels time-dependently without shifting the steady-state inactivation curve markedly, without a prolonged recovery from inactivation, and without a frequency-dependent block. An analysis, including computational testing of kinetic models, suggests binding to the channel mainly in the open state, with affinities close to those estimated for corresponding noninactivating channels (300 and 280 microM for Shaker and Shaker-IR, and 60 and 90 microM for K(v)3.4 and K(v)3.2). The similar magnitudes of K(d), as well as of blocking and unblocking rate constants for inactivating and noninactivating Shaker channels, most likely exclude allosteric interactions between the inactivation mechanism and the binding site. The relevance of these results for understanding the action of local anesthetics on Na channels is discussed.
Collapse
|
34
|
Bruhova I, Tikhonov DB, Zhorov BS. Access and binding of local anesthetics in the closed sodium channel. Mol Pharmacol 2008; 74:1033-45. [PMID: 18653802 DOI: 10.1124/mol.108.049759] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Local anesthetics (LAs) are known to bind Na+ channels in the closed, open, and inactivated states and reach their binding sites via extracellular and intracellular access pathways. Despite intensive studies, no atomic-scale theory is available to explain the diverse experimental data on the LA actions. Here we attempt to contribute to this theory by simulating access and binding of LAs in the KcsA-based homology model of the closed Na+ channel. We used Monte Carlo minimizations to model the channel with representative local anesthetics N-(2,6-dimethylphenylcarbamoylmethyl)triethylammonium (QX-314), cocaine, and tetracaine. We found the nucleophilic central cavity to be a common binding region for the ammonium group of LAs, whose aromatic group can extend either along the pore axis (vertical binding mode) or to the III/IV domain interface (horizontal binding mode). The vertical mode was earlier predicted for the open channel, but only the horizontal mode is consistent with mutational data on the closed-channel block. To explore hypothetical access pathways of the permanently charged QX-314, we pulled the ligand via the selectivity filter, the closed activation gate, and the III/IV domain interface. Only the last pathway, which leads to the horizontal binding mode, did not impose steric obstacles. The LA ammonium group mobility within the central cavity was more restricted in the vertical mode than in the horizontal mode. Therefore, occupation of the selectivity-filter DEKA locus by a Na+ ion destabilizes the vertical mode, thus favoring the horizontal mode. LA binding in the closed channel requires the resident Na+ ion to leave the nucleophilic central cavity through the selectivity filter, whereas the LA egress should be coupled with reoccupation of the cavity by Na+. This hypothesis on the coupled movement of Na+ and LA in the closed channel explains seemingly contradictory data on how the outer-pore mutations as well as tetrodotoxin and micro-conotoxin binding affect the ingress and egress of LAs.
Collapse
Affiliation(s)
- Iva Bruhova
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
35
|
Mizuta K, Fujita T, Nakatsuka T, Kumamoto E. Inhibitory effects of opioids on compound action potentials in frog sciatic nerves and their chemical structures. Life Sci 2008; 83:198-207. [PMID: 18593589 DOI: 10.1016/j.lfs.2008.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 05/24/2008] [Accepted: 06/06/2008] [Indexed: 10/21/2022]
Abstract
An opioid tramadol more effectively inhibits compound action potentials (CAPs) than its metabolite mono-O-demethyl-tramadol (M1). To address further this issue, we examined the effects of opioids (morphine, codeine, ethylmorphine and dihydrocodeine) and cocaine on CAPs by applying the air-gap method to the frog sciatic nerve. All of the opioids at concentrations less than 10 mM reduced the peak amplitude of the CAP in a reversible and dose-dependent manner. The sequence of the CAP peak amplitude reductions was ethylmorphine>codeine>dihydrocodeine> or = morphine; the effective concentration for half-maximal inhibition (IC(50)) of ethylmorphine was 4.6 mM. All of the CAP inhibitions by opioids were resistant to a non-specific opioid-receptor antagonist naloxone. The CAP peak amplitude reductions produced by morphine, codeine and ethylmorphine were related to their chemical structures in such that this extent enhanced with an increase in the number of -CH(2) in a benzene ring, as seen in the inhibitory actions of tramadol and M1. Cocaine reduced CAP peak amplitudes with an IC(50) value of 0.80 mM. It is concluded that opioids reduce CAP peak amplitudes in a manner being independent of opioid-receptor activation and with an efficacy being much less than that of cocaine. It is suggested that the substituted groups of -OH bound to the benzene ring of morphine, codeine and ethylmorphine as well as of tramadol and M1, the structures of which are quite different from those of the opioids, may play an important role in producing nerve conduction block.
Collapse
Affiliation(s)
- Kotaro Mizuta
- Department of Physiology, Saga Medical School, 5-1-1 Nabeshima, Saga, Japan
| | | | | | | |
Collapse
|
36
|
McNulty MM, Edgerton GB, Shah RD, Hanck DA, Fozzard HA, Lipkind GM. Charge at the lidocaine binding site residue Phe-1759 affects permeation in human cardiac voltage-gated sodium channels. J Physiol 2007; 581:741-55. [PMID: 17363383 PMCID: PMC2075178 DOI: 10.1113/jphysiol.2007.130161] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Our homology molecular model of the open/inactivated state of the Na(+) channel pore predicts, based on extensive mutagenesis data, that the local anaesthetic lidocaine docks eccentrically below the selectivity filter, such that physical occlusion is incomplete. Electrostatic field calculations suggest that the drug's positively charged amine produces an electrostatic barrier to permeation. To test the effect of charge at this pore level on permeation in hNa(V)1.5 we replaced Phe-1759 of domain IVS6, the putative binding site for lidocaine's alkylamino end, with positively and negatively charged residues as well as the neutral cysteine and alanine. These mutations eliminated use-dependent lidocaine block with no effect on tonic/rested state block. Mutant whole cell currents were kinetically similar to wild type (WT). Single channel conductance (gamma) was reduced from WT in both F1759K (by 38%) and F1759R (by 18%). The negatively charged mutant F1759E increased gamma by 14%, as expected if the charge effect were electrostatic, although F1759D was like WT. None of the charged mutations affected Na(+)/K(+) selectivity. Calculation of difference electrostatic fields in the pore model predicted that lidocaine produced the largest positive electrostatic barrier, followed by lysine and arginine, respectively. Negatively charged glutamate and aspartate both lowered the barrier, with glutamate being more effective. Experimental data were in rank order agreement with the predicted changes in the energy profile. These results demonstrate that permeation rate is sensitive to the inner pore electrostatic field, and they are consistent with creation of an electrostatic barrier to ion permeation by lidocaine's charge.
Collapse
Affiliation(s)
- Megan M McNulty
- Cardiac Electrophysiology Laboratory, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
37
|
Wu SN, Chang HD, Sung RJ. Cocaine-induced inhibition of ATP-sensitive K+ channels in rat ventricular myocytes and in heart-derived H9c2 cells. Basic Clin Pharmacol Toxicol 2006; 98:510-7. [PMID: 16635111 DOI: 10.1111/j.1742-7843.2006.pto_354.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Cocaine use may cause coronary artery spasm and acute myocardial ischaemia/infarction. However, its effects on ATP-sensitive K+ (KATP) channel, an ion channel responsible for ischaemic preconditioning, remain unknown. In isolated rat ventricular myocytes with whole-cell experiments, cocaine can reverse action potential shortening and increased K+ current caused by the openers of ATP-sensitive K+ (KATP) channels. In inside-out patches, cocaine applied to intracellular surface suppressed KATP-channel activity in a concentration-dependent manner with an IC50 value of 9.2 microM; however, it did not modify the single-channel conductance of this channel. The change in the kinetic behaviour of KATP channels caused by cocaine is primarily the result of an increase in mean closed time and a decrease in mean open time. Cocaine-induced inhibition of KATP channels is independent of change in intracellular ATP concentrations. In heart-derived H9c2 cells, cocaine is also capable of suppressing KATP-channel activity. The present study provides evidence that cocaine can produce a depressant action on KATP channels in cardiac myocytes, and thus disturb ischaemic preconditioning in clinical settings.
Collapse
Affiliation(s)
- Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University Hospital, Tainan, Taiwan
| | | | | |
Collapse
|
38
|
Ko MC, Bowen LD, Narasimhan D, Berlin AA, Lukacs NW, Sunahara RK, Cooper ZD, Woods JH. Cocaine esterase: interactions with cocaine and immune responses in mice. J Pharmacol Exp Ther 2006; 320:926-33. [PMID: 17114567 DOI: 10.1124/jpet.106.114223] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cocaine esterase (CocE) is the most efficient protein catalyst for the hydrolysis of cocaine characterized to date. The aim of this study was to investigate the in vivo potency of CocE in blocking cocaine-induced toxicity in the mouse and to assess CocE's potential immunogenicity. Cocaine toxicity was quantified by measuring the occurrence of convulsions and lethality. Intravenous administration of CocE (0.1-1 mg) 1 min before cocaine administration produced dose-dependent rightward shifts of the dose-response curve for cocaine toxicity. More important, i.v. CocE (0.1-1 mg), given 1 min after the occurrence of cocaine-induced convulsions, shortened the recovery time after the convulsions and saved the mice from subsequent death. Effects of repeated exposures to CocE were evaluated by measuring anti-CocE antibody titers and the protective effects of i.v. CocE (0.32 mg) against toxicity elicited by i.p. cocaine (320 mg/kg) (i.e., 0-17% occurrence of convulsions and lethality). CocE retained its potency against cocaine toxicity in mice after a single prior CocE exposure (0.1-1 mg), and these mice did not show an immune response. CocE retained similar effectiveness in mice after three prior CocE exposures (0.1-1 mg/week for 3 weeks), although these mice displayed 10-fold higher antibody titers. CocE partially lost effectiveness (i.e., 33-50% occurrence of convulsions and lethality) in mice with four prior exposures to CocE (0.1-1 mg/2 week for four times), and these mice displayed approximately 100-fold higher antibody titers. These results suggest that CocE produces robust protection and reversal of cocaine toxicity, indicating CocE's therapeutic potential for acute cocaine toxicity. Repeated CocE exposures may increase its immunogenicity and partially reduce its protective ability.
Collapse
Affiliation(s)
- Mei-Chuan Ko
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109-0632, USA.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Haigney MCP, Alam S, Tebo S, Marhefka G, Elkashef A, Kahn R, Chiang CN, Vocci F, Cantilena L. Intravenous Cocaine and QT Variability. J Cardiovasc Electrophysiol 2006; 17:610-6. [PMID: 16836708 DOI: 10.1111/j.1540-8167.2006.00421.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Dynamic instability in cardiac repolarization may contribute to drug-induced arrhythmogenesis. We hypothesized that intravenous cocaine would significantly destabilize repolarization as measured by QT variability. METHODS AND RESULTS Twenty-nine cocaine-experienced volunteers not seeking treatment for cocaine addiction received randomized, sequential intravenous infusions of placebo or cocaine (20 and 40 mg). Five-minute epochs of digitized ECG were recorded 10 minutes before, during, and at intervals following the infusions. QT variability was measured using a semiautomated method and expressed as the log ratio of normalized QT variance to normalized heart rate variance (QTVI). Seventeen subjects received a repeat course of cocaine infusions 1 week later. Placebo infusion resulted in a small but significant increase in QTVI, while cocaine caused a highly significant, dose-dependent increase in QTVI that peaked at 10 minutes and dissipated by 45 minutes following infusion (P < 0.0001). The increase in QTVI was reproducible at 1 week (P = 0.8). CONCLUSIONS Cocaine injection results in a significant dose-dependent increase in QT variability as indexed by QTVI. This destabilizing effect on repolarization may increase vulnerability to reentrant arrhythmias and may partially explain an increased risk of sudden cardiac death associated with cocaine use.
Collapse
Affiliation(s)
- Mark C P Haigney
- Division of Cardiology, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ma YL, Peters NS, Henry JA. α1-Acid glycoprotein reverses cocaine-induced sodium channel blockade in cardiac myocytes. Toxicology 2006; 220:46-50. [PMID: 16406254 DOI: 10.1016/j.tox.2005.11.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Revised: 11/23/2005] [Accepted: 11/23/2005] [Indexed: 11/23/2022]
Abstract
UNLABELLED Alpha 1-acid glycoprotein (AAG) is an acute phase protein capable of binding basic drugs. This action explains its reversal of sodium channel blockade by drugs such as amitriptyline and quinidine. We report here the reversal of cocaine-induced sodium channel blockade by AAG. The sodium channel blocking property of cocaine is a major mechanism behind cocaine-induced sudden cardiac death, since sodium channels play a key role in the initiation and regulation of the heart beat. Voltage-gated sodium current (I(Na)) was recorded using whole-cell patch-clamp techniques. Guinea-pig cardiac ventricular myocytes were isolated and continuously perfused at room temperature with physiological solutions. At concentrations ranging from 5 to 320 microM cocaine showed a dose-dependent and reversible blockade of I(Na) with an IC50 of 45.9 microM. The addition of equimolar amounts of AAG to cocaine produced almost complete reversal of cocaine's effects, suggesting a single binding site for cocaine on the AAG molecule. With changes of peak I(Na) normalized against control as 1, cocaine at 20 and 40 microM reduced I(Na) to 0.62+/-0.042 (n = 6) and 0.57+/-0.052 (n = 9), respectively, and the addition of an equimolar concentration of AAG reversed I(Na) to 0.86+/-0.022 and 0.91+/-0.060, respectively. IN CONCLUSION AAG reverses cocaine-induced sodium channel blockade in a dose-dependent manner, indicating a therapeutic potential to reverse acute cocaine cardiac toxicity.
Collapse
Affiliation(s)
- Yu-Ling Ma
- Department of Cardiac Electrophysiology, National Heart and Lung Institute, Imperial College London, 10th Floor QEQM Wing, St. Mary's Hospital, London W21NY, UK.
| | | | | |
Collapse
|
41
|
Daga B, Miñano A, de la Puerta I, Pelegrín J, Rodrigo G, Ferreira I. Electrocardiographic Findings Typical of Brugada Syndrome Unmasked by Cocaine Consumption. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s1885-5857(06)60424-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
42
|
Daga B, Miñano A, de la Puerta I, Pelegrín J, Rodrigo G, Ferreira I. Patrón electrocardiográfico de Brugada desenmascarado por consumo de cocaína. Rev Esp Cardiol 2005. [DOI: 10.1157/13080965] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Onganer PU, Djamgoz MBA. Small-cell lung cancer (human): potentiation of endocytic membrane activity by voltage-gated Na(+) channel expression in vitro. J Membr Biol 2005; 204:67-75. [PMID: 16151702 DOI: 10.1007/s00232-005-0747-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2004] [Revised: 04/05/2005] [Indexed: 10/25/2022]
Abstract
The possible functional role of voltage-gated Na(+) channel (VGSC) expression in controlling endocytic membrane activity in human small-cell lung cancer (SCLC) cell lines (H69, H209, H510) was studied using uptake of horseradish peroxidase (HRP). The normal human airway epithelial (16HBE14o) cell line was used in a comparative approach. Uptake of HRP was vesicular, strongly temperature-sensitive and suppressed by cytoskeletal poisons (cytochalasin D and colchicine), consistent with endocytosis. Compared with the normal cells, HRP uptake into SCLC cells was kinetically more efficient, resulting in more than four-fold higher uptake under optimized conditions. Importantly, HRP uptake into SCLC cells was inhibited significantly by the specific VGSC blocker tetrodotoxin, as well as lidocaine and phenytoin. These effects were dose-dependent. None of these drugs had any effect on the uptake into the 16HBE14o cells. Uptake of HRP into SCLC cells was reduced by approximately 66% in Na(+)-free medium and was partially ( approximately 30%) dependent on extracellular Ca(2+). The possibility that the endocytic activity in the H510 SCLC cells involved an endogenous cholinergic system was investigated by testing the effects of carbachol (a cholinergic receptor agonist) and eserine (an inhibitor of acetylcholinesterase). Both drugs inhibited HRP uptake, thereby suggesting that basal cholinergic activity occurred. It is concluded that VGSC upregulation could enhance metastatic cell behavior in SCLC by enhancing endocytic membrane activity.
Collapse
Affiliation(s)
- P U Onganer
- Neuroscience Solutions to Cancer Research Group, Department of Biological Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | | |
Collapse
|
44
|
Yang YC, Kuo CC. An inactivation stabilizer of the Na+ channel acts as an opportunistic pore blocker modulated by external Na+. ACTA ACUST UNITED AC 2005; 125:465-81. [PMID: 15824190 PMCID: PMC2217501 DOI: 10.1085/jgp.200409156] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Na+ channel is the primary target of anticonvulsants carbamazepine, phenytoin, and lamotrigine. These drugs modify Na+ channel gating as they have much higher binding affinity to the inactivated state than to the resting state of the channel. It has been proposed that these drugs bind to the Na+ channel pore with a common diphenyl structural motif. Diclofenac is a widely prescribed anti-inflammatory agent that has a similar diphenyl motif in its structure. In this study, we found that diclofenac modifies Na+ channel gating in a way similar to the foregoing anticonvulsants. The dissociation constants of diclofenac binding to the resting, activated, and inactivated Na+ channels are ∼880 μM, ∼88 μM, and ∼7 μM, respectively. The changing affinity well depicts the gradual shaping of a use-dependent receptor along the gating process. Most interestingly, diclofenac does not show the pore-blocking effect of carbamazepine on the Na+ channel when the external solution contains 150 mM Na+, but is turned into an effective Na+ channel pore blocker if the extracellular solution contains no Na+. In contrast, internal Na+ has only negligible effect on the functional consequences of diclofenac binding. Diclofenac thus acts as an “opportunistic” pore blocker modulated by external but not internal Na+, indicating that the diclofenac binding site is located at the junction of a widened part and an acutely narrowed part of the ion conduction pathway, and faces the extracellular rather than the intracellular solution. The diclofenac binding site thus is most likely located at the external pore mouth, and undergoes delicate conformational changes modulated by external Na+ along the gating process of the Na+ channel.
Collapse
Affiliation(s)
- Ya-Chin Yang
- Department of Physiology, National Taiwan University College of Medicine, Taipei
| | | |
Collapse
|
45
|
Abstract
Mibefradil is a T-type Ca2+ channel antagonist with reported cross-reactivity with other classes of ion channels, including K+, Cl-, and Na+ channels. Using whole-cell voltage clamp, we examined mibefradil block of four Na+ channel isoforms expressed in human embryonic kidney cells: Nav1.5 (cardiac), Nav1.4 (skeletal muscle), Nav1.2 (brain), and Nav1.7 (peripheral nerve). Mibefradil blocked Nav1.5 in a use/frequency-dependent manner, indicating preferential binding to states visited during depolarization. Mibefradil blocked currents of all Na+ channel isoforms with similar affinity and a dependence on holding potential, and drug off-rate was slowed at depolarized potentials (k(off) was 0.024/s at -130 mV and 0.007/s at -100 mV for Nav1.5). We further probed the interaction of mibefradil with inactivated Nav1.5 channels. Neither the degree nor the time course of block was dependent on the stimulus duration, which dramatically changed the residency time of channels in the fast-inactivated state. In addition, inhibiting the binding of the fast inactivation lid (Nav1.5 ICM + MTSET) did not alter mibefradil block, confirming that the drug does not preferentially interact with the fast-inactivated state. We also tested whether mibefradil interacted with slow-inactivated state(s). When selectively applied to channels after inducing slow inactivation with a 60-s pulse to -10 mV, mibefradil (1 microM) produced 45% fractional block in Nav1.5 and greater block (88%) in an isoform (Nav1.4) that slow-inactivates more completely. Our results suggest that mibefradil blocks Na+ channels in a state-dependent manner that does not depend on fast inactivation but probably involves interaction with one or more slow-inactivated state(s).
Collapse
Affiliation(s)
- Megan M McNulty
- Department of Neurobiology, University of Chicago, Illinois, USA
| | | |
Collapse
|
46
|
Wang SY, Mitchell J, Moczydlowski E, Wang GK. Block of inactivation-deficient Na+ channels by local anesthetics in stably transfected mammalian cells: evidence for drug binding along the activation pathway. ACTA ACUST UNITED AC 2004; 124:691-701. [PMID: 15545401 PMCID: PMC2234030 DOI: 10.1085/jgp.200409128] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
According to the classic modulated receptor hypothesis, local anesthetics (LAs) such as benzocaine and lidocaine bind preferentially to fast-inactivated Na+ channels with higher affinities. However, an alternative view suggests that activation of Na+ channels plays a crucial role in promoting high-affinity LA binding and that fast inactivation per se is not a prerequisite for LA preferential binding. We investigated the role of activation in LA action in inactivation-deficient rat muscle Na+ channels (rNav1.4-L435W/L437C/A438W) expressed in stably transfected Hek293 cells. The 50% inhibitory concentrations (IC50) for the open-channel block at +30 mV by lidocaine and benzocaine were 20.9 ± 3.3 μM (n = 5) and 81.7 ± 10.6 μM (n = 5), respectively; both were comparable to inactivated-channel affinities. In comparison, IC50 values for resting-channel block at −140 mV were >12-fold higher than those for open-channel block. With 300 μM benzocaine, rapid time-dependent block (τ ≈ 0.8 ms) of inactivation-deficient Na+ currents occurred at +30 mV, but such a rapid time-dependent block was not evident at −30 mV. The peak current at −30 mV, however, was reduced more severely than that at +30 mV. This phenomenon suggested that the LA block of intermediate closed states took place notably when channel activation was slow. Such closed-channel block also readily accounted for the LA-induced hyperpolarizing shift in the conventional steady-state inactivation measurement. Our data together illustrate that the Na+ channel activation pathway, including most, if not all, transient intermediate closed states and the final open state, promotes high-affinity LA binding.
Collapse
Affiliation(s)
- Sho-Ya Wang
- Department of Biology, State University of New York at Albany, NY 12222, USA
| | | | | | | |
Collapse
|
47
|
Abstract
Flecainide is a Class I antiarrhythmic drug and a potent inhibitor of the cardiac (Nav1.5) sodium channel. Although the flecainide inhibition of Nav1.5 is typically enhanced by depolarization, the contributions of the open and inactivated states to flecainide binding and inhibition remain controversial. We further investigated the state-dependent binding of flecainide by examining its inhibition of rapidly inactivating and non-inactivating mutants of Nav1.5 expressed in Xenopus oocytes. Applying flecainide while briefly depolarizing from a relatively negative holding potential resulted in a low-affinity inhibition of the channel (IC(50) = 345 microM). Increasing the frequency of stimulation potentiated the flecainide inhibition (IC(50) = 7.4 microM), which progressively increased over the range of voltages where Nav1.5 channels activated. This contrasts with sustained depolarizations that effectively stabilize the channels in inactivated states, which failed to promote significant flecainide inhibition. The voltage sensitivity and strong dependence of the flecainide inhibition on repetitive depolarization suggests that flecainide binding is facilitated by channel opening and that the drug does not directly bind to closed or inactivated channels. The binding of flecainide to open channels was further investigated in a non-inactivating mutant of Nav1.5. Flecainide produced a time-dependent decay in the current of the non-inactivating mutant that displayed kinetics consistent with a simple pore blocking mechanism (K(D) = 11 microM). At hyperpolarized voltages, flecainide slowed the recovery of both the rapidly inactivating (tau = 81 +/- 3 s) and non-inactivating (tau = 42 +/- 3 s) channels. Mutation of a conserved isoleucine of the D4S6 segment (I1756C) creates an alternative pathway that permits the rapid diffusion of anaesthetics out of the Nav1.5 channel. The I1756C mutation accelerated the recovery of both the rapidly inactivating (tau = 12.6 +/- 0.4 s) and non-inactivating (tau = 7.4 +/- 0.1 s) channels, suggesting that flecainide is trapped and not tightly bound within the pore when the channels are closed or inactivated. The data indicate that flecainide rapidly gains access to its binding site when the channel is open and inhibits Na(+) current by a pore blocking mechanism. Closing of either the activation or the inactivation gate traps flecainide within the pore resulting in the slow recovery of the drug-modified channels at hyperpolarized voltages.
Collapse
Affiliation(s)
- Eugene Ramos
- Department of Pathology, Anatomy and Cell Biology, Jefferson Medical College, 1020 Locust Street, Philadelphia, PA 19107, USA
| | | |
Collapse
|
48
|
Chevrier P, Vijayaragavan K, Chahine M. Differential modulation of Nav1.7 and Nav1.8 peripheral nerve sodium channels by the local anesthetic lidocaine. Br J Pharmacol 2004; 142:576-84. [PMID: 15148257 PMCID: PMC1574965 DOI: 10.1038/sj.bjp.0705796] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1 Voltage-gated Na+ channels are transmembrane proteins that are essential for the propagation of action potentials in excitable cells. Nav1.7 and Nav1.8 dorsal root ganglion Na+ channels exhibit different kinetics and sensitivities to tetrodotoxin (TTX). We investigated the properties of both channels in the presence of lidocaine, a local anesthetic (LA) and class I anti-arrhythmic drug. 2 Nav1.7 and Nav1.8 Na+ channels were coexpressed with the beta1-subunit in Xenopus oocytes. Na+ currents were recorded using the two-microelectrode voltage-clamp technique. 3 Dose-response curves for both channels had different EC50 (dose producing 50% maximum current inhibition) (450 microm for Nav1.7 and 104 microm for Nav1.8). Lidocaine enhanced current decrease in a frequency-dependent manner. Steady-state inactivation of both channels was also affected by lidocaine, Nav1.7 being the most sensitive. Only the steady-state activation of Nav1.8 was affected while the entry of both channels into slow inactivation was affected by lidocaine, Nav1.8 being affected to a larger degree. 4 Although the channels share homology at DIV S6, the LA binding site, they differ in their sensitivity to lidocaine. Recent studies suggest that other residues on DI and DII known to influence lidocaine binding may explain the differences in affinities between Nav1.7 and Nav1.8 Na+ channels. 5 Understanding the properties of these channels and their pharmacology is of critical importance to developing drugs and finding effective therapies to treat chronic pain.
Collapse
Affiliation(s)
- P Chevrier
- Laval Hospital, Research Centre, Sainte-Foy, Quebec, Canada G1V 4G5
- Department of Medicine, Laval University, Sainte-Foy, Quebec, Canada G1K 7P4
| | - K Vijayaragavan
- Laval Hospital, Research Centre, Sainte-Foy, Quebec, Canada G1V 4G5
- Department of Medicine, Laval University, Sainte-Foy, Quebec, Canada G1K 7P4
| | - M Chahine
- Laval Hospital, Research Centre, Sainte-Foy, Quebec, Canada G1V 4G5
- Department of Medicine, Laval University, Sainte-Foy, Quebec, Canada G1K 7P4
- Author for correspondence:
| |
Collapse
|
49
|
O'Leary ME, Digregorio M, Chahine M. Closing and inactivation potentiate the cocaethylene inhibition of cardiac sodium channels by distinct mechanisms. Mol Pharmacol 2004; 64:1575-85. [PMID: 14645689 DOI: 10.1124/mol.64.6.1575] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cocaethylene, a metabolite of cocaine and alcohol, is a potent inhibitor of the cardiac (Nav1.5) sodium channel heterologously expressed in Xenopus laevis oocytes. Cocaethylene produces minimal tonic block under resting conditions but causes a potent use-dependent inhibition during repetitive depolarization and a hyperpolarizing shift in the steady-state inactivation. The data are consistent with a state-dependent binding mechanism, which has high affinity for inactivated channels (KI = 17 microM) and low affinity for resting channels (KR = 185 micro). Mutations of the interdomain D3-D4 linker eliminated rapid inactivation and weakened the cocaethylene inhibition, consistent with an important role for fast inactivation in cocaethylene binding. A rapid component of cocaethylene inhibition was observed in a noninactivating mutant of Nav1.5 that was tightly linked to channel opening and displayed properties consistent with a pore blocking mechanism. Hyperpolarization caused the noninactivating mutant channel to close, trapping cocaethylene and slowing the recovery. Mutation of a conserved isoleucine (I1756C) located near the extracellular end of the D4S6 segment accelerated the recovery of the noninactivating channel, suggesting that this mutation facilitates cocaethylene untrapping, which seems to be the rate-limiting step in the recovery when the channel is closed. This contrasts with the rapidly inactivating channel, where the I1756C mutation did not alter the recovery from cocaethylene inhibition. The data suggest that additional mechanisms, such as more stable cocaethylene binding, may be a more important determinant of recovery kinetics when the channels are inactivated. The data indicate that deactivation and inactivation slow the recovery and potentiate the cocaethylene inhibition of the Nav1.5 channel by distinct mechanisms.
Collapse
Affiliation(s)
- M E O'Leary
- Department of Pathology, Anatomy and Cell Biology, Jefferson Medical College, 1020 Locust Street, JAH 266, Philadelphia, PA 19107, USA.
| | | | | |
Collapse
|
50
|
Wang GK, Russell C, Wang SY. Mexiletine block of wild-type and inactivation-deficient human skeletal muscle hNav1.4 Na+ channels. J Physiol 2003; 554:621-33. [PMID: 14608007 PMCID: PMC1664796 DOI: 10.1113/jphysiol.2003.054973] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Mexiletine is a class 1b antiarrhythmic drug used for ventricular arrhythmias but is also found to be effective for paramyotonia congenita, potassium-aggravated myotonia, long QT-3 syndrome, and neuropathic pain. This drug elicits tonic block of Na(+) channels when cells are stimulated infrequently and produces additional use-dependent block during repetitive pulses. We examined the state-dependent block by mexiletine in human skeletal muscle hNav1.4 wild-type and inactivation-deficient mutant Na(+) channels (hNav1.4-L443C/A444W) expressed in HEK293t cells with a beta1 subunit. The 50% inhibitory concentrations (IC(50)) for the inactivated-state block and the resting-state block of wild-type Na(+) channels by mexiletine were measured as 67.8 +/- 7.0 microm and 431.2 +/- 9.4 microm, respectively (n= 5). In contrast, the IC(50) for the block of open inactivation-deficient mutant channels at +30 mV by mexiletine was 3.3 +/- 0.1 microm (n= 5), which was within the therapeutic plasma concentration range (2.8-11 microm). Estimated on- and off-rates for the open-state block by mexiletine at +30 mV were 10.4 microm(-1) s(-1) and 54.4 s(-1), respectively. Use-dependent block by mexiletine was greater in inactivation-deficient mutant channels than in wild-type channels during repetitive pulses. Furthermore, the IC(50) values for the block of persistent late hNav1.4 currents in chloramine-T-pretreated cells by mexiletine was 7.5 +/- 0.8 microm (n= 5) at +30 mV. Our results together support the hypothesis that the in vivo efficacy of mexiletine is primarily due to the open-channel block of persistent late Na(+) currents, which may arise during various pathological conditions.
Collapse
Affiliation(s)
- Ging Kuo Wang
- Department of Anaesthesia, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA.
| | | | | |
Collapse
|