1
|
Herrera-Melle L, Cicuéndez B, López JA, Dumesic PA, Wilensky SE, Rodríguez E, Leiva-Vega L, Caballero A, León M, Vázquez J, Spiegelman BM, Folgueira C, Mora A, Sabio G. p38α kinase governs muscle strength through PGC1α in mice. Acta Physiol (Oxf) 2024; 240:e14234. [PMID: 39361268 DOI: 10.1111/apha.14234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024]
Abstract
AIMS Skeletal muscle, with its remarkable plasticity and dynamic adaptation, serves as a cornerstone of locomotion and metabolic homeostasis in the human body. Muscle tissue, with its extraordinary capacity for force generation and energy expenditure, plays a fundamental role in the movement, metabolism, and overall health. In this context, we sought to determine the role of p38α in mitochondrial metabolism since mitochondrial dynamics play a crucial role in the development of muscle-related diseases that result in muscle weakness. METHODS We conducted our study using male mice (MCK-cre, p38αMCK-KO and PGC1α MCK-KO) and mouse primary myoblasts. We analyzed mitochondrial metabolic, physiological parameters as well as proteomics, western blot, RNA-seq analysis from muscle samples. RESULTS Our findings highlight the critical involvement of muscle p38α in the regulation of mitochondrial function, a key determinant of muscle strength. The absence of p38α triggers changes in mitochondrial dynamics through the activation of PGC1α, a central regulator of mitochondrial biogenesis. These results have substantial implications for understanding the complex interplay between p38α kinase, PGC1α activation, and mitochondrial content, thereby enhancing our knowledge in the control of muscle biology. CONCLUSIONS This knowledge holds relevance for conditions associated with muscle weakness, where disruptions in these molecular pathways are frequently implicated in diminishing physical strength. Our research underscores the potential importance of targeting the p38α and PGC1α pathways within muscle, offering promising avenues for the advancement of innovative treatments. Such interventions hold the potential to improve the quality of life for individuals affected by muscle-related diseases.
Collapse
Affiliation(s)
| | - Beatriz Cicuéndez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Juan Antonio López
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Phillip A Dumesic
- Department of Cancer Biology, Dana-Farber Cancer Institute (DFCI), Boston, Massachusetts, USA
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Sarah E Wilensky
- Department of Cancer Biology, Dana-Farber Cancer Institute (DFCI), Boston, Massachusetts, USA
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Elena Rodríguez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Luis Leiva-Vega
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Ainoa Caballero
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Marta León
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Bruce M Spiegelman
- Department of Cancer Biology, Dana-Farber Cancer Institute (DFCI), Boston, Massachusetts, USA
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Cintia Folgueira
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Alfonso Mora
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| |
Collapse
|
2
|
Tønnessen E, Sandbakk Ø, Sandbakk SB, Seiler S, Haugen T. Training Session Models in Endurance Sports: A Norwegian Perspective on Best Practice Recommendations. Sports Med 2024; 54:2935-2953. [PMID: 39012575 PMCID: PMC11560996 DOI: 10.1007/s40279-024-02067-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Our scientific understanding of the mechanistic and practical connections between training session prescriptions, their execution by athletes, and adaptations over time in elite endurance sports remains limited. These connections are fundamental to the art and science of coaching. OBJECTIVE By using successful Norwegian endurance coaches as key informants, the aim of this study is to describe and compare best practice session models across different exercise intensities in Olympic endurance sports. METHODS Data collection was based on a four-step pragmatic qualitative study design, involving questionnaires, training logs from successful athletes, and in-depth and semi-structured interviews, followed by negotiation among researchers and coaches to assure our interpretations. Twelve successful and experienced male Norwegian coaches from biathlon, cross-country skiing, long-distance running, road cycling, rowing, speed skating, swimming, and triathlon were chosen as key informants. They had been responsible for the training of world-class endurance athletes who altogether have won > 370 medals in international championships. RESULTS The duration of low-intensity training (LIT) sessions ranges from 30 min to 7 h across sports, mainly due to modality-specific constraints and load tolerance considerations. Cross-training accounts for a considerable part of LIT sessions in several sports. Moderate (MIT)- and high-intensity training (HIT) sessions are mainly conducted as intervals in specific modalities, but competitions also account for a large proportion of annual HIT in most sports. Interval sessions are characterized by a high accumulated volume, a progressive increase in intensity throughout the session, and a controlled, rather than exhaustive, execution approach. A clear trend towards shorter intervals and lower work: rest ratio with increasing intensity was observed. Overall, the analyzed sports implement considerably more MIT than HIT sessions across the annual cycle. CONCLUSIONS This study provides novel insights on quantitative and qualitative aspects of training session models across intensities employed by successful athletes in Olympic endurance sports. The interval training sessions revealed in this study are generally more voluminous, more controlled, and less exhaustive than most previous recommendations outlined in research literature.
Collapse
Affiliation(s)
- Espen Tønnessen
- School of Health Sciences, Kristiania University College, PB 1190 Sentrum, 0107, Oslo, Norway
| | - Øyvind Sandbakk
- Department of Neuromedicine and Movement Science, Centre for Elite Sports Research, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Silvana Bucher Sandbakk
- Department of Teacher Education, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Stephen Seiler
- Faculty of Health and Sport Sciences, University of Agder, PB 422, 4604, Kristiansand, Norway
| | - Thomas Haugen
- School of Health Sciences, Kristiania University College, PB 1190 Sentrum, 0107, Oslo, Norway.
| |
Collapse
|
3
|
Thomas ACQ, Stead CA, Burniston JG, Phillips SM. Exercise-specific adaptations in human skeletal muscle: Molecular mechanisms of making muscles fit and mighty. Free Radic Biol Med 2024; 223:341-356. [PMID: 39147070 DOI: 10.1016/j.freeradbiomed.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
The mechanisms leading to a predominantly hypertrophied phenotype versus a predominantly oxidative phenotype, the hallmarks of resistance training (RT) or aerobic training (AT), respectively, are being unraveled. In humans, exposure of naïve persons to either AT or RT results in their skeletal muscle exhibiting generic 'exercise stress-related' signaling, transcription, and translation responses. However, with increasing engagement in AT or RT, the responses become refined, and the phenotype typically associated with each form of exercise emerges. Here, we review some of the mechanisms underpinning the adaptations of how muscles become, through AT, 'fit' and RT, 'mighty.' Much of our understanding of molecular exercise physiology has arisen from targeted analysis of post-translational modifications and measures of protein synthesis. Phosphorylation of specific residue sites has been a dominant focus, with canonical signaling pathways (AMPK and mTOR) studied extensively in the context of AT and RT, respectively. These alone, along with protein synthesis, have only begun to elucidate key differences in AT and RT signaling. Still, key yet uncharacterized differences exist in signaling and regulation of protein synthesis that drive unique adaptation to AT and RT. Omic studies are required to better understand the divergent relationship between exercise and phenotypic outcomes of training.
Collapse
Affiliation(s)
- Aaron C Q Thomas
- Protein Metabolism Research Lab, Department of Kinesiology, McMaster University, Hamilton, ON, Canada; Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Connor A Stead
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Jatin G Burniston
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Stuart M Phillips
- Protein Metabolism Research Lab, Department of Kinesiology, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
4
|
Reisman EG, Hawley JA, Hoffman NJ. Exercise-Regulated Mitochondrial and Nuclear Signalling Networks in Skeletal Muscle. Sports Med 2024; 54:1097-1119. [PMID: 38528308 PMCID: PMC11127882 DOI: 10.1007/s40279-024-02007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2024] [Indexed: 03/27/2024]
Abstract
Exercise perturbs energy homeostasis in skeletal muscle and engages integrated cellular signalling networks to help meet the contraction-induced increases in skeletal muscle energy and oxygen demand. Investigating exercise-associated perturbations in skeletal muscle signalling networks has uncovered novel mechanisms by which exercise stimulates skeletal muscle mitochondrial biogenesis and promotes whole-body health and fitness. While acute exercise regulates a complex network of protein post-translational modifications (e.g. phosphorylation) in skeletal muscle, previous investigations of exercise signalling in human and rodent skeletal muscle have primarily focused on a select group of exercise-regulated protein kinases [i.e. 5' adenosine monophosphate-activated protein kinase (AMPK), protein kinase A (PKA), Ca2+/calmodulin-dependent protein kinase (CaMK) and mitogen-activated protein kinase (MAPK)] and only a small subset of their respective protein substrates. Recently, global mass spectrometry-based phosphoproteomic approaches have helped unravel the extensive complexity and interconnection of exercise signalling pathways and kinases beyond this select group and phosphorylation and/or translocation of exercise-regulated mitochondrial and nuclear protein substrates. This review provides an overview of recent advances in our understanding of the molecular events associated with acute endurance exercise-regulated signalling pathways and kinases in skeletal muscle with a focus on phosphorylation. We critically appraise recent evidence highlighting the involvement of mitochondrial and nuclear protein phosphorylation and/or translocation in skeletal muscle adaptive responses to an acute bout of endurance exercise that ultimately stimulate mitochondrial biogenesis and contribute to exercise's wider health and fitness benefits.
Collapse
Affiliation(s)
- Elizabeth G Reisman
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Level 5, 215 Spring Street, Melbourne, VIC, 3000, Australia
| | - John A Hawley
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Level 5, 215 Spring Street, Melbourne, VIC, 3000, Australia
| | - Nolan J Hoffman
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Level 5, 215 Spring Street, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
5
|
Hesketh SJ. Advancing cancer cachexia diagnosis with -omics technology and exercise as molecular medicine. SPORTS MEDICINE AND HEALTH SCIENCE 2024; 6:1-15. [PMID: 38463663 PMCID: PMC10918365 DOI: 10.1016/j.smhs.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/15/2024] [Accepted: 01/20/2024] [Indexed: 03/12/2024] Open
Abstract
Muscle atrophy exacerbates disease outcomes and increases mortality, whereas the preservation of skeletal muscle mass and function play pivotal roles in ensuring long-term health and overall quality-of-life. Muscle atrophy represents a significant clinical challenge, involving the continued loss of muscle mass and strength, which frequently accompany the development of numerous types of cancer. Cancer cachexia is a highly prevalent multifactorial syndrome, and although cachexia is one of the main causes of cancer-related deaths, there are still no approved management strategies for the disease. The etiology of this condition is based on the upregulation of systemic inflammation factors and catabolic stimuli, resulting in the inhibition of protein synthesis and enhancement of protein degradation. Numerous necessary cellular processes are disrupted by cachectic pathology, which mediate intracellular signalling pathways resulting in the net loss of muscle and organelles. However, the exact underpinning molecular mechanisms of how these changes are orchestrated are incompletely understood. Much work is still required, but structured exercise has the capacity to counteract numerous detrimental effects linked to cancer cachexia. Primarily through the stimulation of muscle protein synthesis, enhancement of mitochondrial function, and the release of myokines. As a result, muscle mass and strength increase, leading to improved mobility, and quality-of-life. This review summarises existing knowledge of the complex molecular networks that regulate cancer cachexia and exercise, highlighting the molecular interplay between the two for potential therapeutic intervention. Finally, the utility of mass spectrometry-based proteomics is considered as a way of establishing early diagnostic biomarkers of cachectic patients.
Collapse
|
6
|
Wu H, Hu Y, Jiang C, Chen C. Global scientific trends in research of epigenetic response to exercise: A bibliometric analysis. Heliyon 2024; 10:e25644. [PMID: 38370173 PMCID: PMC10869857 DOI: 10.1016/j.heliyon.2024.e25644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/20/2024] Open
Abstract
The purpose of this work is to comprehensively understand the adaptive response of multiple epigenetic modifications on gene expression changes driven by exercise. Here, we retrieved literatures from publications in the PubMed and Web of Science Core Collection databases up to and including October 15, 2023. After screening with the exclusion criteria, 1910 publications were selected in total, comprising 1399 articles and 511 reviews. Specifically, a total of 512, 224, and 772 publications is involved in DNA methylation, histone modification, and noncoding RNAs, respectively. The correlations between publication number, authors, institutions, countries, references, and the characteristics of hotspots were explored by CiteSpace. Here, the USA (621 publications) ranked the world's most-influential countries, the University of California System (68 publications) was the most productive, and Tiago Fernandes (14 publications) had the most-published publications. A comprehensive keyword analysis revealed that cardiovascular disease, cancer, skeletal muscle development, and metabolic syndrome, and are the research hotspots. The detailed impact of exercise was further discussed in different aspects of these three categories of epigenetic modifications. Detailed analysis of epigenetic modifications in response to exercise, including DNA methylation, histone modification, and changes in noncoding RNAs, will offer valuable information to help researchers understand hotspots and emerging trends.
Collapse
Affiliation(s)
- Huijuan Wu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
- Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Yue Hu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
- Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Cai Jiang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
- Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Cong Chen
- Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, 350122 Fuzhou, Fujian, China
- Fujian Key Laboratory of Cognitive Rehabilitation, Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, China
| |
Collapse
|
7
|
Khasanova A, Henagan TM. Exercise Is Medicine: How Do We Implement It? Nutrients 2023; 15:3164. [PMID: 37513581 PMCID: PMC10385293 DOI: 10.3390/nu15143164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/08/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Exercise is well known to have beneficial effects on various disease states. In this paper, we broadly describe the fundamental concepts that are shared among various disease states, including obesity, type 2 diabetes (T2D), cardiovascular disease (CVD), heart failure (HF), cancer, and psychological well-being, and the beneficial effects of exercise training within these concepts. We highlight issues involved in implementing exercise recommendations and describe the potential impacts and challenges to medical professionals and patients. Problems are identified and discussed with respect to the future roles of professionals in the current built environment with its limited infrastructure to support current physical activity recommendations.
Collapse
Affiliation(s)
- Aliya Khasanova
- Department of Family Medicine, Baton Rouge General Family Health Center, Baton Rouge, LA 70806, USA
- Department of Family Medicine, Baton Rouge General Hospital, Baton Rouge, LA 70808, USA
| | - Tara M Henagan
- Department of Family Medicine, Baton Rouge General Family Health Center, Baton Rouge, LA 70806, USA
- Department of Family Medicine, Baton Rouge General Hospital, Baton Rouge, LA 70808, USA
| |
Collapse
|
8
|
Sattarifard H, Safaei A, Khazeeva E, Rastegar M, Davie JR. Mitogen- and stress-activated protein kinase (MSK1/2) regulated gene expression in normal and disease states. Biochem Cell Biol 2023; 101:204-219. [PMID: 36812480 DOI: 10.1139/bcb-2022-0371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
The mitogen- and stress-activated protein kinases (MSK) are epigenetic modifiers that regulate gene expression in normal and disease cell states. MSK1 and 2 are involved in a chain of signal transduction events bringing signals from the external environment of a cell to specific sites in the genome. MSK1/2 phosphorylate histone H3 at multiple sites, resulting in chromatin remodeling at regulatory elements of target genes and the induction of gene expression. Several transcription factors (RELA of NF-κB and CREB) are also phosphorylated by MSK1/2 and contribute to induction of gene expression. In response to signal transduction pathways, MSK1/2 can stimulate genes involved in cell proliferation, inflammation, innate immunity, neuronal function, and neoplastic transformation. Abrogation of the MSK-involved signaling pathway is among the mechanisms by which pathogenic bacteria subdue the host's innate immunity. Depending on the signal transduction pathways in play and the MSK-targeted genes, MSK may promote or hinder metastasis. Thus, depending on the type of cancer and genes involved, MSK overexpression may be a good or poor prognostic factor. In this review, we focus on mechanisms by which MSK1/2 regulate gene expression, and recent studies on their roles in normal and diseased cells.
Collapse
Affiliation(s)
- Hedieh Sattarifard
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, MB, Canada
| | - Akram Safaei
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, MB, Canada
| | - Enzhe Khazeeva
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, MB, Canada
| | - Mojgan Rastegar
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, MB, Canada
| | - James R Davie
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, MB, Canada
| |
Collapse
|
9
|
Gries KJ, Hart CR, Kunz HE, Ryan Z, Zhang X, Parvizi M, Liu Y, Dasari S, Lanza I. Acute responsiveness to single leg cycling in adults with obesity. Physiol Rep 2022; 10:e15539. [PMID: 36541258 PMCID: PMC9768637 DOI: 10.14814/phy2.15539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/11/2022] [Accepted: 11/26/2022] [Indexed: 05/28/2023] Open
Abstract
Obesity is associated with several skeletal muscle impairments which can be improved through an aerobic exercise prescription. The possibility that exercise responsiveness is diminished in people with obesity has been suggested but not well-studied. The purpose of this study was to investigate how obesity influences acute exercise responsiveness in skeletal muscle and circulating amino metabolites. Non-obese (NO; n = 19; 10F/9M; BMI = 25.1 ± 2.8 kg/m2 ) and Obese (O; n = 21; 14F/7M; BMI = 37.3 ± 4.6 kg/m2 ) adults performed 30 min of single-leg cycling at 70% of VO2 peak. 13 C6 -Phenylalanine was administered intravenously for muscle protein synthesis measurements. Serial muscle biopsies (vastus lateralis) were collected before exercise and 3.5- and 6.5-h post-exercise to measure protein synthesis and gene expression. Targeted plasma metabolomics was used to quantitate amino metabolites before and 30 and 90 min after exercise. The exercise-induced fold change in mixed muscle protein synthesis trended (p = 0.058) higher in NO (1.28 ± 0.54-fold) compared to O (0.95 ± 0.42-fold) and was inversely related to BMI (R2 = 0.140, p = 0.027). RNA sequencing revealed 331 and 280 genes that were differentially expressed after exercise in NO and O, respectively. Gene set enrichment analysis showed O had six blunted pathways related to metabolism, cell to cell communication, and protein turnover after exercise. The circulating amine response further highlighted dysregulations related to protein synthesis and metabolism in adults with obesity at the basal state and in response to the exercise bout. Collectively, these data highlight several unique pathways in individuals with obesity that resulted in a modestly blunted exercise response.
Collapse
Affiliation(s)
- Kevin J. Gries
- Endocrine Research Unit, Division of EndocrinologyDepartment of Internal Medicine, Mayo ClinicRochesterMinnesotaUSA
- Department of Physical Therapy, School of Health ProfessionsConcordia University of WisconsinMequonWisconsinUSA
| | - Corey R. Hart
- Endocrine Research Unit, Division of EndocrinologyDepartment of Internal Medicine, Mayo ClinicRochesterMinnesotaUSA
- Air Force Research Laboratory, 711th Human Performance Wing, Wright Patterson Air Force BaseDaytonOhioUSA
| | - Hawley E. Kunz
- Endocrine Research Unit, Division of EndocrinologyDepartment of Internal Medicine, Mayo ClinicRochesterMinnesotaUSA
| | - Zachary Ryan
- Endocrine Research Unit, Division of EndocrinologyDepartment of Internal Medicine, Mayo ClinicRochesterMinnesotaUSA
| | - Xiaoyan Zhang
- Endocrine Research Unit, Division of EndocrinologyDepartment of Internal Medicine, Mayo ClinicRochesterMinnesotaUSA
- Department of GeriatricsShanghai Jiaotong University Affiliated Sixth People's HospitalShanghaiChina
| | - Mojtaba Parvizi
- Endocrine Research Unit, Division of EndocrinologyDepartment of Internal Medicine, Mayo ClinicRochesterMinnesotaUSA
| | - Yuanhang Liu
- Department of Biomedical Statistics and Informatics, Mayo ClinicRochesterMinnesotaUSA
| | - Surendra Dasari
- Department of Biomedical Statistics and Informatics, Mayo ClinicRochesterMinnesotaUSA
| | - Ian R. Lanza
- Endocrine Research Unit, Division of EndocrinologyDepartment of Internal Medicine, Mayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
10
|
Jakobsgaard JE, de Paoli F, Vissing K. Protein signaling in response to ex vivo dynamic contractions is independent of training status in rat skeletal muscle. Exp Physiol 2022; 107:919-932. [PMID: 35723680 PMCID: PMC9545705 DOI: 10.1113/ep090446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/16/2022] [Indexed: 11/24/2022]
Abstract
New Findings What is the central question of this study? Are myofibre protein signalling responses to ex vivo dynamic contractions altered by accustomization to voluntary endurance training in rats? What is the main finding and its importance? In response to ex vivo dynamic muscle contractions, canonical myofibre protein signalling pertaining to metabolic transcriptional regulation, as well as translation initiation and elongation, was not influenced by prior accustomization to voluntary endurance training in rats. Accordingly, intrinsic myofibre protein signalling responses to standardized contractile activity may be independent of prior exercise training in rat skeletal muscle.
Abstract Skeletal muscle training status may influence myofibre regulatory protein signalling in response to contractile activity. The current study employed a purpose‐designed ex vivo dynamic contractile protocol to evaluate the effect of exercise‐accustomization on canonical myofibre protein signalling for metabolic gene expression and for translation initiation and elongation. To this end, rats completed 8 weeks of in vivo voluntary running training versus no running control intervention, whereupon an ex vivo endurance‐type dynamic contraction stimulus was conducted in isolated soleus muscle preparations from both intervention groups. Protein signalling response by phosphorylation was evaluated by immunoblotting at 0 and 3 h following ex vivo stimulation. Phosphorylation of AMP‐activated protein kinase α‐isoforms and its downstream target, acetyl‐CoA carboxylase, as well as phosphorylation of eukaryotic elongation factor 2 (eEF2) was increased immediately following the dynamic contraction protocol (at 0 h). Signalling for translation initiation and elongation was evident at 3 h after dynamic contractile activity, as evidenced by increased phosphorylation of p70 S6 kinase and eukaryotic translation initiation factor 4E‐binding protein 1, as well as a decrease in phosphorylation of eEF2 back to resting control levels. However, prior exercise training did not alter phosphorylation responses of the investigated signalling proteins. Accordingly, protein signalling responses to standardized endurance‐type contractions may be independent of training status in rat muscle during ex vivo conditions. The present findings add to our current understanding of molecular regulatory events responsible for skeletal muscle plasticity.
Collapse
Affiliation(s)
- Jesper Emil Jakobsgaard
- Exercise Biology, Department of Public Health, Faculty of Health, Aarhus University, Denmark
| | - Frank de Paoli
- Department of Biomedicine, Faculty of Health, Aarhus University, Denmark
| | - Kristian Vissing
- Exercise Biology, Department of Public Health, Faculty of Health, Aarhus University, Denmark
| |
Collapse
|
11
|
Rothschild JA, Islam H, Bishop DJ, Kilding AE, Stewart T, Plews DJ. Factors Influencing AMPK Activation During Cycling Exercise: A Pooled Analysis and Meta-Regression. Sports Med 2022; 52:1273-1294. [PMID: 34878641 DOI: 10.1007/s40279-021-01610-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND The 5' adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a cellular energy sensor that is activated by increases in the cellular AMP/adenosine diphosphate:adenosine triphosphate (ADP:ATP) ratios and plays a key role in metabolic adaptations to endurance training. The degree of AMPK activation during exercise can be influenced by many factors that impact on cellular energetics, including exercise intensity, exercise duration, muscle glycogen, fitness level, and nutrient availability. However, the relative importance of these factors for inducing AMPK activation remains unclear, and robust relationships between exercise-related variables and indices of AMPK activation have not been established. OBJECTIVES The purpose of this analysis was to (1) investigate correlations between factors influencing AMPK activation and the magnitude of change in AMPK activity during cycling exercise, (2) investigate correlations between commonly reported measures of AMPK activation (AMPK-α2 activity, phosphorylated (p)-AMPK, and p-acetyl coenzyme A carboxylase (p-ACC), and (3) formulate linear regression models to determine the most important factors for AMPK activation during exercise. METHODS Data were pooled from 89 studies, including 982 participants (93.8% male, maximal oxygen consumption [[Formula: see text]] 51.9 ± 7.8 mL kg-1 min-1). Pearson's correlation analysis was performed to determine relationships between effect sizes for each of the primary outcome markers (AMPK-α2 activity, p-AMPK, p-ACC) and factors purported to influence AMPK signaling (muscle glycogen, carbohydrate ingestion, exercise duration and intensity, fitness level, and muscle metabolites). General linear mixed-effect models were used to examine which factors influenced AMPK activation. RESULTS Significant correlations (r = 0.19-0.55, p < .05) with AMPK activity were found between end-exercise muscle glycogen, exercise intensity, and muscle metabolites phosphocreatine, creatine, and free ADP. All markers of AMPK activation were significantly correlated, with the strongest relationship between AMPK-α2 activity and p-AMPK (r = 0.56, p < 0.001). The most important predictors of AMPK activation were the muscle metabolites and exercise intensity. CONCLUSION Muscle glycogen, fitness level, exercise intensity, and exercise duration each influence AMPK activity during exercise when all other factors are held constant. However, disrupting cellular energy charge is the most influential factor for AMPK activation during endurance exercise.
Collapse
Affiliation(s)
- Jeffrey A Rothschild
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand.
| | - Hashim Islam
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - David J Bishop
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, VIC, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Andrew E Kilding
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | - Tom Stewart
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | - Daniel J Plews
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
12
|
Plaza-Diaz J, Izquierdo D, Torres-Martos Á, Baig AT, Aguilera CM, Ruiz-Ojeda FJ. Impact of Physical Activity and Exercise on the Epigenome in Skeletal Muscle and Effects on Systemic Metabolism. Biomedicines 2022; 10:biomedicines10010126. [PMID: 35052805 PMCID: PMC8773693 DOI: 10.3390/biomedicines10010126] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 02/05/2023] Open
Abstract
Exercise and physical activity induces physiological responses in organisms, and adaptations in skeletal muscle, which is beneficial for maintaining health and preventing and/or treating most chronic diseases. These adaptations are mainly instigated by transcriptional responses that ensue in reaction to each individual exercise, either resistance or endurance. Consequently, changes in key metabolic, regulatory, and myogenic genes in skeletal muscle occur as both an early and late response to exercise, and these epigenetic modifications, which are influenced by environmental and genetic factors, trigger those alterations in the transcriptional responses. DNA methylation and histone modifications are the most significant epigenetic changes described in gene transcription, linked to the skeletal muscle transcriptional response to exercise, and mediating the exercise adaptations. Nevertheless, other alterations in the epigenetics markers, such as epitranscriptomics, modifications mediated by miRNAs, and lactylation as a novel epigenetic modification, are emerging as key events for gene transcription. Here, we provide an overview and update of the impact of exercise on epigenetic modifications, including the well-described DNA methylations and histone modifications, and the emerging modifications in the skeletal muscle. In addition, we describe the effects of exercise on epigenetic markers in other metabolic tissues; also, we provide information about how systemic metabolism or its metabolites influence epigenetic modifications in the skeletal muscle.
Collapse
Affiliation(s)
- Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (D.I.); (C.M.A.)
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain;
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada;
- Correspondence: (J.P.-D.); (F.J.R.-O.); Tel.: +34-9-5824-1000 (ext. 20314) (F.J.R.-O.)
| | - David Izquierdo
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (D.I.); (C.M.A.)
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain;
| | - Álvaro Torres-Martos
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain;
| | - Aiman Tariq Baig
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada;
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 85M, Canada
| | - Concepción M. Aguilera
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (D.I.); (C.M.A.)
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain;
- Center of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Avda. del Conocimiento s/n., 18016 Granada, Spain
- CIBEROBN (CIBER Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Francisco Javier Ruiz-Ojeda
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (D.I.); (C.M.A.)
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain;
- RG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz, Center Munich, Neuherberg, 85764 Munich, Germany
- Correspondence: (J.P.-D.); (F.J.R.-O.); Tel.: +34-9-5824-1000 (ext. 20314) (F.J.R.-O.)
| |
Collapse
|
13
|
Beleza J, Stevanović-Silva J, Coxito P, Costa RC, Ascensão A, Torrella JR, Magalhães J. Building-up fit muscles for the future: Transgenerational programming of skeletal muscle through physical exercise. Eur J Clin Invest 2021; 51:e13515. [PMID: 33580562 DOI: 10.1111/eci.13515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 12/19/2022]
Abstract
'Special issue - In Utero and Early Life Programming of Aging and Disease'. Skeletal muscle (SM) adaptations to physical exercise (PE) have been extensively studied due, not only to the relevance of its in situ plasticity, but also to the SM endocrine-like effects in noncontractile tissues, such as brain, liver or adipocytes. Regular PE has been considered a pleiotropic nonpharmacological strategy to prevent and counteract the deleterious consequences of several metabolic, cardiovascular, oncological and neurodegenerative disorders. Additionally, PE performed by parents seems to have a direct impact in the offspring through the transgenerational programming of different tissues, such as SM. In fact, SM offspring programming mechanisms seems to be orchestrated, at least in part, by epigenetic machinery conditioning transcriptional or post-transcriptional processes. Ultimately, PE performed in the early in life is also a critical window of opportunity to positively modulate the juvenile and adult phenotype. Parental PE has a positive impact in several health-related offspring outcomes, such as SM metabolism, differentiation, morphology and ultimately in offspring exercise volition and endurance. Also, early-life PE counteracts conceptional-related adverse effects and induces long-lasting healthy benefits throughout adulthood. Additionally, epigenetics mechanisms seem to play a key role in the PE-induced SM adaptations. Despite the undoubtedly positive role of parental and early-life PE on SM phenotype, a strong research effort is still needed to better understand the mechanisms that positively regulate PE-induced SM programming.
Collapse
Affiliation(s)
- Jorge Beleza
- Department of Cell Biology, Physiology & Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Jelena Stevanović-Silva
- Laboratory of Metabolism and Exercise (LaMetEx), Faculty of Sport, Research Centre in Physical Activity, Health and Leisure (CIAFEL), University of Porto, Porto, Portugal
| | - Pedro Coxito
- Laboratory of Metabolism and Exercise (LaMetEx), Faculty of Sport, Research Centre in Physical Activity, Health and Leisure (CIAFEL), University of Porto, Porto, Portugal
| | - Rui Carlos Costa
- Department of Communication and Art, Research Institute for Design, Media and Culture (ID+), Aveiro University, Aveiro, Portugal
| | - António Ascensão
- Laboratory of Metabolism and Exercise (LaMetEx), Faculty of Sport, Research Centre in Physical Activity, Health and Leisure (CIAFEL), University of Porto, Porto, Portugal
| | - Joan Ramon Torrella
- Department of Cell Biology, Physiology & Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - José Magalhães
- Laboratory of Metabolism and Exercise (LaMetEx), Faculty of Sport, Research Centre in Physical Activity, Health and Leisure (CIAFEL), University of Porto, Porto, Portugal
| |
Collapse
|
14
|
Abstract
Since ancient times, the health benefits of regular physical activity/exercise have been recognized and the classic studies of Morris and Paffenbarger provided the epidemiological evidence in support of such an association. Cardiorespiratory fitness, often measured by maximal oxygen uptake, and habitual physical activity levels are inversely related to mortality. Thus, studies exploring the biological bases of the health benefits of exercise have largely focused on the cardiovascular system and skeletal muscle (mass and metabolism), although there is increasing evidence that multiple tissues and organ systems are influenced by regular exercise. Communication between contracting skeletal muscle and multiple organs has been implicated in exercise benefits, as indeed has other interorgan "cross-talk." The application of molecular biology techniques and "omics" approaches to questions in exercise biology has opened new lines of investigation to better understand the beneficial effects of exercise and, in so doing, inform the optimization of exercise regimens and the identification of novel therapeutic strategies to enhance health and well-being.
Collapse
Affiliation(s)
- Mark Hargreaves
- Department of Anatomy & Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
15
|
Felipe SMDS, de Freitas RM, Penha EDDS, Pacheco C, Martins DL, Alves JO, Soares PM, Loureiro ACC, Lima T, Silveira LR, Ferraz ASM, de Souza JES, Leal-Cardoso JH, Carvalho DP, Ceccatto VM. Transcriptional profile in rat muscle: down-regulation networks in acute strenuous exercise. PeerJ 2021; 9:e10500. [PMID: 33859869 PMCID: PMC8020866 DOI: 10.7717/peerj.10500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 11/15/2020] [Indexed: 11/20/2022] Open
Abstract
Background Physical exercise is a health promotion factor regulating gene expression and causing changes in phenotype, varying according to exercise type and intensity. Acute strenuous exercise in sedentary individuals appears to induce different transcriptional networks in response to stress caused by exercise. The objective of this research was to investigate the transcriptional profile of strenuous experimental exercise. Methodology RNA-Seq was performed with Rattus norvegicus soleus muscle, submitted to strenuous physical exercise on a treadmill with an initial velocity of 0.5 km/h and increments of 0.2 km/h at every 3 min until animal exhaustion. Twenty four hours post-physical exercise, RNA-seq protocols were performed with coverage of 30 million reads per sample, 100 pb read length, paired-end, with a list of counts totaling 12816 genes. Results Eighty differentially expressed genes (61 down-regulated and 19 up-regulated) were obtained. Reactome and KEGG database searches revealed the most significant pathways, for down-regulated gene set, were: PI3K-Akt signaling pathway, RAF-MAP kinase, P2Y receptors and Signaling by Erbb2. Results suggest PI3K-AKT pathway inactivation by Hbegf, Fgf1 and Fgr3 receptor regulation, leading to inhibition of cell proliferation and increased apoptosis. Cell signaling transcription networks were found in transcriptome. Results suggest some metabolic pathways which indicate the conditioning situation of strenuous exercise induced genes encoding apoptotic and autophagy factors, indicating cellular stress. Conclusion Down-regulated networks showed cell transduction and signaling pathways, with possible inhibition of cellular proliferation and cell degeneration. These findings reveal transitory and dynamic process in cell signaling transcription networks in skeletal muscle after acute strenuous exercise.
Collapse
Affiliation(s)
| | | | | | - Christina Pacheco
- Superior Institute of Biomedic Sciences, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Danilo Lopes Martins
- Digital Metropolis Institute, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Juliana Osório Alves
- Superior Institute of Biomedic Sciences, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Paula Matias Soares
- Superior Institute of Biomedic Sciences, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | | | - Tanes Lima
- Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Leonardo R Silveira
- Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | | | | | | | - Denise P Carvalho
- Carlos Chagas Filho Biophysics Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vania Marilande Ceccatto
- Superior Institute of Biomedic Sciences, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
16
|
Pirkmajer S, Bezjak K, Matkovič U, Dolinar K, Jiang LQ, Miš K, Gros K, Milovanova K, Pirkmajer KP, Marš T, Kapilevich L, Chibalin AV. Ouabain Suppresses IL-6/STAT3 Signaling and Promotes Cytokine Secretion in Cultured Skeletal Muscle Cells. Front Physiol 2020; 11:566584. [PMID: 33101052 PMCID: PMC7544989 DOI: 10.3389/fphys.2020.566584] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/25/2020] [Indexed: 12/16/2022] Open
Abstract
The cardiotonic steroids (CTS), such as ouabain and marinobufagenin, are thought to be adrenocortical hormones secreted during exercise and the stress response. The catalytic α-subunit of Na,K-ATPase (NKA) is a CTS receptor, whose largest pool is located in skeletal muscles, indicating that muscles are a major target for CTS. Skeletal muscles contribute to adaptations to exercise by secreting interleukin-6 (IL-6) and plethora of other cytokines, which exert paracrine and endocrine effects in muscles and non-muscle tissues. Here, we determined whether ouabain, a prototypical CTS, modulates IL-6 signaling and secretion in the cultured human skeletal muscle cells. Ouabain (2.5–50 nM) suppressed the abundance of STAT3, a key transcription factor downstream of the IL-6 receptor, as well as its basal and IL-6-stimulated phosphorylation. Conversely, ouabain (50 nM) increased the phosphorylation of ERK1/2, Akt, p70S6K, and S6 ribosomal protein, indicating activation of the ERK1/2 and the Akt-mTOR pathways. Proteasome inhibitor MG-132 blocked the ouabain-induced suppression of the total STAT3, but did not prevent the dephosphorylation of STAT3. Ouabain (50 nM) suppressed hypoxia-inducible factor-1α (HIF-1α), a modulator of STAT3 signaling, but gene silencing of HIF-1α and/or its partner protein HIF-1β did not mimic effects of ouabain on the phosphorylation of STAT3. Ouabain (50 nM) failed to suppress the phosphorylation of STAT3 and HIF-1α in rat L6 skeletal muscle cells, which express the ouabain-resistant α1-subunit of NKA. We also found that ouabain (100 nM) promoted the secretion of IL-6, IL-8, GM-CSF, and TNF-α from the skeletal muscle cells of healthy subjects, and the secretion of GM-CSF from cells of subjects with the type 2 diabetes. Marinobufagenin (10 nM), another important CTS, did not alter the secretion of these cytokines. In conclusion, our study shows that ouabain suppresses the IL-6 signaling via STAT3, but promotes the secretion of IL-6 and other cytokines, which might represent a negative feedback in the IL-6/STAT3 pathway. Collectively, our results implicate a role for CTS and NKA in regulation of the IL-6 signaling and secretion in skeletal muscle.
Collapse
Affiliation(s)
- Sergej Pirkmajer
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Katja Bezjak
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Urška Matkovič
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Klemen Dolinar
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Lake Q Jiang
- Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Katarina Miš
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Katarina Gros
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Kseniya Milovanova
- Department of Sports and Health Tourism, Sports Physiology and Medicine, National Research Tomsk State University, Tomsk, Russia
| | - Katja Perdan Pirkmajer
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tomaž Marš
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Leonid Kapilevich
- Department of Sports and Health Tourism, Sports Physiology and Medicine, National Research Tomsk State University, Tomsk, Russia.,Central Scientific Laboratory, Siberian State Medical University, Tomsk, Russia
| | - Alexander V Chibalin
- Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
17
|
Phosphoproteomics of Acute Cell Stressors Targeting Exercise Signaling Networks Reveal Drug Interactions Regulating Protein Secretion. Cell Rep 2020; 29:1524-1538.e6. [PMID: 31693893 DOI: 10.1016/j.celrep.2019.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/09/2019] [Accepted: 09/30/2019] [Indexed: 01/25/2023] Open
Abstract
Exercise engages signaling networks to control the release of circulating factors beneficial to health. However, the nature of these networks remains undefined. Using high-throughput phosphoproteomics, we quantify 20,249 phosphorylation sites in skeletal muscle-like myotube cells and monitor their responses to a panel of cell stressors targeting aspects of exercise signaling in vivo. Integrating these in-depth phosphoproteomes with the phosphoproteome of acute aerobic exercise in human skeletal muscle suggests that co-administration of β-adrenergic and calcium agonists would activate complementary signaling relevant to this exercise context. The phosphoproteome of cells treated with this combination reveals a surprising divergence in signaling from the individual treatments. Remarkably, only the combination treatment promotes multisite phosphorylation of SERBP1, a regulator of Serpine1 mRNA stability, a pro-fibrotic secreted protein. Secretome analysis reveals that the combined treatments decrease secretion of SERPINE1 and other deleterious factors. This study provides a framework for dissecting phosphorylation-based signaling relevant to acute exercise.
Collapse
|
18
|
p38 MAPK in Glucose Metabolism of Skeletal Muscle: Beneficial or Harmful? Int J Mol Sci 2020; 21:ijms21186480. [PMID: 32899870 PMCID: PMC7555282 DOI: 10.3390/ijms21186480] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 12/24/2022] Open
Abstract
Skeletal muscles respond to environmental and physiological changes by varying their size, fiber type, and metabolic properties. P38 mitogen-activated protein kinase (MAPK) is one of several signaling pathways that drive the metabolic adaptation of skeletal muscle to exercise. p38 MAPK also participates in the development of pathological traits resulting from excessive caloric intake and obesity that cause metabolic syndrome and type 2 diabetes (T2D). Whereas p38 MAPK increases insulin-independent glucose uptake and oxidative metabolism in muscles during exercise, it contrastingly mediates insulin resistance and glucose intolerance during metabolic syndrome development. This article provides an overview of the apparent contradicting roles of p38 MAPK in the adaptation of skeletal muscles to exercise and to pathological conditions leading to glucose intolerance and T2D. Here, we focus on the involvement of p38 MAPK in glucose metabolism of skeletal muscle, and discuss the possibility of targeting this pathway to prevent the development of T2D.
Collapse
|
19
|
Solagna F, Nogara L, Dyar KA, Greulich F, Mir AA, Türk C, Bock T, Geremia A, Baraldo M, Sartori R, Farup J, Uhlenhaut H, Vissing K, Krüger M, Blaauw B. Exercise-dependent increases in protein synthesis are accompanied by chromatin modifications and increased MRTF-SRF signalling. Acta Physiol (Oxf) 2020; 230:e13496. [PMID: 32408395 PMCID: PMC7507144 DOI: 10.1111/apha.13496] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022]
Abstract
AIM Resistance exercise increases muscle mass over time. However, the early signalling events leading to muscle growth are not yet well-defined. Here, we aim to identify new signalling pathways important for muscle remodelling after exercise. METHODS We performed a phosphoproteomics screen after a single bout of exercise in mice. As an exercise model we used unilateral electrical stimulation in vivo and treadmill running. We analysed muscle biopsies from human subjects to verify if our findings in murine muscle also translate to exercise in humans. RESULTS We identified a new phosphorylation site on Myocardin-Related Transcription Factor B (MRTF-B), a co-activator of serum response factor (SRF). Phosphorylation of MRTF-B is required for its nuclear translocation after exercise and is accompanied by the transcription of the SRF target gene Fos. In addition, high-intensity exercise also remodels chromatin at specific SRF target gene loci through the phosphorylation of histone 3 on serine 10 in myonuclei of both mice and humans. Ablation of the MAP kinase member MSK1/2 is sufficient to prevent this histone phosphorylation, reduce induction of SRF-target genes, and prevent increases in protein synthesis after exercise. CONCLUSION Our results identify a new exercise signalling fingerprint in vivo, instrumental for exercise-induced protein synthesis and potentially muscle growth.
Collapse
Affiliation(s)
| | - Leonardo Nogara
- Venetian Institute of Molecular Medicine (VIMM) Padova Italy
- Department of Biomedical Sciences University of Padova Padova Italy
| | - Kenneth A. Dyar
- Molecular Endocrinology, Institute for Diabetes and Cancer (IDC) Helmholz Zentrum MunichHelmholtz Diabetes Center (HMGU) Munich Germany
| | - Franziska Greulich
- Molecular Endocrinology, Institute for Diabetes and Cancer (IDC) Helmholz Zentrum MunichHelmholtz Diabetes Center (HMGU) Munich Germany
| | - Ashfaq A. Mir
- Molecular Endocrinology, Institute for Diabetes and Cancer (IDC) Helmholz Zentrum MunichHelmholtz Diabetes Center (HMGU) Munich Germany
| | - Clara Türk
- Research laboratory for Biochemical Pathology Department of Clinical Medicine & Department of Biomedicine Aarhus University Aarhus Denmark
| | - Theresa Bock
- Research laboratory for Biochemical Pathology Department of Clinical Medicine & Department of Biomedicine Aarhus University Aarhus Denmark
| | - Alessia Geremia
- Venetian Institute of Molecular Medicine (VIMM) Padova Italy
- Department of Biomedical Sciences University of Padova Padova Italy
| | - Martina Baraldo
- Venetian Institute of Molecular Medicine (VIMM) Padova Italy
- Department of Biomedical Sciences University of Padova Padova Italy
| | - Roberta Sartori
- Venetian Institute of Molecular Medicine (VIMM) Padova Italy
- Department of Biomedical Sciences University of Padova Padova Italy
| | - Jean Farup
- Research laboratory for Biochemical Pathology Department of Clinical Medicine & Department of Biomedicine Aarhus University Aarhus Denmark
| | - Henriette Uhlenhaut
- Molecular Endocrinology, Institute for Diabetes and Cancer (IDC) Helmholz Zentrum MunichHelmholtz Diabetes Center (HMGU) Munich Germany
- Chair for Metabolic Programming TUM School of Life SciencesZIEL‐Institute for Food & Health Freising Germany
| | - Kristian Vissing
- Department of Public Health, Section for Sport Science Aarhus University Aarhus Denmark
| | - Marcus Krüger
- Institute for Genetics Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of Cologne Cologne Germany
| | - Bert Blaauw
- Venetian Institute of Molecular Medicine (VIMM) Padova Italy
- Department of Biomedical Sciences University of Padova Padova Italy
| |
Collapse
|
20
|
Hargreaves M, Spriet LL. Skeletal muscle energy metabolism during exercise. Nat Metab 2020; 2:817-828. [PMID: 32747792 DOI: 10.1038/s42255-020-0251-4] [Citation(s) in RCA: 536] [Impact Index Per Article: 107.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/25/2020] [Indexed: 12/12/2022]
Abstract
The continual supply of ATP to the fundamental cellular processes that underpin skeletal muscle contraction during exercise is essential for sports performance in events lasting seconds to several hours. Because the muscle stores of ATP are small, metabolic pathways must be activated to maintain the required rates of ATP resynthesis. These pathways include phosphocreatine and muscle glycogen breakdown, thus enabling substrate-level phosphorylation ('anaerobic') and oxidative phosphorylation by using reducing equivalents from carbohydrate and fat metabolism ('aerobic'). The relative contribution of these metabolic pathways is primarily determined by the intensity and duration of exercise. For most events at the Olympics, carbohydrate is the primary fuel for anaerobic and aerobic metabolism. Here, we provide an overview of exercise metabolism and the key regulatory mechanisms ensuring that ATP resynthesis is closely matched to the ATP demand of exercise. We also summarize various interventions that target muscle metabolism for ergogenic benefit in athletic events.
Collapse
Affiliation(s)
- Mark Hargreaves
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia.
| | - Lawrence L Spriet
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
21
|
Jacko D, Bersiner K, Schulz O, Przyklenk A, Spahiu F, Höhfeld J, Bloch W, Gehlert S. Coordinated alpha-crystallin B phosphorylation and desmin expression indicate adaptation and deadaptation to resistance exercise-induced loading in human skeletal muscle. Am J Physiol Cell Physiol 2020; 319:C300-C312. [PMID: 32520607 DOI: 10.1152/ajpcell.00087.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Skeletal muscle is a target of contraction-induced loading (CiL), leading to protein unfolding or cellular perturbations, respectively. While cytoskeletal desmin is responsible for ongoing structural stabilization, in the immediate response to CiL, alpha-crystallin B (CRYAB) is phosphorylated at serine 59 (pCRYABS59) by P38, acutely protecting the cytoskeleton. To reveal adaptation and deadaptation of these myofibrillar subsystems to CiL, we examined CRYAB, P38, and desmin regulation following resistance exercise at diverse time points of a chronic training period. Mechanosensitive JNK phosphorylation (pJNKT183/Y185) was determined to indicate the presence of mechanical components in CiL. Within 6 wk, subjects performed 13 resistance exercise bouts at the 8-12 repetition maximum, followed by 10 days detraining and a final 14th bout. Biopsies were taken at baseline and after the 1st, 3rd, 7th, 10th, 13th, and 14th bout. To assess whether potential desensitization to CiL can be mitigated, one group trained with progressive and a second with constant loading. As no group differences were found, all subjects were combined for statistics. Total and phosphorylated P38 was not regulated over the time course. pCRYABS59 and pJNKT183/Y185 strongly increased following the unaccustomed first bout. This exercise-induced pCRYABS59/pJNKT183/Y185 increase disappeared with the 10th until 13th bout. As response to the detraining period, the 14th bout led to a renewed increase in pCRYABS59. Desmin content followed pCRYABS59 inversely, i.e., was up- when pCRYABS59 was downregulated and vice versa. In conclusion, the pCRYABS59 response indicates increase and decrease in resistance to CiL, in which a reinforced desmin network could play an essential role by structurally stabilizing the cells.
Collapse
Affiliation(s)
- Daniel Jacko
- Department for Molecular and Cellular Sports Medicine, Institute for Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany.,Olympic Base Center, North Rhine-Westphalia/Rhineland, Cologne, Germany
| | - Käthe Bersiner
- Department for Biosciences of Sports, Institute for Sports Sciences, University of Hildesheim, Hildesheim, Germany
| | - Oliver Schulz
- Department for Molecular and Cellular Sports Medicine, Institute for Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Axel Przyklenk
- Department for Molecular and Cellular Sports Medicine, Institute for Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Fabian Spahiu
- Department for Molecular and Cellular Sports Medicine, Institute for Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Jörg Höhfeld
- Institute for Cell Biology, University of Bonn, Bonn, Germany
| | - Wilhelm Bloch
- Department for Molecular and Cellular Sports Medicine, Institute for Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Sebastian Gehlert
- Department for Molecular and Cellular Sports Medicine, Institute for Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany.,Department for Biosciences of Sports, Institute for Sports Sciences, University of Hildesheim, Hildesheim, Germany
| |
Collapse
|
22
|
McGee SL, Hargreaves M. Epigenetics and Exercise. Trends Endocrinol Metab 2019; 30:636-645. [PMID: 31279665 DOI: 10.1016/j.tem.2019.06.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 01/12/2023]
Abstract
Epigenetics can be defined as 'the structural adaptation of chromosomal regions so as to register, signal, or perpetuate altered activity states.' Increased transcription of key regulatory, metabolic, and myogenic genes is an early response to exercise and is important in mediating subsequent adaptations in skeletal muscle. DNA hypomethylation and histone hyperacetylation are emerging as important crucial events for increased transcription. The complex interactions between multiple epigenetic modifications and their regulation by metabolic changes and signaling events during exercise, with implications for enhanced understanding of the acute and chronic adaptations to exercise, are questions for further investigation.
Collapse
Affiliation(s)
- Sean L McGee
- Metabolic Research Unit, School of Medicine and Centre for Molecular and Medical Research, Deakin University, Geelong Waurn Ponds, VIC 3216, Australia.
| | - Mark Hargreaves
- Department of Physiology, The University of Melbourne, VIC 3010, Australia.
| |
Collapse
|
23
|
Kudrna RA, Fry AC, Nicoll JX, Gallagher PM, Prewitt MR. Effect of Three Different Maximal Concentric Velocity Squat Protocols on MAPK Phosphorylation and Endocrine Responses. J Strength Cond Res 2019; 33:1692-1702. [DOI: 10.1519/jsc.0000000000002411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Oertzen-Hagemann V, Kirmse M, Eggers B, Pfeiffer K, Marcus K, de Marées M, Platen P. Effects of 12 Weeks of Hypertrophy Resistance Exercise Training Combined with Collagen Peptide Supplementation on the Skeletal Muscle Proteome in Recreationally Active Men. Nutrients 2019; 11:E1072. [PMID: 31091754 PMCID: PMC6566884 DOI: 10.3390/nu11051072] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/07/2019] [Accepted: 05/10/2019] [Indexed: 01/08/2023] Open
Abstract
Evidence has shown that protein supplementation following resistance exercise training (RET) helps to further enhance muscle mass and strength. Studies have demonstrated that collagen peptides containing mostly non-essential amino acids increase fat-free mass (FFM) and strength in sarcopenic men. The aim of this study was to investigate whether collagen peptide supplementation in combination with RET influences the protein composition of skeletal muscle. Twenty-five young men (age: 24.2 ± 2.6 years, body mass (BM): 79.6 ± 5.6 kg, height: 185.0 ± 5.0 cm, fat mass (FM): 11.5% ± 3.4%) completed body composition and strength measurements and vastus lateralis biopsies were taken before and after a 12-week training intervention. In a double-blind, randomized design, subjects consumed either 15 g of specific collagen peptides (COL) or a non-caloric placebo (PLA) every day within 60 min after their training session. A full-body hypertrophy workout was completed three times per week and included four exercises using barbells. Muscle proteome analysis was performed by liquid chromatography tandem mass spectrometry (LC-MS/MS). BM and FFM increased significantly in COL compared with PLA, whereas no differences in FM were detected between the two groups. Both groups improved in strength levels, with a slightly higher increase in COL compared with PLA. In COL, 221 higher abundant proteins were identified. In contrast, only 44 proteins were of higher abundance in PLA. In contrast to PLA, the upregulated proteins in COL were mostly associated with the protein metabolism of the contractile fibers. In conclusion, the use of RET in combination with collagen peptide supplementation results in a more pronounced increase in BM, FFM, and muscle strength than RET alone. More proteins were upregulated in the COL intervention most of which were associated with contractile fibers.
Collapse
Affiliation(s)
- Vanessa Oertzen-Hagemann
- Department of Sports Medicine and Sports Nutrition, Ruhr University Bochum, 44801 Bochum, Germany.
| | - Marius Kirmse
- Department of Sports Medicine and Sports Nutrition, Ruhr University Bochum, 44801 Bochum, Germany.
| | - Britta Eggers
- Medizinisches Proteom-Center, Medical Faculty, Ruhr University Bochum, 44801 Bochum, Germany.
| | - Kathy Pfeiffer
- Medizinisches Proteom-Center, Medical Faculty, Ruhr University Bochum, 44801 Bochum, Germany.
| | - Katrin Marcus
- Medizinisches Proteom-Center, Medical Faculty, Ruhr University Bochum, 44801 Bochum, Germany.
| | - Markus de Marées
- Department of Sports Medicine and Sports Nutrition, Ruhr University Bochum, 44801 Bochum, Germany.
| | - Petra Platen
- Department of Sports Medicine and Sports Nutrition, Ruhr University Bochum, 44801 Bochum, Germany.
| |
Collapse
|
25
|
Bishop DJ, Botella J, Genders AJ, Lee MJC, Saner NJ, Kuang J, Yan X, Granata C. High-Intensity Exercise and Mitochondrial Biogenesis: Current Controversies and Future Research Directions. Physiology (Bethesda) 2019; 34:56-70. [PMID: 30540234 DOI: 10.1152/physiol.00038.2018] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It is well established that different types of exercise can provide a powerful stimulus for mitochondrial biogenesis. However, there are conflicting findings in the literature, and a consensus has not been reached regarding the efficacy of high-intensity exercise to promote mitochondrial biogenesis in humans. The purpose of this review is to examine current controversies in the field and to highlight some important methodological issues that need to be addressed to resolve existing conflicts.
Collapse
Affiliation(s)
- David J Bishop
- Institute for Health and Sport, Victoria University , Melbourne , Australia.,School of Medical & Health Sciences, Edith Cowan University , Joondalup , Australia
| | - Javier Botella
- Institute for Health and Sport, Victoria University , Melbourne , Australia
| | - Amanda J Genders
- Institute for Health and Sport, Victoria University , Melbourne , Australia
| | - Matthew J-C Lee
- Institute for Health and Sport, Victoria University , Melbourne , Australia
| | - Nicholas J Saner
- Institute for Health and Sport, Victoria University , Melbourne , Australia
| | - Jujiao Kuang
- Institute for Health and Sport, Victoria University , Melbourne , Australia
| | - Xu Yan
- Institute for Health and Sport, Victoria University , Melbourne , Australia
| | - Cesare Granata
- Department of Diabetes, Central Clinical School, Monash University , Melbourne , Australia
| |
Collapse
|
26
|
Training-Induced Changes in Mitochondrial Content and Respiratory Function in Human Skeletal Muscle. Sports Med 2018; 48:1809-1828. [PMID: 29934848 DOI: 10.1007/s40279-018-0936-y] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A sedentary lifestyle has been linked to a number of metabolic disorders that have been associated with sub-optimal mitochondrial characteristics and an increased risk of premature death. Endurance training can induce an increase in mitochondrial content and/or mitochondrial functional qualities, which are associated with improved health and well-being and longer life expectancy. It is therefore important to better define how manipulating key parameters of an endurance training intervention can influence the content and functionality of the mitochondrial pool. This review focuses on mitochondrial changes taking place following a series of exercise sessions (training-induced mitochondrial adaptations), providing an in-depth analysis of the effects of exercise intensity and training volume on changes in mitochondrial protein synthesis, mitochondrial content and mitochondrial respiratory function. We provide evidence that manipulation of different exercise training variables promotes specific and diverse mitochondrial adaptations. Specifically, we report that training volume may be a critical factor affecting changes in mitochondrial content, whereas relative exercise intensity is an important determinant of changes in mitochondrial respiratory function. As a consequence, a dissociation between training-induced changes in mitochondrial content and mitochondrial respiratory function is often observed. We also provide evidence that exercise-induced changes are not necessarily predictive of training-induced adaptations, we propose possible explanations for the above discrepancies and suggestions for future research.
Collapse
|
27
|
Isoform-specific AMPK association with TBC1D1 is reduced by a mutation associated with severe obesity. Biochem J 2018; 475:2969-2983. [PMID: 30135087 PMCID: PMC6156765 DOI: 10.1042/bcj20180475] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/10/2018] [Accepted: 08/22/2018] [Indexed: 01/08/2023]
Abstract
AMP-activated protein kinase (AMPK) is a key regulator of cellular and systemic energy homeostasis which achieves this through the phosphorylation of a myriad of downstream targets. One target is TBC1D1 a Rab-GTPase-activating protein that regulates glucose uptake in muscle cells by integrating insulin signalling with that promoted by muscle contraction. Ser237 in TBC1D1 is a target for phosphorylation by AMPK, an event which may be important in regulating glucose uptake. Here, we show AMPK heterotrimers containing the α1, but not the α2, isoform of the catalytic subunit form an unusual and stable association with TBC1D1, but not its paralogue AS160. The interaction between the two proteins is direct, involves a dual interaction mechanism employing both phosphotyrosine-binding (PTB) domains of TBC1D1 and is increased by two different pharmacological activators of AMPK (AICAR and A769962). The interaction enhances the efficiency by which AMPK phosphorylates TBC1D1 on its key regulatory site, Ser237. Furthermore, the interaction is reduced by a naturally occurring R125W mutation in the PTB1 domain of TBC1D1, previously found to be associated with severe familial obesity in females, with a concomitant reduction in Ser237 phosphorylation. Our observations provide evidence for a functional difference between AMPK α-subunits and extend the repertoire of protein kinases that interact with substrates via stabilisation mechanisms that modify the efficacy of substrate phosphorylation.
Collapse
|
28
|
Gejl KD, Vissing K, Hansen M, Thams L, Rokkedal‐Lausch T, Plomgaard P, Meinild Lundby A, Nybo L, Jensen K, Holmberg H, Ørtenblad N. Changes in metabolism but not myocellular signaling by training with CHO-restriction in endurance athletes. Physiol Rep 2018; 6:e13847. [PMID: 30175557 PMCID: PMC6119686 DOI: 10.14814/phy2.13847] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/03/2018] [Accepted: 08/10/2018] [Indexed: 11/24/2022] Open
Abstract
Carbohydrate (CHO) restricted training has been shown to increase the acute training response, whereas less is known about the acute effects after repeated CHO restricted training. On two occasions, the acute responses to CHO restriction were examined in endurance athletes. Study 1 examined cellular signaling and metabolic responses after seven training-days including CHO manipulation (n = 16). The protocol consisted of 1 h high-intensity cycling, followed by 7 h recovery, and 2 h of moderate-intensity exercise (120SS). Athletes were randomly assigned to low (LCHO: 80 g) or high (HCHO: 415 g) CHO during recovery and the 120SS. Study 2 examined unaccustomed exposure to the same training protocol (n = 12). In Study 1, muscle biopsies were obtained at rest and 1 h after 120SS, and blood samples drawn during the 120SS. In Study 2, substrate oxidation and plasma glucagon were determined. In Study 1, plasma insulin and proinsulin C-peptide were higher during the 120SS in HCHO compared to LCHO (insulin: 0 min: +37%; 60 min: +135%; 120 min: +357%, P = 0.05; proinsulin C-peptide: 0 min: +32%; 60 min: +52%; 120 min: +79%, P = 0.02), whereas plasma cholesterol was higher in LCHO (+15-17%, P = 0.03). Myocellular signaling did not differ between groups. p-AMPK and p-ACC were increased after 120SS (+35%, P = 0.03; +59%, P = 0.0004, respectively), with no alterations in p-p38, p-53, or p-CREB. In Study 2, glucagon and fat oxidation were higher in LCHO compared to HCHO during the 120SS (+26-40%, P = 0.03; +44-76%, P = 0.01 respectively). In conclusion, the clear respiratory and hematological effects of CHO restricted training were not translated into superior myocellular signaling after accustomization to CHO restriction.
Collapse
Affiliation(s)
- Kasper D. Gejl
- Department of Sports Science and Clinical BiomechanicsUniversity of Southern DenmarkOdenseDenmark
| | - Kristian Vissing
- Department of Public Health, Section for Sport ScienceAarhus UniversityAarhusDenmark
| | - Mette Hansen
- Department of Public Health, Section for Sport ScienceAarhus UniversityAarhusDenmark
| | - Line Thams
- Department of Sports Science and Clinical BiomechanicsUniversity of Southern DenmarkOdenseDenmark
| | - Torben Rokkedal‐Lausch
- SMIDepartment of Health Science and TechnologyFaculty of MedicineAalborg UniversityAalborgDenmark
| | - Peter Plomgaard
- Department of Clinical BiochemistryRigshospitaletCopenhagenDenmark
- The Centre of Inflammation and MetabolismCentre for Physical Activity ResearchRigshospitaletUniversity of CopenhagenCopenhagenDenmark
| | - Anne‐Kristine Meinild Lundby
- The Centre of Inflammation and MetabolismCentre for Physical Activity ResearchRigshospitaletUniversity of CopenhagenCopenhagenDenmark
| | - Lars Nybo
- Department of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagenDenmark
| | - Kurt Jensen
- Department of Sports Science and Clinical BiomechanicsUniversity of Southern DenmarkOdenseDenmark
| | - Hans‐Christer Holmberg
- Swedish Winter Sports Research CentreDepartment of Health SciencesMid Sweden UniversityÖstersundSweden
- Swedish Olympic CommitteeStockholmSweden
| | - Niels Ørtenblad
- Department of Sports Science and Clinical BiomechanicsUniversity of Southern DenmarkOdenseDenmark
- Swedish Winter Sports Research CentreDepartment of Health SciencesMid Sweden UniversityÖstersundSweden
| |
Collapse
|
29
|
Popov DV, Lysenko EA, Bokov RO, Volodina MA, Kurochkina NS, Makhnovskii PA, Vyssokikh MY, Vinogradova OL. Effect of aerobic training on baseline expression of signaling and respiratory proteins in human skeletal muscle. Physiol Rep 2018; 6:e13868. [PMID: 30198217 PMCID: PMC6129775 DOI: 10.14814/phy2.13868] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 08/24/2018] [Indexed: 12/30/2022] Open
Abstract
Most studies examining the molecular mechanisms underlying adaptation of human skeletal muscles to aerobic exercise focused on the response to acute exercise. Here, we examined the effect of a 2-month aerobic training program on baseline parameters in human muscle. Ten untrained males performed a one-legged knee extension exercise for 1 h with the same relative intensity before and after a 2-month aerobic training program. Biopsy samples were taken from vastus lateralis muscle at rest before and after the 2 month training program (baseline samples). Additionally, biopsy samples were taken from the exercised leg 1 and 4 h after the one-legged continuous knee extension exercise. Aerobic training decreases baseline phosphorylation of FOXO1Ser256 , increases that of CaMKIIThr286 , CREB1Ser133 , increases baseline expression of mitochondrial proteins in respiratory complexes I-V, and some regulators of mitochondrial biogenesis (TFAM, NR4A3, and CRTC2). An increase in the baseline content of these proteins was not associated with a change in baseline expression of their genes. The increase in the baseline content of regulators of mitochondrial biogenesis (TFAM and NR4A3) was associated with a transient increase in transcription after acute exercise. Contrariwise, the increase in the baseline content of respiratory proteins does not seem to be regulated at the transcriptional level; rather, it is associated with other mechanisms. Adaptation of human skeletal muscle to regular aerobic exercise is associated not only with transient molecular responses to exercise, but also with changes in baseline phosphorylation and expression of regulatory proteins.
Collapse
Affiliation(s)
- Daniil V. Popov
- Laboratory of Exercise PhysiologyInstitute of Biomedical Problems of the Russian Academy of SciencesMoscowRussia
- Faculty of Fundamental MedicineM.V. Lomonosov Moscow State UniversityMoscowRussia
| | - Evgeny A. Lysenko
- Laboratory of Exercise PhysiologyInstitute of Biomedical Problems of the Russian Academy of SciencesMoscowRussia
- Faculty of Fundamental MedicineM.V. Lomonosov Moscow State UniversityMoscowRussia
| | - Roman O. Bokov
- Laboratory of Exercise PhysiologyInstitute of Biomedical Problems of the Russian Academy of SciencesMoscowRussia
| | - Maria A. Volodina
- Laboratory of Mitochondrial MedicineResearch Center for ObstetricsGynecology and PerinatologyMinistry of Healthcare of the Russian FederationMoscowRussia
| | - Nadia S. Kurochkina
- Laboratory of Exercise PhysiologyInstitute of Biomedical Problems of the Russian Academy of SciencesMoscowRussia
| | - Pavel A. Makhnovskii
- Laboratory of Exercise PhysiologyInstitute of Biomedical Problems of the Russian Academy of SciencesMoscowRussia
| | - Mikhail Y. Vyssokikh
- Laboratory of Mitochondrial MedicineResearch Center for ObstetricsGynecology and PerinatologyMinistry of Healthcare of the Russian FederationMoscowRussia
| | - Olga L. Vinogradova
- Laboratory of Exercise PhysiologyInstitute of Biomedical Problems of the Russian Academy of SciencesMoscowRussia
- Faculty of Fundamental MedicineM.V. Lomonosov Moscow State UniversityMoscowRussia
| |
Collapse
|
30
|
Intensity-dependent gene expression after aerobic exercise in endurance-trained skeletal muscle. Biol Sport 2018; 35:277-289. [PMID: 30449946 PMCID: PMC6224845 DOI: 10.5114/biolsport.2018.77828] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 09/14/2017] [Accepted: 03/16/2018] [Indexed: 01/06/2023] Open
Abstract
We investigated acute exercise-induced gene expression in skeletal muscle adapted to aerobic training. Vastus lateralis muscle samples were taken in ten endurance-trained males prior to, and just after, 4 h, and 8 h after acute cycling sessions with different intensities, 70% and 50% V˙O2max. High-throughput RNA sequencing was applied in samples from two subjects to evaluate differentially expressed genes after intensive exercise (70% V˙O2max), and then the changes in expression for selected genes were validated by quantitative PCR (qPCR). To define exercise-induced genes, we compared gene expression after acute exercise with different intensities, 70% and 50% V˙O2max, by qPCR. The transcriptome is dynamically changed during the first hours of recovery after intensive exercise (70% V˙O2max). A computational approach revealed that the changes might be related to up- and down-regulation of the activity of transcription activators and repressors, respectively. The exercise increased expression of many genes encoding protein kinases, while genes encoding transcriptional regulators were both up- and down-regulated. Evaluation of the gene expression after exercise with different intensities revealed that some genes changed expression in an intensity-dependent manner, but others did not: the majority of genes encoding protein kinases, oxidative phosphorylation and activator protein (AP)-1-related genes significantly correlated with markers of exercise stress (power, blood lactate during exercise and post-exercise blood cortisol), while transcriptional repressors and circadian-related genes did not. Some of the changes in gene expression after exercise seemingly may be modulated by circadian rhythm.
Collapse
|
31
|
Popov DV. Adaptation of Skeletal Muscles to Contractile Activity of Varying Duration and Intensity: The Role of PGC-1α. BIOCHEMISTRY (MOSCOW) 2018; 83:613-628. [DOI: 10.1134/s0006297918060019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
32
|
Simoes DCM, Vogiatzis I. Can muscle protein metabolism be specifically targeted by exercise training in COPD? J Thorac Dis 2018; 10:S1367-S1376. [PMID: 29928519 DOI: 10.21037/jtd.2018.02.67] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Patients with stable chronic obstructive pulmonary disease (COPD) frequently exhibit unintentional accentuated peripheral muscle loss and dysfunction. Skeletal muscle mass in these patients is a strong independent predictor of morbidity and mortality. Factors including protein anabolism/catabolism imbalance, hypoxia, physical inactivity, inflammation, and oxidative stress are involved in the initiation and progression of muscle wasting in these patients. Exercise training remains the most powerful intervention for reversing, in part, muscle wasting in COPD. Independently of the status of systemic or local muscle inflammation, rehabilitative exercise training induces up-regulation of key factors governing skeletal muscle hypertrophy and regeneration. However, COPD patients presenting similar degrees of lung dysfunction do not respond alike to a given rehabilitative exercise stimulus. In addition, a proportion of patients experience limited clinical outcomes, even when exercise training has been adequately performed. Consistently, several reports provide evidence that the muscles of COPD patients present training-induced myogenic activity limitation as exercise training induces a limited number of differentially expressed genes, which are mostly associated with protein degradation. This review summarises the nature of muscle adaptations induced by exercise training, promoted both by changes in the expression of contractile proteins and their function typically controlled by intracellular signalling and transcriptional responses. Rehabilitative exercise training in COPD patients stimulates skeletal muscle mechanosensitive signalling pathways for protein accretion and its regulation during muscle contraction. Exercise training also induces synthesis of myogenic proteins by which COPD skeletal muscle promotes hypertrophy leading to fusion of myogenic cells to the myofiber. Understanding of the biological mechanisms that regulate exercise training-induced muscle growth and regeneration is necessary for implementing therapeutic strategies specifically targeting myogenesis and hypertrophy in these patients.
Collapse
Affiliation(s)
- Davina C M Simoes
- Department of Applied Sciences, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, UK
| | - Ioannis Vogiatzis
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, UK
| |
Collapse
|
33
|
Hawley JA, Lundby C, Cotter JD, Burke LM. Maximizing Cellular Adaptation to Endurance Exercise in Skeletal Muscle. Cell Metab 2018; 27:962-976. [PMID: 29719234 DOI: 10.1016/j.cmet.2018.04.014] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The application of molecular techniques to exercise biology has provided novel insight into the complexity and breadth of intracellular signaling networks involved in response to endurance-based exercise. Here we discuss several strategies that have high uptake by athletes and, on mechanistic grounds, have the potential to promote cellular adaptation to endurance training in skeletal muscle. Such approaches are based on the underlying premise that imposing a greater metabolic load and provoking extreme perturbations in cellular homeostasis will augment acute exercise responses that, when repeated over months and years, will amplify training adaptation.
Collapse
Affiliation(s)
- John A Hawley
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia.
| | - Carsten Lundby
- Centre for Physical Activity Research, Copenhagen University Hospital, Copenhagen, Denmark
| | - James D Cotter
- School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand
| | - Louise M Burke
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia; Department of Sport Nutrition, Australian Institute of Sport, Belconnen, ACT, Australia
| |
Collapse
|
34
|
Amoasii L, Olson EN, Bassel-Duby R. Control of Muscle Metabolism by the Mediator Complex. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a029843. [PMID: 28432117 DOI: 10.1101/cshperspect.a029843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Exercise represents an energetic challenge to whole-body homeostasis. In skeletal muscle, exercise activates a variety of signaling pathways that culminate in the nucleus to regulate genes involved in metabolism and contractility; however, much remains to be learned about the transcriptional effectors of exercise. Mediator is a multiprotein complex that links signal-dependent transcription factors and other transcriptional regulators with the basal transcriptional machinery, thereby serving as a transcriptional "hub." In this article, we discuss recent studies highlighting the role of Mediator subunits in metabolic regulation and glucose metabolism, as well as exercise responsiveness. Elucidation of the roles of Mediator subunits in metabolic control has revealed new mechanisms and molecular targets for the modulation of metabolism and metabolic disorders.
Collapse
Affiliation(s)
- Leonela Amoasii
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, and Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 7539-9148
| | - Eric N Olson
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, and Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 7539-9148
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, and Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 7539-9148
| |
Collapse
|
35
|
Lysenko EA, Vepkhvadze TF, Lednev EM, Vinogradova OL, Popov DV. Branched-chain amino acids administration suppresses endurance exercise-related activation of ubiquitin proteasome signaling in trained human skeletal muscle. J Physiol Sci 2018; 68:43-53. [PMID: 27913948 PMCID: PMC10717082 DOI: 10.1007/s12576-016-0506-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/15/2016] [Indexed: 12/31/2022]
Abstract
We tested whether post exercise ingestion of branched-chain amino acids (BCAA < 10 g) is sufficient to activate signaling associated with muscle protein synthesis and suppress exercise-induced activation of mechanisms associated with proteolysis in endurance-trained human skeletal muscle. Nine endurance-trained athletes performed a cycling bout with and without BCAA ingestion (0.1 g/kg). Post exercise ACCSer79/222 phosphorylation (endogenous marker of AMPK activity) was increased (~3-fold, P < 0.05) in both sessions. No changes were observed in IGF1 mRNA isoform expression or phosphorylation of the key anabolic markers - p70S6K1Thr389 and eEF2Thr56 - between the sessions. BCAA administration suppressed exercise-induced expression of mTORC1 inhibitor DDIT4 mRNA, eliminated activation of the ubiquitin proteasome system, detected in the control session as decreased FOXO1Ser256 phosphorylation (0.83-fold change, P < 0.05) and increased TRIM63 (MURF1) expression (2.4-fold, P < 0.05). Therefore, in endurance-trained human skeletal muscle, post exercise BCAA ingestion partially suppresses exercise-induced expression of PGC-1a mRNA, activation of ubiquitin proteasome signaling, and suppresses DDIT4 mRNA expression.
Collapse
Affiliation(s)
- Evgeny A Lysenko
- Laboratory of Exercise Physiology, Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye shosse, 76A, Moscow, 123007, Russia.
- Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University, Lomonosovsky Prospect, 27-1, Moscow, 119192, Russia.
| | - Tatiana F Vepkhvadze
- Laboratory of Exercise Physiology, Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye shosse, 76A, Moscow, 123007, Russia
| | - Egor M Lednev
- Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University, Lomonosovsky Prospect, 27-1, Moscow, 119192, Russia
| | - Olga L Vinogradova
- Laboratory of Exercise Physiology, Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye shosse, 76A, Moscow, 123007, Russia
- Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University, Lomonosovsky Prospect, 27-1, Moscow, 119192, Russia
| | - Daniil V Popov
- Laboratory of Exercise Physiology, Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye shosse, 76A, Moscow, 123007, Russia
- Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University, Lomonosovsky Prospect, 27-1, Moscow, 119192, Russia
| |
Collapse
|
36
|
Nicoll JX, Fry AC, Galpin AJ, Thomason DB, Moore CA. Resting MAPK expression in chronically trained endurance runners. Eur J Sport Sci 2017; 17:1194-1202. [DOI: 10.1080/17461391.2017.1359341] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Justin X. Nicoll
- Osness Human Performance Laboratories, Department of Health, Sport, and Exercise Sciences, University of Kansas, Lawrence, KS, USA
| | - Andrew C. Fry
- Osness Human Performance Laboratories, Department of Health, Sport, and Exercise Sciences, University of Kansas, Lawrence, KS, USA
| | - Andrew J. Galpin
- Center for Sport Performance, Department of Kinesiology, California State University-Fullerton, Fullerton, CA, USA
| | - Donald B. Thomason
- Department of Physiology and Biophysics, University of Tennessee-Memphis, Memphis, TN, USA
| | - Christopher A. Moore
- Human Performance Laboratories, Department of Health and Sport Science, University of Memphis, Memphis, TN, USA
| |
Collapse
|
37
|
Gortan Cappellari G, Semolic A, Ruozi G, Vinci P, Guarnieri G, Bortolotti F, Barbetta D, Zanetti M, Giacca M, Barazzoni R. Unacylated ghrelin normalizes skeletal muscle oxidative stress and prevents muscle catabolism by enhancing tissue mitophagy in experimental chronic kidney disease. FASEB J 2017; 31:5159-5171. [PMID: 28778977 DOI: 10.1096/fj.201700126r] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/17/2017] [Indexed: 12/18/2022]
Abstract
Unacylated ghrelin (UnAG) may lower skeletal muscle oxidative stress, inflammation, and insulin resistance in lean and obese rodents. UnAG-induced autophagy activation may contribute to these effects, likely involving removal of dysfunctional mitochondria (mitophagy) and redox state maintenance. In chronic kidney disease (CKD) oxidative stress, inflammation and insulin resistance may negatively influence patient outcome by worsening nutritional state through muscle mass loss. Here we show in a 5/6 nephrectomy (Nx) CKD rat model that 4 d s.c. UnAG administration (200 µg twice a day) normalizes CKD-induced loss of gastrocnemius muscle mass and a cluster of high tissue mitochondrial reactive oxygen species generation, high proinflammatory cytokines, and low insulin signaling activation. Consistent with these results, human uremic serum enhanced mitochondrial reactive oxygen species generation and lowered insulin signaling activation in C2C12 myotubes while concomitant UnAG incubation completely prevented these effects. Importantly, UnAG enhanced muscle mitophagy in vivo and silencing RNA-mediated autophagy protein 5 silencing blocked UnAG activities in myotubes. UnAG therefore normalizes CKD-induced skeletal muscle oxidative stress, inflammation, and low insulin signaling as well as muscle loss. UnAG effects are mediated by autophagy activation at the mitochondrial level. UnAG administration and mitophagy activation are novel potential therapeutic strategies for skeletal muscle metabolic abnormalities and their negative clinical impact in CKD.-Gortan Cappellari, G., Semolic, A., Ruozi, G., Vinci, P., Guarnieri, G., Bortolotti, F., Barbetta, D., Zanetti, M., Giacca, M., Barazzoni, R. Unacylated ghrelin normalizes skeletal muscle oxidative stress and prevents muscle catabolism by enhancing tissue mitophagy in experimental chronic kidney disease.
Collapse
Affiliation(s)
| | - Annamaria Semolic
- Department of Medical, Surgical, and Health Sciences, University of Trieste, Trieste, Italy
| | - Giulia Ruozi
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Pierandrea Vinci
- Department of Medical, Surgical, and Health Sciences, University of Trieste, Trieste, Italy
| | - Gianfranco Guarnieri
- Department of Medical, Surgical, and Health Sciences, University of Trieste, Trieste, Italy
| | - Francesca Bortolotti
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | | | - Michela Zanetti
- Department of Medical, Surgical, and Health Sciences, University of Trieste, Trieste, Italy
| | - Mauro Giacca
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Rocco Barazzoni
- Department of Medical, Surgical, and Health Sciences, University of Trieste, Trieste, Italy;
| |
Collapse
|
38
|
Nikolić N, Görgens SW, Thoresen GH, Aas V, Eckel J, Eckardt K. Electrical pulse stimulation of cultured skeletal muscle cells as a model for in vitro exercise - possibilities and limitations. Acta Physiol (Oxf) 2017; 220:310-331. [PMID: 27863008 DOI: 10.1111/apha.12830] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/28/2016] [Accepted: 11/06/2016] [Indexed: 12/19/2022]
Abstract
The beneficial health-related effects of exercise are well recognized, and numerous studies have investigated underlying mechanism using various in vivo and in vitro models. Although electrical pulse stimulation (EPS) for the induction of muscle contraction has been used for quite some time, its application on cultured skeletal muscle cells of animal or human origin as a model of in vitro exercise is a more recent development. In this review, we compare in vivo exercise and in vitro EPS with regard to effects on signalling, expression level and metabolism. We provide a comprehensive overview of different EPS protocols and their applications, discuss technical aspects of this model including critical controls and the importance of a proper maintenance procedure and finally discuss the limitations of the EPS model.
Collapse
Affiliation(s)
- N. Nikolić
- Department of Pharmaceutical Biosciences; School of Pharmacy; University of Oslo; Oslo Norway
| | - S. W. Görgens
- Paul-Langerhans-Group for Integrative Physiology; German Diabetes Center; Düsseldorf Germany
| | - G. H. Thoresen
- Department of Pharmaceutical Biosciences; School of Pharmacy; University of Oslo; Oslo Norway
- Department of Pharmacology; Institute of Clinical Medicine; Faculty of Medicine; University of Oslo; Oslo Norway
| | - V. Aas
- Department of Life Sciences and Health; Oslo and Akershus University College of Applied Sciences; Oslo Norway
| | - J. Eckel
- Paul-Langerhans-Group for Integrative Physiology; German Diabetes Center; Düsseldorf Germany
- German Center for Diabetes Research (DZD e.V.); Düsseldorf Germany
| | - K. Eckardt
- Department of Nutrition; Institute for Basic Medical Sciences; Faculty of Medicine; University of Oslo; Oslo Norway
| |
Collapse
|
39
|
Popov DV, Lysenko EA, Butkov AD, Vepkhvadze TF, Perfilov DV, Vinogradova OL. AMPK does not play a requisite role in regulation ofPPARGC1Agene expression via the alternative promoter in endurance-trained human skeletal muscle. Exp Physiol 2017; 102:366-375. [DOI: 10.1113/ep086074] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/05/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Daniil V. Popov
- Laboratory of Exercise Physiology; Institute of Biomedical Problems of the Russian Academy of Sciences; Moscow Russia
- Faculty of Fundamental Medicine; M. V. Lomonosov Moscow State University; Moscow Russia
| | - Evgeny A. Lysenko
- Laboratory of Exercise Physiology; Institute of Biomedical Problems of the Russian Academy of Sciences; Moscow Russia
- Faculty of Fundamental Medicine; M. V. Lomonosov Moscow State University; Moscow Russia
| | - Alexey D. Butkov
- Laboratory of Exercise Physiology; Institute of Biomedical Problems of the Russian Academy of Sciences; Moscow Russia
| | - Tatiana F. Vepkhvadze
- Laboratory of Exercise Physiology; Institute of Biomedical Problems of the Russian Academy of Sciences; Moscow Russia
| | - Dmitriy V. Perfilov
- Laboratory of Exercise Physiology; Institute of Biomedical Problems of the Russian Academy of Sciences; Moscow Russia
| | - Olga L. Vinogradova
- Laboratory of Exercise Physiology; Institute of Biomedical Problems of the Russian Academy of Sciences; Moscow Russia
- Faculty of Fundamental Medicine; M. V. Lomonosov Moscow State University; Moscow Russia
| |
Collapse
|
40
|
Parker L, Shaw CS, Stepto NK, Levinger I. Exercise and Glycemic Control: Focus on Redox Homeostasis and Redox-Sensitive Protein Signaling. Front Endocrinol (Lausanne) 2017; 8:87. [PMID: 28529499 PMCID: PMC5418238 DOI: 10.3389/fendo.2017.00087] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/04/2017] [Indexed: 12/16/2022] Open
Abstract
Physical inactivity, excess energy consumption, and obesity are associated with elevated systemic oxidative stress and the sustained activation of redox-sensitive stress-activated protein kinase (SAPK) and mitogen-activated protein kinase signaling pathways. Sustained SAPK activation leads to aberrant insulin signaling, impaired glycemic control, and the development and progression of cardiometabolic disease. Paradoxically, acute exercise transiently increases oxidative stress and SAPK signaling, yet postexercise glycemic control and skeletal muscle function are enhanced. Furthermore, regular exercise leads to the upregulation of antioxidant defense, which likely assists in the mitigation of chronic oxidative stress-associated disease. In this review, we explore the complex spatiotemporal interplay between exercise, oxidative stress, and glycemic control, and highlight exercise-induced reactive oxygen species and redox-sensitive protein signaling as important regulators of glucose homeostasis.
Collapse
Affiliation(s)
- Lewan Parker
- Institute of Sport, Exercise and Active Living (ISEAL), College of Sport and Exercise Science, Victoria University, Melbourne, VIC, Australia
- *Correspondence: Lewan Parker, ,
| | - Christopher S. Shaw
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Nigel K. Stepto
- Institute of Sport, Exercise and Active Living (ISEAL), College of Sport and Exercise Science, Victoria University, Melbourne, VIC, Australia
- Monash Centre for Health Research and Implementation, School of Public Health and Preventative Medicine, Monash University, Clayton, VIC, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University and Western Health, St. Albans, VIC, Australia
| | - Itamar Levinger
- Institute of Sport, Exercise and Active Living (ISEAL), College of Sport and Exercise Science, Victoria University, Melbourne, VIC, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University and Western Health, St. Albans, VIC, Australia
| |
Collapse
|
41
|
McGlory C, Devries MC, Phillips SM. Skeletal muscle and resistance exercise training; the role of protein synthesis in recovery and remodeling. J Appl Physiol (1985) 2016; 122:541-548. [PMID: 27742803 DOI: 10.1152/japplphysiol.00613.2016] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/04/2016] [Accepted: 10/05/2016] [Indexed: 12/22/2022] Open
Abstract
Exercise results in the rapid remodeling of skeletal muscle. This process is underpinned by acute and chronic changes in both gene and protein synthesis. In this short review we provide a brief summary of our current understanding regarding how exercise influences these processes as well as the subsequent impact on muscle protein turnover and resultant shift in muscle phenotype. We explore concepts of ribosomal biogenesis and the potential role of increased translational capacity vs. translational efficiency in contributing to muscular hypertrophy. We also examine whether high-intensity sprinting-type exercise promotes changes in protein turnover that lead to hypertrophy or merely a change in mitochondrial content. Finally, we propose novel areas for future study that will fill existing knowledge gaps in the fields of translational research and exercise science.
Collapse
Affiliation(s)
- Chris McGlory
- Department of Kinesiology, McMaster University, Ontario, Canada
| | | | | |
Collapse
|
42
|
Camera DM, Smiles WJ, Hawley JA. Exercise-induced skeletal muscle signaling pathways and human athletic performance. Free Radic Biol Med 2016; 98:131-143. [PMID: 26876650 DOI: 10.1016/j.freeradbiomed.2016.02.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/28/2016] [Accepted: 02/03/2016] [Indexed: 12/18/2022]
Abstract
Skeletal muscle is a highly malleable tissue capable of altering its phenotype in response to external stimuli including exercise. This response is determined by the mode, (endurance- versus resistance-based), volume, intensity and frequency of exercise performed with the magnitude of this response-adaptation the basis for enhanced physical work capacity. However, training-induced adaptations in skeletal muscle are variable and unpredictable between individuals. With the recent application of molecular techniques to exercise biology, there has been a greater understanding of the multiplicity and complexity of cellular networks involved in exercise responses. This review summarizes the molecular and cellular events mediating adaptation processes in skeletal muscle in response to exercise. We discuss established and novel cell signaling proteins mediating key physiological responses associated with enhanced exercise performance and the capacity for reactive oxygen and nitrogen species to modulate training adaptation responses. We also examine the molecular bases underpinning heterogeneous responses to resistance and endurance exercise and the dissociation between molecular 'markers' of training adaptation and subsequent exercise performance.
Collapse
Affiliation(s)
- Donny M Camera
- Centre for Exercise and Nutrition, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Vic. 3065, Australia
| | - William J Smiles
- Centre for Exercise and Nutrition, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Vic. 3065, Australia
| | - John A Hawley
- Centre for Exercise and Nutrition, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Vic. 3065, Australia; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom.
| |
Collapse
|
43
|
Abstract
Epigenetic changes are caused by biochemical regulators of gene expression that can be transferred across generations or through cell division. Epigenetic modifications can arise from a variety of environmental exposures including undernutrition, obesity, physical activity, stress and toxins. Transient epigenetic changes across the entire genome can influence metabolic outcomes and might or might not be heritable. These modifications direct and maintain the cell-type specific gene expression state. Transient epigenetic changes can be driven by DNA methylation and histone modification in response to environmental stressors. A detailed understanding of the epigenetic signatures of insulin resistance and the adaptive response to exercise might identify new therapeutic targets that can be further developed to improve insulin sensitivity and prevent obesity. This Review focuses on the current understanding of mechanisms by which lifestyle factors affect the epigenetic landscape in type 2 diabetes mellitus and obesity. Evidence from the past few years about the potential mechanisms by which diet and exercise affect the epigenome over several generations is discussed.
Collapse
Affiliation(s)
- Romain Barrès
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Integrative Physiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
| | - Juleen R Zierath
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Integrative Physiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
- Department of Molecular Medicine and Department of Physiology and Pharmacology, Section of Integrative Physiology, Karolinska Institutet, von Eulers väg 4a, SE 171 77 Stockholm, Sweden
| |
Collapse
|
44
|
Abstract
Acute and transient changes in gene transcription following a single exercise bout, if reinforced by repeated exercise stimuli, result in the longer lasting effects on protein expression and function that form the basis of skeletal muscle training adaptations. Changes in skeletal muscle gene expression occur in response to multiple stimuli associated with skeletal muscle contraction, various signaling kinases that respond to these stimuli, and numerous downstream pathways and targets of these kinases. In addition, DNA methylation, histone acetylation and phosphorylation, and micro-RNAs can alter gene expression via epigenetic mechanisms. Contemporary studies rely upon "big omics data," in combination with computational and systems biology, to interrogate, and make sense of, the complex interactions underpinning exercise adaptations. The exciting potential is a greater understanding of the integrative biology of exercise.
Collapse
Affiliation(s)
- Mark Hargreaves
- Department of Physiology, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
45
|
Ihsan M, Markworth JF, Watson G, Choo HC, Govus A, Pham T, Hickey A, Cameron-Smith D, Abbiss CR. Regular postexercise cooling enhances mitochondrial biogenesis through AMPK and p38 MAPK in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2015; 309:R286-94. [PMID: 26041108 DOI: 10.1152/ajpregu.00031.2015] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 06/03/2015] [Indexed: 11/22/2022]
Abstract
This study investigated the effect of regular postexercise cold water immersion (CWI) on muscle aerobic adaptations to endurance training. Eight males performed 3 sessions/wk of endurance training for 4 wk. Following each session, subjects immersed one leg in a cold water bath (10°C; COLD) for 15 min, while the contralateral leg served as a control (CON). Muscle biopsies were obtained from vastus lateralis of both CON and COLD legs prior to training and 48 h following the last training session. Samples were analyzed for signaling kinases: p38 MAPK and AMPK, peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), enzyme activities indicative of mitochondrial biogenesis, and protein subunits representative of respiratory chain complexes I-V. Following training, subjects' peak oxygen uptake and running velocity were improved by 5.9% and 6.2%, respectively (P < 0.05). Repeated CWI resulted in higher total AMPK, phosphorylated AMPK, phosphorylated acetyl-CoA carboxylase, β-3-hydroxyacyl-CoA-dehydrogenase and the protein subunits representative of complex I and III (P < 0.05). Moreover, large effect sizes (Cohen's d > 0.8) were noted with changes in protein content of p38 (d = 1.02, P = 0.064), PGC-1α (d = 0.99, P = 0.079), and peroxisome proliferator-activated receptor α (d = 0.93, P = 0.10) in COLD compared with CON. No differences between conditions were observed in the representative protein subunits of respiratory complexes II, IV, and V and in the activities of several mitochondrial enzymes (P > 0.05). These findings indicate that regular CWI enhances p38, AMPK, and possibly mitochondrial biogenesis.
Collapse
Affiliation(s)
- Mohammed Ihsan
- Sports Physiology Department, Singapore Sports Institute, Singapore; Centre for Exercise and Sport Science Research, School of Exercise and Health Sciences, Edith Cowan University, Perth, Australia;
| | | | - Greig Watson
- School of Human Life Sciences, University of Tasmania, Launceston, Australia; and
| | - Hui Cheng Choo
- Centre for Exercise and Sport Science Research, School of Exercise and Health Sciences, Edith Cowan University, Perth, Australia; Department of Physical Education and Sports Science, National Institute of Education, Nanyang Technological University, Singapore
| | - Andrew Govus
- Centre for Exercise and Sport Science Research, School of Exercise and Health Sciences, Edith Cowan University, Perth, Australia
| | - Toan Pham
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Anthony Hickey
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | | | - Chris R Abbiss
- Centre for Exercise and Sport Science Research, School of Exercise and Health Sciences, Edith Cowan University, Perth, Australia
| |
Collapse
|
46
|
Hawley JA, Morton JP. Ramping up the signal: promoting endurance training adaptation in skeletal muscle by nutritional manipulation. Clin Exp Pharmacol Physiol 2015; 41:608-13. [PMID: 25142094 DOI: 10.1111/1440-1681.12246] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 04/16/2014] [Accepted: 04/24/2014] [Indexed: 11/30/2022]
Abstract
Mitochondrial biogenesis in skeletal muscle results from the cumulative effect of transient increases in mRNA transcripts encoding mitochondrial proteins in response to repeated exercise sessions. This process requires the coordinated expression of both nuclear and mitochondrial (mt) DNA genomes and is regulated, for the most part, by the peroxisome proliferator-activated receptor γ coactivator 1α. Several other exercise-inducible proteins also play important roles in promoting an endurance phenotype, including AMP-activated protein kinase, p38 mitogen-activated protein kinase and tumour suppressor protein p53. Commencing endurance-based exercise with low muscle glycogen availability results in greater activation of many of these signalling proteins compared with when the same exercise is undertaken with normal glycogen concentration, suggesting that nutrient availability is a potent signal that can modulate the acute cellular responses to a single bout of exercise. When exercise sessions are repeated in the face of low glycogen availability (i.e. chronic training), the phenotypic adaptations resulting from such interventions are also augmented.
Collapse
Affiliation(s)
- John A Hawley
- Exercise & Nutrition Research Group, School of Exercise Sciences, Australian Catholic University, Melbourne, Vic., Australia; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | | |
Collapse
|
47
|
Di Donato DM, West DWD, Churchward-Venne TA, Breen L, Baker SK, Phillips SM. Influence of aerobic exercise intensity on myofibrillar and mitochondrial protein synthesis in young men during early and late postexercise recovery. Am J Physiol Endocrinol Metab 2014; 306:E1025-32. [PMID: 24595306 PMCID: PMC4010655 DOI: 10.1152/ajpendo.00487.2013] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Aerobic exercise is typically associated with expansion of the mitochondrial protein pool and improvements in muscle oxidative capacity. The impact of aerobic exercise intensity on the synthesis of specific skeletal muscle protein subfractions is not known. We aimed to study the effect of aerobic exercise intensity on rates of myofibrillar (MyoPS) and mitochondrial (MitoPS) protein synthesis over an early (0.5-4.5 h) and late (24-28 h) period during postexercise recovery. Using a within-subject crossover design, eight males (21 ± 1 yr, Vo2peak 46.7 ± 2.0 ml·kg(-1)·min(-1)) performed two work-matched cycle ergometry exercise trials (LOW: 60 min at 30% Wmax; HIGH: 30 min at 60% Wmax) in the fasted state while undergoing a primed constant infusion of l-[ring-(13)C6]phenylalanine. Muscle biopsies were obtained at rest and 0.5, 4.5, 24, and 28 h postexercise to determine both the "early" and "late" response of MyoPS and MitoPS and the phosphorylation status of selected proteins within both the Akt/mTOR and MAPK pathways. Over 24-28 h postexercise, MitoPS was significantly greater after the HIGH vs. LOW exercise trial (P < 0.05). Rates of MyoPS were increased equivalently over 0.5-4.5 h postexercise recovery (P < 0.05) but remained elevated at 24-28 h postexercise only following the HIGH trial. In conclusion, an acute bout of high- but not low-intensity aerobic exercise in the fasted state resulted in a sustained elevation of both MitoPS and MyoPS at 24-28 h postexercise recovery.
Collapse
|
48
|
McGlory C, White A, Treins C, Drust B, Close GL, Maclaren DPM, Campbell IT, Philp A, Schenk S, Morton JP, Hamilton DL. Application of the [γ-32P] ATP kinase assay to study anabolic signaling in human skeletal muscle. J Appl Physiol (1985) 2014; 116:504-13. [PMID: 24436296 DOI: 10.1152/japplphysiol.01072.2013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
AMPK (AMP-dependant protein kinase)-mTORC1 (mechanistic target of rapamycin in complex 1)-p70S6K1 (ribosomal protein S6 kinase 1 of 70 kDa) signaling plays a crucial role in muscle protein synthesis (MPS). Understanding this pathway has been advanced by the application of the Western blot (WB) technique. However, because many components of the mTORC1 pathway undergo numerous, multisite posttranslational modifications, solely studying the phosphorylation changes of mTORC1 and its substrates may not adequately represent the true metabolic signaling processes. The aim of this study was to develop and apply a quantitative in vitro [γ-(32)P] ATP kinase assay (KA) for p70S6K1 to assess kinase activity in human skeletal muscle to resistance exercise (RE) and protein feeding. In an initial series of experiments the assay was validated in tissue culture and in p70S6K1-knockout tissues. Following these experiments, the methodology was applied to assess p70S6K1 signaling responses to a physiologically relevant stimulus. Six men performed unilateral RE followed by the consumption of 20 g of protein. Muscle biopsies were obtained at pre-RE, and 1 and 3 h post-RE. In response to RE and protein consumption, p70S6K1 activity as assessed by the KA was significantly increased from pre-RE at 1 and 3 h post-RE. However, phosphorylated p70S6K1(thr389) was not significantly elevated. AMPK activity was suppressed from pre-RE at 3 h post-RE, whereas phosphorylated ACC(ser79) was unchanged. Total protein kinase B activity also was unchanged after RE from pre-RE levels. Of the other markers we assessed by WB, 4EBP1(thr37/46) phosphorylation was the only significant responder, being elevated at 3 h post-RE from pre-RE. These data highlight the utility of the KA to study skeletal muscle plasticity.
Collapse
Affiliation(s)
- Chris McGlory
- Health & Exercise Sciences Research Group University of Stirling, Stirling, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Wu J, Puppala D, Feng X, Monetti M, Lapworth AL, Geoghegan KF. Chemoproteomic analysis of intertissue and interspecies isoform diversity of AMP-activated protein kinase (AMPK). J Biol Chem 2013; 288:35904-12. [PMID: 24187138 DOI: 10.1074/jbc.m113.508747] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is a heterotrimeric enzyme that senses and governs changes in the cellular energy balance represented by concentrations of AMP, ADP, and ATP. Each of its three chains (α, β, and γ) exists as either two or three subtypes, theoretically allowing up to 12 different forms of the complete enzyme. Tissue specificity in the distribution of AMPK subtypes is believed to underpin a range of biological functions for AMPK, a central regulator of metabolic function and response. It is of particular interest for drug discovery purposes to compare AMPK isoforms that are most prevalent in human liver and muscle with isoforms present in key preclinical species. To complement immunocapture/immunodetection methods, which for AMPK are challenged by sequence similarities and difficulties of obtaining accurate relative quantitation, AMPK was captured from lysates of a range of cells and tissues using the ActivX ATP probe. This chemical probe covalently attaches desthiobiotin to one or more conserved lysyl residues in the ATP-binding sites of protein kinases, including AMPK, while also labeling a wide range of ATP-utilizing proteins. Affinity-based recovery of labeled proteins followed by gel-based fractionation of the captured sample was followed by proteomic characterization of AMPK polypeptides. In agreement with transcript-based analysis and previous indications from immunodetection, the results indicated that the predominant AMPK heterotrimer in human liver is α1β2γ1 but that dog and rat livers mainly contain the α1β1γ1 and α2β1γ1 forms, respectively. Differences were not detected between the AMPK profiles of normal and diabetic human liver tissues.
Collapse
Affiliation(s)
- Jiang Wu
- From Pfizer Worldwide Research, Groton, Connecticut 06340 and
| | | | | | | | | | | |
Collapse
|
50
|
Resistance exercise, but not endurance exercise, induces IKKβ phosphorylation in human skeletal muscle of training-accustomed individuals. Pflugers Arch 2013; 465:1785-95. [PMID: 23838844 DOI: 10.1007/s00424-013-1318-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 06/11/2013] [Accepted: 06/18/2013] [Indexed: 12/20/2022]
Abstract
The mammalian target of rapamycin complex 1 (mTORC1) is considered an important role in the muscular adaptations to exercise. It has been proposed that exercise-induced signaling to mTORC1 do not require classic growth factor PI3K/Akt signaling. Activation of IKKβ and the mitogen-activated protein kinases (MAPKs) Erk1/2 and p38 has been suggested to link inflammation and cellular stress to activation of mTORC1 through the tuberous sclerosis 1 (TSC1)/tuberous sclerosis 2 (TSC2) complex. Consequently, activation of these proteins constitutes potential alternative mechanisms of mTORC1 activation following exercise. Previously, we demonstrated that mTOR is preferentially activated in response to resistance exercise compared to endurance exercise in trained individuals without concomitant activation of Akt. In the present study, we extended this investigation by examining IκB kinase complex (IKK), TSC1, MAPK, and upstream Akt activators, along with gene expression of selected cytokines, in skeletal muscles from these subjects. Biopsies were sampled prior to, immediately after, and in the recovery period following resistance exercise, endurance exercise, and control interventions. The major finding was that IKKβ phosphorylation increased exclusively after resistance exercise. No changes in TSC1, Erk1/2, insulin receptor, or insulin receptor substrate 1 phosphorylation were observed in any of the groups, while p38 phosphorylation was higher in the resistance exercise group compared to both other groups immediately after the intervention. Resistance and endurance exercise increased IL6, IL8, and TNFα gene expression immediately after exercise. The non-exercise control group demonstrated that cytokine gene expression is also sensitive to repeated biopsy sampling, whereas no effect of repeated biopsy sampling on protein expression and phosphorylation was observed. In conclusion, resistance exercise, but not endurance exercise, increases IKKβ phosphorylation in trained human subjects, which support the idea that IKKβ can influence the activation of mTORC1 in human skeletal muscle.
Collapse
|